Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Divergent Transformation of *C*,*N*-Cyclic-*N*'-acyl Azomethine Imines by Reaction with Diazo Compounds

Haruki Ohno, Ryosuke Takahashi, Takuya Suga, Takahiro Soeta and Yutaka Ukaji*

Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan

E-mail: ukaji@staff.kanazawa-u.ac.jp

Table of Contents

1. General information	S2			
2. Procedure for the reaction with ethyl diazoacetate (Reaction A) and analytical data of 4	S3			
3. Procedure for the reaction with trimethylsilyldiazomethane (Reaction B) and analytical data of				
	S6			
4. Procedure for the conversion of $4a$ to 6 and analytical data of 6	S 8			
5. ORTEPs of 4a and 6	S9			
6. References	S15			
7. NMR Spectra of compounds				
1) ¹ H and ¹³ C NMR spectra of α -diazoacetate moiety-introduced tetrahydroisoquinolines 4a-4g	S16			
2) ¹ H and ¹³ C NMR spectra of 3-benzazepine derivatives 5a-5g	S30			
3) ¹ H and ¹³ C NMR spectra of 6	S44			

1. General information

NMR spectra were recorded on JEOL ECS-400 (400 MHz for ¹H, 100 MHz for ¹³C) using CDCl₃ as a solvent. Tetramethylsilane ($\delta = 0$ ppm) for ¹H NMR and CDCl₃ ($\delta = 77.0$ ppm) for ¹³C NMR were used as internal standards. IR spectra were acquired on a JASCO FT/IR-230 spectrometer. Melting points were determined on a micromelting apparatus (AS-ONE ATM-02) and are uncorrected. Mass spectra were recorded on Bruker Daltonics micrOTOF II-KA1 (ESI). X-ray crystallography was performed on a Bruker SMART APEX II (with Cu K α radiation). Purification of the products was performed by column chromatography on silica gel (Kanto Silica gel 60N, spherical, neutral or Fuji Silysia CHROMATOREX PSQ60B). Dehydrated solvents were purchased for the reactions and used without further desiccation.

C,*N*-Cyclic *N*'-acyl azomethine imines **1** were prepared according to the reported procedure.¹ Ethyl diazoacetate (containing CH_2Cl_2) and trimethylsilyldiazomethane (Et₂O solution) were purchased from Sigma-Aldrich and Oakwood Chemical, respectively, and used as they stand.

2. Procedure for the reaction with ethyl diazoacetate (Reaction A) and analytical data of 4

Ethyl 2-(2-Benzamido-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-diazoacetate (4a):² To a mixture of benzoyl(3,4-dihydroisoquinolin-2-ium-2-yl)amide (1a) (120 mg, 0.48 mmol) in benzene (12 mL) was added ethyl diazoacetate (328 mg, 85% with CH₂Cl₂, 2.49 mmol) and the mixture was heated at 60 °C (oil bath temperature) for 3 d. After being cooled to room temperature, xylene (10 mL) was added and the solvent and unreacted ethyl diazoacetate were removed under reduced pressure. The resulted crude products were purified by silica gel column chromatography (hexane/AcOEt = 3/1) to give 4a (156 mg, 89% yield) as a solid. $R_f = 0.6$ (hexane/AcOEt = 1/1, v/v). ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, J = 7.3 Hz, 2H), 7.53–7.40 (m, 4H), 7.24–7.14 (m, 4H), 5.19 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.48-3.42 (m, 1H), 3.38–3.24 (m, 2H), 2.93 (d, J = 15.6 Hz, 1H), 1.17 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 167.7, 165.7, 134.7, 133.5, 132.3, 131.5, 128.8, 128.5, 127.6, 127.1, 126.6, 62.5, 61.2, 60.2, 52.2, 29.1, 14.3. CCDC-2129155 contains the supplementary crystallographic data for 4a.

In a similar manner, 4b-4g were obtained from the corresponding *C*,*N*-cyclic-*N*'-acyl azomethine imines 1b-1g.

