Supporting Information

Solid-Phase Synthesis of Oligodeoxynucleotides

Using Nucleobase N-Unprotected the

Oxazaphospholidine Derivatives a Bearing Long Alkyl Chain

Kiyoshi Kakuta, Ryouta Kasahara, Kazuki Sato, Takeshi Wada*

Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of

Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

E-mail: twada@rs.tus.ac.jp

Table of Contents

1.	RP-HPLC profiles of dinucleotide phosphates (Table 1)	S 3
2.	RP-HPLC profiles of oligonucleotide phosphates (Table 1)	S5
3.	Investigation of condensation efficiency after boronation (SI)	S6
4.	RP-HPLC profiles of dinucleotide or trinucleotide boranophosphates (Table 2)	S8
5.	RP-HPLC profiles of tetranucleotide bearing boranophosphate linkages (Table 3)	S10
6.	RP-HPLC profiles of dodecamer bearing boranophosphate linkages (Scheme 4)	S11
7.	¹ H, ¹³ C, ³¹ P NMR, COSY, HMQC, HMBC spectra	S12

1. RP-HPLC profiles of dinucleotide phosphates (Table 1)entry 1 (crude 10c ($dC_{PO}T$), R = Me)entry 2 (crude 10a ($dA_{PO}T$), R = Me)

entry 9 (crude 10l (${}^{L}T_{PO}T$), R = Thg)

Figure S1 RP-HPLC profiles of the crude **10a-1** with detection at 260 nm. RP-HPLC was performed with a linear gradient of 0-20% CH₃CN for 60 min in 0.1 M TEAA buffer (pH 7.0) at 30 °C with a flow rate of 0.5 mL/min using a C18 column.

2. RP-HPLC profile of oligonucleotide phosphates (Table 1)

entry10 d(CpoApoGpoTpoCpoApoGpoTpoCpoApoGpoT)

Figure S2 RP-HPLC profiles of the crude, the purified and the purchased **11** with detection at 260 nm. RP-UPLC was performed with a linear gradient of 5–25% MeOH for 10 min in a 0.4 M 1,1,1,3,3,3hexafluoro-2-propanol, and 16 mM triethylamine at 50 °C with a flow rate of 0.5 mL/min using a C18 column. The product was eluted at 6.7 min.

3. Investigation of condensation efficiency after boronation (SI)

We investigated the condensation efficiency after a boronation because there is a possibility that the boronation reagent and/or its residue(s) inhibit the subsequent condensation reaction.

The HCP-loaded 5'-O-DMTr-Th (29.6 μ mol/g, 0.50 μ mol), via a succinyl linker, was boronated using the boronation conditions of following Table S1. Afterward, the HCP was washed with dry THF (3 × 1 mL) and dry EtOH (3 × 1 mL) dry CH₂Cl₂ (3 × 1 mL) and treated in a reaction vessel with 3% DCA in dry CH₂Cl₂ (5 × 12 s, 1 mL each) and washed with dry CH₂Cl₂ (3 × 1 mL) and CH₃CN (3 × 1 mL). Thereafter, it was dried in vacuo for 5 min. Then, the oxazaphospholidine monomer (**6c**, 30 μ mol), which was dried in vacuo overnight, was added to the reaction vessel and dried in vacuo for 5 min. A 1.0 M solution of PhIMT (44.1 mg, 150 μ mol) in dry CH₃CN-*i*PrCN (7:3, v/v, 150 μ L), which was dried over MS 3Å overnight, was added under Ar atmosphere to the reaction vessel. After 10 min, the HCP was washed with dry CH₃CN (3 × 1 mL) and dry CH₂Cl₂ (3 × 1 mL) and dried in vacuo for 5 min. The resultant phosphite was oxidated upon treatment with a 1.0 M solution of TBHP (500 μ L, 500 μ mol) in dry toluene and the reaction vessel was shaken for 5 min. Then, the HCP was washed with dry CH₂Cl₂ (3 × 1 mL) and dried in vacuo for 5 min. The resultant phosphite was oxidated upon treatment with a 1.0 M solution of TBHP (500 μ L, 500 μ mol) in dry toluene and the reaction was carried out using 3% DCA in dry CH₂Cl₂ (5 × 12 s, 1 mL each). Then, the HCP was washed with dry CH₂Cl₂ (3 × 1 mL) and dry CH₃CN (3 × 1 mL). The HCP was then treated with a 25% NH₃ aqueous solution–EtOH (3:1, v/v, 5 mL) at rt for 3 h, filtered, and washed with CH₃CN. The filtrate and the washings were combined, concentrated under reduced pressure, and the obtained residue was analyzed by RP-HPLC, which was performed with a linear gradient of 0–20% CH₃CN for 60 min in a 0.1 M TEAA buffer (pH 7.0).

entry	boronation condition	T:10c ^a
1	$1 \mathrm{~M~BH_3} \cdot \mathrm{SMe_2}$ /toluene for $15 \mathrm{~min}$	14.4:85.6
2	$1 \text{ M BH}_3 \cdot \text{THF/THF}$ for 15 min	6.7:93.3
3	$0.05 \mathrm{~M~BH_3} \cdot \mathrm{THF/THF}$ for 15 min	2.5:97.5
4	$0.05 \text{ M BH}_3 \cdot \text{THF/THF}$ for 2 min	1.6:98.4

Table S1. Solid-Phase Synthesis of dC_{PO}T Dimers after botonated treatment in advance.

