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1. EXPERIMENTAL SECTION
1.1 Materials and Reagents

Reference compounds, substrates and sugar donors used in this study were
purchased from YuanYe Biotechnology Co., Ltd. (Shanghai, China). Methanol and
acetonitrile (Thermo Fisher Scientific, USA)) were of HPLC grade. The
determination of conversion rates were analyzed by HPLC on an Waters Alliance
€2695 instrument (Waters, USA) and Agilent HPLC 1260 instrument (Agilent).
Samples were separated on a Zorbax SB-C18 column (4.6x250 mm, 5 mm, Agilent,
USA). The column temperature was 30°C and the enzymatic products were eluted

with conditions given in Table S1. To calculate the conversion rate of the reaction, the

peak area of both substrates and products were integrated by Chromeleon® under a

certain wavelength. The conversion rates were calculated from peak areas of
glycosylated products and substrates (The peak area of glycosylated product divided
by the total peak area of the glycosylated product and the substrate). LC/MS analysis
was performed on a Q-Exactive quadrupole Orbitrap mass spectrometer (Thermo
Fisher Scientific, USA). Sophora japonica used in this study was collected from
Haidian District of Beijing, China in September 2022. All plant materials were frozen

with liquid nitrogen immediately after collection and were stored at -80°C.

1.2 Transcriptome sequencing and candidate genes acquiring
The transcriptome data used in this study was acquired by Novogene Co., Ltd.
(Beijing, China). The unigenes were compared with reported GTs using the local

Basic Local Alignment Search Tool (Blast) with an e-value of 1e2!.

1.3 RNA isolation and cloning of candidate genes in S. japonica

The total RNA of S. japonica was acquired by using the TranZol kit (TransGen
Biotech, China) and was reverse-transcribed to ¢cDNA with the SMARTer RACE
cDNA Kit (Clontech, USA). Using the cDNA library as a template, the full-length

cDNA fragments of candidate genes were cloned by PCR using TransStart KD Plus



DNA polymerase (TransGen Biotech, China) with the gene-specific primer pairs
(Table S2) and purified by agarose gel electrophoresis (120 V, 20 min). In the PCR
program, the thermal cycling parameters were initially denaturized at 94 °C for 4 min,
followed by 40 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 1.5 min, and a

final extension at 72°C for 10 min.

1.4 Heterologous expression of candidate genes and protein purification

Sj3GT and Sj6""RhaT were cloned into expression vector pET-28a(+) (Invitrogen,
USA) at BamH I site using homologous recombination method. After identification of
the sequences, the recombinant plasmid pET-28a(+)-candidate genes were
transformed into E. coli BL21(DE3) (TransGen Biotech, China) for heterologous
expression. E. coli cells were grown in 500 mL Luria-Bertani (LB) medium
containing 100 mg/mL Kanamycin at 37°C with shaking (180 rpm). After ODgq
reached 0.4-0.6, 0.1 mM isopropyl-f-p-thiogalactopyranoside (IPTG) was added to
induce protein expression. After 18-24 h of incubation at 16°C, the cell pellets were
collected by centrifugation (7,500 rpm for 3 min at 4°C), and resuspended in 20 mL
lysis buffer (50 mM NaH,PO,, 300 mM NaCl, 30 mM imidazole, pH 8.0), and
disrupted by sonication on ice. After centrifugation at 7,500 rpm for 45 min at 4°C,
the cell debris was removed and supernatant was obtained. The supernatant was then
mixed with 1 mL Ni-NTA resin (TransGen Biotech, China) and incubated for 0.5 h in
an ice bath with shaking (50 rpm). Then the mixture was applied to an Affinity
Chromatographic Column (TransGen Biotech, China) pre-equilibrated with lysis
buffer. The endogenous proteins of E. coli BL21(DE3) were washed away by 5 mL
30 mM imidazole elution buffer and recombinant protein was eluted by 1.5 mL 300
mM imidazole elution buffer separately. The purified protein solution was added with

approximately 0.5 mL glycerol (25%) and stored at -80°C.

