Persulfate promoted carbamoylation of \(N \)-arylacrylamides and \(N \)-arylccinnamamides with 4-carbamoyl-Hantzsch esters

Qi Jinga,b, Fu-Ci Qiaoa, Jing Sunb*, Jing-Yun Wanga, Ming-Dong Zhoua,b*

a College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China

b School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.

Table of Contents

1. General methods ..S2

2. General procedure for the carbamoylation...S2

3. Characteristic data of compounds..S2

4. Mechanistic investigations...S13

5. References ..S14

6. NMR spectra ...S15
1. General methods

Unless otherwise noted, all of the reagents were purchased from commercial suppliers and used without purification. 1H NMR and 13C NMR spectra were recorded on a Bruker AVANCE III HD 400 instrument. HRMS (ESI) determinations were carried out on a Bruker Daltonics MicrOTOF II spectrometer. Melting points were determined on a Shanghai Shenguang WRS-3 melting point instrument. The 4-carbamoyl-Hantzsch esters and N-arylacrylamides were prepared according to the published procedures.1-6

2. General procedure for the carbamoylation

4-Carbamoyl Hantzsch ester \textit{1} (0.24 mmol), N-arylacrylamides \textit{2} or N-arylcinnamamides \textit{4} (0.2 mmol), (NH$_4$)$_2$S$_2$O$_8$ (0.4 mmol), and CH$_3$CN-H$_2$O (2 mL, v/v, 1:1) were added to a 10 mL Schlenk tube under N$_2$. The mixture was heated at 50 oC for 12 h and then cooled to room temperature. After the reaction was completed, the mixture was concentrated under reduced pressure, the resulting mixture was dissolved with ethyl acetate (5 mL) and washed with H$_2$O (3 x 5 mL). The organic phase was concentrated under vacuum, the residue was purified by column chromatography on silica gel to give the corresponding products \textit{3} or \textit{5}.

3. Characteristic data of compounds

1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one ($3a$)7

Yield (88%), white solid, mp 140.5-141.3 °C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ: 7.25-7.19 (m, 1H), 7.17-7.11 (m, 1H), 7.02-6.96 (m, 1H), 6.84 (d, $J = 8.0$ Hz, 1H), 3.38-3.28 (m, 4H), 3.26 (s, 3H), 2.99 (d, $J = 16.0$ Hz, 1H), 2.94 (d, $J = 16.0$ Hz, 1H), 1.61-1.47 (m, 4H), 1.46-1.35 (m, 2H), 1.34 (s, 3H).

1,3-dimethyl-3-(2-morpholino-2-oxoethyl)indolin-2-one ($3b$)7

Yield (82%), white solid, mp 180.9-181.2 °C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400
MHz, CDCl$_3$ δ: 7.27-7.22 (m, 1H), 7.17-7.13 (m, 1H), 7.04-6.98 (m, 1H), 6.86 (d, J = 8.0 Hz, 1H), 3.66-3.48 (m, 4H), 3.48-3.28 (m, 4H), 3.26 (s, 3H), 3.00 (d, J = 16.0 Hz, 1H), 2.92 (d, J = 16.0 Hz, 1H), 1.36 (s, 3H).

1,3-dimethyl-3-(2-oxo-2-(pyrrolidin-1-yl)ethyl)indolin-2-one (3c)

Yield (80%), viscous liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ: 7.25-7.19 (m, 1H), 7.18-7.15 (m, 1H), 7.01-6.94 (m, 1H), 6.83 (d, J = 8.0 Hz, 1H), 3.37-3.27 (m, 3H), 3.25 (s, 3H), 3.23-3.17 (m, 1H), 2.91 (d, J = 16.0 Hz, 1H), 2.84 (d, J = 16.0 Hz, 1H), 1.89-1.82 (m, 2H), 1.78-1.70 (m, 2H), 1.36 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 180.8, 167.4, 143.8, 134.1, 127.6, 121.9, 121.7, 108.0, 46.5, 45.6, 45.4, 41.9, 26.3, 26.0, 24.5, 24.2; HRMS (ESI) m/z: [M+H]$^+$ calcd for C$_{16}$H$_{21}$N$_2$O$_2$ 273.1598; found 273.1598.

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N,N-diethylacetamide (3d)

Yield (75%), colorless liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ: 7.25-7.18 (m, 1H), 7.17-7.11 (m, 1H), 6.98 (t, J = 8.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 3.30-3.21 (m, 5H), 3.21-3.11 (m, 2H), 2.96 (d, J = 16.0 Hz, 1H), 2.91 (d, J = 16.0 Hz, 1H), 1.36 (s, 3H), 1.14 (t, J = 8.0 Hz, 3H), 0.90 (t, J = 8.0 Hz, 3H).

