## Supporting Information

# Synthesis of Fused 3-Trifluoromethyl-1,2,4-Triazoles via Base-Promoted [3+2] Cycloaddition of Nitrile Imines and <br> <br> 1H-Benzo[d]imidazole-2-thiols 

 <br> <br> 1H-Benzo[d]imidazole-2-thiols}

Kaili Cen, ${ }^{+\mathrm{a}}$ Jiahao Wei, ${ }^{+\mathrm{c}}$ Yuting Feng, ${ }^{\text {+d }}$ Yuan Liu, ${ }^{\mathrm{d}}$ Xinye Wang, ${ }^{\mathrm{d}}$ Yangyu Liu, ${ }^{\mathrm{d}}$ Yalin Yin, ${ }^{\text {a }}$ Junhong Yu, ${ }^{\text {a }}$ Dahan Wang*b and Jinhui Cai*a<br>${ }^{a}$ College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China<br>${ }^{b}$ Department of Food and Chemical Engineering, Shaoyang University, Shaoyang 422100, Hunan, China<br>${ }^{c}$ School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China<br>${ }^{d}$ Chuanshan College University of South China, Hengyang 421001, Hunan, China E-mail: jinhuicai@usc.edu.cn; syudhwang@163.com<br>${ }^{+}$These authors contributed equally to this work

## Table of Contents

$\qquad$2. General Procedure for Synthesis of Fused 3-Trifluoromethyl-1,2,4-Triazoles via Base-Promoted

$[3+2]$ Cycloaddition | Nitrile | Imines and |
| :--- | :--- | :--- | :--- |

$\qquad$
3. Spectra Data of 3a-3x ..... SI-4
4. Gram-scale Reaction and Derivatizations of $\mathbf{3 j}$ ..... SI-11
5. X-ray Crystallography Data of $\mathbf{3 f}$. ..... SI-16
6. References ..... SI-17
7. NMR Spectra ..... SI-18

## 1. General Information

Unless otherwise noted, all experiments were carried out under nitrogen atmosphere. Reactions were monitored by thin-layer chromatography (TLC). TLC was performed using Huanghai $8 \pm 0.2 \mu \mathrm{~m}$ precoated glass plates ( 0.25 mm ) and visualized by UV fluorescence quenching and $\mathrm{KMnO}_{4}$. Huanghai silica gel (particle size 200 - 300 mesh) was used for chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at room temperature on a Bruker ADVANCE III 500 MHz spectrometer and were reported relative to residual $\mathrm{CDCl}_{3}(\delta 7.26 \mathrm{ppm}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ADVANCE III 500 MHz spectrometer ( 125 MHz ) and were reported relative to $\mathrm{CDCl}_{3}(\delta 77.16 \mathrm{ppm}) .{ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker ADVANCE III 500 MHz spectrometer ( 471 MHz ). Data for ${ }^{1} \mathrm{H}$ NMR were reported as chemical shift ( $\delta \mathrm{ppm}$ ) (multiplicity, coupling constant (Hz), integration) using standard abbreviations for multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. Data for ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR were reported in terms of chemical shifts ( $\delta \mathrm{ppm}$ ). High resolution mass spectra (HRMS) were obtained by use of a Bruker Compact TOF mass spectrometer in electrospray ionization mode (ESI ${ }^{+}$).

Unless otherwise noted, all reagents were purchased commercially from Adamas, Innochem, Alfa, Energy Chemical, Sigma-Aldrich and used without further purification. Petroleum ether (PE) (60 ~ $90{ }^{\circ} \mathrm{C}$ ), ethyl acetate (EA) and dichloromethane (DCM) were used as eluent for silica gel chromatography. Dry solvents were purchased commercially. Nitrile imines derivatives were synthesized smoothly according to literature. ${ }^{1-2}$