Ethyl 2-Diazo-2-(2-(4-methylbenzamido)-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (4b): The reaction using 1b (77 mg, 0.29 mmol) was carried out for 3 d. The compound 4b (88 mg, 79% yield) was obtained as a solid after purification by silica gel column chromatography (hexane/AcOEt = 10/1, 6/1, 4/1 and then 3/1). $R_f = 0.7$ (hexane/AcOEt = 1/1, v/v). Mp. 137–139 °C (CHCl₃/hexane). ¹H NMR (CDCl₃, 400 MHz): δ 7.68 (d, J = 8.2 Hz, 2H), 7.56 (s, 1H), 7.28–7.12 (m, 6H), 5.18 (s, 1H), 4.16 (q, J = 6.9 Hz, 2H), 3.48–3.42 (m, 1H), 3.38–3.22 (m, 2H), 2.90 (d, J = 15.6 Hz, 1H), 2.37 (s, 3H), 1.17 (t, J = 6.9 Hz, 3H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 167.7, 165.7, 141.9, 134.7, 132.3, 130.7, 129.1, 128.8, 127.6, 127.1, 126.5, 62.5, 61.1, 60.2, 52.3, 29.2, 21.4, 14.3; one signal overlaps. IR (KBr) 3250, 2979, 2929, 2105, 1692, 1648, 1542, 1374, 1292, 1260, 1101, 941, 914, 744 cm⁻¹. HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₁H₂₂N₄O₃Na 401.1590; Found 401.1601.

Ethyl 2-(2-(4-Chlorobenzamido)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-diazoacetate (4c): The reaction using **1c** (82 mg, 0.29 mmol) was carried out for 2 d. The compound **4c** (102 mg, 88% yield) was obtained as a solid after purification by silica gel column chromatography (hexane/AcOEt = 10/1, 6/1 and then 3/1). $R_f = 0.8$ (hexane/AcOEt = 1/1, v/v). Mp. 147–148 °C (CHCl₃/hexane). ¹H NMR (CDCl₃, 400 MHz): δ 7.75 (s, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.24–7.11 (m, 4H), 5.18 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.42 (dd, J = 9.2, 4.2 Hz, 1H), 3.36–3.21 (m, 2H), 2.91 (dd, J = 12.4, 4.2 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 167.8, 164.6, 137.7, 134.6, 132.0, 131.9, 128.9, 128.7, 128.6, 127.7, 127.0, 126.6, 62.4, 61.2, 60.1, 52.1, 29.1, 14.3. IR (KBr) 3379, 2972, 2102, 1682, 1656, 1483, 1372, 1300, 1260, 1103, 1014, 845, 737 cm⁻¹. HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₀H₁₉N4O₃ClNa 421.1043; Found 421.1014.

Ethyl 2-(2-Benzamido-5-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-diazoacetate (4d): The reaction using **1d** (75 mg, 0.28 mmol) was carried out at 60 °C for 2 d and at 80 °C for 2 d. The compound **4d** (58 mg, 54% yield) was obtained as a solid after purification by silica gel column chromatography (hexane/AcOEt = 10/1, 6/1, 4/1, 3/1 and then 2/1). $R_f = 0.7$ (hexane/AcOEt = 1/1, v/v). Mp. 159–161 °C (CHCl₃/hexane). ¹H NMR (CDCl₃, 400 MHz): δ 7.79 (d, J = 7.3 Hz, 2H), 7.58 (s, 1H), 7.49 (t, J = 7.3 Hz, 1H), 7.45–7.39 (m, 2H), 7.17–7.03 (m, 3H), 5.17 (s, 1H), 4.17 (q, J = 6.9 Hz, 2H), 3.54–3.45 (m, 1H), 3.31–3.22 (m, 1H), 3.14-3.03 (m, 1H), 2.88–2.78 (m, 1H), 2.24 (s, 3H), 1.17 (t, J = 6.9 Hz, 3H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 167.8, 165.6, 136.5, 133.5, 133.2, 132.1, 131.5, 129.0, 128.5, 127.1, 126.4, 124.8, 62.8, 61.2, 60.3, 52.0, 26.9, 19.3, 14.3. IR (KBr) 3364, 2960, 2937, 2855, 2092, 1684, 1656, 1515, 1379, 1294, 1106, 1031, 762, 714, 691 cm⁻¹. HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₁H₂₂N₄O₃Na 401.1590; Found 401.1594.