1.5 Functional characterization in vitro
To identify functions of the enzymes, assay was performed in a reaction solution
composed of 0.5 mM sugar donor (UDP-glucose for Sj3GT, UDP-rhamnose for
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Sj6"'RhaT), 0.1 mM substrate (quercetin/isoquercitrin) and 50 pg of purified enzymes
in reaction buffer (50 mM NaH,PO4-Na,HPO, buffer, pH 8.0). The reaction was
initiated by adding purified enzyme solution into the reaction solution and incubated
at 37°C for 0.5 hours. The reaction was terminated by adding 100 pL methanol and

centrifuged at 15,000 rpm for 20 min for HPLC analysis.

1.6 Biochemical properties of Sj3GT and Sj6'’'RhaT

To acquire the optimal pH of Sj3GT and Sj6''RhaT, the reaction was conducted
by changing reaction buffer with pH value in the scope of 4.0-9.0. To measure the
best reaction temperature, the reaction was incubated at different temperatures (4-
60°C). To test the dependence of divalent metal ions for enzymes’ catalytic activity,
different divalent metal ions and EDTA in the final concentration of 10 mM were
added into the reaction solution. The enzymatic reactions of Sj3GT were conducted
using UDP-Glc as sugar donor and quercetin as acceptor, 2.5 ng of purified enzyme
was added into the reaction solution. The enzymatic reactions of Sj6''RhaT were
conducted using UDP-Rha as sugar donor and isoquercitrin as acceptor, 5 ng of
purified enzyme was added into the reaction solution. All reactions were individually
conducted in a reaction time of 10 minutes and final volume of 100 pL as described
above. The concentration of the buffers used in these experiments was 50 mM. All

experiments were performed in triplicate and were analyzed by HPLC.

1.7 Sugar donor selectivity of Sj3GT and Sj6"’RhaT

To investigate the sugar donor selectivity of Sj3GT and Sj6''RhaT, glycosylation
reactions using different sugar donors (UDP-glucose (UDP-Glc), UDP-rhamnose
(UDP-Rha), UDP-galactose (UDP-Gal), UDP-arabinose (UDP-Ara), UDP-N-acetyl-
glucosamine (UDP-NAG), UDP-galacturonic acid (UDP-GalA), UDP-xylose (UDP-
Xyl)) were conducted using quercetin or isoquercitrin as acceptor respectively. All
reactions were conducted individually as described above. The reaction mixtures were

analyzed by HPLC and LC/MS.



1.8 Kinetic parameters of Sj3GT and Sj6''RhaT

For kinetic assay of Sj3GT, enzymatic reactions were performed in a final
volume of 50 pL containing 50 mM Tris-HCI buffer (pH 7.0), 2.5 ng of purified
Sj3GT, 0.1mM of UDP-glucose, and varying concentrations (0.5-40 uM) of quercetin.
The reactions were conducted at 45°C for 10 min with shaking (400 rpm) and stopped
by adding 100 pL pre-cooled methanol. For kinetic assay of Sj6"’RhaT, enzymatic
reactions were performed in a final volume of 50 puL containing 50 mM NaH,PO,-
Na,HPO, buffer (pH 7.0), 5 ng of purified Sj6"’'RhaT, 0.1 mM of UDP-rhamnose, and
varying concentrations (1-40 pM) of isoquercitrin. The reactions were conducted at
37°C for 10 min with shaking (400 rpm) and stopped by adding 100 pL cooled
methanol. All samples were centrifuged at 15,000 rpm for 20 min and analyzed by
HPLC as described above. All experiments were performed in triplicate. The data

were analyzed by Michaelis-Menten plots.

