Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

A Concise Approach to 2-Pyrrolin-5-one Scaffold From α -Halohydroxamates and β -Keto Compounds

Wenjie Lan, Xuan Yu, Mengzhu Li, Rongchao Lei, Zhaohai Qin, Bin Fu* Department of Chemistry, China Agricultural University, fubinchem@cau.edu.cn

CONTENTS

1.	Experimental Section	2
2.	General procedure for the optimal conditions	4
3.	Data for the products	5
4.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectrum	16
5.	The crystal structure data of 3aa	61
6.	The crystal structure data of 7	62

1. Experimental Section

All solvents were purified and dried according to standard methods prior to use. Flash column chromatography was performed using Qingdao Haiyang flash silica gel (100–200 mesh). The ¹H, ¹³C and ¹⁹F NMR spectra were obtained in CDCl₃ using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 500, 125 and 470 MHz, respectively. Chemical shifts are reported in parts per million (ävalue) calibrated against the residual solvent peak. The infrared spectra were recorded on a Bruker VERTEX 70 IR spectrometer as KBr pellets, with absorption reported in cm⁻¹. Mass spectra were obtained on Bruker APEX II FT-ICRMS mass spectrometer. Melting points were determined on a Stuard SMP3 melting point apparatus.

Br, M, OBn H 1	+ ph CN 2	Base Solvent NC	F-OBnCHCl ₃	NC Ph 3
Entry	Base	Solvent	Time (h)	Yield(%) ^b
1	K ₂ CO ₃	THF	24	36
2	Na ₂ CO ₃	THF	24	trace
3	Cs ₂ CO ₃	THF	24	46
4	MeONa	THF	24	65
5	EtONa	THF	48	54
6	^t BuONa	THF	48	15
7	NaOH	THF	48	n.d ^c
8	KOH	THF	24	n.d
9	Et ₃ N	THF	24	n.d
10	LDA	THF	24	n.d
11	MeONa	HFIP	24	n.d
12	MeONa	EtOH	24	55
13	MeONa	Et_2O	24	52
14	MeONa	CHCl ₃	72	51
15	MeONa	CH_2Cl_2	72	48
16	MeONa	Toluene	72	43
17	MeONa	MeCN	48	50
18	MeONa	DMF	48	61
19	MeONa	Dioxane	48	46
20	MeONa	Acetone	48	59

Table S1. The screening for the [3+2] annulation/elimination^a

^aAll reactions were performed using **1a** (0.3mmol, 1.5 equiv.), **2a**(0.2 mmol, 1.0equiv.) and different bases(0.4mmol, 2.0 equiv.) in different solvents at room temperature under N_2 atmosphere, the reaction process was monitored by TLC; ^b The isolated yield; ^c not detected the desired product.

	$Br \xrightarrow{N} H OBn + H$	O CN	1) base, solvent 2) <i>p</i> -TSOH, CHCl ₃	NC N-OBn	
	1 a	2a		3aa	
Entry	The ratio				
Linu y	(1a : 2a : CH ₃ ONa)	Additives	Temp.	Time (h)	Yield(%)
1	1.5 : 1 : 2	4Å MS	rt	24	66
2	1.5 : 1 : 2	NaI	rt	24	85
3	1.5 : 1 : 1.5	NaI	rt	24	57
4	1.5 : 1 : 3	NaI	rt	24	92
5	1.5 : 1 : 3	-	rt	48	72
6	1.5 : 1 : 4	NaI	rt	24	90
7	1.5 : 1 : 3	NaI	0	48	85
8	1.5 : 1 : 3	NaI	40	24	86
9	1:1.5:3	NaI	rt	24	62

Table S2. The screening for the amount of the base and the additives

^aAll reactions were performed in THF(2mL) under N₂ atmosphere using **2a** (0.2mmol), the other reagents were added according to the corresponding ratios shown in Table S2.

Table S3. The optimization for the different α -halohydroxamates

X Y^1 Y^2 Y^2 Y^2 Y^2 Y^2	OBn +	O CN 2a	1) CH ₃ ONa 2) p-TSO	a, NaI, THF → H, CHCl ₃	Y^1 O Y^2 N-OE NC Ph 3	3n
Entry	Х	\mathbf{Y}^{1} .	Y^2	Temp.	Time (h)	Yield(%) ^b
1	Cl	Н	Н	rt	48	75
2	Br	CH_3	Η	rt~40	72	_
3	Br	CH_3	CH_3	rt~40	72	_
4	Cl	Н	Η	40	24	73

^aAll reactions were performed in THF(2 mL) under N_2 atmosphere using 1 (0.3 mmol), 2a (0.2 mmol), CH₃ONa (0.6 mmol) and NaI (0.04 mmol), then p-TSOH(0.1mmol) in CHCl₃(2.0 mL); ^b The isolated yield of product 3.

Table S4. The optimization for the reaction of β -keto ester with α -bromohydroxamates

Br Ia	N ^{OBn} + H ₃ C	0 COOC ₂ H 2n	1) Base, Na 2) TsOH, C	HCl ₃ C ₂ H ₅ O ₂ C	$\overset{O}{\swarrow}_{CH_{3}}^{N-OBn}$
Entry	Base	Solvent	Temp.	Time (h)	Yield(%) ^b
1	CH ₃ ONa	THF	rt	24	37
2	C ₂ H ₅ ONa	THF	rt	24	34
3	^t BuOK	THF	rt	24	-
4	K ₂ CO ₃	THF	rt	24	82
5	Na ₂ CO ₃	THF	rt	24	60
6	Cs_2CO_3	THF	rt	24	38
7	K_2CO_3	CH ₃ CN	rt	48	51
8	K_2CO_3	C ₂ H ₅ OH	rt	48	-
9	K_2CO_3	HFIP	rt	48	-
10	K_2CO_3	CHCl ₃	rt	48	25
11	K_2CO_3	DMF	rt	48	36

^aAll reactions were performed in THF under N₂ atmosphere using **1a**(0.3 mmol), **2a** (0.2mmol), base (0.6 mmol) and NaI(0.04mmol); ^bThe isolated yield of product **3**.

0

~

2. General procedure for the optimal conditions:

General procedure A: To a Schlenk tube were added compound **1a** (0.3 mmol, 1.5 eq.), **2a** (0.2 mmol, 1.0 eq.), MeONa (32 mg, 0.6 mmol, 3.0 eq.), NaI (6 mg, 0.04 mmol, 20 mol%) and THF (2.0 mL) under N₂, the mixture was stirred at room temperature until the reaction was completed(monitored by TLC). The reactant was filtered through celite plate, and the solvent was removed under vacuum, subsequently a solution of *p*-TsOH (19 mg, 0.1 mmol) in CHCl₃ (2 mL), was added and stirred at 40°C for 1h. After removing the solvent, the residue was purified by a flash column chromatography (Petroleum ether/ EtOAc = $5:1\sim3:1$, V/V) to afford the product **3aa**.