Ethyl 2-(2-Benzamido-7-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-diazoacetate (4e): The reaction using 1e (39 mg, 0.15 mmol) was carried out for 3 d. The compound 4e (43 mg, 76% yield) was obtained as a solid after purification by silica gel column chromatography (hexane/AcOEt = 10/1, 6/1 and then 3/1). $R_f = 0.7$ (hexane/AcOEt = 1/1, v/v). Mp. 147–149 °C (CHCl₃/hexane). ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, J = 6.9 Hz, 2H), 7.53–7.38 (m, 3H), 7.48 (s, 1H), 7.06–7.00 (m, 2H), 6.99 (s, 1H), 5.13 (s, 1H), 4.23–4.13 (m, 2H), 3.43 (dd, J = 8.7, 4.6 Hz, 1H), 3.35–3.21 (m, 2H), 2.92–2.85 (m, 1H), 2.32 (s, 3H), 1.18 (t, J = 7.3 Hz, 3H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 167.8, 165.7, 136.2, 133.6, 132.0, 131.6, 131.6, 128.7, 128.6, 128.5, 127.4, 127.1, 62.6, 61.2, 60.3, 52.4, 28.7, 21.1, 14.3. IR (KBr) 3371, 2970, 2928, 2093, 1681, 1656, 1519, 1487, 1373, 1301, 1259, 1103, 802, 711, 693 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₂₂N₄O₃Na 401.1590; Found 401.1602.

Ethyl 2-(2-Benzamido-6-methoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-diazoacetate (4f): The reaction using 1f (63 mg, 0.23 mmol) was carried out for 2 d. The compound 4f (70 mg, 78% yield) was obtained as a solid after purification by silica gel column chromatography (hexane/AcOEt = 6/1, 3/1 and then 2/1). $R_f = 0.4$ (hexane/AcOEt = 1/1, v/v). Mp. 147–148 °C (CHCl₃/hexane). ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, J = 7.3 Hz, 2H), 7.57 (s, 1H), 7.49 (t, J = 7.3 Hz, 1H), 7.45–7.38 (m, 2H), 7.11 (d, J = 8.7 Hz, 1H), 6.77 (dd, J = 8.7, 2.3 Hz, 1H), 6.66 (d, J = 2.3 Hz, 1H), 5.12 (s, 1H), 4.16 (q, J = 7.0 Hz, 2H), 3.79 (s, 3H), 3.44 (dd, J = 9.2, 5.0 Hz, 1H), 3.35–3.20 (m, 2H), 2.92–2.84 (m, 1H), 1.17 (t, J = 7.0 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 167.7, 165.6, 158.8, 136.1, 133.5, 131.5, 128.5, 128.2, 127.1, 124.3, 113.1, 113.0, 62.2, 61.1, 60.2, 55.2, 52.2, 29.4, 14.3. IR (KBr) 3369, 2968, 2931, 2091, 1679, 1656, 1522, 1505, 1372, 1261, 1110, 794, 704, 691 cm⁻¹. HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₁H₂₂N₄O₄Na 417.1539; Found 417.1530.

Ethyl 2-(2-Benzamido-7-bromo-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-diazoacetate (4g): The reaction using 1g (75 mg, 0.23 mmol) was carried out for 2 d. The compound 4g (74 mg, 74% yield) was obtained as a solid after purification by silica gel column chromatography (hexane/AcOEt = 9/1, 6/1, 3/1 and then 2/1). $R_{\rm f} = 0.7$ (hexane/AcOEt = 1/1, v/v). Mp. 150–152 °C (CHCl₃/hexane). ¹H

NMR (CDCl₃, 400 MHz): δ 7.77 (d, J = 7.3 Hz, 2H), 7.63 (s, 1H), 7.49 (t, J = 7.3 Hz, 1H), 7.40 (t, J = 7.3 Hz, 2H), 7.35–7.31 (m, 2H), 7.03 (d, J = 8.7 Hz, 1H), 5.17 (s, 1H), 4.16 (q, J = 7.3 Hz, 2H), 3.48–3.40 (m, 1H), 3.34–3.18 (m, 2H), 2.88–2.80 (m, 1H), 1.17 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 167.4, 165.8, 134.7, 133.8, 133.4, 131.7, 130.8, 130.5, 129.8, 128.5, 127.1, 120.1, 62.0, 61.3, 60.0, 52.0, 28.8, 14.3. IR (KBr) 3369, 2974, 2090, 1685, 1655, 1520, 1487, 1373, 1305, 1257, 1102, 797, 711, 692 cm⁻¹. HRMS (ESI) *m*/*z*: [M+Na]⁺ Calcd for C₂₀H₁₉N₄O₃⁷⁹Br 465.0538; Found 465.0532. Calcd for C₂₀H₁₉N₄O₃⁸¹Br 467.0518; Found 467.0516.