1.9 Molecular modeling and mutagenesis experiments

To simulate the structures of Sj3GT and Sj6''RhaT, molecular modeling was
conducted using templates provided by SWISS-MODEL. The structure of Ct3GT-Al
(PDB:3WC4) was used to model Sj3GT. Mutants of Sj3GT (Q336A, H351A, G353F,
S356A, D359A, P371A, D375A, Q376A) were designed based on the result of
molecular modeling. We modeled the Sj6”’RhaT using AlphaFold2[?l. Mutants of
Sj6"'RhaT (E275A, V134A, V134T, Y135A, Y135T, S136A, S136T) were designed
based on the modeled structure and were constructed using Fast Mutagensis System
kit (Transgen, China) according to the manufacture’s instructions. The primers used
to construct the site-directed mutants are listed in Table S2.

Functional characterization of the mutants were performed in a final volume of
100 pL containing 50 mM Tris-HCI buffer (pH 7.0), 5 pg purified mutant enzyme, 0.5
mM of UDP-glucose, 0.1 mM of quercetin. The reaction was conducted at 45 °C for

10 min with shaking (400 rpm) and stopped by adding 100 uL cooled methanol.

2. AMINO ACID SEQUENCES



2.1 Amino acid sequence of SjUGTS
MTNSSEKKHVAVFVFPFGSHSAPLFNLVLKLAHAAPNLSFSFIGTENSNQP
LFSKPNIPNNIKAYSVGDGVPEGHVLGGHPVERVNLFLQAGPENLRKGIDL
AVAGTKQRVTCHADAFVTPSLIVAQDLNVPWIPVWPPLSCSLSAHFYTDLI
REQCANNSAAHRALDFLPGLSKMRVEDLPEGILNGGEEDILFSKTLPSLGR
VLPQAKAVIINFFEELDPPLFVQDMRSKLQSMLY VGFLTLSLPLLPLPPSDT
DATGCLSWLDKQNARSVAYISFGTVVTPPPHELVAVAEALEASGFPFLWS
LKDNLKGLLPNGFLERTSIRGKIVPWAPQTQLLGHDSVGVFVTHCGCNSV
SDSISNGVPMICRPFFGDQRMTGRMVEDIWEIGVKIEGGVFSKNGLLKSLN

LILVQEEGKKMREKALKVKRIVQDAAGPEGKAAQDFKTLLEIVSSS

2.2 Amino acid sequence of SjUGT9
MSGVNNDELHVVMFPFLAFGHISPFVQLSNKLFSHGVQITFLSAPSNIPRIK
STFNLHPGIHIIPLQLPNSIANTAELPPDMTGNLIHALDLMQPQVKSLLLELKPQ
FVFFDFAQNWLPKLASEVGIKSVHFSVYSAISDAYITVPSRFAGIEGRSITFDDL
KKAPLGYPEKSNISLKAFEATDFMFLFRRFDENLTGYERVLQSLSECSYIVFKT
CKEIEGPYLDYIETQFGKPVLLTGPLVPEPAMDVLDEKWSKWLDSFPAKSVIF
CSFGSETFLNDDQIRELANGLELTGLPFILVLNFPSNLSAQAELDRALPRGFLD
RVKNRGVVHTGWLQQKLILAHSSVGCYVCHAGFSSVIEAMVNDCQLVLLPF
KGDQFFNSKLIAKDLEAGIEVNRKEEDGYFHKEDILEALKTIMVENDKEPGKH

IRENHMKWMKFLLNKEIQNKFITDLVAQLKSMA



3. SUPPLEMENTARY TABLES

Table S1. Candidate genes of UGTs and their expression level in different organs.

Gene ID NO. Leaves Flowers  Roots  Assayed
Cluster-154.21377 SjUGT1  24.78 24.31 13.96 \/
Cluster-154.21182 SjUGT2  94.87 32.23 5.63 \/
Cluster-154.18213 S;UGT3  14.36 23.02 21.41 \/
Cluster-154.28795 SjUGT4 0.6 114.04 1.66 \/
Cluster-154.13248 Sj;UGTS 0 73.61 0.04 \/
Cluster-154.24531 S;UGT6  26.75 37.99 50.9 \/
Cluster-154.11545 SjUGT7 0.93 48.14 5.94 \/
Cluster-154.13112 SjUGTS 2.55 157.39 17.79 \/
Cluster-154.12903 SjUGT9 0.32 68.2 24.54 \/

Table S2. PCR primers used in this study.