N-cyclopentyl-2-(1,3-dimethyl-2-oxoindolin-3-yl)acetamide (3e)

Yield (88%), yellow solid, 118. 6-119.2 °C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ: 7.32-7.24 (m, 2H), 7.08 (t, J = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.33 (s, 1H), 4.11-3.98 (m, 1H), 3.24 (s, 3H), 2.75 (d, J = 16.0 Hz, 1H), 2.62 (d, J = 16.0 Hz, 1H), 1.92-1.74 (m, 2H), 1.68-1.46 (m, 4H), 1.43 (s, 3H), 1.33-1.17 (m, 2H).
N-cycloheptyl-2-(1,3-dimethyl-2-oxoindolin-3-yl)acetamide (3f)

Yield (70%), yellow liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ:
7.28-7.22 (m, 2H), 7.05 (t, $J = 8.0$ Hz, 1H), 6.83 (d, $J = 8.0$ Hz, 1H), 6.21 (d, $J = 8.0$ Hz, 1H), 3.83-3.71 (m, 1H), 3.22 (s, 3H), 2.73 (d, $J = 16.0$ Hz, 1H), 2.59 (d, $J = 16.0$ Hz, 1H), 1.78-1.64 (m, 2H), 1.59-1.45 (m, 6H), 1.43-1.38 (m, 4H), 1.33-1.21 (m, 3H).

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-hexylacetamide (3g)

Yield (85%), yellow liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ:
7.30-7.22 (m, 2H), 7.06 (t, $J = 8.0$ Hz, 1H), 6.84 (d, $J = 8.0$ Hz, 1H), 6.32 (s, 1H), 3.23 (s, 3H), 3.13-3.03 (m, 2H), 2.77 (d, $J = 16.0$ Hz, 1H), 2.64 (d, $J = 16.0$ Hz, 1H), 1.41 (s, 3H), 1.38-1.29 (m, 2H), 1.28-1.16 (m, 6H), 0.85 (t, $J = 8.0$ Hz, 3H).

N-benzyl-2-(1,3-dimethyl-2-oxoindolin-3-yl)acetamide (3h)

Yield (70%), yellow liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ:
7.31-7.19 (m, 5H), 7.10-6.99 (m, 3H), 6.81 (d, $J = 8.0$ Hz, 1H), 6.60-6.50 (m, 1H), 4.34-4.14 (m, 2H), 3.09 (s, 3H), 2.84 (d, $J = 16.0$ Hz, 1H), 2.68 (d, $J = 16.0$ Hz, 1H), 1.38 (s, 3H).

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-(1-phenylethyl)acetamide (3i)

Yield (41%), yellow solid, mp 171.7-172.5 °C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ:
7.33-7.23 (m, 5H), 7.21-7.15 (m, 2H), 7.08 (t, $J = 8.0$ Hz, 1H), 6.84 (d, $J = 8.0$ Hz, 1H), 6.54 (d, $J = 8.0$ Hz, 1H), 5.03-4.89 (m, 1H), 3.24 (s, 3H), 2.80 (d, $J = 16.0$ Hz, 1H), 2.65 (d, $J = 16.0$ Hz, 1H), 1.38 (s, 3H), 1.34 (d, $J = 8.0$ Hz, 3H).
2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-(furan-2-ylmethyl)acetamide (3j)

Yield (50%), white solid, mp 100.7-101.1 °C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 7.32-7.28 (m, 1H), 7.28-7.22 (m, 2H), 7.06 (t, \(J = 8.0\) Hz, 1H), 6.83 (d, \(J = 8.0\) Hz, 1H), 6.65 (s, 1H), 6.29-6.23 (m, 1H), 6.12-6.04 (m, 1H), 4.38-4.20 (m, 2H), 3.18 (s, 3H), 2.80 (d, \(J = 16.0\) Hz, 1H), 2.68 (d, \(J = 16.0\) Hz, 1H), 1.41 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 180.5, 168.7, 151.3, 142.8, 141.9, 133.1, 128.1, 122.3, 110.3, 108.3, 107.1, 46.1, 43.6, 36.3, 26.3, 23.5; HRMS (ESI) m/z: \([M+H]^+\) calcld for C\textsubscript{17}H\textsubscript{19}N\textsubscript{2}O\textsubscript{3} 299.1390; found 299.1387.