3. Procedure for the reaction with trimethylsilyldiazomethane (Reaction B) and analytical data of 5

3-Phenyl-6,7-dihydro-1*H***-1,5-methanobenzo[***g***][1,3,4]oxadiazonine (5a):³ To a mixture of** *C***,***N***-cyclic-***N***²-acyl azomethine imine 1a** (76 mg, 0.30 mmol) in butyronitrile (3 mL) and MeOH (0.3 mL) was added trimethylsilyldiazomethane (0.45 mL, 2 M solution in Et₂O, 0.90 mmol) and the mixture was stirred at rt for 1 d. After addition of acetic acid (0.06 mL) followed by toluene (3 mL) to the reaction mixture, the solvent was removed under reduced pressure. The resulted crude products were purified by silica gel column chromatography (hexane/AcOEt = 10/1, 8/1, 5/1, 2/1 and then 1/1) to give **5a** as a solid (52 mg, 65% yield). ¹H NMR (CDCl₃, 400 MHz): δ 7.89 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.38–7.28 (m, 4H), 7.20–7.16 (m, 2H), 7.08–7.06 (m, 1H), 5.39 (d, *J* = 2.3 Hz, 1H), 3.80–3.72 (m, 1H), 3.67–3.58 (m, 2H), 3.48–3.39 (m, 2H), 2.56–2.47 (m, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 155.5, 139.9, 138.0, 132.4, 131.4, 131.2, 129.9, 128.8, 127.9, 126.5, 126.0, 78.5, 54.0, 49.9, 33.6.

Addition of 1a in three separate parts: To a mixture of C,N-cyclic-N'-acyl azomethine imine 1a (26 mg) in butyronitrile (3 mL) and MeOH (0.3 mL) was added trimethylsilyldiazomethane (0.45 mL, 2 M solution in Et₂O, 0.90 mmol) and the mixture was stirred at rt. After 2 h, 1a (26 mg) was added to the reaction mixture. After 4 h, another 1a (25 mg) was added (totally 0.31 mmol) and the mixture was stirred at rt for 1 d . After addition of acetic acid (0.06 mL) followed by similar work-up, 5a (65 mg, 80% yield) was obtained as a solid.

In a similar manner of the former method for 5a by one-pot addition of 1a, 5b-5g were obtained from the corresponding *C*,*N*-cyclic-*N*'-acyl azomethine imines 1b-1g.

3-(*p*-Tolyl)-6,7-dihydro-1*H*-1,5-methanobenzo[*g*][1,3,4]oxadiazonine (5b):³ The reaction of 1b (80 mg, 0.30 mmol) with trimethylsilyldiazomethane (0.45 mL, 2 M solution in Et₂O, 0.90 mmol) was carried out for 1 d. The compound **5b** (64 mg, 77% yield) was obtained as an oil after purification by silica gel column chromatography (hexane/AcOEt = 8/1, 5/1, 2/1 and then 1/1). ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.35–7.08 (m, 4H), 7.15 (d, *J* = 8.2 Hz, 2H), 5.39 (dd, *J* = 3.2, 2.3 Hz, 1H), 3.78–3.75 (m, 1H), 3.64–3.62 (m, 2H), 3.50–3.41 (m, 2H), 2.54–2.46 (m, 1H), 2.34 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 156.0, 140.1, 138.3, 131.4, 131.2, 129.7, 128.8, 128.7, 128.3, 126.5, 126.1, 78.8, 54.0, 50.1, 33.6, 21.3.

3-(4-Chlorophenyl)-6,7-dihydro-1*H***-1,5-methanobenzo**[*g*][**1,3,4**]**oxadiazonine** (**5c**):³ The reaction of **1c** (85 mg, 0.30 mmol) with trimethylsilyldiazomethane (0.45 mL, 2 M solution in Et₂O, 0.90 mmol) was carried out for 1 d. The compound **5c** (57 mg, 64% yield) was obtained as a solid after purification by silica gel column chromatography (hexane/AcOEt = 8/1, 5/1, 3/1, 2/1 and then 1/1). ¹H NMR (CDCl₃, 400 MHz): δ 7.82 (d, *J* = 8.7 Hz, 2H), 7.33–7.29 (m, 3H), 7.24–7.19 (m, 2H), 7.11–7.08 (m, 1H), 5.43 (d, *J* = 3.7 Hz, 1H), 3.80–3.74 (m, 1H), 3.68 (dd, *J* = 14.2, 0.9 Hz, 1H), 3.61–3.35 (m, 2H), 2.56 (ddd, *J* = 15.6, 5.0, 2.3 Hz, 1H). ¹³C{¹H} NMR

(CDCl₃, 100 MHz): δ 154.5, 139.8, 137.9, 136.0, 131.5, 131.3, 130.9, 129.0, 128.2, 127.4, 126.7, 78.6, 54.1, 50.0, 33.7.