Primers

Sequences (5' to 3')

SjUGTS-F

SjUGTS-R

SjUGTY-F

SjUGT9-R

Sj3GT-W333A-F

CAGCAAATGGGTCGCGGATCCATGACAAACTCATC
GGAGAAGAAAC
GCTCGAGTGCGGCCGCAAGCTTAGAGCTAGAAACT
ATTTCCAAC
CAGCAAATGGGTCGCGGATCCATGTCTGGTGTGAA
CAATGATGAG
GCTCGAGTGCGGCCGCAAGCTTAGCCATGGACTTC
AACTGAGCAAC

gcgGCTCCTCAAACTCAACTTTTAGGACATG
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Sj3GT-W333A-R
Si3GT-Q336A-F
Si3GT-Q336A-R
Sj3GT-H351A-F
Sj3GT-H351A-R
Sj3GT-G353F-F
Sj3GT-G353F-R
Sj3GT-S356A-F
Si3GT-S356A-R
Sj3GT-D359A-F
Sj3GT-D359A-R
Sj3GT-P371A-F
Sj3GT-P371A-R
Sj3GT-D375A-F
Sj3GT-D375A-R
Si3GT-Q376A-F
Si3GT-Q376A-R
Sj6"RhaT-E275A-F
Sj6""RhaT-E275A-R
Sj6"RhaT-V134A-F
Sj6""RhaT-V134A-R
Sj6"RhaT-V134T-F
Sj6""RhaT-V134T-R
Sj6""RhaT-Y 135A-F
Sj6""RhaT-Y135A-R
Sj6""RhaT-Y 135T-F
Sj6""RhaT-Y135T-R
Sj6""RhaT-S136A-F

Sj6"'RhaT-S136A-R

GAGTTTGAGGAGCcgcAGGCACTATTTTCC
gcaACTCAACTTTTAGGACATGATTCTGTAG
CTAAAAGTTGAGTtgcAGGAGCCCAAGGCAC
gccTGTGGGTGTAACTCTGTGTCTGACAG
GTTACACCCACAggcAGTCACAAACACTCC
ttTGTAACTCTGTGTCTGACAGTATTTCC
CACAGAGTTACAaaaACAGTGAGTCACAAAC
gccGTGTCTGACAGTATTTCCAATGGGGTG
ACTGTCAGACACggcGTTACACCCACAGTG
gccAGTATTTCCAATGGGGTGCCTATGATC
CATTGGAAATACTggcAGACACAGAGTTAC
gccTTCTTTGGAGATCAAAGGATGACTGG
GATCTCCAAAGAAggcCCTGCAGATCATAGGC
gcaCAAAGGATGACTGGAAGAATGGTAGAG
CAGTCATCCTTTGtgcTCCAAAGAAGGGCC
gcaAGGATGACTGGAAGAATGGTAGAGGAT
CCAGTCATCCTtgcATCTCCAAAGAAGGGC
gcgACATTTCTGAATGATGATCAAATCAG
CATTCAGAAATGTcgcACTTCCAAAGGAGC
gcaTACTCTGCCATTTCTGATGCTTACATT
AATGGCAGAGTAtgcTGAGAAGTGAACAGAC
accTACTCTGCCATTTCTGATGCTTACATT
AATGGCAGAGTAggtTGAGAAGTGAACAG
gcaTCTGCCATTTCTGATGCTTACATTAC
AGAAATGGCAGAtgcAACTGAGAAGTGAAC
accTCTGCCATTTCTGATGCTTACATTAC
GAAATGGCAGAggtAACTGAGAAGTGAAC
gcaGCCATTTCTGATGCTTACATTACTGTG
CATCAGAAATGGCtgcGTAAACTGAGAAGTG



Sj6"'RhaT-S136T-F accGCCATTTCTGATGCTTACATTACTGTG

Sj6"'RhaT-S136T-R CATCAGAAATGGCggtGTAAACTGAGAAGTG

Table S3. HPLC methods used in this study.