General procedure B: To a Schlenk tube were added compound **1a** (0.3 mmol, 1.5 eq), **2n** (0.2 mmol, 1.0 eq), K_2CO_3 (82.8 mg, 0.6 mmol, 3.0 eq.), NaI (6 mg, 0.04 mmol, 20 mol%) and THF (2.0 mL) under N₂, the mixture was stirred at room temperature until the reaction was completed (monitored by TLC). The reactant was filtered through celite plate, the solvent was removed under vacuum, and a solution of *p*-TsOH (19 mg, 0.1 mmol) in CHCl₃ (2 mL) was added and stirred at 40°C for 1h. After removing the solvent, the residue was purified by a flash column chromatography (Petroleum ether/ EtOAc = 5:1~3:1, V/V) to afford the product **3an**.

3. Data for the products

1-(benzyloxy)-5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile (3aa)

Following the **General procedure A**, **3aa** (53.3 mg) was isolated as a white solid in 92% yield, Mp: 137–139 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.57–7.50 (m, 3H), 7.48–7.43 (m, 2H), 7.32–7.27 (m, 1H), 7.23–7.18 (m, 2H), 7.06 – 7.01 (m, 2H), **4.89** (s, 2H), 3.38 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 169.1, 156.6, 132.4,

131.5, 130.0, 129.4, 128.7, 128.6, 128.5, 125.6, 115.5, 79.5, 78.8, 35.3; HRMS ESI Calcd for $C_{18}H_{14}N_2NaO_2$ [M+Na]⁺: 313.0947, Found: 313.0948. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

1-(benzyloxy)-5-oxo-2-(p-methyl phenyl)-4,5-dihydro-1H-pyrrole-3-carbonitrile (3ab)

Following the **General procedure A**, **3ab** (48.6 mg) was isolated as a white solid in 80% yield, Mp: 114–116 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.46 (m, 2H), 7.33–7.26 (m, 3H), 7.24–7.20 (m, 2H), 7.10–7.06 (m, 2H), 4.88 (s, 2H), 3.36 (s, 2H), 2.44 (s, 3H); ¹³C NMR (125MHz, CDCl₃) δ 169.23, 156.61, 142.19, 132.54, 130.03, 129.50, 129.42, 128.51, 128.46, 122.79, 115.73, 78.77, 77.20, 35.25, 21.61. HRMS ESI Calcd for C₁₉H₁₆N₂NaO₂ [M+Na]⁺: 327.1104, Found: 327.1103. IR

(KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

1-(benzyloxy)-5-oxo-2-(p-methoxy phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile (3ac)

Following the General procedure A, **3ac** (48.5 mg) was isolated as a white solid in 76% yield, Mp: 104–107 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.58–7.53 (m, 2H), 7.33–7.29 (m, 1H), 7.25–7.21 (m, 2H), 7.11–7.06 (m, 2H), 6.99–6.94 (m, 2H), 4.88 (s, 2H), 3.88 (s, 3H), 3.34 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.3, 162.1, 156.2, 132.6, 130.4, 130.1, 129.5, 128.5, 118.0, 116.0, 114.2, 78.8, 77.8, 55.5, 35.2. HRMS ESI Calcd for C₁₉H₁₆N₂NaO₃ [M+Na]⁺: 343.1053, Found:

343.1055. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

1-(benzyloxy)-5-oxo-2-(p-fluorophenyl)-4,5-dihydro-1H-pyrrole-3-carbonitrile (3ad)

Following the General procedure A, **3ad** (44.3 mg) was isolated as a white solid in 72% yield. Mp: 136–138 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.53–7.48 (m, 2H), 7.33–7.28 (m, 1H), 7.24–7.19 (m, 2H), 7.16 – 7.11 (m, 2H), 7.05–7.01 (m, 2H), 4.91 (s, 2H), 3.38 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.0, 164.3 (d, J = 253.8 Hz), 155.7, 132.4, 131.0 (d, J = 8.7 Hz), 130.1, 129.60, 128.6, 121.8 (d, J = 3.4 Hz), 116.0 (d, J = 22.0 Hz), 115.4, 79.4, 78.9, 35.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -106.58. HRMS ESI Calcd

for $C_{18}H_{13}FN_2NaO_2$ [M+Na]⁺: 331.0853, Found: 331.0854. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

1-(4-bromobenzyloxy)-5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile (3ae)

Following the General procedure A, **3ae** (53.8 mg) was isolated as a white solid in 73% yield. Mp: 134–136 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.60–7.55 (m, 2H), 7.36–7.33 (m, 2H), 7.33–7.29 (m, 1H), 7.24–7.19 (m, 2H), 7.07 –7.00 (m, 2H), 4.92 (s, 2H), 3.36 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 168.9, 155.6, 132.3,

132.0, 130.1, 130.0, 129.6, 128.6, 126.2, 124.5, 115.2, 79.7, 78.9, 35.3. HRMS ESI Calcd for $C_{18}H_{13}BrN_2NaO_2$ [M+Na]⁺: 391.0053, Found: 391.0052. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

Methyl 4-(1-(benzyloxy)-3-cyano--5-oxo-4, 5-dihydro-1H-pyrrol-2-yl)benzoate

Following the General procedure A, **3af** (48.7 mg) was isolated as a white solid in 70% yield. Mp: 121–123 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.3 Hz, 1H), 7.55 (d, *J* = 8.3 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 7.4 Hz, 1H), 4.93 (s, 1H), 3.98 (s, 2H), 3.40 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 168.92, 166.03, 155.74, 132.57, 132.32, 130.17, 129.76, 129.67, 129.65, 128.71, 128.63, 115.01, 80.77, 78.91, 52.55, 35.48. HRMS ESI

Calcd for $C_{20}H_{16}N_2NaO_4 [M+Na]^+$: 371.1002, Found: 371.1000. IR (KBr): 2956, 2209, 1725, 1436, 1410, 1379, 1354, 1315, 1279, 1231, 1188, 1166, 1110, 772, 753, 701 cm⁻¹.