8-Methyl-3-phenyl-6,7-dihydro-1*H***-1,5-methanobenzo[***g***][1,3,4]oxadiazonine (5d):³ The reaction of 1d (79 mg, 0.30 mmol) with with trimethylsilyldiazomethane (0.45 mL, 2 M solution in Et₂O, 0.90 mmol) was carried out for 1 d. The compound 5d (52 mg, 62% yield) was obtained as a solid after purification by silica gel column chromatography (hexane/AcOEt = 6/1, 4/1 and then 3/1). ¹H NMR (CDCl₃, 400 MHz): ¹H NMR (CDCl₃, 400 MHz): \delta 7.91 (dd,** *J* **= 7.8, 1.8 Hz, 2H), 7.41–7.33 (m, 3H), 7.17–7.07 (m, 3H) 5.44 (d,** *J* **= 3.7 Hz, 1H), 3.77 (ddd,** *J* **= 14.2, 5.0, 2.8 Hz, 1H), 3.67–3.58 (m, 2H), 3.42 (ddd,** *J* **= 14.2, 11.0, 1.8 Hz, 1H), 3.19 (ddd,** *J* **= 16.5, 11.0, 2.8 Hz, 1H), 2.78 (ddd,** *J* **= 16.5, 5.0, 1.8 Hz, 1H), 2.30 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): \delta 157.1, 138.7, 138.6, 137.1, 132.4, 131.3, 130.1, 129.6, 128.0, 126.3, 126.2, 79.8, 53.7, 50.0, 26.8, 21.3.**

10-Methyl-3-phenyl-6,7-dihydro-1*H***-1,5-methanobenzo**[*g*][**1,3,4**]**oxadiazonine** (**5e**):³ The reaction of **1e** (79 mg, 0.30 mmol) with trimethylsilyldiazomethane (0.45 mL, 2 M solution in Et₂O, 0.90 mmol) was carried out for 1 d. The compound **5e** (68 mg, 81% yield) was obtained as an oil after purification by silica gel column chromatography (hexane/AcOEt = 6/1, 4/1 and then 3/1). ¹H NMR (CDCl₃, 400 MHz): δ 7.89 (d, *J* = 8.7 Hz, 2H), 7.40–7.32 (m, 3H), 7.13 (s, 1H), 7.03 (d, *J* = 7.8 Hz, 1H), 6.99 (d, *J* = 7.8 Hz, 1H), 5.37 (t, *J* = 2.5 Hz, 1H), 3.79–3.73 (m, 1H), 3.67–3.64 (m, 2H), 3.46–3.37 (m, 2H), 2.53–2.46 (m, 1H), 2.33 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 155.8, 138.0, 136.9, 136.1, 132.5, 132.4, 131.3, 123.0, 129.4, 128.0, 126.2, 78.8, 54.2, 50.2, 33.3, 20.7.

9-Methoxy-3-phenyl-6,7-dihydro-1*H***-1,5-methanobenzo**[*g*][1,3,4]oxadiazonine (5f):³ The reaction of 1f (82 mg, 0.29 mmol) with trimethylsilyldiazomethane (0.45 mL, 2 M solution in Et₂O, 0.90 mmol) was carried out for 1 d. The compound 5f (48 mg, 55% yield) was obtained as an oil after purification by silica gel column chromatography (hexane/AcOEt = 10/1, 8/1, 5/1, 3/1, 2/1 and then 1/1). ¹H NMR (CDCl₃, 400 MHz): δ 7.89 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.32–7.39 (m, 3H), 7.25 (d, *J* = 8.7 Hz, 1H), 6.69 (dd, *J* = 8.7, 2.7 Hz, 1H), 6.63 (d, *J* = 2.7 Hz, 1H), 5.38 (t, *J* = 2.3 Hz, 1H), 3.79 (dd, *J* = 7.3, 2.3 Hz, 1H), 3.77 (s, 3H), 3.62 (d, *J* = 2.3 Hz, 2H), 3.38–3.49 (m, 2H), 2.43–2.52 (m, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 159.5, 155.7, 141.6, 133.0, 132.5, 130.6, 129.9, 128.0, 126.1, 117.2, 110.7, 78.1, 55.1, 54.1, 50.4, 33.8.