## 2. General Procedure for Synthesis of Fused

## 3-Trifluoromethyl-1,2,4-Triazoles via Base-Promoted [3+2]

## Cycloaddition of Nitrile Imines and $\mathbf{1 H}$-Benzo[d]imidazole-2-thiols



A mixture of $1 H$-benzo[d]imidazole-2-thiol $1(15.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.), nitrile imines 2 ( $0.15 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ( 2 equiv.), and $\mathrm{EA}(1 \mathrm{~mL}$ ) was added to a 10 mL Schlenk-tube, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 hours. After the reaction was completed, the mixture was diluted with EA ( 20 mL ) and filtered. The filtrates were concentrated under reduced pressure to give a crude residue which was purified by flash column chromatography to provide the desired product $\mathbf{3 a}$ in $96 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.25(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.7$, 149.9, 137.0, 129.8 (q, $J=43.8 \mathrm{~Hz}$ ), 129.7, 126.7, 126.2, 124.5, 121.5, 120.0, 117.94 $(\mathrm{q}, J=267.5 \mathrm{~Hz}), 117.90,112.1 .{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.79. HRMS (ESI ${ }^{+}$) $m / z$ calc'd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 303.0852$, found 303.0855

## 3. Spectra Data of 3a-3x



## 1-Phenyl-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazole (3a)

Following the general procedure, the desired product $\mathbf{3 a}(29.0 \mathrm{mg})$ was obtained in $96 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}$, 2 H ). ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.7,149.9,137.0,129.75$ ( $\mathrm{q}, ~ J=43.8 \mathrm{~Hz}$ ), 129.71, 126.7, 126.2, 124.5, 121.5, 120.0, $117.94(\mathrm{q}, J=267.5 \mathrm{~Hz}), 117.90,112.1 .{ }^{19} \mathrm{~F}$ NMR (471 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-64.79$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 303.0852, found 303.0855.


1-(p-Tolyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazole (3b)
Following the general procedure, the desired product $\mathbf{3 b}(29.1 \mathrm{mg})$ was obtained in $92 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.09$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.7,150.0,136.6,134.7,130.2,129.5(\mathrm{q}, J=43.8 \mathrm{~Hz})$, 126.1, 124.6, 121.3, 120.0, $118.0(\mathrm{q}, J=268.8 \mathrm{~Hz}), 117.8,112.1,21.2 .{ }^{19}$ F NMR ( 471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.74. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 317.1009$, found 317.1009.


## 1-(4-(tert-Butyl)phenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]tri azole (3c)

Following the general procedure, the desired product $3 \mathrm{c}(32.2 \mathrm{mg})$ was obtained in $90 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.8$
$\mathrm{Hz}, 1 \mathrm{H}), 1.37$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.9,150.0,134.6,129.6(\mathrm{q}, J$ $=43.8 \mathrm{~Hz}), 126.6,126.2,124.7,121.3,120.0,119.1,118.0(\mathrm{q}, J=268.8 \mathrm{~Hz}), 116.9$, 112.1, 34.8, 31.5. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.73. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 359.1478$, found 359.1476.


## 3-(Trifluoromethyl)-1-(4-(trifluoromethyl)phenyl)-1H-benzo[4,5]imidazo[2,1-c][1 ,2,4]triazole (3d)

Following the general procedure, the desired product $\mathbf{3 d}(26.6 \mathrm{mg})$ was obtained in $72 \%$ yield as a colorless oil. $R_{f}=0.4$ ( $\mathrm{PE}: \mathrm{EA}=20: 1$ ).
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.76$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5,149.8,139.6,130.6(\mathrm{q}, J=43.8 \mathrm{~Hz}), 128.5(\mathrm{q}, J=32.5 \mathrm{~Hz})$, $127.0(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.5,124.6,123.9(\mathrm{q}, J=271.9 \mathrm{~Hz}), 122.0,120.2,117.79(\mathrm{q}, J$ $=268.8 \mathrm{~Hz}$ ), 117.77, 112.2. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-62.29$, -64.94. HRMS $\left(\mathrm{ESI}^{+}\right) m / z$ calc'd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 371.0726$, found 371.0725.


4-(3-(Trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazol-1-yl)benzonitril e (3e)

Following the general procedure, the desired product $\mathbf{3 e}(20.9 \mathrm{mg})$ was obtained in $64 \%$ yield as a pale solid. $R_{f}=0.3(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.76$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 151.3,149.7,140.1,133.9,131.1(\mathrm{q}, J=45.0 \mathrm{~Hz}), 126.6,124.6,122.3$, $120.3,118.4,118.0,117.7(\mathrm{q}, ~ J=268.8 \mathrm{~Hz}), 112.2,109.9 .{ }^{19} \mathrm{~F}$ NMR ( 471 MHz , $\mathrm{CDCl}_{3}$ ) $\delta$-64.98. HRMS ( $\mathrm{ESI}^{+}$): calc'd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 328.0805$, found, 328.0802 .