^a Determined by RP-HPLC.

Figure S3 RP-HPLC profiles of crude **10c** with detection at 260 nm. RP-HPLC was performed with a linear gradient of 0–20% CH₃CN for 60 min in 0.1 M TEAA buffer (pH 7.0) at 30 °C with a flow rate of 0.5 mL/min using a C18 column.

4. RP-HPLC profiles of dinucleotide or trinucleotide boranophosphates (Table2) entry 1 (crude 14c (dC_{PB}T)) entry 2 (crude 15 (d(C_{PB}C_{PB}T)))

entry 7 (crude 14t $(T_{PB}T)$)

Figure S4 RP-HPLC profiles of crude **14a-t and 15** with detection at 260 nm. RP-HPLC was performed with a linear gradient of 0-20% CH₃CN for 60 in 0.1 M TEAA buffer (pH 7.0) at 30 °C min with a flow rate of 0.5 mL/min using a C18 column.

60 min 60 min purified 16 purified 17 60 min . 10 60 min

5. RP-HPLC profiles of tetranucleotide bearing boranophosphate linkages (Table3)

entry 2 (crude 17 ($d(C_{PB}A_{PO}G_{PB}T)$))

entry 1(crude **16** ($d(C_{PB}A_{PB}G_{PB}T)$))

Figure S5 RP-HPLC profiles of the crude **16, 17 and** purified **16, 17** with detection at 260 nm. RP-HPLC was performed with a linear gradient of 0–60% CH₃CN for 60 min in 0.1 M TEAA buffer (pH 7.0) at 30 °C with a flow rate of 0.5 mL/min using a C18 column.

6. RP-HPLC profiles of dodecamer bearing boranophosphate linkages (Scheme 4) d(C_{PB}A_{PO}G_{PB}C_{PO}T_{PB}A_{PO}G_{PB}T_{PO}C_{PB}A_{PO}G_{PB}T)

20 min

10

0

Figure S6 RP-HPLC profiles of crude **18** and purified **18** with detection at 260 nm. RP-HPLC was performed with a linear gradient of 5–40% MeOH for 20 min in 0.4 M 1,1,1,3,3,3-hexafluoro-2-propanol and 8 mM triethylamine at 60 °C with a flow rate of 0.5 mL/min using a C18 column.

7. ¹H, ¹³C, ³¹P, COSY, HMQC, HMBC NMR spectra *N*-(3,7-Dimethyloctyl)-*N*-(2-hydroxy-2-phenylethyl)-2-nitrobenzenesulfonamide (2) ¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101 MHz, CDCl₃)

COSY (CDCl₃)

HMQC (CDCl₃)

HMBC (CDCl₃)

2-((3,7-Dimethyloctyl)amino)-1-phenylethan-1-ol (3) ¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101 MHz, CDCl₃)

COSY (CDCl₃)

HMQC (CDCl₃)

HMBC (CDCl₃)

dCy oxazaphospholidine *N-i*Pr monomer (6i) ¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101 MHz, CDCl₃)

³¹P {¹H} NMR (162 MHz, CDCl₃)

COSY (CDCl₃)

HMQC (CDCl₃)

HMBC (CDCl₃)

dAd oxazaphospholidine *N*-Thg monomer (6a) ¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101 MHz, CDCl₃)

³¹P {¹H} NMR (162 MHz, CDCl₃)

COSY (CDCl₃)

HMQC (CDCl₃)

HMBC (CDCl₃)

dCy oxazaphospholidine *N*-Thg monomer (6c) ¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101 MHz, CDCl₃)

³¹P {¹H} NMR (162 MHz, CDCl₃)

COSY (CDCl₃)

HMQC (CDCl₃)

dGu oxazaphospholidine *N*-Thg monomer (6g) ¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101 MHz, CDCl₃)

³¹P {¹H} NMR (162 MHz, CDCl₃)

HMQC (CDCl₃)

HMBC (CDCl₃)

Th oxazaphospholidine *N*-Thg monomer (6t) ¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101 MHz, CDCl₃)

³¹P {¹H} NMR (162 MHz, CDCl₃)

COSY (CDCl₃)

HMQC (CDCl₃)

LNATh oxazaphospholidine *N*-Thg monomer (6l) ¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101 MHz, CDCl₃)

COSY (CDCl₃)

³¹P {¹H} NMR (162 MHz, CDCl₃)

COSY (CDCl₃)

HMQC (CDCl₃)

HMBC (CDCl₃)

PO-DNA dodecamer d(C_{PO}A_{PO}G_{PO}T_{PO}C_{PO}A_{PO}G_{PO}T_{PO}C_{PO}A_{PO})T 11 ¹H NMR (500 MHz, D₂O)

COSY spectra of PO-DNA dodecamer d(CPOAPOGPOTPOCPOAPOGPOTPOCPOAPO)T 11 (500 MHz, D₂O).

PB-DNA tetramer d(C_{PB}A_{PB}G_{PB}T) 16 ¹H NMR (600 MHz, D₂O)

PB/POchimeric tetramer d(C_{PB}A_{PO}G_{PB}T) 17 ¹H NMR (600 MHz, D₂O)