10-Bromo-3-phenyl-6,7-dihydro-1*H***-1,5-methanobenzo**[*g*][**1,3,4**]**oxadiazonine** (5g):³ The reaction of **1g** (98 mg, 0.30 mmol) with trimethylsilyldiazomethane (0.45 mL, 2 M solution in Et₂O, 0.90 mmol) was carried out for 1 d. The compound **5g** (86 mg, 85% yield) was obtained as an oil after purification by silica gel column chromatography (hexane/AcOEt = 8/1, 5/1, 2/1 and then 1/1) ¹H NMR (CDCl₃, 400 MHz): δ 7.88 (dd, *J* = 8.2, 1.8 Hz, 2H), 7.46 (d, *J* = 2.3 Hz, 1H), 7.41–7.30 (m, 4H), 6.95 (d, *J* = 7.8 Hz, 1H), 5.34 (d, *J* = 2.3 Hz, 1H), 3.79–3.73 (m, 1H), 3.67–3.58 (m, 2H), 3.47–3.33 (m, 2H), 2.53–2.46 (m, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 155.4, 140.1, 138.9, 134.2, 132.9, 132.2, 131.6, 130.1, 128.2, 128.1, 126.1, 120.0, 77.7, 53.8, 49.8, 33.2.

4. Procedure for the conversion of 4a to 6 and analytical data of 6

Ethyl 3-Benzamido-2,3-dihydro-1*H***-benzo**[*d*]**azepine-4-carboxylate (6):** The mixture of the diazo compounds **4a** (53 mg, 0.15 mmol) and Rh₂(OAc)₄ (2 mg, 0.005 mmol) in CH₂Cl₂ (18 mL) was stirred at room temperature for 18 h.⁴ The reaction mixture was passed through a pad of silica gel and the solution was condensed under reduced pressure. The resulted crude products were purified by silica gel column chromatography (hexane/AcOEt = 6/1, 3/1 and then 2/1) to give 6 as a solid (48 mg, 97% yield). $R_{\rm f} = 0.6$ (hexane/AcOEt = 1/1, v/v). Mp. 191–192 °C (AcOEt/hexane). ¹H NMR (CDCl₃, 400 MHz): δ 9.03 (s, 1H), 7.92 (d, *J* = 7.3 Hz, 2H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.53 (t, *J* = 7.3 Hz, 2H), 7.13–7.16 (m, 2H), 7.06–6.96 (m, 1H), 6.62 (s, 1H), 6.50–6.44 (m, 1H), 3.78–3.71(m, 2H), 3.49–3.42 (m, 2H), 3.15–3.10 (m, 2H), 0.93–0.88 (m, 3H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 167.2, 165.3, 141.4, 135.4, 133.3, 132.2, 132.0, 129.4, 128.7, 127.6 127.4, 126.1, 120.6, 61.7, 54.3, 35.0, 13.5; one signal overlaps. IR (KBr) 3230, 3054, 1716, 1655, 1620, 1542, 1302, 1251, 1215, 1067, 918, 774, 694 cm⁻¹. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₀H₂₁N₂O₃ 337.1552; Found 337.1553. CCDC-2129011 contains the supplementary crystallographic data for **6**.

5. ORTEPs of 4a and 6 (Ellipsoid contour percent probability level is 50%)

Figure S1. X-ray Structure of **4a** (CCDC-2129155) Unit cell parameters: *a* = 4.9174(3), *b* = 16.0704(9), *c* = 11.6190(7), *P*2₁. *R* = 0.0562.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 191207_rtakahashi4_2_0m_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 191207_rtakahashi4_2_0m_a

Bond precision:	C-C = 0.0066 A	Wavelength=1.54178			
Cell:	a=4.9174(3) alpha=90	b=16.0704(9) beta=90.199(3)	c=11.6190(7) gamma=90		
Temperature:	90 [°] K		-		
	Calculated	Reported			
Volume	918.18(9)	918.18(9)			
Space group	P 21	P 21			
Hall group	P 2yb	P 2yb			
Moiety formula	C20 H20 N4 O3	?			
Sum formula	C20 H20 N4 O3	C20 H20 N4	4 03		
Mr	364.40	364.40			
Dx,g cm-3	1.318	1.318			
Z	2	2			
Mu (mm-1)	0.744	0.744			
F000	384.0	384.0			
F000′	385.19				
h,k,lmax	6,19,14	5,19,14			
Nref	3648[1893]	3403			
Tmin,Tmax	0.836,0.862				
Tmin'	0.743				
Correction metho	od= Not given				
Data completene	ss= 1.80/0.93	Theta(max) = 72.649)		
R(reflections)=	0.0562(3300)		wR2(reflections)= 0.1597(3403)		
S = 1.075 Npar= 2		286			