1-(4-Nitrophenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazole (3f)

Following the general procedure, the desired product $\mathbf{3 f}(22.9 \mathrm{mg})$ was obtained in $66 \%$ yield as a pale solid. $R_{f}=0.2(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.49-8.43(\mathrm{~m}, 2 \mathrm{H}), 8.42-8.37(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.2,149.6,145.4,141.5,131.3(\mathrm{q}, ~ J=43.8 \mathrm{~Hz}$ ), 126.6, 125.6, 124.7, 122.4, 120.4, 117.8, $117.6(\mathrm{q}, J=270.0 \mathrm{~Hz}), 112.2 .{ }^{19} \mathrm{~F}$ NMR (471 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$-65.17. HRMS ( $\mathrm{ESI}^{+}$): calc'd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 348.0703, found 348.0698.


1-(4-(Trifluoromethoxy)phenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c] [1,2,4]triazole (3g)

Following the general procedure, the desired product $\mathbf{3 g}(29.7 \mathrm{mg})$ was obtained in $77 \%$ yield as a colorless oil. $R_{f}=0.3(\mathrm{PE}: \mathrm{EA}=15: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.34-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}{ }^{2}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.5,149.9,147.2,135.5,130.2(\mathrm{q}, J=45.0 \mathrm{~Hz}$ ), 126.4, 124.7, 122.5, 121.8, 120.6 (q, $J=256.3 \mathrm{~Hz}$ ), 120.1, 119.2, 117.8 (q, $J=268.8$ $\mathrm{Hz})$, 112.2. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-58.05, -64.86. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 387.0675$, found 387.0672.


1-(4-Fluorophenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazol e (3h)

Following the general procedure, the desired product $\mathbf{3 h}(26.9 \mathrm{mg})$ was obtained in $84 \%$ yield as a colorless oil. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.30-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.45$ $(\mathrm{m}, 1 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.0(\mathrm{~d}, J=245.0 \mathrm{~Hz})$, 151.6, 149.9, 133.2, 129.8 ( $\mathrm{q}, ~ J=45.0 \mathrm{~Hz}$ ), 126.3, 124.7, 121.6, 120.0, $119.7(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}), 117.9(\mathrm{q}, J=268.8 \mathrm{~Hz}), 116.6(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 112.2 .{ }^{19} \mathrm{~F}$ NMR $(471 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-64.79,-114.92$. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{4} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 321.0758$, found 321.0755 .


## 1-(4-Chlorophenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazol e (3i)

Following the general procedure, the desired product $\mathbf{3 i}(27.9 \mathrm{mg})$ was obtained in $83 \%$ yield as a colorless oil. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.5,149.9,135.6,132.1,129.8,129.4(\mathrm{q}, J=45.0 \mathrm{~Hz}), 126.4,124.7$, 121.7, 120.1, 119.1, 117.9 (q, $J=268.8 \mathrm{~Hz}$ ), 112.2. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ -64.83. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 337.0462$, found 337.0462.


1-(4-Bromophenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazol e (3j)
Following the general procedure, the desired product $\mathbf{3 j}$ ( 25.8 mg ) was obtained in $68 \%$ yield as a pale solid. $R_{f}=0.4$ (PE : $\mathrm{EA}=20: 1$ ).
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.19-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.6,149.9,136.1,132.7,129.2(\mathrm{q}, J=267.5 \mathrm{~Hz}), 126.5$, 124.7, 121.8, 120.2, 119.9, 119.4, 117.9 (q, $J=267.5 \mathrm{~Hz}$ ), 112.2. ${ }^{19} \mathrm{~F}$ NMR ( 471 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-64.86$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calc'd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrF}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 380.9957$, found 380.9957.


## 1-( $\boldsymbol{m}$-Tolyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazole (3k)

Following the general procedure, the desired product $\mathbf{3 k}(28.8 \mathrm{mg})$ was obtained in $91 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.08-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.7$, $149.9,139.9,137.0,129.6(\mathrm{q}, J=43.8 \mathrm{~Hz}), 129.5,127.5,126.1,124.6,121.4,120.0$, $118.4,118.0(\mathrm{q}, J=268.8 \mathrm{~Hz}), 115.1,112.1,21.8 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
-64.75. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 317.1009$, found 317.1010.


