Electronic Supplementary Information

A regioselective synthesis of β -difluoromethoxy vinyl sulfones via *O*-difluoromethylation of β -ketosulfones using sodium chlorodifluoroacetate

Km Ishu, Neha Sharma Prabhakar, and Krishna Nand Singh*

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005,

India

*E-mail: knsingh@bhu.ac.in; knsinghbhu@yahoo.co.in

Table of Contents

1. Copies of ¹ H, ¹⁹ F, and ¹³ C Spectra	S2-S29
2. Crystallographic Data	S30-S3

1. Copies of ¹H, ¹⁹F, and ¹³C Spectra

8.064 8.050 8.038 8.038 7.434 7.419 7.419 7.245 7.245 6.323 6.323 6.323

157.946	140.414 139.992 132.343 130.983 129.539 129.539 129.447 129.579 112.679 112.679 111.867 111.847 111.847 116.100
1	\vee

¹H NMR (500 MHz, CDCl₃)

7.899 7.707 7.707 7.707 7.688 7.437 7.437 7.426 7.426 7.426 7.426 6.464 6.611 6.318

0

-10

-20

-30

-40

-50

-70

-60

-80

-100

-110

-120

-130

-140

-90

-180

-170

-160

-150

157.439	141.499	133.694 132.159 131.312 129.133 129.133 127.617 119.413 119.413 117.966 116.219 114.472

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

¹H NMR (500 MHz, CDCl₃)

 $\begin{array}{c} < 8.028 \\ < 8.013 \\ \hline 8.013 \\ \hline 7.561 \\ 7.551 \\ 7.530 \\ 7.115 \\ \hline 7.115 \\ 7.115 \\ \hline 7.526 \\ 6.533 \\ < 6.533 \\ \hline 6.526 \\ 6.336 \end{array}$

-40

-80

-110

-120

-130

-140

-160

— 156.143 7 141.260	138.573 133.858 130.036 129.420 129.420 129.218 129.218	✓ 120.106 ✓ 118.178 ✓ 116.422 ✓ 114.666
------------------------	---	---

¹H NMR (500 MHz, CDCl₃)

 7
 8.039

 7
 8.024

 7
 7.564

 7
 7.554

 7
 7.5754

 7
 7.5754

 7
 7.5733

 7
 7.5733

 7
 7.5733

 7
 7.5733

 7
 7.5733

 7
 7.3390

 6.6053
 6.6053

 6.6552
 6.6553

HRMS of the adduct 5

2. Crystallographic Data of the Product 3c:

Crystal of the product **3c** was grown by slow evaporation of a solution of the compound in EtOH/hexane.

Specification: Crystallographic data measurements were obtained on Rigaku XtaLAB Synergy-i dualflex X-ray diffractometer using graphite monochromated Cu-K α radiation (λ = 1.54184 Å) based diffraction at 285 K. The extracted data was evaluated using CrysAlisPro CCD software. The crystal structure was solved by direct methods using SHELXT 2018/2, and was refined by the full-matrix least-squares methods through Olex2.

Empirical formula	$C_{19}H_{20}F_2O_3S$			
Formula weight	366.432			
Temperature/K	285.15			
Crystal system	monoclinic			
Space group	I2/a			
a/Å	21.1418(11)			
b/Å	6.3999(3)			
c/Å	27.7760(13)			
$\alpha/^{\circ}$	90			
β/°	96.557(4)			
$\gamma/^{\circ}$	90			
Volume/Å ³	3733.7(3)			
Z	8			
$\rho_{calc}g/cm^3$	1.304			
μ/mm^{-1}	1.843			
F(000)	1544.1			
Crystal size/mm ³	0.2 imes 0.1 imes 0.1			
Radiation	Cu Ka ($\lambda = 1.54184$)			
2Θ range for data collection/	° 6.4 to 143.7			
Index ranges	$-26 \le h \le 26, -7 \le k \le 7, -34 \le l \le 33$			
Reflections collected	12895			
Independent reflections	3590 [$R_{int} = 0.0887$, $R_{sigma} = 0.0918$]			
Data/restraints/parameters	3590/18/227			
Goodness-of-fit on F ²	1.041			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1050, wR_2 = 0.2711$			
Final R indexes [all data]	$R_1 = 0.1538, wR_2 = 0.3266$			
Largest diff. peak/hole / e Å ⁻³ 0.89/-0.44				

X-ray Crystallographic Data of the Product 3c

ORTEP with 50% thermal ellipsoid probability level