1-(benzyloxy)-5-oxo-2-(m-methoxyphenyl)-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, **3ag** (54.4 mg) was isolated as a white solid in 85% yield. Mp: 86–88 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (t, *J* = 8.0 Hz, 1H), 7.33–7.28 (m, 1H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.15 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.10–7.04 (m, 3H), 7.03 (t, *J* = 2.1 Hz, 1H), 4.89 (s, 2H), 3.79 (s, 3H), 3.37 (s, 2H).¹³C NMR (125 MHz, CDCl₃) δ 169.1, 159.5, 156.4, 132.5, 130.1, 129.8, 129.4, 128.5, 126.6, 120.9, 117.9, 115.4, 113.4, 79.6, 78.9, 55.8,

35.3. HRMS ESI Calcd for $C_{19}H_{16}N_2NaO_3$ [M+Na]⁺: 343.1053, Found: 343.1054. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

1-(benzyloxy)-5-oxo-2-(m-chlorophenyl)-4,5-dihydro-1H-pyrrole-3-carbonitrile

3ah

Following the General procedure A, **3ah** (46.0 mg) was isolated as a white solid in 71% yield. Mp: 94–96 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.48 (dt, *J* = 7.5, 1.9 Hz, 1H), 7.41–7.34 (m, 3H), 7.34–7.30 (m, 1H), 7.22–7.18 (m, 2H), 7.04–6.99 (m, 2H), 4.93 (s, 2H), 3.39 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 168.9, 155.3, 134.7, 132.3, 131.4, 130.2, 129.9, 129.6, 128.6, 128.5, 127.2, 126.8, 114.9, 80.3, 78.9, 35.4. HRMS ESI Calcd for C₁₈H₁₃ClN₂NaO₂ [M+Na]⁺: 347.0558, Found:

347.0558. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

1-(benzyloxy)-5-oxo-2-(o-methoxyphenyl)-4,5-dihydro-1H-pyrrole-3-carbonitrile

[.	N-OBn
NC	₹OM€
3ai	

Following the **General procedure A**, **3ai** (41.6 mg) was isolated as a white solid in 65% yield. Mp: 102–104 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (ddd, J = 8.8, 7.6, 1.7 Hz, 1H), 7.30–7.26 (m, 1H), 7.23–7.17 (m, 3H), 7.03–6.95 (m, 4H), 4.89 (s, 2H), 3.81 (s, 3H), 3.38 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.3, 157.4, 154.9, 133.1, 132.9, 130.9, 129.7, 129.1, 128.5, 120.6, 115.1,

115.0, 111.4, 81.9, 78.8, 55.6, 35.6. HRMS ESI Calcd for $C_{19}H_{16}N_2NaO_3$ [M+Na]⁺: 343.1053, Found: 343.1057. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

1-(benzyloxy)-5-oxo-2-(2-furyl)-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, **3aj** (43.6 mg) was isolated as a slightly yellow solid in 78% yield. Mp: 115–118 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 1.6 Hz, 1H), 7.45 – 7.36 (m, 5H), 7.15 (d, J = 3.6 Hz, 1H), 6.57 (dd, J = 3.7, 1.8 Hz, 1H), 5.15 (s, 2H), 3.38 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 168.9, 146.0, 144.3, 140.9, 132.7, 129.9, 129.6, 128.7, 115.9, 115.6, 112.6, 79.3, 75.5, 35.3. HRMS ESI Calcd for C₁₆H₁₂N₂NaO₃ [M+Na]⁺: 303.0740, Found:

303.0739. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

1-(benzyloxy)-5-oxo-2-(2-thiophenyl)-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, **3ak** (39.1 mg) was isolated as a slightly yellow solid in 66% yield. Mp: 138–140 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 3.8 Hz, 1H), 7.64 (dd, *J* = 5.1, 1.0 Hz, 1H), 7.35 (qd, *J* = 8.3, 7.7, 4.6 Hz, 5H), 7.19 (dd, *J* = 5.0, 3.9 Hz, 1H), 5.10 (s, 2H), 3.39 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 149.1, 132.4, 131.9, 131.4, 130.1, 129.6, 128.6, 127.9, 125.7, 116.2, 79.3, 76.1, 35.2. HRMS ESI Calcd for C₁₉H₁₆N₂NaO₂S

[M+Na]⁺: 319.0512, Found: 319.0512. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

1-(benzyloxy)-2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, **3al** (36.9 mg) was isolated as a white solid in 81% yield. Mp: 90-92 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.34 (m, 5H), 5.09 (s, 2H), 3.21 (q, *J* = 2.4 Hz, 2H), 1.87 (t, *J* = 2.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.5, 157.0, 133.4, 130.1, 129.8, 128.9, 114.8, 79.2, 79.1, 34.8, 11.9. HRMS ESI Calcd for C₁₃H₁₂N₂NaO₂ [M+Na]⁺: 251.0791, Found: 251.0791.

IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

1-(benzyloxy)-2-isopropyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, **3am** (39.4 mg) was isolated as a white solid in 77% yield. Mp: 218.5–219.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (s, 5H), 5.13 (s, 2H), 3.21 (s, 2H), 2.74 (hept, J = 7.0 Hz, 1H), 1.22 (d, J = 7.2 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 169.6, 165.1, 133.2, 129.9, 129.6, 128.8, 115.1, 78.8, 76.8, 35.3, 26.9, 19.8. HRMS ESI Calcd for

 $C_{15}H_{16}N_2NaO_2$ [M+Na]⁺: 279.1104, Found: 279.1104. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

Ethyl 1-(benzyloxy)-2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

Following the General procedure B, **3an** (45.1 mg) was isolated as a white solid in 82% yield. Mp: 44–46 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.48–7.35 (m, 5H), 5.10 (s, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.24 (q, *J* = 2.4 Hz, 2H), 2.14 (t, *J* = 2.4 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 163.7, 153.2, 133.7, 130.0, 129.5, 128.7, 99.6,

78.9, 59.9, 34.5, 14.3, 11.0. HRMS ESI Calcd for $C_{15}H_{17}NNaO_4$ [M+Na]⁺: 298.1050, Found: 298.1057. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

Ethyl 1-(benzyloxy)-2-phenyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

Following the General procedure B, **3ao** (32.4 mg) was isolated as a white solid in 45% yield. Mp: 69–71 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.46 (m, 1H), 7.43–7.36 (m, 4H), 7.30–7.26 (m, 1H), 7.22–7.18 (m, 2H), 6.96–6.92 (m, 2H), 4.79 (s, 2H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.43 (s, 2H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 162.8,

152.9, 133.0, 130.1, 129.9, 129.8, 129.1, 128.4, 127.6, 127.2, 101.4, 78.7, 60.1, 35.1, 14.0. HRMS ESI Calcd for $C_{20}H_{19}NNaO_4$ [M+Na]⁺: 360.1206, Found: 360.1201. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

4-acetyl 1-(benzyloxy)-5-methyl-1, 3-dihydro-2H-pyrrol-2-one

Following the General procedure B, 3ap (35.3 mg) was isolated as a white solid in 72% yield. Mp: 106–108 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.45–7.36 (m, 5H), 5.11 (s, 2H), 3.29 (q, J = 2.4 Hz, 2H), 2.19 (s, 3H), 2.16 (t, J = 2.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.3, 170.4, 152.6, 133.6, 130.0, 129.6, 128.8, 108.4, 79.0, 34.9, 29.0, 11.6. HRMS ESI Calcd for C₁₄H₁₅NNaO₃ [M+Na]⁺: 268.0944, Found: 268.0945. IR (KBr): 3027, 2923, 2852, 1745, 1598, 1494, 1454, 1341, 1165, 1091, 1038 cm⁻¹.