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-phenethylacetamide (3k)

Yield (83%), colorless liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 7.30-7.24 (m, 4H), 7.21-7.16 (m, 1H), 7.14-7.09 (m, 2H), 7.09-7.03 (m, 1H), 6.84 (d, \(J = 8.0\) Hz, 1H), 6.26 (s, 1H), 3.44-3.27 (m, 2H), 3.21 (s, 3H), 2.76 (d, \(J = 16.0\) Hz, 1H), 2.67 (t, \(J = 8.0\) Hz, 2H), 2.61 (d, \(J = 16.0\) Hz, 1H), 1.38 (s, 3H).

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-phenylacetamide (3l)

Yield (75%), white solid, mp 98.2-99.1°C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 8.87 (s, 1H), 7.48 (d, \(J = 8.0\) Hz, 2H), 7.34-7.27 (m, 4H), 7.15-7.03 (m, 2H), 6.87 (d, \(J = 8.0\) Hz, 1H), 3.26 (s, 3H), 2.91 (d, \(J = 16.0\) Hz, 1H), 2.84 (d, \(J = 16.0\) Hz, 1H), 1.51 (s, 3H).

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-(p-tolyl)acetamide (3m)

Yield (76%), yellow solid, mp 111.8-112.5 °C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 8.87 (s, 1H), 7.48 (d, \(J = 8.0\) Hz, 2H), 7.34-7.27 (m, 4H), 7.15-7.03 (m, 2H), 6.87 (d, \(J = 8.0\) Hz, 1H), 3.26 (s, 3H), 2.91 (d, \(J = 16.0\) Hz, 1H), 2.84 (d, \(J = 16.0\) Hz, 1H), 1.51 (s, 3H).
MHz, CDCl$_3$ δ: 8.73 (s, 1H), 7.37-7.27 (m, 4H), 7.13-7.05 (m, 3H), 6.86 (d, $J = 8.0$ Hz, 1H), 3.25 (s, 3H), 2.90 (d, $J = 16.0$ Hz, 1H), 2.82 (d, $J = 16.0$ Hz, 1H), 2.29 (s, 3H), 1.50 (s, 3H).

2-(1,3-dimethyl-2-oxoindolin-3-yl)-N-(4-(trifluoromethyl)phenyl)acetamide (3n)8

![Chemical structure of 3n](image)

Yield (51%), white solid, mp 72.1-72.9 °C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ: 9.52 (s, 1H), 7.62 (d, $J = 8.0$ Hz, 2H), 7.50 (d, $J = 8.0$ Hz, 2H), 7.34-7.26 (m, 2H), 7.12 (t, $J = 8.0$ Hz, 1H), 6.89 (d, $J = 8.0$ Hz, 1H), 3.27 (s, 3H), 2.95 (d, $J = 16.0$ Hz, 1H), 2.89 (d, $J = 16.0$ Hz, 1H), 1.50 (s, 3H).

3-(cyclopentylmethyl)-1,3-dimethylindolin-2-one (3o)9

![Chemical structure of 3o](image)

Yield (81%), colorless liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ: 7.29-7.22 (m, 1H), 7.18-7.14 (m, 1H), 7.08-7.02 (m, 1H), 6.83 (d, $J = 8.0$ Hz, 1H), 3.21 (s, 3H), 2.11-2.00 (m, 1H), 1.92-1.82 (m, 1H), 1.51-1.18 (m, 10H), 1.06-0.94 (m, 1H), 0.89-0.75 (m, 1H).

5-methoxy-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3p)

![Chemical structure of 3p](image)

Yield (71%), yellow solid, mp 134.5-135.2 °C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ: 6.78-7.76 (m, 1H), 6.74-6.72 (m, 2H), 3.76 (s, 3H), 3.36-3.30 (m, 4H), 3.23 (s, 3H), 2.98 (d, $J = 16.0$ Hz, 1H), 2.90 (d, $J = 16.0$ Hz, 1H), 1.59-1.47 (m, 4H), 1.43-1.33 (m, 2H), 1.32 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 180.5, 166.9, 155.5, 137.4, 135.9, 110.9, 109.9, 108.0, 55.6, 46.5, 46.0, 42.5, 40.5, 26.4, 26.2, 25.3, 25.0, 24.3; HRMS (ESI) calcd for C$_{18}$H$_{25}$N$_2$O$_3$+: [M+H]$^+$ 317.1860, found: 317.1860.
1,3,5-trimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3q)\(^7\)

Yield (81%), white solid, mp 112.3-112.8 °C, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ: 7.02 (d, \(J = 8.0\) Hz, 1H), 6.95 (s, 1H), 6.72 (d, \(J = 8.0\) Hz, 1H), 3.42-3.26 (m, 4H), 3.23 (s, 3H), 2.97 (d, \(J = 16.0\) Hz, 1H), 2.91 (d, \(J = 16.0\) Hz, 1H), 2.30 (s, 3H), 1.60-1.46 (m, 4H), 1.45-1.34 (m, 2H), 1.33 (s, 3H).