ick on the hype	rlinks for more details of	the tes	st.		
Alert level	B	~~	C10	0.05	
AI332_ALERI_2_B	Large Pnenyl C-C Range	03	-019 .	0.35	Ang.
Alert level	c				
AT089_ALERT_3_C	Poor Data / Parameter Rati	lo (Zmax	x < 18)	6.41	Note
AT241_ALERT_2_C	High 'MainMol' Ueq as Co	ompared	to Neighbors of	C16	Check
AT340_ALERT_3_C	Low Bond Precision on C-C	C Bonds		0.00662	Ang.
AT353_ALERT_3_C	Long N-H (N0.87,N1.01A)	N1	- H24 .	1.02	Ang.
AT911_ALERT_3_C	Missing FCF Refl Between T	Chmin &	STh/L= 0.600	28	Report
AT934_ALERT_3_C	Number of (Iobs-Icalc)/Sig	gma(W) >	· 10 Outliers	1	Check
Alert level					
AT230 ALERT 2 G	Hirshfeld Test Diff for	C16	C18	8.2	S. 11.
AT230 ALERT 2 G	Hirshfeld Test Diff for	C16	C21	8.4	s.u.
AT300_ALERT_4 G	Atom Site Occupancy of C17	7	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of C18	3	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of C19)	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of C20)	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of C21	L	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of C22	2	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of C23	3	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of C24	1	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of H14	1	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of H15	5	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of H16) -	Constrained at	0.5	Check
AT300_ALERT_4_G	Atom Site Occupancy of HI/		Constrained at	0.5	Check
AISUU_ALERI_4_G	Atom Site Occupancy of His	2	Constrained at	0.5	Check
AI300_ALERI_4_G	Atom Site Occupancy of H2	2	Constrained at	0.5	Chock
AT300_ALERT 4_G	Atom Site Occupancy of H21	, 	Constrained at	0.5	Check
AT301 ALERT 3 G	Main Residue Disorder	-	(Resd 1)	1.5%	Note
AT410 ALERT 2 G	Short Intra HH Contact	Н19	H23 .	2.11	Ang.
			X, V, Z =	1 555 Che	ck
AT414_ALERT_2_G	Short Intra D-HH-X	H14	H24	2.08	Ang.
			x, y, z =	1_555 Che	ck
AT414_ALERT_2_G	Short Intra D-HH-X	H20	H24	2.07	Ang.
			x,y,z =	1_555 Che	ck
AT791_ALERT_4_G	Model has Chirality at C4		(Sohnke SpGr)	R	Verify
AT883_ALERT_1_G	No Info/Value for _atom_si	ltes_sol	ution_primary .	Please	Do !
AT912_ALERT_4_G	Missing # of FCF Reflection	ons Abov	ve STh/L= 0.600	14	Note
AT913_ALERT_3_G	Missing # of Very Strong F	Reflecti	ons in FCF	1	Note
AT941_ALERT_3_G	Average HKL Measurement Mu	ltiplic	ity	3.8	Low
AT965_ALERT_2_G	The SHELXL WEIGHT Optimisa	ation ha	is not Converged	Please	Check
AT978_ALERT_2_G	Number C-C Bonds with Posi	Ltive Re	esidual Density.	2	Info
0 ALERT level	A = Most likely a serious p	oroblem	- resolve or exp	plain	
1 ALERT level	B = A potentially serious p	oroblem,	consider caref	lly	
6 ALERT level (C = Check. Ensure it is not	caused	by an omission	or oversigh	t
ALEKT LEVEL (- General Information/Che	CK IČ 1	s not something	unexpected	
ALERT type 1	CIF CONSTRUCTION/SYNTAX er:	ror, in	consistent or mi	ssing data	
> ALEKI TYPE 2	indicator that the structu	те шоде	i may be wrong o	r dericient	
0 ATEDT + 2	Indigator that the storet	no	ity may be lar		

Figure S2. X-ray Structure of **6** (CCDC-2129011) Unit cell parameters: *a* = 9.8436(4), *b* = 18.8060(7), *c* = 18.8060(7), *Pbca*. *R* = 0.0347.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 210917_sakurai_0ma