2-amino-1-(benzyloxy)-5-oxo-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure B, Compound 1 (0.2 mmol, 1.0 eq), malononitrile (0.3 mmol, 1.5 eq.) and K_2CO_3 (82.8 mg, 0.6 mmol, 3.0 eq), NaI (0.04mmol) and THF (2 mL), the crude product was purified by a flash column chromatography (Petroleum/ EtOAc = 3: 1) to obtain **3aq** (38.4mg) as a white solid in 84% yield. Mp: 110–112 °C. ¹H NMR (500 MHz, DMSO) δ

7.53 (d, J = 3.5 Hz, 2H), 7.41 (m, 5H), 5.02 (s, 2H), 3.18 (s, 2H). ¹³C NMR (125 MHz, DMSO) δ 169.10, 155.52, 134.22, 130.49, 129.59, 128.79, 119.29, 79.05, 43.83, 32.35. HRMS ESI Calcd for C₁₂H₁₂N₃O₂ [M+H]⁺: 230.0924, Found: 230.0925. IR (KBr): 3336, 3223, 2187, 1731, 1658, 1597, 1454, 1335, 1208, 1059, 909,732, 698, 670 cm⁻¹.

1-(o-methylbenzyloxy)- 5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, **3ba** (52.3 mg) was isolated as a white solid in 86% yield. Mp: 120–122 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (t, J = 7.3 Hz, 1H), 7.47 (d, J = 7.3 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.96 (dd, J = 17.2, 7.5 Hz, 2H), 4.93 (s, 2H), 3.37 (s, 2H), 2.05 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

169.07, 156.87, 138.76, 131.35, 131.24, 130.71, 130.52, 129.86, 128.62, 128.46, 125.85, 125.57, 115.41, 79.45, 76.42, 35.32, 18.34. HRMS ESI Calcd for $C_{19}H_{16}N_2NaO_2$ [M+Na]⁺: 327.1104, found: 327.1101. IR (KBr): 2952, 2903, 2207, 1735, 1446, 1377, 1355, 1321, 1228, 1186, 1165, 1057, 919, 762, 748, 693cm⁻¹.

1-(o-chlorobenzyloxy)- 5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, 3ca (51.5 mg) was isolated as a white solid in 79% yield. Mp: 108-110 $^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.48 –

7.43 (m, 1H), 7.41 (t, J = 4.2 Hz, 2H), 7.40–7.34 (m, 2H), 7.22–7.15 (m, 2H), 7.09 (d, J = 7.1 Hz, 1H), 7.07–7.00 (m, 1H), 5.09 (s, 2H), 3.39 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.11, 156.79, 135.21, 132.34, 131.24, 130.87, 130.69, 129.56, 128.59, 128.44, 126.90, 125.41, 115.49, 79.42, 75.18, 35.37. HRMS ESI Calcd for C₁₈H₁₃ClN₂NaO₂ [M+Na]⁺: 347.0558, found: 347.0558. IR (KBr): 3062, 2922, 2208, 1742, 1620, 1596, 1477, 1447, 1321, 1275, 1229, 1187, 1056, 910, 763, 695, 652, 606, 495, 408.cm⁻¹.

1-(o-bromobenzyloxy)- 5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, 3da (64.9 mg) was isolated as a white solid in 88% yield. Mp: 118–120 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.47–7.40 (m, 3H), 7.37 (t, *J* = 7.4 Hz, 3H), 7.14–7.04 (m, 3H), 5.08 (s, 2H), 3.39 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.08, 156.75, 132.83, 132.46, 132.28, 131.19, 130.91, 128.60, 128.44, 127.49, 125.42, 125.21, 115.44, 79.49, 77.48, 35.37. HRMS ESI Calcd for

 $C_{18}H_{13}BrN_2NaO_2$ [M+Na]⁺: 391.0053, found: 391.0053. IR (KBr): 2956, 2917, 2207, 1735, 1446, 1379, 1354, 1321, 1228, 1186, 1165, 1058, 1030, 755, 734, 693cm⁻¹.

1-(m-flurobenzyloxy)- 5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, **3ea** (41.9 mg) was isolated as a white solid in 68% yield. Mp: 108–110 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (dd, J = 7.9, 0.7 Hz, 3H), 7.49 (dd, J = 8.0, 7.0 Hz, 2H), 7.23–7.18 (m, 1H), 7.00 (tdd, J = 8.5, 2.6, 0.9 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 6.71 (ddd, J = 9.2, 2.3, 1.8 Hz, 1H), 4.89 (s, 2H), 3.40 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 169.11, 163.48, 161.51, 156.42, 134.84, 134.77, 131.67, 130.11, 130.04, 128.81, 128.57, 125.51, 125.49, 125.46, 116.83, 116.66, 116.56, 116.39, 115.31, 79.75, 77.99, 35.31. ¹⁹F NMR (471 MHz, CDCl3) δ -112.26. HRMS ESI Calcd for $C_{18}H_{13}FN_2NaO_2$ [M+Na]⁺: 331.0853, found: 331.0853. IR (KBr): 3060, 2920, 2209, 1741, 1592, 1489, 1448, 1379, 1275, 1260, 1231, 1167, 1143, 1061, 792, 750.cm⁻¹.

1-(m-methoxybenzyloxy)- 5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, **3fa** (51.8 mg) was isolated as a white solid in 81% yield. Mp:110–112 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.58–7.48 (m, 3H), 7.48–7.40 (m, 2H), 7.16–7.09 (m, 1H), 6.83 (ddd, J = 8.3, 2.6, 0.7 Hz, 1H), 6.62 (d, J = 7.5 Hz, 1H), 6.56–6.48 (m, 1H), 4.87 (s, 2H), 3.66 (s, 3H), 3.37 (s, 2H). ¹³C NMR

(125 MHz, CDCl₃) δ 169.09, 159.52, 156.64, 133.79, 131.39, 129.46, 128.62, 128.57, 125.66, 122.22, 115.42, 115.02, 79.44, 78.65, 55.04, 35.28. HRMS ESI Calcd for C₁₉H₁₆N₂NaO₃ [M+Na]⁺: 343.1053, found: 343.1058. IR (KBr): 3055, 2950, 2830, 2207, 1735, 1597, 1491, 1447, 1378, 1355, 1267, 1229, 1187, 1052, 918, 790, 762, 693, 673, 652.cm⁻¹.