5-fluoro-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3r)\(^7\)

Yield (70%), yellow solid, mp 115.4-116.2 °C, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ: 6.95-6.87 (m, 2H), 6.78-6.72 (m, 1H), 3.40-3.28 (m, 4H), 3.25 (s, 3H), 3.02 (d, \(J = 16.0\) Hz, 1H), 2.92 (d, \(J = 16.0\) Hz, 1H), 1.62-1.48 (m, 4H), 1.48-1.34 (m, 2H), 1.33 (s, 3H); \(^19\)F NMR (376 MHz, CDCl\(_3\)) δ: -121.7.

5-chloro-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3s)\(^7\)

Yield (86%), white solid, mp 131.5-132.2 °C, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ: 7.22-7.16 (m, 1H), 7.08 (d, \(J = 2.0\) Hz, 1H), 6.76 (d, \(J = 8.4\) Hz, 1H), 3.41-3.28 (m, 4H), 3.24 (s, 3H), 3.03 (d, \(J = 16.0\) Hz, 1H), 2.92 (d, \(J = 16.0\) Hz, 1H), 1.64-1.48 (m, 4H), 1.46-1.34 (m, 2H), 1.32 (s, 3H).

1,3,7-trimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3u)\(^7\)
Yield (75%), colorless liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ:
6.96-6.91 (m, 2H), 6.89-6.83 (m, 1H), 3.54 (s, 3H), 3.40-3.28 (m, 4H), 3.00 (d, $J = 16.0$ Hz, 1H),
2.93 (d, $J = 16.0$ Hz, 1H), 2.58 (s, 3H), 1.60-1.47 (m, 4H), 1.45-1.32 (m, 2H), 1.30 (s, 3H).
1,3,4-trimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one and 1,3,6-trimethyl-3-(2-oxo-2-
(piperidin-1-yl)ethyl)indolin-2-one ($3v + 3v'$) 7

Yield (85%), colorless liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ:
7.13 (t, $J = 8.0$ Hz, 0.66H), 7.02 (d, $J = 7.6$ Hz, 0.34H), 6.80 (d, $J = 7.6$ Hz, 0.34H), 6.75 (d, $J =
7.6$ Hz, 0.67H), 6.72-6.65 (m, 1H), 3.42-3.27 (m, 4H), 3.24 (s, 3H), 3.20 (d, $J = 16.8$ Hz, 0.65H),
3.06 (d, $J = 16.8$ Hz, 0.65H), 2.98 (d, $J = 16.4$ Hz, 0.35H), 2.92 (d, $J = 16.4$ Hz, 0.35H), 2.35 (s,
1H), 2.33 (s, 2H), 1.61-1.46 (m, 4H), 1.43-1.30 (m, 5H).
7-chloro-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one ($3w$) 7

Yield (51%), viscous liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ:
7.14-7.08 (m, 1H), 6.98-6.94 (m, 1H), 6.87 (t, $J = 8.0$ Hz, 1H), 3.62 (s, 3H), 3.39-3.27 (m, 4H),
3.04 (d, $J = 16.4$ Hz, 1H), 2.93 (d, $J = 16.4$ Hz, 1H), 1.59-1.47 (m, 4H), 1.45-1.31 (m, 2H), 1.29 (s,
3H).
4-chloro-1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one and 6-chloro-1,3-dimethyl-
3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one ($3x+3x'$) 7

Yield (70%), colorless liquid, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ:
7.15 (t, $J = 7.6$ Hz, 0.81H), 7.03 (d, $J = 8.0$ Hz, 0.19H), 6.96-6.02 (m, 0.19H), 6.91-6.85 (m,
0.80H), 6.82 (d, $J = 2.0$ Hz, 0.19H), 6.76-6.71 (m, 0.81H), 3.62 (d, $J = 16.4$ Hz, 0.83H), 3.48-3.29
(m, 3H), 3.27-3.18 (m, 4H), 3.00 (d, \(J = 16.4 \) Hz, 0.22H), 2.98 (d, \(J = 16.4 \) Hz, 0.83H), 2.93 (d, \(J = 16.4 \) Hz, 0.22H), 1.61-1.48 (m, 4H), 1.46-1.28 (m, 5H).