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 210917_sakurai_0ma

Bond precision:	C-C = 0.0016 A	.6 A Wavelength=1.54178		
Cell:	l: a=9.8436(4) b=18. alpha=90 beta=		c=18.8060(7) gamma=90	
Temperature:	273 к		-	
	Calculated	Reporte	d	
Volume	3481.3(2)	3481.3(2)	
Space group	РЬСа	Pbca		
Hall group	-P 2ac 2ab	-P 2ac	2ab	
Moiety formula	C20 H20 N2 O3	C20 H20	N2 O3	
Sum formula	C20 H20 N2 O3	C20 H20	N2 O3	
Mr	336.38	336.39		
Dx,g cm-3	1.284	1.284		
Z	8	8		
Mu (mm-1)	0.705	0.705		
F000	1424.0	1428.6		
F000′	1428.34			
h,k,lmax	12,23,23	11,23,2	3	
Nref	3445	3421		
Tmin,Tmax	0.881,0.945	0.626,0	.754	
Tmin'	0.400			
Correction metho AbsCorr = MULTI-	od= # Reported T Li -SCAN	imits: Tmin=0.626	Tmax=0.754	
Data completene:	ss= 0.993	Theta(max) = 72.	490	
R(reflections)=	0.0347(3203)		wR2(reflections)=	
1 0 2 2		07	0.0871(3421)	
S = 1.038	Npar= 2	21		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

🎈 Alert level B

CRYSS02_ALERT_3_B The value of _exptl_crystal_size_max is > 1.0 Maximum crystal size given = 1.300

Alert level C

PLAT790_ALERT_4_C	Centre of Gr	avity not Wi	thin Unit	Cell: Reso	1. #	1 Note
C20 H	H20 N2 O3					
PLAT911_ALERT_3_C N	Missing FCF	Refl Between	Thmin & S	STh/L= (0.600	6 Report

Alert level G

PLAT063_ALERT_4_G C	rystal Size Possibly	too Large for	Beam Size	1.30	mm
PLAT068_ALERT_1_G R	eported F000 Differs	from Calcd (or	Missing)	Please	Check
PLAT073_ALERT_1_G H	-atoms ref, but _hyd:	rogen_treatment	Reported as	constr	Check
PLAT199_ALERT_1_G R	eported _cell_measure	ement_temperatu	re (K)	273	Check
PLAT200_ALERT_1_G R	eported _diffrn_aml	bient_temperatu	re (K)	273	Check
PLAT769_ALERT_4_G C	IF Embedded explicit	ly supplied sca	ttering data	Please	Note
PLAT912_ALERT_4_G M	issing # of FCF Refle	ections Above S	Th/L= 0.600	3	Note
PLAT960_ALERT_3_G N	umber of Intensities	with I < -	2*sig(I)	1	Check
PLAT978_ALERT_2_G N	umber C-C Bonds with	Positive Resid	ual Density.	11	Info
PLAT982_ALERT_1_G T	he $C-f' = 0.0192$ l	Deviates from	IT-value =	0.0181	Check
PLAT982_ALERT_1_G T	he $N-f' = 0.0326$ l	Deviates from	IT-value =	0.0311	Check
PLAT982_ALERT_1_G T	he $O-f' = 0.0524$]	Deviates from	IT-value =	0.0492	Check
PLAT983_ALERT_1_G T	he O-f"= 0.0338 1	Deviates from	IT-Value =	0.0322	Check

```
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
13 ALERT level G = General information/check it is not something unexpected
8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

6. References

- (a) T. Hashimoto, Y. Maeda, M. Omote, H. Nakatsu and K. Maruoka, *J. Am. Chem. Soc.*, 2010, 132, 4076; (b) K. Wang, Y. Li, X.Wang and B. Zhu, *ChemistrySelect*, 2019, 4, 3340.
- 2. D. Zhang, J. Liu, Z. Kang, H. Qiu and W. Hu, Org. Biomol. Chem., 2019, 17, 9844.
- 3. T. Soeta, T. Ohgai, T. Sakai, S. Fujinami and Y. Ukaji, Org. Lett., 2014, 16, 4854.
- 4. J. Huang, L. Li, T. Xiao, Z.-W. Mao and L. Zhou, Asian J. Org. Chem., 2016, 5, 1204.

7. NMR Spectra of compounds

2) ¹H and ¹³C NMR spectra of 3-benzazepine derivatives 5a-5g

3) ¹H and ¹³C NMR spectra of **6**