1-(p-trifluoromethylbenzyloxy)- 5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, 3**ga** (48 mg) was isolated as a white solid in 67% yield. Mp:106–108 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.54 (t, *J* = 7.4 Hz, 1H), 7.50 (d, *J* = 7.4 Hz, 2H), 7.45

(t, J = 7.5 Hz, 4H), 7.16 (d, J = 8.0 Hz, 2H), 4.94 (s, 2H), 3.41 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.08, 156.24, 136.34, 131.60, 130.02, 128.80, 128.49, 125.47, 125.42, 125.39, 125.36, 125.34, 124.75, 115.20, 79.90, 77.91, 35.29. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.88. HRMS ESI Calcd for C₁₉H₁₃F₃N₂NaO₂ [M+Na]⁺: 381.0821, found: 381.0821. IR (KBr):3007, 2990, 2210, 1738, 1321, 1275, 1260, 1229, 1162, 1112, 1019, 852, 827, 749, 694, 651, 910 cm⁻¹.

1-(p-methoxylbenzyloxy)- 5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile

Following the General procedure A, **3ha** (60.2 mg) was isolated as a white solid in 94% yield. Mp: 108–110 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.52 (t, *J* = 6.2 Hz, 3H), 7.48–7.42 (m, 2H), 6.93 (d, *J* = 8.5 Hz, 2H), 6.69 (d, *J* = 8.5 Hz, 2H), 4.82 (s, 2H), 3.77 (s, 3H),

3.37 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.13, 160.44, 156.73, 131.69, 131.41, 128.59, 125.72, 124.55, 115.53, 113.82, 79.26, 78.41, 55.21, 35.28. HRMS ESI Calcd for C₁₉H₁₆N₂NaO₃ [M+Na]⁺: 343.1053, found: 343.1055. IR (KBr): 3005, 2989, 2208, 1740, 1611, 1514, 1447, 1356, 1275, 1260, 1175, 1030, 826, 759, 697 cm⁻¹.

1-(2,4-dichlorobenzyloxy)- 5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile (3ia)

Following the General procedure A, **3ia** (50 mg) was isolated as a white solid in 70% yield. Mp: 108-110 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (dt, *J* = 8.3, 4.2 Hz, 1H), 7.40 (d, *J* = 4.4 Hz, 4H), 7.17 (d, *J* = 0.6 Hz, 1H), 6.99 (d, *J* = 1.6 Hz, 2H), 5.04 (s, 2H), 3.39 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.07, 156.63, 136.35, 135.89,

133.08, 131.40, 129.46, 129.39, 128.62, 128.43, 127.31, 125.42, 115.40, 79.68, 74.56, 35.40. HRMS ESI Calcd for $C_{18}H_{12}Cl_2N_2NaO_2$ [M+Na]⁺: 381.0168, found: 381.0169. IR (KBr): 3070, 2915, 2208, 1739, 1589, 1475, 1447, 1382, 1256, 1275, 1228, 1186, 1104, 909, 869, 818, 694, 651 cm⁻¹.

1-(2-naphthyloxy)- 5-oxo-2-phenyl-4, 5-dihydro-1H-pyrrole-3-carbonitrile (3ja)

Following the General procedure A, **3ja** (46.9 mg) was isolated as a white solid in 69% yield. Mp: 132–134 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.53 – 7.51 (m, 3H), 7.50 (d, *J* = 1.3 Hz, 1H), 7.46 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.39 (dd, *J* = 10.8, 4.5 Hz, 2H), 7.10 (dd, *J* = 8.4, 1.7 Hz, 1H), 5.08 (s, 2H), 3.41 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ

169.19, 156.71, 133.52, 132.83, 131.45, 129.95, 129.88, 128.62, 128.58, 128.29, 128.08, 127.63, 126.92, 126.87, 126.41, 125.63, 115.42, 79.45, 79.03, 35.34. HRMS ESI Calcd for $C_{22}H_{16}N_2NaO_2$ [M+Na]⁺: 363.1104, found: 363.1105. IR (KBr): 3056, 2952, 2208, 1802, 1740, 1574, 1509, 1494, 1447, 1356, 1322, 1231, 1167, 1061, 949, 898, 857, 819, 762. cm⁻¹.

1-methoxy- 5-oxo-2-phenyl-4, 5-dihydro-1H-pyrrole-3-carbonitrile (3ka)

Following the General procedure A, **3ka** (36 mg) was isolated as a white solid in 84% yield. Mp: 45–47 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 7.2 Hz, 2H), 7.62–7.49 (m, 3H), 3.74 (s, 3H), 3.40 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.26, 155.68, 131.79, 129.00, 128.31, 125.40, 115.39, 80.12, 64.67, 35.35. HRMS ESI Calcd for $C_{12}H_{10}N_2NaO_2$ [M+Na]⁺: 237.0634, found: 237.0634. IR (KBr): 2937, 2209, 1738, 1620, 1447, 1362, 1325, 1232, 1166, 958, 942, 764, 693, 667, 653, 618 cm⁻¹.

1-ethoxy- 5-oxo-2-phenyl-4, 5-dihydro-1H-pyrrole-3-carbonitrile (3la)

Following the General procedure A, **3la** (37 mg) was isolated as a white solid in 81% yield; white solid, Mp: 81–83 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.84–7.66 (m, 2H), 7.60–7.48 (m, 3H), 3.94 (q, *J* = 7.1 Hz, 2H), 3.40 (s, 2H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.29, 156.11, 131.73, 128.91, 128.41, 125.62, 115.51, 79.86, 73.31,

35.34, 13.08. IR: v 3005, 2989, 2207, 1738, 1447, 1357, 1324, 1275, 1261, 1232, 1166, 1065, 1015, 749, 697. HRMS Calcd. For $C_{13}H_{12}N_2NaO_2$ [M+Na]⁺:251.0791, found: 251.0791.

