Supporting information

One pot synthesis of thioethers from indoles and *p*-quinone methides using thiourea as a sulfur source

Table of contents

- 1. General information and Experimental procedure
- 2. ¹H and ¹³C NMR Spectral data of all the compounds
- 3. Copies of ¹H and ¹³C NMR spectra
- 4. Comparative data for mechanistic study
- 5. Antimicrobial activity data

General information

Most of the reagents and starting materials were purchased from commercial sources and used as such. The progress of the reaction was monitored by analytical TLC on silica gel G/GF 254 plates. The column chromatography was performed with silica gel 100-200 mesh using EtOAc/hexane as an eluent. NMR (¹Hand ¹³C) spectra were recorded either on a 400 MHz using TMS as an internal standard and chemical shifts (δ ppm) (multiplicity, coupling constant (Hz), integration). The abbreviations for multiplicity are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets. Melting points are uncorrected were determined in capillary tubes on a hot stage melting point apparatus containing silicon oil. High resolution mass spectra were taken with a 3000 mass spectrometer and Q-TOF Analyzer. IR spectra were recorded using a FTIR spectrophotometer.

(a). General procedure for synthesis of starting materials *p*-quinone methides

In a Dean-Stark apparatus, a solution of phenols (10.0 mmol) and the corresponding aldehydes (10.0 mmol) in toluene (40 mL) was heated to reflux. Piperidine (20.0 mmol, 2.0 mL) was drop wise added over 0.5 h. The reaction mixture was continued to reflux for overnight. After cooling just below the boiling point of the reaction mixture, acetic anhydride (20.0 mmol, 2.0 mL) was added, and stirring was continued for 30 min. Then, the reaction mixture was poured on ice-water (200 mL) and extracted with EtOAc (4×50 mL). The combined organic phases were dried over anhydrous Na₂SO₄, and the solvent of the filtrate was removed under reduced pressure. The crude products were purified by column chromatography, affording the desired substrate *p*-QMs.

(b). General Procedure for Synthesis of diarylmethyl thioether :

A mixture of indole (0.5 mmol), thiourea (76.1 mg, 1 mmol), iodine (126.9 mg, 0.5 mmol) and potassium iodide (83 mg, 0.5 mmol) in dioxane (1 mL) with water (1 mL) were taken in a round bottom flask. Subsequently, NaOH (0.2 g in 1mL water) and *p*-quinone methides (149.25.5 mg, 0.5 mmol) was added with dichloromethane and the mixture was stirred at room temperature for 1hr. Upon completion, DCM (10 mL) was added, and the mixture was washed with water (20 X 3mL), dried with Na₂SO₄ and concentrated under vacuum to give the crude product. Further column chromatography on silica gel (ethyl acetate/petroleum ether) was needed to afford the pure desired product.

(c). Procedure for synthesis of de-tert-butyl product 4:

In an oven-dried 50 mL round-bottom flask 3ab (0.5 mmol, 1.0eqv) and AlCl₃ (15eqv) were mixed. The flask was degassed, and toluene (2mL) was added. The reaction mixture was further stirred at 25 0 C for 12 hr. The reaction mixture was then quenched with water 2mL. Then, the reaction mixture was extracted with EtOAc (3 × 20 mL). The combined organic phases were dried over anhydrous Na₂SO₄, and the solvent of the filtrate was removed under reduced pressure. The crude products were purified by column chromatography, affording the desired product 4.

2. ¹H and ¹³C NMR Spectral data of all the compounds

2,6-di-tert-butyl-4-(((1-methyl-1H-indol-3-yl)thio)(phenyl)methyl)phenol (3aa)

Yield 90% (205mg); Light brown solid; mp 120-122 °C; (KBr) cm⁻¹: 2953, 1583, 1431, 1234, 1152, 738, 697; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 7.8 Hz, 1H), 7.42 (d, J =7.42 Hz, 2H), 7.29-7.23 (m, 3H), 7.22-7.16 (m, 2H), 7.11 (t, J = 7.2 Hz, 1H), 7.04 (s, 2H), 6.7 (s, 1H), 5.1 (s, 1H), 5.0 (s, 1H), 3.63 (s, 3H), 1.32 (s, 18H); ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 142.3, 136.9, 135.6, 134.3, 132.2, 130.3, 128.5, 128.1, 126.7, 125.1, 121.9, 119.9, 119.5, 109.3, 103.9, 59.0, 34.2, 32.8, 30.2; mass (ES-) HRMS (ESI-TOF) calcd for

C₃₀H₃₄NOS 456.2361 (M-H)⁻ Found 456.2381.