1,3-dimethyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)-1H-pyrrolo[2,3-b]pyridin-2(3H)-one (3y)

Yield (75%), colorless liquid, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \):
8.15-8.11 (m, 1H), 7.42-7.38 (m, 1H), 6.89-6.85 (m, 1H), 3.37-3.30 (m, 7H), 3.00 (d, \(J = 16.4 \) Hz, 1H), 2.94 (d, \(J = 16.4 \) Hz, 1H), 1.60-1.47 (m, 4H), 1.46-1.37 (m, 2H), 1.36 (s, 3H).

1-methyl-1-(2-oxo-2-(piperidin-1-yl)ethyl)-5,6-dihydro-1H-pyrrolo[3,2-1-ij]quinolin-2(4H)-one (3z)

Yield (88%), colorless liquid, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \):
7.05-6.94 (m, 2H), 6.91-6.84 (m, 1H), 3.80-3.71 (m, 2H), 3.40-3.30 (m, 4H), 2.94 (s, 2H), 2.87-2.69 (m, 2H), 2.12-1.92 (m, 2H), 1.60-1.50 (m, 4H), 1.49-1.39 (m, 2H), 1.37 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \): 179.7, 167.2, 139.5, 132.8, 126.5, 121.4, 119.8, 119.7, 47.0, 46.6, 42.5, 40.2, 38.8, 26.3, 25.4, 24.6, 24.3, 21.2; HRMS (ESI) m/z: [M+H]\(^+\) calcd for C\(_{19}\)H\(_{25}\)N\(_2\)O\(_2\) 313.1911; found 313.1910.

1-ethyl-3-methyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3ab)

Yield (82%), colorless liquid, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \):
7.24-7.12 (m, 2H), 6.97 (t, \(J = 7.6 \) Hz, 1H), 6.85 (d, \(J = 7.6 \) Hz, 1H), 3.90-3.70 (m, 2H), 3.42-3.23 (m, 4H), 2.95 (s, 2H), 1.59-1.45 (m, 4H), 1.45-1.35 (m, 2H), 1.34 (s, 3H), 1.28 (t, \(J = 7.2 \) Hz, 3H).

3-methyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)-1-phenylindolin-2-one (3ac)
Yield (79%), white solid, mp 88.9-89.5 °C, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.57-7.45 (m, 4H), 7.42-7.33 (m, 1H), 7.22-7.11 (m, 2H), 7.06-6.98 (m, 1H), 6.81 (d, \(J = 7.6\) Hz, 1H), 3.44-3.31 (m, 4H), 3.12 (d, \(J = 16.4\) Hz, 1H), 3.05 (d, \(J = 16.0\) Hz, 1H), 1.62-1.50 (m, 4H), 1.48-1.36 (m, 5H).

1-benzyl-3-methyl-3-(2-oxo-2-(piperidin-1-yl)ethyl)indolin-2-one (3ad)

Yield (72%), white solid, mp 133.1-133.8 °C, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.39-7.34 (m, 2H), 7.33-7.28 (m, 2H), 7.25-7.20 (m, 1H), 7.19-7.16 (m, 1H), 7.13-7.08 (m, 1H), 7.00-6.94 (m, 1H), 6.69 (d, \(J = 8.0\) Hz, 1H), 5.12 (d, \(J = 16.0\) Hz, 1H), 4.85 (d, \(J = 16.0\) Hz, 1H), 3.41-3.34 (m, 4H), 3.09 (d, \(J = 16.0\) Hz, 1H), 3.02 (d, \(J = 16.0\) Hz, 1H), 1.62-1.53 (m, 2H), 1.51-1.44 (m, 4H), 1.43 (s, 3H).

1-methyl-4-phenyl-3-(piperidine-1-carbonyl)-3,4-dihydroquinolin-2(1\(H\))-one (5a)

Yield (56%), white solid, mp 196.9-197.3 °C, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.36-7.29 (m, 2H), 7.29-7.20 (m, 4H), 7.03 (d, \(J = 8.0\) Hz, 1H), 6.95 (t, \(J = 7.6\) Hz, 1H) 6.79 (d, \(J = 7.6\) Hz, 1H), 4.74 (d, \(J = 10.8\) Hz, 1H), 4.20 (d, \(J = 10.8\) Hz, 1H), 3.69-3.57 (m, 1H), 3.48-3.31 (m, 5H), 3.30-3.21 (m, 1H), 1.64-1.44 (m, 4H), 1.22-1.08 (m, 2H); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 166.7, 166.3, 140.2, 139.4, 128.7, 128.6, 128.2, 127.7, 127.2, 123.1, 114.5, 50.7, 47.3, 45.1, 43.2, 29.9, 26.3, 25.4, 24.4; HRMS (ESI) m/z: [M+H]\(^+\) calcd for C\(_{22}\)H\(_{25}\)N\(_2\)O\(_2\) 349.1911; found 313.1911.
1-methyl-3-(piperidine-1-carbonyl)-4-(p-tolyl)-3,4-dihydroquinolin-2(1H)-one (5b)