Method Solvent A Solvent B Gradient Analysis Substrates
Water 20% B, 15 min; 20-
Quercetin
A containing 0.1% ACN 30% B, 1 min;
(Fig. 1B)
formic acid 30% B, 9min;
Water 20% B, 9 min; 20-
Isoquercitrin
B containing 0.1% ACN 100% B, 1 min;
(Fig. 1B)
formic acid 100% B, 5 min.
Water 20-50% B, 4min Substrates tested
C containing 0.1% ACN 50-100% B, 3min by S;3GT,
formic acid 100% B, 3min except for 2b
Substrates tested
by Sj6''RT ,
substrate 1g
Water
5-30% B, 20min tested by Sj3GT
D containing 0.1% ACN
30-100% B, Smin  and quercitrin in
formic acid

combinatorial
catalysis (Fig.
S1)




4. SUPPLEMENTARY FIGURES
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Fig. S1 HPLC analysis of the combinatorial catalysis reaction using quercetin (1)

as substrate.
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Fig. S2 Biochemical properties of Sj3GT. (A) The catalytic activity of Sj3GT in

different reaction buffer. CPBS: Citrate buffer; PB: Phosphate buffer; TRIS-HCI:

Tris-hydrochloride buffer. (B) The catalytic activity of Sj3GT at different temperature.

(C) The impact of divalent ions on the catalytic activities of Sj3GT (‘Blank’ represent

groups adding the same volume of solvent ddH,0O as the other groups). (D)Kinetic

parameters of Sj3GT. All experiments were performed in triplicate (n=3).
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Sj6'RhaT in different reaction buffer. CPBS: Citrate buffer; PB: Phosphate buffer;
TRIS-HCI: Tris-hydrochloride buffer. (B) The catalytic activity of Sj6”’RhaT at
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Fig. S5 The catalytic activity of Sj3GT converting substrate 2a. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of
substrate 2a. (C) (-)-ESI-MS spectra of the reaction product. (D) MS/MS spectra of

the reaction product.
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Fig. S6 The catalytic activity of Sj3GT converting substrate 2b. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of
substrate 2b. (C) (-)-ESI-MS spectra of the reaction product 2b1 (kaempferol 3-O-
glucoside). (D) MS/MS spectra of the reaction product 2b1. (E) (-)-ESI-MS spectra of
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the reaction product 2b2 (kaempferol 7-O-glucoside). (F) MS/MS spectra of the

reaction product 2b2.
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Fig. S7 The catalytic activity of Sj3GT converting substrate 2¢. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of
substrate 2¢. (C) (-)-ESI-MS spectra of the reaction product 2¢1. (D) MS/MS spectra
of the reaction product 2¢l. (E) (-)-ESI-MS spectra of the reaction product 2¢2. (F)

MS/MS spectra of the reaction product 2¢2.
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Fig. S8 The catalytic activity of Sj3GT converting substrate 3a. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of
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Fig. S9 The catalytic activity of Sj3GT converting substrate 3b. (A) HPLC

analysis of the reaction mixture and the reference standard. (B) The structure of

substrate 3b. (C) (-)-ESI-MS spectra of the reaction product. (D) MS/MS spectra of

the reaction product.
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Fig. S10 The catalytic activity of Sj3GT converting substrate 3c. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of
substrate 3c. (C) (-)-ESI-MS spectra of the reaction product. (D) MS/MS spectra of

the reaction product.
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Fig. S11 The catalytic activity of Sj3GT converting substrate 3d. (A) HPLC

analysis of the reaction mixture and the reference standard. (B) The structure of

substrate 3d. (C) (-)-ESI-MS spectra of the reaction product. (D) MS/MS spectra of

the reaction product.
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Fig. S12 The catalytic activity of Sj3GT converting substrate 3e. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of
substrate 3e. (C) (-)-ESI-MS spectra of the reaction product 3el. (D) MS/MS spectra
of the reaction product 3el. (E) (-)-ESI-MS spectra of the reaction product 3e2. (F)