2,6-di-tert-butyl-4-((2-fluorophenyl)((1-methyl-1H-indol-3-yl)thio)methyl)phenol (3ab)

Yield 92% (218mg); light yellow solid; mp 130-132 °C; (KBr) cm⁻¹: 2445, 1505, 1359, 1234, 1136, 740, 670; ¹H NMR (400 MHz, CDCl₃): δ 7.85-7.82 (d, m, 1H), 7.62 (d, *J* = 7.90 Hz, 1H), 7.28-7.19 (m, 4H), 7.16-7.13 (m, 1H), 7.11 (s, 2H), 6.97-6.93 (m, 1H), 6.86 (s, 1H), 5.57 (s, 1H), 5.08 (s, 1H), 3.69 (s, 3H), 1.36 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 161.1, 159.1, 152.7, 136.9, 135.4, 134.6, 131.3, 130.3, 129.89, 129.87, 129.7, 129.6, 128.3, 128.2, 125.0, 123.90, 123.88,

122.04, 120.0, 119.5, 115.35, 115.17, 109.28, 103.67, 51.20, 51.18, 34.2, 32.8, 30.2; mass (ES-) HRMS (ESI-TOF) calcd for $C_{30}H_{33}FNOS$ 474.2272 (M-H)⁻ Found 474.2287.

2,6-di-tert-butyl-4-((4-fluorophenyl)((1-methyl-1H-indol-3-yl)thio)methyl)phenol (3ac)

Yield 91% (216mg); light yellow solid; mp 110-112 °C; (KBr) cm⁻¹: 2929, 2556, 1458, 1429, 1212, 739, 631; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J*=7.83, 1H), 7.37-7.35 (m, 1H) ,7.24-7.19 (m, 2H), 7.12 (t, *J* = 7.06 Hz, 1H), 7.02 (s, 2H), 6.94 (t, *J*=8.75 Hz, 2H), 6.73 (s, 1H), 5.17 (s, 1H), 5.06 (s, 1H), 3.65 (s, 3H), 1.33 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 162.6, 152.7, 138.16, 138.13, 136.98, 135.48, 134.68, 131.96, 130.3, 130.1, 130.07, 125.07, 122.0, 120.0,

119.4, 114.9, 114.7, 109.3, 103.7, 58.2, 34.2, 32.8, 30.2; mass (ES-) HRMS (ESI-TOF) calcd for $C_{30}H_{33}FNOS$ 474.2272 (M-H) ⁻ Found 474.2287.

2,6-di-tert-butyl-4-((4-chlorophenyl)((1-methyl-1H-indol-3-yl)thio)methyl)phenol (3ad)

Yield 90% (221mg); Colourless solid; mp 112-114 °C; (KBr) cm⁻¹: 3341, 2900, 2213, 1487, 782, 626; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 7.63 Hz, 1H), 7.33 (d, J = 8.44 Hz, 2H), 7.23 (t, J = 8.3 Hz, 4H), 7.12 (t, J = 7.82 Hz, 1H), 7.02 (s, 2H), 6.7 (s, 1H), 5.15 (s, 1H), 5.07 (s, 1H), 3.65 (s, 3H), 1.33 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 152.7, 141.0, 136.9, 135.6, 134.6, 132.4, 131.6, 130.2, 129.9, 128.2, 125.0, 122.1, 120.1, 119.4,

109.4, 103.5, 58.3, 34.3, 32.9, 30.2; mass (ES-) HRMS (ESI-TOF) calcd for C₃₀H₃₃ClNOS 490.1977 (M-H)⁻ Found 490.1994.

