Supporting Information

Visible-Light-Promoted Organic-Dye-Catalyzed Sulfonylation/Cyclization to Access Indolo[2,1-α]isoquinoline Derivatives

Yucai Tang^a*, Jinglin Duan^a, Biyu Yang^a, Yupeng He^a, Changyuan Du^a and Xiangyang Zhang

^aCollege of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical PolymerMaterials, Changde 415000, P.R. China. ^{*}e-mail: yctang1009@163.com

Contents

1. General Information	S2
2. Experimental Sections	S2
3. Fluorescence quenching experiments	S3
4. ¹ H and ¹³ C NMR Spectra of Products	S4-S53

1. General Information

All reagents and solvents were purchased from commercial suppliers and used without purifications. TLC was performed on silica gel plates (200-300mesh) using UV light (254/365 nm) for detection and column chromatography was performed on silicagel (200-300 mesh). The ¹H NMR and ¹³C NMR spectra were recorded at 25 °C in CDCl₃ at 400 and 100 MHz, respectively, with TMS as the internal standard. Chemical shifts (δ) are expressed in ppm and coupling constants *J* are given in Hz. All reactions were performed on the photoreaction instrument (WP-TEC-1020SL), which are purchased from WATTCAS, China (Figure S1).

Figure S1.Photoreactor for photoreaction

2. Experimental Section

General procedures for the synthesis of ester substituted indolo[2,1- α]isoquinolines and benzimidazo[2,1- α]isoquinolin-6(5*H*)-ones.

To a suspension of 2-aryl-*N*-acryloyl indoles (0.2mmol) in DMSO (2mL) was added sulfonyl hydrazine(0.6 mmol, 3.0 eq.), Eosin B (5mol%) and $(NH_4)_2S_2O_8$ (0.6 mmol, 3.0 eq.) at room temperature, and the mixture was stirred in air under a 10W blue LEDs and irradiated for 15 hours. The temperature was maintained at 20~25 °C when the LED light was on. After the reaction was complete, the reaction mixture was diluted with a brine solution (25 mL) and extracted with EtOAc (3 × 50 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flashcolumn chromatography to afford the desired products.

3.Fluorescence quenching experiments

The fluorescence emission intensities were carried out on an F-7000 FL spectrophotometer (Hitachi Ltd, Japan) with excitation slit set at 5 nm and emission at 5 nm. The excitation wavelength was fixed at 323 nm, and the emission wavelength was measured at 350~550 nm. The samples were prepared by mixing Eosin B $(1.0\times10^{-8}\text{mol/L})$ and different amount of $(NH_4)_2S_2O_8$ in DMSO in a light path quartz fluorescence cuvette. The concentration of $(NH_4)_2S_2O_8$ stock solution is $1.3\times10^{-6}\text{mol/L}$ in DMSO. For each quenching experiment, 0.1mL of $(NH_4)_2S_2O_8$ stock solution was titrated to a mixed solution of Eosin B (0.1mL, in a total volume = 1.0 mL). Then the emission intensity was collected and the results were presented in Figure S1.

Figure S1 Quenching of Eosin B fluorescence emission in the presence of $(NH_4)_2S_2O_8$.

4.¹H and ¹³C NMR spectra of products

	_ Muli		_ll_	
	1. 20 6. 09 3. 08 3. 14 8. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1. 001	3: 00 -7	
16 15 14 13 12 11 10	9 8 7 6 f1 (ppm	5 4 3	3 2 1 0	-1 -2 -3 -4

		Kauda		_hhhn
	19 19 1	2013 2013 113 113 113 113 113 113 113 113 113	F26 '0 F00 '1	32 TT TT 32 55 55 35 55 55
15 14 13 12		8 7 6 f1 (ppm)	5 4	3 2 1 0

	i	vü		
	2. 46 6. 05.1	0.1 1.400 0.92 14	3.12 3.28 3.06 4.	
16 15 14 13 12	11 10 9 8	7 6 5 f1 (ppm)	4 3 2 1	

	Luddi	l	ul	4
	1. 80-1 6. 21-1 1. 09-4	F-00.1	2, 76년	
16 15 14 13 12 11 10	9 8 7 6 f1 (ppm)	5 4	3 2 1	