MS/MS spectra of the reaction product 3e2.
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Fig. S13 The catalytic activity of Sj3GT converting substrate 4a. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of

substrate 4a. (C) MS/MS spectra of the reaction product.
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Fig. S14 The catalytic activity of Sj3GT converting substrate 4b. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of
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the reaction product.

21



A B

mAU A=300nm
30 3 Product
20 3 .
10 gReactlon 'I
0 T T 1
mAl
40 7
20
iControl N
0 ; .
mAl
125 - 4c
100 -
[
205 iSTD
5 10 min
(4 D
2
Ms 491.12 m}s 283.06
100 [M-H+HC OOH] [M-H-GlIc}
90 L]
g 80 3 80
E 70 E T0
Z 60 Z60
250 S5
540 éem
330 I3
=4 =4
20 20
10 10
0 0 +——+-rr—r—frrrrrrrr T
100 200 300 400 500 600 700 800 00 200 300 400 500 600 70O 800
mz

Fig. S15 The catalytic activity of Sj3GT converting substrate 4c. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of

substrate 4c¢. (C) (-)-ESI-MS spectra of the reaction product. (D) MS/MS spectra of

the reaction product.
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Fig. S16 The catalytic activity of Sj3GT converting substrate 4d. (A) HPLC

analysis of the reaction mixture and the reference standard of the product (apigenin 7-

O-glucoside). (B) The structure of substrate 4d. (C) (-)-ESI-MS spectra of the reaction

product. (D) MS/MS spectra of the reaction product.
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Fig. S17 Substrates not converted by Sj6''RhaT.
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Fig. S18 The catalytic activity of Sj6''RhaT converting substrate 7a. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of
substrate 7a. (C) (-)-ESI-MS spectra of the reaction product. (D) MS/MS spectra of

the reaction product.
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Fig. S19 The catalytic activity of Sj6''RhaT converting substrate 7a. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of

substrate 7a. (C) (-)-ESI-MS spectra of the reaction product. (D) MS/MS spectra of

the reaction product.
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Fig. S20 The catalytic activity of Sj6"’'RhaT converting substrate 7c. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of

substrate 7c¢. (C) (-)-ESI-MS spectra of the reaction product. (D) MS/MS spectra of

the reaction product.
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Fig. S21 The catalytic activity of Sj6"’'RhaT converting substrate 7e. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of

substrate 7e. (C) (-)-ESI-MS spectra of the reaction product. (D) MS/MS spectra of

the reaction product.
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Fig. S22 The catalytic activity of Sj6’’RhaT converting substrate 7h. (A) HPLC
analysis of the reaction mixture and the reference standard. (B) The structure of
substrate 7h. (C) (-)-ESI-MS spectra of the reaction product. (D) MS/MS spectra of

the reaction product.
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analysis of the reaction mixture. (B) The structure of substrate 1a. (C) (-)-ESI-MS

spectra of the reaction product. (D) MS/MS spectra of the reaction product.



S16”RhaT C S F G E T F L N 279
GuRhaT I ¢ F GS EL KL S 303
FelF3G6"RhaT C S F G S E T F L T 284
Gmbk3G6”"GT C S F G S'E T IFF L S 290
BpUGAT v CcCFGSEY T L S 269
CaUGT3 VS FGSEYVFL N 281
GgCGT VS FGSRTAMG 289
S13GT I S FG6GTV VTP P 286
VICGTa I S FGSRTTMM 286
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Sb3GT1 I S FGTV I TP P 29

Fig. S25 Sequence alignment of glycosyltransferases catalyzing glycosylation on

sugar residues (Group 1) and glycosyltransferases functioning on aglycones (Group 2).
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