3-(Trifluoromethyl)-1-(3-(trifluoromethyl)phenyl)-1H-benzo[4,5]imidazo[2,1-c][1 ,2,4]triazole (31)
Following the general procedure, the desired product $31(27.0 \mathrm{mg})$ was obtained in $73 \%$ yield as a colorless oil. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5$, $149.8,137.5,132.4(\mathrm{q}, J=32.5 \mathrm{~Hz}), 130.46(\mathrm{q}, J=45.0 \mathrm{~Hz}), 130.45,126.4,124.7$, $123.7(\mathrm{q}, J=271.3 \mathrm{~Hz}), 123.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 121.9,120.8,120.3,117.8(\mathrm{q}, J=268.8$ $\mathrm{Hz}), 114.8(\mathrm{q}, J=3.8 \mathrm{~Hz}), 112.2 .{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-62.70$, -64.88. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 371.0726$, found 371.0726 .


## 1-(3-Methoxyphenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triaz ole (3m)

Following the general procedure, the desired product $\mathbf{3 m}(25.6 \mathrm{mg})$ was obtained in $77 \%$ yield as a colorless oil. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ $-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.92 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 160.7, 151.7, 149.9, 138.1, 130.6, 129.7 (q, $J=43.8 \mathrm{~Hz}), 126.2,124.6,121.5,120.1,117.9(\mathrm{q}, J=268.8 \mathrm{~Hz}), 112.7,112.1$, 110.1, 103.6, 55.7. ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.77. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 333.0958$, found 333.0959 .


## 1-(3-Chlorophenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazol e (3n)

Following the general procedure, the desired product $3 \mathbf{n}(23.5 \mathrm{mg})$ was obtained in $70 \%$ yield as a colorless oil. $R_{f}=0.3(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.27-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.5,149.8,137.9,135.7,130.8,130.2$ (q, $J=43.8$ $\mathrm{Hz}), 126.7,126.3,124.6,121.8,120.2,118.0,117.84(\mathrm{q}, J=268.8 \mathrm{~Hz}), 115.9,112.1$. ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.95. HRMS ( $\mathrm{ESI}^{+}$): calc'd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{~N}_{4}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 337.0462$, found 337.0462 .

1-(3-Bromophenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazol e (30)

Following the general procedure, the desired product $\mathbf{3 o}(24.7 \mathrm{mg})$ was obtained in $65 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 151.5,149.9,138.0,131.1,130.3(\mathrm{q}, J=45.0 \mathrm{~Hz}), 129.7$, 126.4, 124.7, 123.5, 121.8, 120.9, 120.2, 117.8 (q, $J=268.8 \mathrm{~Hz}$ ), 116.4, 112.2. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.86. HRMS ( $\mathrm{ESI}^{+}$): calc'd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrF}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 380.9957, found 380.9956 .


## 1-(o-Tolyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazole (3p)

Following the general procedure, the desired product $\mathbf{3 p}(16.1 \mathrm{mg})$ was obtained in $51 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 153.4,150.1,134.8,134.5,132.1$, $130.0(\mathrm{q}, J=43.8 \mathrm{~Hz}), 129.8,127.3,126.14,126.11,125.3,121.1,119.9,118.0(\mathrm{q}, J=$ 268.8 Hz ), 112.2, 18.6. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.81$. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 317.1009$, found 317.1009.


1-(2-Chlorophenyl)-3-(trifluoromethyl)-1 $H$-benzo[4,5]imidazo[2,1-c][1,2,4]triazol
e (3q)
Following the general procedure, the desired product $\mathbf{3 q}(17.5 \mathrm{mg})$ was obtained in $52 \%$ yield as a colorless oil. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ $-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 153.2,150.0,133.3,131.4,131.3,130.3(\mathrm{q}, J=43.8 \mathrm{~Hz})$, 128.6, 128.2, 126.2, 125.4, 121.4, 120.0, 117.8 (q, $J=268.8 \mathrm{~Hz}$ ), 112.2. ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.94. HRMS ( $\mathrm{ESI}^{+}$): calc'd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 337.0462, found 337.0461.