1-tert-butyloxy- 5-oxo-2-phenyl-4, 5-dihydro-1H-pyrrole-3-carbonitrile (3ma)

Following the General procedure A, **3ma** (37.9 mg) was isolated as a colorless oil in 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.71–7.62 (m, 2H), 7.52 (t, *J* = 7.6 Hz, 3H), 3.41 (s, 2H), 1.06 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 171.28, 158.54, 131.23, 128.98, 128.64, 127.20, 115.58, 87.82, 80.52, 35.17, 27.14. HRMS ESI Calcd for C₁₅H₁₆N₂NaO₂ [M+Na]⁺: 279.1104, found:

279.1104. IR (KBr): 2937, 2209, 1738, 1620, 1447, 1362, 1325, 1232, 1166, 958, 942, 764, 693, 667, 653, 618 cm⁻¹.

1-allyloxy- 5-oxo-2-phenyl-4, 5-dihydro-1H-pyrrole-3-carbonitrile (3na)

Following the General procedure A, **3na** (34.6 mg) was isolated as a colorless oil in 72% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 7.0 Hz, 2H), 7.52 – 7.44 (m, 3H), 5.58 (ddt, J = 17.0, 10.3, 6.8 Hz, 1H), 5.16 (t, J = 14.2 Hz, 2H), 4.29 (d, J = 6.8 Hz, 2H), 3.32 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.26, 155.68, 131.79, 129.00, 128.31, 125.40, 115.39,

80.12, 64.67, 35.35. HRMS ESI Calcd for $C_{14}H_{12}N_2NaO_2$ [M+Na]⁺: 263.0791, found: 263.0792. IR (KBr): 2208, 1737, 1447, 1356, 1275, 1260, 1231, 1167, 1061, 942, 749, 696, 652. cm⁻¹.

1-(benzhydryloxy)- 5-oxo-2-phenyl-4, 5-dihydro-1H-pyrrole-3-carbonitrile (3oa)

Following the General procedure A, **30a** (44.7 mg) was isolated as a white solid in 63% yield. Mp: 141–143 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.39 (d, J = 7.6 Hz, 2H), 7.28 (t, J = 3.6 Hz, 2H), 7.20 (t, J = 7.6 Hz, 4H), 7.10 (d, J = 7.6 Hz, 4H), 6.33 (s, 1H), 3.31 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) 168.88, 157.26, 136.66, 131.19,

128.76, 128.51, 128.29, 128.22, 128.18, 126.08, 115.47, 88.42, 79.11, 35.22. HRMS ESI Calcd for $C_{24}H_{18}N_2NaO_2$ [M+Na]⁺: 389.1260, found: 389.1262. IR (KBr): 3005, 2989, 2208, 1735, 1495, 1448, 1365, 1334, 1285, 1260, 1232, 1167, 912, 749, 696, 605 cm⁻¹.

1-cyclohexyloxy- 5-oxo-2-phenyl-4, 5-dihydro-1H-pyrrole-3-carbonitrile (3pa)

Following the General procedure A, **3pa** (47.9 mg) was isolated as a white solid in 85% yield.

Mp: 92–94 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 7.2 Hz, 2H), 11 7.62–7.49 (m, 3H), 3.74 (s, 3H), 3.40 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.26, 155.68, 131.79, 129.00, 128.31, 125.40, 115.39, 80.12, 64.67, 35.35. HRMS ESI Calcd for C₁₂H₁₀N₂NaO₂ [M+Na]⁺: 237.0634, found: 237.0634. IR (KBr): 2937, 2209, 1738, 1620, 1447, 1362, 1325, 1232, 1166, 958, 942, 764, 693, 667, 653, 618 cm⁻¹.

1-(cyclododecyloxy)- 5-oxo-2-phenyl-4, 5-dihydro-1H-pyrrole-3-carbonitrile (3qa)

Following the General procedure A, **3qa** (53.4 mg) was isolated as a white solid in 73% yield. Mp: 88–90 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 7.5 Hz, 2H), 7.46 (dt, J = 14.4, 7.1 Hz, 3H), 3.95 (t, J = 4.5 Hz, 1H), 3.33 (s, 2H), 1.37 (dt, J = 13.6, 6.9 Hz, 2H), 1.31 (dd, J = 11.5, 6.4 Hz, 2H), 1.21–1.08 (m, 15H), 1.00 (d, J = 6.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.45, 157.21, 131.45, 128.77, 128.65, 126.11,

115.50, 85.50, 79.87, 35.29, 27.90, 24.05, 23.39, 23.25, 23.06, 20.74.HRMS ESI Calcd for $C_{23}H_{30}N_2NaO_2$ [M+Na]⁺: 389.2199, found: 389.2199. IR (KBr): 3005, 2989, 2932, 2861, 2209, 1742, 1470, 1361, 1275, 1260, 1231, 1165, 896, 749, 418 cm⁻¹.

1-dodecyloxy- 5-oxo-2-phenyl-4, 5-dihydro-1H-pyrrole-3-carbonitrile (3ra)

Following the General procedure A, **3ra** (57.4 mg) was isolated as a white solid in 78% yield. Mp: 68–70 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.76–7.68 (m, 2H), 7.59–7.47 (m, 3H), 3.85 (t, *J* = 6.5 Hz, 2H), 3.38 (s, 2H), 1.53–1.44 (m, 2H), 1.33–1.05 (m, 19H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.19, 156.23, 131.69, 128.86, 128.49, 125.57, 115.50, 79.83, 77.58, 35.36, 31.85, 29.55, 29.42, 29.29, 29.28,

29.02, 27.64, 25.41, 22.63, 14.07. HRMS ESI Calcd for $C_{23}H_{32}N_2NaO_2$ [M+Na]⁺: 391.2356, found: 391.2357. IR (KBr): 2922, 2852, 2209, 1743, 1466, 1447, 1360, 1324, 1275, 1260, 1231, 1185, 1165, 1064, 763, 750 cm⁻¹.

1-(3,7-dimethyloct-8-en-1-yl)oxy-5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile (3sa)

Following the General procedure A, **3sa** (50.7mg) was isolated as a colorless oil in 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 7.5 Hz, 2H), 7.54 (dt, *J* = 14.5, 7.0 Hz, 3H), 5.00 (t, *J* = 6.9 Hz, 1H), 3.98–3.82 (m, 2H), 3.39 (s, 2H), 1.93–1.76 (m, 2H),

1.67 (s, 3H), 1.62–1.49 (m, 4H), 1.41 (dt, J = 13.1, 6.6 Hz, 1H), 1.30 (dt, J = 14.0, 6.9 Hz, 1H), 1.17 (ddd, J = 15.4, 12.7, 5.9 Hz, 1H), 1.04 (dt, J = 14.1, 7.0 Hz, 1H), 0.70 (d, J = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.16, 156.18, 131.69, 131.28, 128.86, 128.43, 125.56, 124.31, 115.46, 79.84, 75.95, 36.77, 35.34, 34.51, 28.94, 25.62, 25.17, 19.00, 17.56. HRMS ESI Calcd for C₂₁H₂₆N₂NaO₂ [M+Na]⁺: 361.1886, found: 361.1886. IR (KBr): 3005, 2963, 2915, 2208, 1740, 1447, 1379, 1359, 1275, 1260, 1229, 1164, 1063, 943, 749, 694, 652 cm⁻¹.