Yield (48%), yellow solid, mp 163.8-164.9 °C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ: 7.28-7.24 (m, 1H), 7.16-7.08 (m, 4H), 7.03 (d, $J = 8.0$ Hz, 1H), 6.95 (t, $J = 7.6$ Hz, 1H) 6.81 (d, $J = 7.6$ Hz, 1H), 4.69 (d, $J = 8.0$ Hz, 1H), 4.18 (d, $J = 8.0$ Hz, 1H), 3.69-3.57 (m, 1H), 3.48-3.38 (m, 5H), 3.35-3.27 (m, 1H), 2.33 (s, 3H), 1.60-1.52 (m, 4H), 1.28-1.21 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 166.8, 166.4, 139.4, 137.1, 136.8, 129.4, 128.5, 128.4, 128.3, 127.6, 123.1, 114.4, 50.7, 47.3, 44.6, 43.2, 29.9, 26.2, 25.4, 24.4, 21.0; HRMS (ESI) m/z: [M+H]$^+$ calcd for C$_{23}$H$_{27}$N$_2$O$_2$ 363.2067; found 363.2069.

4-(4-bromophenyl)-1-methyl-3-(piperidine-1-carbonyl)-3,4-dihydroquinolin-2(1H)-one (5c)

Yield (48%), yellow solid, mp 185.6-186.4 °C, PE/EA = 3/1 to EA as the eluent; 1H NMR (400 MHz, CDCl$_3$) δ: 7.48-7.46 (m, 2H), 7.30-7.26 (m, 1H), 7.12 (d, $J = 8.0$ Hz, 2H), 7.04 (d, $J = 8.0$ Hz, 1H), 6.96 (t, $J = 8.0$ Hz, 1H) 6.73 (d, $J = 8.0$ Hz, 1H), 4.74 (d, $J = 10.2$ Hz, 1H), 4.15 (d, $J = 10.2$ Hz, 1H), 3.62-3.54 (m, 1H), 3.48-3.31 (m, 5H), 3.30-3.21 (m, 1H), 1.64-1.50 (m, 4H), 1.26-1.20 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 166.4, 166.0, 139.4, 139.3, 131.8, 130.5, 128.0, 127.9, 127.8, 123.2, 121.1, 114.6, 50.5, 47.3, 44.4, 43.3, 30.0, 26.3, 25.5, 24.4; HRMS (ESI) m/z: [M+H]$^+$ calcd for C$_{22}$H$_{24}$BrN$_2$O$_2$ 427.1016; found 427.1011.
6-fluoro-1-methyl-4-phenyl-3-(piperidine-1-carbonyl)-3,4-dihydroquinolin-2(1H)-one (5d)

Yield (48%), yellow solid, mp 154.2-155.1 °C, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.38-7.32 (m, 2H), 7.30-7.27 (m, 1H), 7.22-7.18 (m, 2H), 6.97-6.95 (m, 2H) 6.58-6.50 (m, 1H), 4.72 (d, \(J = 8.0\) Hz, 1H), 4.19 (d, \(J = 8.0\) Hz, 1H), 3.69-3.61 (m, 1H), 3.48-3.40 (m, 5H), 3.34-3.26 (m, 1H), 1.56-1.50 (m, 4H), 1.22-1.14 (m, 2H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 166.3, 166.1, 158.8 (d, \(J = 242.0\) Hz), 139.6, 135.7 (d, \(J = 2.0\) Hz), 130.6 (d, \(J = 7.0\) Hz), 128.9, 128.6, 127.5, 115.7 (d, \(J = 8.0\) Hz), 115.5 (d, \(J = 20.0\) Hz), 114.0 (d, \(J = 22.0\) Hz), 50.5, 47.4, 45.1, 43.3, 30.2, 26.2, 25.5, 24.4; HRMS (ESI) m/z: [M+H]\(^+\) calcd for C\(_{22}\)H\(_{24}\)FN\(_2\)O\(_2\) 367.1816; found 367.1819.