1-(3-Chloro-4-methylphenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1, 2,4]triazole (3r)

Following the general procedure, the desired product $\mathbf{3 r}(30.5 \mathrm{mg})$ was obtained in $87 \%$ yield as a pale solid. $R_{f}=0.3(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.24(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.5$, 149.9, 135.7, 135.5, 134.6, 131.8, 130.0 (q, $J=43.8 \mathrm{~Hz}$ ), 126.3, 124.7, 121.7, 120.1, 118.5, 117.9 (q, $J=267.5 \mathrm{~Hz}$ ), 116.0, 112.1, 23.2. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ -64.79. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 351.0619$, found 351.0618 .


1-(2,4-Dichlorophenyl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]tri azole (3s)

Following the general procedure, the desired product $3 \mathrm{~s}(21.1 \mathrm{mg})$ was obtained in $57 \%$ yield as a colorless oil. $R_{f}=0.3(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.82-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.44$ $(\mathrm{m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 153.0,149.9,136.7$, $132.2,132.0,131.2,131.0(\mathrm{q}, J=45.0 \mathrm{~Hz}), 129.2,128.5,126.3,125.4,121.6,120.1$, $117.8(\mathrm{q}, J=268.8 \mathrm{~Hz}), 112.2 .{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-65.00. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 371.0073$, found 371.0073.


1-(Naphthalen-2-yl)-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazo le (3t)

Following the general procedure, the desired product $3 \mathrm{t}(17.6 \mathrm{mg})$ was obtained in $50 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}$, $3 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.7,150.0,134.5$, $133.5,131.7,129.9,129.8(\mathrm{q}, J=45.0 \mathrm{~Hz}), 128.3,127.9,127.3,126.3,126.2,124.6$, $121.5,120.1,118.0(\mathrm{q}, J=268.8 \mathrm{~Hz}), 116.8,115.4,112.1 .{ }^{19} \mathrm{~F}$ NMR (471 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$-64.70. HRMS (ESI $)$ : calc'd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 353.1009$, found 353.1009 .


## 3-(Difluoromethyl)-1-phenyl-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triazole (3u)

Following the general procedure, the desired product $\mathbf{3 u}(26.1 \mathrm{mg})$ was obtained in $92 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{dd}, J=16.8,8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=52.0 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.8,150.0,137.3,133.8(\mathrm{t}, J=31.3 \mathrm{~Hz}), 129.7$, $126.3,125.9,124.9,121.2,119.7,117.7,112.8,108.1(\mathrm{t}, J=235.0 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-116.67(\mathrm{~d}, J=52.0 \mathrm{~Hz}) . \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 285.0946$, found 285.0945.


7-Methoxy-1-phenyl-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]triaz ole
and

```
ole (3v')
```

Following the general procedure, a mixture of $\mathbf{3 v}$ and $\mathbf{3 v}{ }^{\prime}(29.4 \mathrm{mg})$ was obtained in $88 \%$ yield as a pale solid with approximately a ratio of 1:1.1. $R_{f}=0.3(\mathrm{PE}: \mathrm{EA}=20$ : 1).
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.41-8.19(\mathrm{~m}, 3.6 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.85 \mathrm{H})$, $7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1.09 \mathrm{H}), 7.62-7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3.69 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3.28 \mathrm{H})$, $7.26(\mathrm{~s}, 0.77 \mathrm{H}), 7.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.74 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.925(\mathrm{~s}, 2.91 \mathrm{H})$, $3.920(\mathrm{~s}, 2.62 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 158.6,155.2,152.1,151.2,144.0$, 137.1, 137.0, 129.7, 129.3 (q, $J=43.8 \mathrm{~Hz}$ ), 126.6, 126.4, 124.7, 120.4, 119.0, 118.0 $(\mathrm{q}, J=267.5 \mathrm{~Hz}), 117.9,117.7,114.7,112.5,110.7,102.4,96.4,56.2,55.8 .{ }^{19} \mathrm{~F}$ NMR (471 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$-64.48, -64.74. HRMS ( $\mathrm{ESI}^{+}$) m/z calc'd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 333.0958$, found 333.0958 .


6,7-Dimethyl-1-phenyl-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]tri azole (3w)

Following the general procedure, the desired product $\mathbf{3 w}(31.2 \mathrm{mg})$ was obtained in $95 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~s}$, $1 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.4,148.3,137.2,135.3,130.6,129.7,129.5(\mathrm{q}, J=41.3 \mathrm{~Hz}), 126.4,122.9,120.1$, $118.0(\mathrm{q}, ~ J=268.8 \mathrm{~Hz}), 117.8,112.1,20.7,20.5 .{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ -64.76. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 331.1165$, found 331.1163.


