Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

Rapid, room-temperature self-organization of polyarylated 1*H*-pyrroles from acetylenes and nitriles in the KOBu^t/DMSO system

Elena Yu. Schmidt^a, Inna V. Tatarinova^a, Natal'ya A. Lobanova^a, Igor A. Ushakov^a, Irina Yu. Bagryanskaya^b and Boris A. Trofimov^a*

^aA. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia

^bN. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia

E-mail: boris_trofimov@irioch.irk.ru

Table of Contents

1.	NMR spectra	S 2
2.	X-ray diffraction analysis	S30
3.	References	S31

1. NMR spectra

¹³C NMR Spectrum of **3aa** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3ba** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3ca** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3da** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3ea** (100.6 MHz, CDCl₃)

S7

S9

¹³C NMR Spectrum of **3ia** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3ja** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3ka** (100.6 MHz, CDCl₃)

2D NOESY Spectrum of 3ab

¹³C NMR Spectrum of **3ac** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3ae** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3af** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3ag** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3ah** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3ai** (100.6 MHz, DMSO-D₆)

¹³C NMR Spectrum of **3ak** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3al** (100.6 MHz, CDCl₃)

¹³C NMR Spectrum of **3am** (100.6 MHz, CDCl₃)

2D¹H-¹⁵N HMBC Spectrum of **3am**

2D COSY Spectrum of 3am

2D NOESY Spectrum of 3am

2D ¹H-¹³C HMBC Spectrum of **3am**

2D ¹H-¹³C HSQC Spectrum of **3am**

¹³C NMR Spectrum of **3if** (100.6 MHz, CDCl₃)

2. X-ray diffraction analysis

The structures was solved by direct methods using the SHELXT-2014/5 and refined by full-matrix least-squares method against all F2 in anisotropic approximation using the SHELXL-2018/3¹. The hydrogen atoms positions were calculated with the riding model. The hydrogen atom position for NH-groups was located from difference Fourier map. Absorption corrections were applied using the empirical multiscan method with the SADABS program². Compound **3al** is monoclinic, space group P2₁, a = 9.1310(4), b = 8.5709(3), c = 13.8389(5) Å, $\beta = 91.507(2)^{\circ}$, V = 1082.67(7) Å³, Z = 2, C₂₉H₂₁NS, formula weight 415.53, crystal density Dc = 1.275 г/см3, $\mu = 0.166 \text{ mm-1}$, F(0 0 0) = 436, yellow crystal size 0.90 x 0.15 x 0.06 mm³, independent reflections 4956 (Rint = 0.0423), $wR_2 = 0.0756$, goodness of fit S = 1.02 for all reflections and R = 0.0330 for 4183 I > 2σ , absolute structure parameter (Flack parameter) is equal to 0.06(3), difference electron density max is 0.11 and min is -0.12 e-/ $Å^3$. The thiophene cycle is disordered by two positions with 0.767 : 0.233(4) occupation ratio. CCDC 2260734 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data_request/cif. Molecular structures of compound 3al is illustrated in Figure 1.

Figure 1. Molecular structures and atomic numbering for 3al (30% thermal ellipsoids are shown).

The obtained crystal structures were analyzed for the geometrical parameters and short contacts between non-bonded atoms using PLATON³ and MERCURY programs⁴. The

geometric parameters for all compounds agreed within 3σ of the corresponding mean statistical values⁵.

According to the of X-ray diffraction data the all cycles are perfectly planar in the crystal. The dihedral angle between 1H-pyrrole cycle and thiophene cycle is equal to $28.2(2)^{\circ}$, the dihedral angle between 1H-pyrrole cycle and phenyl cycle C18 – C 23 is equal to $48.8(1)^{\circ}$, the dihedral angle between phenyl cycle C18 – C 23 and phenyl cycle C12 – C 17 is equal to $58.3(1)^{\circ}$. The shortened S10...H7a 2.82 Å contact lead to formation of 1D chains. Note, that normal S...H contact is 2.92 Å⁶. Additionally to the S...H, the C-H... π interaction H-atoms of the C7-H7a and C8-H8a bonds of one molecule with thiophene and phenyl cycles of another are observed, the H-atoms-to-plane distances are from 2.81 to 2.97 Å.

3. References

¹ G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.

² SADABS, v. 2008-1, Bruker AXS, Madison, WI, USA, 2008.

^{3 (}a) A. L. Spek, PLATON-A Multipurpose Crystallographic Tool (Version 10M). Utrecht University, Utrecht, The Netherlands. 2003; (b) A. L. Spek, Single-crystal structure validation with the program PLATON. *J. Appl. Crystallogr.* 2003, **36**, 7-13.

⁴ C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, Mercury: visualization and analysis of crystal structures. *J. Appl. Crystallogr.* 2006, **39**, 453-457.

⁵ F. H. Allen, O. Kenard, D. G. Watson, L. Bramer, A. G. Orpen and R. Taylor, Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. *J. Chem. Soc.*, *Perkin Trans.*, *2*. 1987, S1-S19.

⁶ R. S. Rowland and R. Taylor, Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. *J. Phys. Chem.*, 1996, **100**, 7384-7391.