Gram-scale reaction and further transformations

Gram-scale reaction: To a round-bottom flask were added compound **1a** (15 mmol, 1.5 eq.), **2a** (10 mmol, 1.0 eq.), MeONa (160 mg, 3.0 mmol, 3.0 eq.), NaI (30 mg, 0.2 mmol) and THF (10.0 mL) under N_2 , the mixture was stirred for 24h at room temperature. The reactant was filtered through celite plate, and the solvent was removed under reduced pressure, subsequently a solution

of *p*-TsOH (100 mg, 0.5 mmol) in CHCl₃ (10 mL) was added and stirred at 40°C for 1h. After removing the solvent, the residue was purified by a flash column chromatography (Petroleum ether/ EtOAc = 5:1, V/V) to afford the product **3aa**(2.65g, 91% yield).

1-benzyloxy-2-phenyl-5-(triisopropylsilyl)oxy-1H-pyrrole-3-carbonitrile (4)

To a solution of **3aa**(0.1g, 0.345mmol) in dichloromethane(5mL) was added TIPSOTf (0.158g, 0.51mmol) by syringe slowly under nitrogen. The mixture was stirred for 2h. A saturated solution of brine was added, extracted with CH₂Cl₂ (5mL×3). The combined organic phase was dried over Na₂SO₄, concentrated and finally silica gel flash column chromatographed to give

product **4** (132 mg, 86% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.62–7.58 (m, 2H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.36–7.31 (m, 1H), 7.29 (dd, *J* = 8.3, 6.5 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.03 (d, *J* = 7.6 Hz, 2H), 5.55 (s, 1H), 4.85 (s, 2H), 1.35 (dt, *J* = 15.0, 7.5 Hz, 3H), 1.15 (d, *J* = 7.5 Hz, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 139.30, 132.59, 129.89, 129.31, 129.26, 128.45, 128.36, 128.16, 127.91, 117.51, 88.91, 83.57, 80.58, 17.64, 12.18. HRMS ESI Calcd for C₂₇H₃₅N₂O₂Si [M+H]⁺: 447.2462, Found: 447.2464. IR (KBr): 2945, 2866, 2218, 1582, 1574, 1530, 1485, 1462, 1362, 1173, 996, 908, 845, 779, 737 cm⁻¹.

1-benzyloxy-4-cyano-5-phenyl-1H-pyrrol-2-yl trifluoromethanesulfonate

At 0°C, to a solution of **3aa**(58mg, 0.2mmol) and DIPEA(51.6mg, 0.4mmol) in dichloromethane(5mL) was added (CF₃SO₂)₂O (84.6mg, 0.3mmol) by syringe slowly under nitrogen. The mixture was stirred at rt for 2h. A saturated solution of brine was added, extracted with CH₂Cl₂(5mL×3), dried over Na₂SO₄, concentrated and finally silica gel flash column chromatographed to give

product **5** (61mg, 72% yield) as a light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.73–7.63 (m, 1H), 7.53–7.45 (m, 3H), 7.35 (dd, J = 10.9, 4.0 Hz, 1H), 7.26 (t, J = 7.4 Hz, 2H), 7.06 (d, J = 7.8 Hz, 2H), 6.24 (d, J = 1.1 Hz, 1H), 4.84 (s, 2H).¹³C NMR (125 MHz, CDCl₃) δ 133.40, 131.18, 130.30, 130.05, 129.90, 129.53, 128.99, 128.67, 128.47, 126.08, 122.41, 119.85, 117.29, 115.20, 114.73, 98.00, 85.76, 82.13. ¹⁹F NMR (471 MHz, CDCl₃) δ -72.21. HRMS ESI Calcd for C₁₉H₁₄F₃N₂O₄S [M+H]⁺: 423.0621, Found: 423.0622. IR (KBr): 2959, 2227, 1569, 1524, 1434, 1371, 1246, 1216, 1131, 1115, 904, 869, 842, 792, 764 cm⁻¹.

4-benzylidene-1-benzyloxy-5-oxo-2-phenyl-4,5-dihydro-1H-pyrrole-3-carbonitrile

3aa(0.145g, 0.5mmol.) and piperydine (4.25mg, 0.05mmol) were added to a solution of benzaldehyde (63.6mg,0.6mmol) in ethanol (5 mL), and the mixture was stirred at reflux for 10 h. The mixture was concentrated under vacue, and the residue was poured into H₂O (10 mL), then extracted with CH₂Cl₂ (10mL×3), and the combined organic layers were washed with brine,

dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography on silica gel (Ethyl acetate/Petroleum ether= 1:4) to obtain the product (161mg, 85% yield) as a yellow solid. Mp: 124-126 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, *J* = 3.6 Hz, 2H), 7.67 (d, *J* = 7.4 Hz, 2H), 7.59–7.43 (m, 6H), 7.37 (s, 2H), 7.29 (t, *J* = 7.3 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 2H), 7.10 (d, *J* = 7.3 Hz, 2H), 4.97 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 160.60, 150.30, 142.85, 133.19, 132.67, 132.45, 132.08, 131.47, 130.12, 129.36, 128.85, 128.74, 128.67, 128.47, 125.76, 123.60, 114.23,

84.04, 78.90. HRMS ESI Calcd for $C_{25}H_{19}N_2O_2$ [M+H]⁺: 379.1441, Found: 379.1442. IR (KBr): 3065, 3027, 2211, 1712, 1614, 1594, 1571, 1491, 1447, 1389, 1155, 1067, 1037, 999 cm⁻¹.