2,6-di-tert-butyl-4-(((1-methyl-1H-indol-3-yl)thio)(p-tolyl)methyl)phenol (3ae)

Yield 88% (207mg); Light yellow solid; mp 112-114 °C; (KBr) cm⁻¹: 3366, 2891, 2200, 1457, 737, 618; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 7.87 Hz, 1H), 7.25 (d, J = 8.02 Hz, 2H), 7.17-7.11 (m, 2H), 7.05-7.00 (m, 3H), 6.9 (s, 2H), 6.6 (s, 1H), 5.0 (s, 1H), 4.9 (s, 1H), 3.5 (s, 3H), 2.2 (s, 3H), 1.24 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 152.5, 139.2, 136.9,136.2, 135.2, 134.6, 132.4, 130.3, 128.8, 128.3, 125.1, 121.9, 119.9, 119.5, 109.2, 104.1, 58.8, 34.2, 32.8, 30.2, 21.0; mass (ES-) HRMS (ESI-TOF) calcd for C₃₁H₃₆NOS 470.2523 (M-H)⁻ Found 470.2538.

2,6-di-tert-butyl-4-((4-isopropylphenyl)((1-methyl-1H-indol-3-yl)thio)methyl)phenol (3af)

Yield 86% (214mg); Light yellow solid; mp 104-106 °C; (KBr) cm⁻¹: 3360, 2682, 2343, 785, 629; ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, J = 7.83 Hz, 1H), 7.33 (d, J = 7.79 Hz, 2H), 7.24-7.17 (m, 2H), 7.1-7.0 (m, 3H), 7.0 (s, 2H), 6.7 (s, 1H), 5.1 (s, 1H), 5.0 (s, 1H), 3.6 (s, 3H), 2.86 (m, 1H), 1.3 (s, 18H), 1.22 (d, J = 7, 6H); ¹³C NMR (100MHz, CDCl₃): δ 152.5, 147.3, 139.6, 136.9, 135.2, 134.7, 132.4, 130.4, 128.4, 126.2, 125.2, 121.9, 119.9, 119.5, 109.2, 104.1, 58.9, 34.2, 33.7, 32.7, 30.2, 24.0; mass (ES-) HRMS (ESI-TOF) calcd for C₃₃H₄₀NOS

498.2836 (M-H) - Found 498.2852.

2,6-di-tert-butyl-4-((4-(tert-butyl)phenyl)((1-methyl-1H-indol-3-yl)thio)methyl)phenol (3ag)

Yield 85% (218mg); light Brown solid; mp 130-132 °C; (KBr) cm⁻¹: 2270, 1505, 1484, 693, 639; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, J = 7.89 Hz, 1H), 7.34 (d, J = 7.89 Hz, 2H), 7.28 (d, J = 8.33 Hz, 2H), 7.24-7.17 (m, 2H), 7.10-7.07 (m, 1H), 7.05 (s, 2H), 6.69 (s, 1H), 5.1 (s, 1H), 5.0 (s, 1H), 3.6 (s, 3H), 1.3 (s, 18H), 1.29(s, 9H); ¹³C NMR (100MHz, CDCl₃): δ 152.5, 149.5, 139.2, 136.9, 135.2, 134.7, 132.4, 130.4, 128.0, 125.2, 125.0, 121.9, 119.9, 119.5, 109.2, 104.1, 58.9,

34.4, 34.2, 32.7, 31.3, 30.2; mass (ES-) HRMS (ESI-TOF) calcd for $C_{34}H_{42}NOS$ 512.2993 (M-H)⁻ Found 512.3011.

4-(((1H-indol-3-yl)thio)(p-tolyl)methyl)-2,6-di-tert-butylphenol (3be)

Yield 20% (45mg); Colourless solid; mp 120-122 °C; (KBr) cm⁻¹: 3341, 2900, 2213, 1487, 1429,782, 626; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (s, 1H), 7.62 (d, *J* = 7.85 Hz, 1H), 7.32-7.29 (m, 3H), 7.20-7.16 (m, 1H), 7.15-7.11 (m, 1H), 7.09-7.07 (m, *4*H), 6.88 (d, *J* = 2.88Hz, 1H), 5.18 (s, 1H), 45.04 (s, 1H), 2.31 (s, 3H), 1.34 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 152.6, 139.2, 136.2, 135.9, 132.3, 130.0, 129.6, 128.8, 128.3, 125.1, 122.4, 120.3, 119.4, 111.2, 106.1, 58.5,

34.2, 30.2, 21.08; mass (ES-) HRMS (ESI-TOF) calcd for C₃₀H₃₄NOS 456.2367 (M-H)⁻ Found 456.2375.