6-chloro-1-methyl-4-phenyl-3-(piperidine-1-carbonyl)-3,4-dihydroquinolin-2(1H)-one (5e)

Yield (26%), white solid, mp 162.3-162.9 °C, PE/EA = 3/1 to EA as the eluent; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.38-7.32 (m, 2H), 7.30-7.28 (m, 1H), 7.25-7.17 (m, 3H), 6.96 (d, \(J = 8.0\) Hz, 1H) 6.82-6.78 (m, 1H), 4.69 (d, \(J = 8.0\) Hz, 1H), 4.17 (d, \(J = 8.0\) Hz, 1H), 3.69-3.57 (m, 1H), 3.48-3.41 (m, 5H), 3.34-3.26 (m, 1H), 1.55-1.47 (m, 4H), 1.22-1.12 (m, 2H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 166.3, 166.1, 139.6, 138.1, 130.0, 129.0, 128.6, 128.5, 128.3, 127.7, 127.6, 115.8, 50.6, 47.4, 45.1, 43.4, 30.0, 26.2, 25.5, 24.4; HRMS (ESI) m/z: [M+H]\(^+\) calcd for C\(_{22}\)H\(_{24}\)ClN\(_2\)O\(_2\) 383.1521; found 383.1517.
4. Mechanistic Investigations

\[
\begin{align*}
\text{DHP} & \quad \text{standard conditions} \quad \text{TEMPO (2 equiv)} \\
1a + 2a & \quad \rightarrow 3a, 0 \\
\end{align*}
\]

\text{1a (0.24 mmol), 2a (0.2 mmol), (NH}_4\text{)}_2\text{S}_2\text{O}_8 (0.4 mmol), TEMPO (0.4 mmol), and degassed CH}_3\text{CN-H}_2\text{O (2 mL, 1:1, v/v) were added to a 10 mL Schlenk tube under N}_2. The mixture was heated at 50 °C for 12 h and then cooled to room temperature. After the reaction was completed, the reaction mixture was monitored by TLC, and no desired product was observed. Then the mixture was concentrated under reduced pressure, the resulting mixture was dissolved with ethyl acetate (5 mL) and washed with H}_2\text{O (3 x 5 mL). The organic phase was concentrated under vacuum, the residue was measured by HRMS. The HRMS below indicated the formation of carbamoyl-TEMPO adduct.

\[
\begin{align*}
\text{1a (0.24 mmol), 2a (0.2 mmol), (NH}_4\text{)}_2\text{S}_2\text{O}_8 (0.4 mmol), 1,1\text{-diphenylethylene (0.4 mmol), and degassed CH}_3\text{CN-H}_2\text{O (2 mL, 1:1, v/v) were added to a 10 mL Schlenk tube under N}_2. The mixture was heated at 50 °C for 12 h and then cooled to room temperature. After the reaction was completed, the mixture was concentrated under reduced pressure, the resulting mixture was dissolved with ethyl acetate (5 mL) and washed with H}_2\text{O (3 x 5 mL). The organic phase was concentrated under vacuum, the yield was determined by } ^1\text{H NMR with CH}_2\text{Br}_2 \text{ as internal standard.}
\end{align*}
\]
5. References

6. NMR spectra

1H NMR (400 MHz, CDCl$_3$) spectra of 3a

1H NMR (400 MHz, CDCl$_3$) spectra of 3b
1H NMR (400 MHz, CDCl$_3$) spectra of 3c

13C NMR (100 MHz, CDCl$_3$) spectra of 3c
1H NMR (400 MHz, CDCl$_3$) spectra of 3d

1H NMR (400 MHz, CDCl$_3$) spectra of 3e
1H NMR (400 MHz, CDCl$_3$) spectra of 3f

1H NMR (400 MHz, CDCl$_3$) spectra of 3g
1H NMR (400 MHz, CDCl$_3$) spectra of 3h

1H NMR (400 MHz, CDCl$_3$) spectra of 3i

1H NMR (400 MHz, CDCl$_3$) spectra of 3l
1H NMR (400 MHz, CDCl$_3$) spectra of 3j

13C NMR (100 MHz, CDCl$_3$) spectra of 3j
1H NMR (400 MHz, CDCl$_3$) spectra of 3k

1H NMR (400 MHz, CDCl$_3$) spectra of 3l
1H NMR (400 MHz, CDCl$_3$) spectra of 3m

1H NMR (400 MHz, CDCl$_3$) spectra of 3n

\[
\begin{align*}
\text{H} & \quad \text{N} \\
\text{O} & \\
\text{N} & \quad \text{O} \\
\text{C} & \\
\text{F} & \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{N} \\
\text{O} & \\
\text{N} & \quad \text{O} \\
\text{C} & \\
\text{F} & \\
\end{align*}
\]
1H NMR (400 MHz, CDCl$_3$) spectra of 3o

![NMR spectrum of 3o]