6,7-Difluoro-1-phenyl-3-(trifluoromethyl)-1H-benzo[4,5]imidazo[2,1-c][1,2,4]tria zole (3x)

Following the general procedure, the desired product $\mathbf{3 x}(27.7 \mathrm{mg})$ was obtained in $82 \%$ yield as a pale solid. $R_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.37-$ $7.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.5,149.9(\mathrm{~d}, J=245.0,13.8 \mathrm{~Hz}$ ), 146.5 (dd, $J=242.5,15.0 \mathrm{~Hz}$ ), $145.6(\mathrm{dd}, J=11.3,1.3 \mathrm{~Hz}), 136.7,129.8,129.3(\mathrm{q}, J$ $=43.8 \mathrm{~Hz}), 127.0,119.5(\mathrm{dd}, J=10.0,1.2 \mathrm{~Hz}), 117.9,117.8(\mathrm{q}, J=268.8 \mathrm{~Hz}), 107.8$ $(\mathrm{d}, J=20.0 \mathrm{~Hz}), 100.9(\mathrm{~d}, J=23.8 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.49$, -137.17, -142.13. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~F}_{5} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 339.0664$, found 339.0664 .

## 4. Gram-scale Reaction and Derivatizations of 3j



A mixture of $1 H$-benzo[d]imidazole-2-thiol 1 ( $0.61 \mathrm{~g}, 4 \mathrm{mmol}, 1$ equiv.), nitrile imines $2 \mathbf{2 a}$ ( $1.33 \mathrm{~g}, 6 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ( $1.11 \mathrm{~mL}, 8 \mathrm{mmol}, 2$ equiv.), and EA (40 mL ) was added to a 100 mL round-bottom flask, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 hours. After the reaction was completed, the mixture was diluted with EA and filtered. The filtrates were concentrated under reduced pressure to give a crude residue which was purified by flash column chromatography to provide 1.11 g of $\mathbf{3 a}$ in $92 \%$ yield as a pale solid.


According to literature, ${ }^{3}$ under $\mathrm{N}_{2}$ atmosphere, a mixture of $\mathbf{3 j}$ ( $37.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.), $\mathrm{PhB}(\mathrm{OH})_{2}\left(26.8 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.2\right.$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.2 \mathrm{mg}, 0.01$ mmol, 0.1 equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ( $17.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv.), and toluene: $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ (degassed)( $0.5 \mathrm{~mL}: 0.3 \mathrm{~mL}: 0.2 \mathrm{~mL}$ ) were added to a $10 \mathrm{~mL}-$ Schlenk tube, subsequently, the sealed tube was stirred at $70{ }^{\circ} \mathrm{C}$ for 8 h . After the reaction was finished, the solution was evaporated under reduced pressure to give the crude product which was purified by flash column chromatography to provide compound 4 as a colorless oil in $92 \%$ yield. $R_{f}=0.3$ (PE : EA $\left.=20: 1\right) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.63$
(d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.7,150.0,140.1,139.6,136.2,129.9(\mathrm{q}, J=$ 43.8 Hz ), 129.1, 128.3, 127.8, 127.2, 126.3, 124.7, 121.5, 120.1, 118.3, 118.0 (q, $J=$ 268.8 Hz ), 112.2. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.74. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 379.1165$, found 379.1164.


According to literature, ${ }^{4}$ under $\mathrm{N}_{2}$ atmosphere, a mixture of $\mathbf{3 j}$ ( $38.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.), phenylacetylene ( $22 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01$ mmol, 0.1 equiv.), $\mathrm{CuI}\left(2.1 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1\right.$ equiv.), and $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{Et}_{3} \mathrm{~N}$ ( $1 \mathrm{~mL}: 0.2$ mL ) were added to a $10 \mathrm{~mL}-$ Schlenk tube, subsequently, the sealed tube was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After the reaction was finished, the solution was evaporated under reduced pressure to give the crude product which was purified by flash column chromatography to provide compound 5 as a colorless oil in $95 \%$ yield. $R_{f}=0.4$ (PE : $\mathrm{EA}=20: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.5,149.9$, $136.5,133.0,131.8,130.1(\mathrm{q}, ~ J=45.0 \mathrm{~Hz}), 128.6,128.5,126.3,124.6$ 123.1, 121.7, 121.6, 120.1, 117.9 (q, $J=268.8 \mathrm{~Hz}$ ), 117.7, 112.1, 90.5, 88.7. ${ }^{19} \mathrm{~F}$ NMR ( 471 MHz , $\mathrm{CDCl}_{3}$ ) $\delta$-64.80. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 403.1165$, found 403.1166.