3-(((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)thio)-1-methyl-1H-indole-5-carbonitrile (3ca)

481.2319 (M-H)+ Found 481.2327.

Yield 85% (204mg); Colourless solid; mp 124-126 °C; (KBr) cm⁻¹: 2924,1917 1612, 1454, 619; ¹H NMR (400 MHz, CDCl₃): δ 7.6 (s, 1H), 7.43-7.37 (m, 4H),7.29-7.26 (m, 3H), 7.03 (s, 2H), 6.95 (s, 1H), 5.12 (s, 1H), 5.10 (s, 1H), 3.70 (s, 3H), 1.32 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 152.8, 141.7, 138.3, 136.8, 135.7, 131.8, 130.2, 128.4, 128.4 128.2, 127.0, 125.2, 125.0, 124.9, 120.4, 110.2, 105.9, 103.2, 59.7, 34.3, 33.1, 30.2; mass (ES-) HRMS (ESI-TOF) calcd for C₃₁H₃₃N₂OS

4-((3,5-di-tert-butyl-4-hydroxyphenyl)((5-methoxy-1-methyl-1H-indol-3-yl)thio)methyl)benzonitrile (3dh)

Yield 96% (245mg); Colourless solid; mp 122-124 °C; (KBr) cm⁻¹: 3841, 1973, 1621, 1485; ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.51 (m, 2H), 7.46-7.44 (m, 2H), 7.16 (d, *J* = 8.78 Hz, 1H), 7.05 (s, 2H), 6.95 (d, *J* = 2.40 Hz, 1H), 6.89-6.86 (m, 1H), 5.15 (s, 1H), 6.72(s, 1H, 5.15 (s, 1H), 3.8 (s, 3H), 3.6 (s, 3H), 1.35 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 154.9, 153.0, 148.3, 135.8, 135.2, 132.2, 131.8, 130.79, 130.77, 129.3, 124.9, 118.9, 112.6, 110.4, 110.3, 102.1, 100.8, 58.7, 55.8, 34.3, 33.1, 30.1, 21.4; mass (ES-) HRMS (ESI-TOF) calcd for C₃₂H₃₅N₂O₂S 511.2425 (M-H)⁻ Found 511.2434.

4-((3,5-di-tert-butyl-4-hydroxyphenyl)((1,5-dimethyl-1H-indol-3-yl)thio)methyl)benzonitrile (3eh)

Yield 95% (235mg); Light yellow solid; mp 118-120 °C; (KBr) cm⁻¹: 2361, 1927, 1604, 1431, 615; ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.51 (m, 2H), 7.45-7.43 (m, 2H), 7.24-7.23 (m, 1H), 7.15 (d, *J* = 8.32 Hz, 1H), 7.05 (s, 3H), 6.73 (s, 1H), 5.15 (s, 1H), 5.14 (s, 1H), 3.6 (s, 3H), 2.4 (s, 3H), 1.35 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 153.0, 148.3, 135.8, 135.4, 134.8, 131.8, 130.7, 130.3, 129.6, 129.3, 125.0, 123.9, 119.0, 118.8, 110.3, 109.2, 102.1, 58.8, 34.4, 34.3, 32.9, 30.1, 21.4; mass (ES-) HRMS (ESI-TOF) calcd for C₃₂H₃₅N₂OS 495.2476 (M-H)⁻

Found 495.2481.

2,6-di-tert-butyl-4-((4-fluorophenyl)((5-methoxy-1-methyl-1H-indol-3-yl)thio)methyl)phenol (3dc)

Yield 95% (239mg); Light Yellow solid; mp 124-126 °C; (KBr) cm⁻¹: 3880, 2262, 1502, 1427, 649; ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.33 (m, 2H), 7.14 (d, J = 8.82 Hz, 1H), 7.03 (s, 2H), 6.96-6.92 (m, 3H), 6.87-6.84 (m, 1H), 6.71 (s, 1H), 5.11 (s, 1H), 5.09 (s, 1H), 3.8 (s, 3H), 3.6 (s, 3H), 1.34 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 162.8, 160.4, 154.7, 152.7, 138.3, 135.5, 135.1, 132.17, 132.10, 130.9, 130.1, 130.04, 125.0, 114.9, 114.7, 112.5, 110.2, 102.9, 100.8, 58.3, 55.8, 34.3, 33.0, 30.2; mass (ES-) HRMS (ESI-TOF) calcd for C₃₁H₃₅FNO₂S 504.2378 (M-H)⁻ Found 504.2387.