Ethyl 3-amino-7-(benzyloxy)-2,5-dicyano-4-(2-ethoxy-2-oxoethyl)-6-phenyl-4,7-Dihydro-pyrano[2,3-b]pyrrole-4-carboxylate

A solution of **3aa** (87mg. 0.3mmol), diethyl but-2-ynedioate (51mg, 0.3mmol) and malononitrile (19.8mg, 0.3mmol) in ethanol(5mL) was stirred at 50°C for 1h. After removing the solvent, H₂O(10mL) was added, and extracted with EtOAc (5mL×3). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography on silica gel (Ethyl

acetate/Petroleum ether= 1:1) to obtain the product (112mg, 71%yield) as a yellow solid. Mp: 154-156 °C.¹H NMR (500 MHz, CDCl₃) δ 7.61–7.54 (m, 2H), 7.46–7.39 (m, 3H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 2H), 7.09–6.99 (m, 2H), 5.04 (s, 2H), 4.84 (d, *J* = 0.9 Hz, 2H), 4.36–4.26 (m, 2H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.30 (dd, *J* = 40.3, 16.2 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.33, 169.13, 159.49, 133.90, 132.30, 131.82, 130.17, 129.81, 129.21, 128.70, 128.49, 128.39, 126.33, 117.62, 115.04, 94.91, 82.95, 81.81, 62.72, 61.31, 60.51, 44.89, 39.87, 14.03, 13.99. HRMS ESI Calcd. For C₂₉H₂₆N₄NaO₆ [M+Na]⁺: 549.1745, found: 549.1746. IR (KBr): 3326, 2220, 2196, 1730, 1651, 1581, 1492, 1475, 1445, 1395, 1220, 1177, 1111, 1023, 914, 858, 749, 732, 694 cm⁻¹.

Ethyl 1-(benzyloxy)-5-chloro-4-formyl-2-methyl-1H-pyrrole-3-carboxylate

To pyrrolinone **3an** (55mg, 0.20 mmol) and DMF ((29.2 mg, 0.4mmol) was added POCl₃ (0.2 mL, 2.2mmol)) in a dropwise manner. The mixture was heated overnight at 100 °C and then poured on ice (8 mL). After 2 h stirring the suspension was extracted with ethyl acetate (5 mL×3). The organic phase was washed with brine and finally dried with sodium sulfate. The

solvents were evaporated in vacuo and the residue was purified by flash chromatography on silica gel (CH₂Cl₂) to furnish the product **8** (44 mg, 68% yield) as brownish powder.Mp: 66-68 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.40 (s, 1H), 7.49–7.39 (m, 5H), 5.15 (s, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 2.36 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 186.95, 163.66, 133.79, 132.26, 130.04, 129.99, 128.96, 117.94, 115.60, 108.23, 81.59, 60.54, 14.34, 10.32. HRMS ESI Calcd for C₁₆H₁₆ClNNaO₄ [M+Na]⁺: 344.0660, Found: 344.0659. IR (KBr): 2981, 2923, 1701, 1674, 1550, 1488, 1455, 1434, 1382, 1353, 1338, 1274, 1123, 1044, 1025 cm⁻¹.

Ethyl 2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

Under N_2 atmosphere Compound **3an** (55mg, 0.2 mmol) was dissolved in THF (3 mL) and then SmI₂ (0.1M, 6mL) was added dropwise by syringe. The reaction mixture was stirred for 12h at room temperature. After filtration through a plug of Celite, the filtrate was concentrated under reduced pressure and purified by flash chromatography on silica gel

(Petroleum/EtOAc,1:1, V/V) to afford the product 9 as a pale white powder (29.5 mg, 88% yield).

Mp: 80-82 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.63 (s, 1H), 4.20 (q, J = 7.1 Hz, 1H), 3.30 (d, J = 2.3 Hz, 1H), 2.36 (t, J = 2.3 Hz, 1H), 1.30 (t, J = 7.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 178.17, 164.12, 151.49, 104.47, 59.85, 37.50, 14.40, 13.43. HRMS ESI Calcd for C₈H₁₂NO₃ [M+H]⁺: 170.0812, Found: 170.0812. IR: v 3171, 2987, 2921, 1711, 1690, 1639, 1452, 1372, 1313, 1201, 1121, 1073, 997, 755, 715 cm⁻¹.

4. ¹HNMR, ¹³C NMR and ¹⁹F NMR Spectrum for the Products

5. The crystal structure data of 3aa

 Table S5. Crystal data and structure refinement for(3aa)(CCDC 2235249)

Empirical formula	C ₁₈ H ₁₄ N ₂ O ₂		
Formula weight	290.31		
Temperature / K	114.85(10)		
Crystal system	monoclinic		
Space group	Cc		
a / Å, b / Å, c / Å	11.5249(9), 11.4884(10), 22.947(3)		
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$	90.00, 98.346(8), 90.00		
Volume / Å3	3006.1(5)		
Z	8		
$ ho_{calc}$ / mg mm ⁻³	1.283		
μ / mm^{-1}	0.085		
F(000)	1216		
Crystal size / mm ³	$0.23 \times 0.23 \times 0.14$		
2Θ range for data collection	5.88 ° to 51.98 °		
	12 ch c 12 12 ch c 14 28 ch		
Index ranges	-13 2 II 2 13, -13 2 K 2 14, -20 2 I		
index ranges	< 25		
	<u> </u>		
Reflections collected	6580		
Independent reflections	4406[R(int) = 0.0462 (inf-0.9Å)]		
Data/restraints/parameters	4406/2/397		
Goodness-of-fit on F ²	1.023		
Final R indexes [I> 2σ (I) i.e. F_o > 4σ (F_o)]	$R_1 = 0.0551 \ wR_2 = 0.1118$		
Final R indexes [all data]	$R_1 = 0.0710, wR_2 = 0.1253$		
Largest diff. peak/hole / e Å ⁻³	0.205/-0.259		
Completeness	0.9968		

6. The crystal structure data of 7

Table S6. Crystal data and structure refinement for(7)(CCDC 2267290)			
Empirical formula	$C_{29}H_{26}N_4O_6$		
Formula weight	526.54		
Temperature / K	118.25(10)		
Crystal system	triclinic		
Space group	P-1		
a / Å, b / Å, c / Å	8.3944(5), 10.9479(8), 15.5175(9)		
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$	76.896(6), 86.581(5), 70.851(6)		
Volume / Å3	1311.91(14)		
Z	2		
$ ho_{calc}$ / mg mm ⁻³	1.333		
μ / mm^{-1}	0.095		
F(000)	552		
Crystal size / mm ³	$0.35 \times 0.33 \times 0.11$		
2Θ range for data collection	5.84 ° to 52 °		
Index ranges	$-7 \le h \le 10, -9 \le k \le 13, -19 \le l \le 19$		
Reflections collected	9361		
Independent reflections	5020[R(int) = 0.0534]		
Data/restraints/parameters	5020/2/354		
Goodness-of-fit on F ²	1.021		
Final R indexes [I> 2σ (I) i.e. F_o > 4σ (F_o)]	$R_1 = 0.0764, wR_2 = 0.1665$		
Final R indexes [all data]	$R_1 = 0.1261, wR_2 = 0.2052$		
Largest diff. peak/hole / e Å ⁻³	0.699/-0.334		
Completeness	0.9981		