Following the literature, ${ }^{5}$ under $\mathrm{N}_{2}$ atmosphere, a mixture of $\mathbf{3 j}$ ( $38.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.), ethyl acrylate ( $22 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv.), $\mathrm{PPh}_{3}$ ( $5.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.2$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(28.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv.), and DMF ( 1 mL ) were added to a $10 \mathrm{~mL}-$ Schlenk tube, subsequently, the sealed tube was stirred at $120^{\circ} \mathrm{C}$ for 12 h . After the reaction was finished, the solution was added
water ( 15 mL ) and extracted by EA ( 15 mL x 3 ). The combined organic phase was dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrates were evaporated under reduced pressure to give the crude product which was purified by flash column chromatography to provide compound $\mathbf{6}$ as a colorless oil in $62 \%$ yield. $R_{f}=0.2$ (PE : $\mathrm{EA}=10: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.0,151.6,149.9,143.3,138.2,132.8$, $130.3(\mathrm{q}, J=45.0 \mathrm{~Hz}), 129.5,126.4,124.7,121.9,120.2,118.9,118.1,117.9(\mathrm{q}, J=$ 268.8 Hz ), 112.2, 60.8, 14.5. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.85. HRMS (ESI ${ }^{+}$): calc'd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 401.1220, found 401.1221.

## 5. X-ray Crystallography Data of $3 f$



| Identification code | 2289201 |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}$ |
| Formula weight | 347.26 |
| Temperature/K | 170.00 |
| Crystal system | monoclinic |
| Space group | $\mathrm{P} 21 / \mathrm{n}$ |
| a/Å | 5.0516(6) |
| b/Å | 25.263(3) |
| c/Å | 11.1686(13) |
| $\alpha /{ }^{\circ}$ | 90 |
| $\beta /{ }^{\circ}$ | 101.502(4) |
| $\gamma /{ }^{\circ}$ | 90 |
| Volume/A ${ }^{3}$ | 1396.7(3) |
| Z | 4 |
| $\rho_{\text {calc }} / \mathrm{cm}^{3}$ | 1.651 |
| $\mu / \mathrm{mm}^{-1}$ | 0.142 |
| F(000) | 704.0 |
| Crystal size/mm ${ }^{3}$ | $0.42 \times 0.16 \times 0.15$ |
| Radiation | $\operatorname{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection/ ${ }^{\circ}$ | 4.056 to 55.176 |
| Index ranges | $-6 \leq \mathrm{h} \leq 6,-32 \leq \mathrm{k} \leq 29,-14 \leq 1 \leq 14$ |
| Reflections collected | 13208 |
| Independent reflections | $3219\left[\mathrm{R}_{\text {int }}=0.0475, \mathrm{R}_{\text {sigma }}=0.0404\right]$ |
| Data/restraints/parameters | 3219/0/226 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.162 |
| Final R indexes [ $\mathrm{I}>=2 \sigma$ (I)] | $\mathrm{R}_{1}=0.0663, \mathrm{wR}_{2}=0.1271$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0938, \mathrm{wR}_{2}=0.1430$ |
| Largest diff. peak/hole / e $\AA^{-3}$ | 0.26/-0.28 |

## 6. References

1. D. Wang, X. Wan, Y. Zhou, J. Liu, J. Cai and G.-J. Deng, Asian J. Org. Chem., 2023, 12, e202200674.
2. (a) Y. Zhang, J.-L. Zeng, Z. Chen and R. Wang, J. Org. Chem., 2022, 87, 14514-14522; (b) Y. Zhou, C.-F. Gao, H. Ma, J. Nie, J.-A. Ma and F.-G. Zhang, Chem.-Asian J., 2022, 17, e202200436.
3. N. Miyaura, T. Yanagi and A. Suzuki, Synth. Commun., 1981, 11, 513-519.
4. D. Wang, F. Zhang, F. Xiao and G.-J. Deng, Org. Biomol. Chem., 2019, 17, 9163-9168.
5. J. Wang, P.-B. Bai and S.-D. Yang, Chin. Chem. Lett., 2022, 33, 2397-2401.