1H NMR (400 MHz, CDCl$_3$) spectra of 3p

![NMR spectrum of 3p]
13C NMR (100 MHz, CDCl$_3$) spectra of 3p

1H NMR (400 MHz, CDCl$_3$) spectra of 3q
1H NMR (400 MHz, CDCl$_3$) spectra of 3r

19F NMR (376 MHz, CDCl$_3$) spectra of 3r
1H NMR (400 MHz, CDCl$_3$) spectra of 3s

1H NMR (400 MHz, CDCl$_3$) spectra of 3u
1H NMR (400 MHz, CDCl$_3$) spectra of $3v+3v'$

1H NMR (400 MHz, CDCl$_3$) spectra of $3w$
1H NMR (400 MHz, CDCl$_3$) spectra of 3x + 3x'

\[f_1 (ppm) \]

\[5.24 \quad 4.12 \quad 0.22 \quad 1.02 \quad 3.88 \quad 3.34 \quad 0.83 \quad 0.81 \quad 0.19 \quad 0.80 \quad 0.19 \quad 0.19 \quad 0.81 \]

\[1.309 \quad 1.346 \quad 1.367 \quad 1.380 \quad 1.418 \quad 1.511 \quad 1.553 \quad 1.589 \quad 2.907 \quad 2.949 \quad 2.964 \quad 2.983 \quad 3.005 \quad 3.024 \quad 3.200 \quad 3.209 \quad 3.219 \quad 3.233 \quad 3.250 \quad 3.327 \quad 3.340 \quad 3.354 \quad 3.364 \quad 3.371 \quad 3.380 \quad 3.397 \quad 3.405 \quad 3.415 \quad 3.422 \quad 3.443 \quad 3.456 \quad 3.466 \quad 3.596 \quad 3.637 \quad 6.730 \quad 6.732 \quad 6.750 \quad 6.751 \quad 6.823 \quad 6.828 \quad 6.872 \quad 6.874 \quad 6.893 \quad 6.895 \quad 6.933 \quad 6.937 \quad 6.952 \quad 6.957 \quad 7.018 \quad 7.038 \quad 7.130 \quad 7.149 \quad 7.170 \quad 7.260 \]

1H NMR (400 MHz, CDCl$_3$) spectra of 3y

\[f_1 (ppm) \]

\[3.16 \quad 2.05 \quad 4.14 \quad 1.04 \quad 1.02 \quad 6.93 \quad 1.00 \quad 0.99 \quad 0.97 \]

\[1.361 \quad 1.389 \quad 1.400 \quad 1.411 \quad 1.426 \quad 1.498 \quad 1.511 \quad 1.528 \quad 1.542 \quad 1.554 \quad 1.566 \quad 1.580 \quad 2.916 \quad 2.957 \quad 2.978 \quad 3.019 \quad 3.316 \quad 3.332 \quad 3.342 \quad 3.357 \quad 6.859 \quad 6.873 \quad 6.877 \quad 6.891 \quad 7.260 \quad 7.397 \quad 7.401 \quad 7.415 \quad 7.419 \quad 8.123 \quad 8.127 \quad 8.136 \quad 8.140 \]
\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) spectra of \(3z\)

\[^{13}\)C NMR (100 MHz, CDCl\(_3\)) spectra of \(3z\)
1H NMR (400 MHz, CDCl$_3$) spectra of 3ab

1H NMR (400 MHz, CDCl$_3$) spectra of 3ac
1H NMR (400 MHz, CDCl$_3$) spectra of 3ad

1H NMR (400 MHz, CDCl$_3$) spectra of 5a
13C NMR (100 MHz, CDCl$_3$) spectra of 5a

1H NMR (400 MHz, CDCl$_3$) spectra of 5b
13C NMR (100 MHz, CDCl$_3$) spectra of 5b

1H NMR (400 MHz, CDCl$_3$) spectra of 5c
13C NMR (100 MHz, CDCl$_3$) spectra of 5c

1H NMR (400 MHz, CDCl$_3$) spectra of 5d
13C NMR (100 MHz, CDCl$_3$) spectra of 5d

1H NMR (400 MHz, CDCl$_3$) spectra of 5e

Cl

F

N

O

O

N

O

N

Cl

F
\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) spectra of 5e

![Chemical structure](image)

\[\begin{array}{c}
24.43 \\
25.50 \\
26.29 \\
30.09 \\
43.41 \\
45.10 \\
47.47 \\
50.65 \\
76.68 \\
77.00 \\
77.20 \\
77.32 \\
115.81 \\
127.62 \\
127.70 \\
128.36 \\
128.54 \\
128.62 \\
129.05 \\
130.05 \\
138.15 \\
139.60 \\
166.10 \\
166.36 \\
\end{array}\]