## 7. NMR Spectra


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 a}$.


${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3a.

${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 a}$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 b}$.


${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 b}$.

CKL-I-87-6
N
$\vdots$
$\vdots$



${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 b}$.

```
CKL-1-111-2 


\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 c}\).
CKL-I-111-2
 \(\stackrel{\Gamma}{\square}\) ค
犬ゥ



\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 c}\).

\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 c}\).


\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 d}\).


\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 3d.



\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 d}\).

CKL-I-64-1-H-2



\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 e}\).

\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 e}\).


\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3} \mathbf{e}\).


\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 f}\).

\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 f}\).
CKL-I-55-7-1 \(\stackrel{\text { N}}{\stackrel{1}{\circ}}\)


\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 f}\).

\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 g}\).
CKL-I-87-4




\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 g}\).


\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 g}\).

\section*{CKL-I-59-3
}


\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 h}\).


\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 h}\).
\(\stackrel{9}{9}\)
\(\stackrel{\sim}{\underset{\sim}{*}}\)

\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 h}\).


\({ }^{1} \mathrm{H}\) NMR（ \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）of \(\mathbf{3 i}\) ．
CKL-I-59-1-H


\({ }^{13} \mathrm{C}\) NMR（ \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）of \(\mathbf{3 i}\) ．


\({ }^{19} \mathrm{~F}\) NMR (471 MHz, \(\mathrm{CDCl}_{3}\) ) of \(\mathbf{3 i}\).

\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3} \mathbf{j}\).


\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 j}\).
CKL-I-111-4-H-3


\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 j}\).

\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 k}\).

\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 k}\).


\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 k}\).
\[
\begin{aligned}
& \text { CKL-I-87-3-H }
\end{aligned}
\]


\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 1}\).


\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 1}\).

CKL-I-87-3-H


䪄罗

\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 1}\).

\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 m}\).
CKL-1-79-2


\({ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 m}\).



\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 m}\).

CKL-I-50-2

\section*{ \\ }


\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 n}\).


\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 n}\).
\begin{tabular}{l} 
\& \\
\(\vdots\) \\
\hline
\end{tabular}


\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 n}\).


\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 o}\).
CKL-I-79-3-H
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\

\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}


\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 o}\).


\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 0}\).


\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 p}\).
-


\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 p}\).
CKL-I-50-1
\begin{tabular}{l}
\(\overline{0}\) \\
\(\dot{\phi}\) \\
\hline
\end{tabular}

\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 p}\).



\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 q}\) ．




\({ }^{13} \mathrm{C}\) NMR（ \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）of \(\mathbf{3 q}\) ．


\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 q}\).

\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 r}\).


\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3} \mathbf{r}\).
\begin{tabular}{l}
9 \\
\hline \\
\hline
\end{tabular}



\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 r}\).

\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 s}\).

\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 s}\).


\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 s}\).

\section*{}

\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 t}\).


\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 t}\). 2
\(\$\)
\(i\)


\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 t}\).

\section*{ \\ }


\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3} \mathbf{u}\).

\section*{

}

\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3} \mathbf{u}\).

\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3} \mathbf{u}\).
CKL-I-70-4

\({ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 v}\) and \(\mathbf{3 v}{ }^{\prime}\).

\({ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 v}\) and \(\mathbf{3 v}{ }^{\prime}\).
\(\dot{N}\)
\(\dot{N}\)
\(\dot{N}\)
\(\dot{N}\)

\(3 v\)
\(3 v^{\circ}\)

\({ }^{19}\) F NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 v}\) and \(\mathbf{3 v}{ }^{\boldsymbol{\prime}}\).




\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 w}\).
にN




\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 w}\).
(10)
\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 w}\).

\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 x}\).

\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 x}\).


\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 x}\).

\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 4 .


\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 4.

CKL-I-137-1-H

\section*{}


\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 5.

\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 5 .

\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 5.

\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{6}\).


\begin{tabular}{l} 
\& \\
\(\$\) \\
\hline
\end{tabular}
\({ }^{19} \mathrm{~F}\) NMR ( \(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{6}\).```