2,6-di-tert-butyl-4-(((1,5-dimethyl-1H-indol-3-yl)thio)(4-fluorophenyl)methyl)phenol (3de)

Yield 94% (229mg); Colourless solid; mp 118-120 °C; (KBr) cm⁻¹: 3675, 1926, 1503, 1429, 1143, 789; ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.24 (m, 3H), 7.13 (d, J = 8.42 Hz, 1H), 7.03-7.01 (m, 3H), 6.96-6.92 (m, 2H), 6.71 (s, 1H), 5.12 (s, 1H), 5.07 (s, 1H), 3.6 (s, 3H), 2.4 (s, 3H), 1.33 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 162.9, 160.4, 152.6, 138.33, 135.30, 135.46, 135.40, 134.76, 132.11, 130.5, 130.16, 130.08, 129.42, 125.05, 123.7, 119.09, 114.92, 114.71, 109.08, 102.9, 58.3, 55.8, 34.3, 32.9, 30.2, 21.4; mass (ES-) HRMS

(ESI-TOF) calcd for $C_{31}H_{35}FNOS$ 488.2429 (M-H)⁻ Found 488.2436.

2,6-di-tert-butyl-4-((2-chlorophenyl)((1,5-dimethyl-1H-indol-3-yl)thio)methyl)phenol (3ei)

Yield 93% (234mg); Colourless solid; mp 126-128 °C; (KBr) cm⁻¹: 3610, 1895, 1432, 1119, 695, 646; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (dd, J = 7.78 Hz and 1.59 Hz, 1H), 7.31-7.24 (m, 3H), 7.15-7.09 (m, 4H), 7.00 (dd, J = 8.36 Hz and 1.38 Hz, 1H), 6.82 (s, 1H), 5.67 (s, 1H), 5.05 (s, 1H), 3.6 (s, 3H), 2.4 (s, 3H), 1.33 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 152.6, 140.1, 135.36, 135.32, 134.5, 133.7, 131.3, 130.5, 130.0, 129.4, 129.3, 127.8, 126.7, 125.2, 123.6, 119.2, 108.9, 102.9, 55.2, 34.2, 32.9, 30.2, 21.4; mass (ES-) HRMS (ESI-TOF) calcd for C₃₁H₃₅CINOS 504.2133 (M-H)⁻ Found

504.2143.

2,6-di-tert-butyl-4-(((1,5-dimethyl-1H-indol-3-yl)thio)(p-tolyl)methyl)phenol (3ee)

Yield 89% (215mg); Colourless solid; mp 120-122 °C; (KBr) cm⁻¹: 3666, 1924, 1506, 1359, 768, 654; ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (m, 3H), 7.11-7.04 (m, 6H), 6.70 (s, 1H), 5.1 (s, 1H), 5.0 (s, 1H), 3.6 (s, 3H), 2.6 (s, 3H), 2.4 (s, 3H), 1.32 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 152.5, 139.4, 136.2, 135.3, 135.2, 134.7, 132.6, 130.6, 129.2, 128.8, 128.4, 125.1, 123.5, 119.2, 108.9, 103.4, 59.0, 34.2, 32.8, 30.2, 21.4, 21.0; mass (ES-) HRMS (ESI-TOF) calcd for C₃₂H₃₈NOS 484.2680 (M-H)⁻ Found 484.2687.

2,6-di-tert-butyl-4-((4-(tert-butyl)phenyl)((5-methoxy-1-methyl-1H-indol-3-yl)thio)methyl)phenol (3dg)

Yield 87% (236mg); Brown solid; mp 124-126 °C; (KBr) cm⁻¹: 3567, 2025, 1509, 788, 631; ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.32 (m, 2H), 7.29-7.27 (m, 2H), 7.13 (d, *J* = 8.78 Hz, 1H), 7.06 (s, 2H), 6.96 (d, *J* = 2.43 Hz, 1H), 6.85 (d, *J* = 2.52 Hz, 1H), 6.83 (d, *J* = 2.52 Hz, 1H), 6.6 (s, 1H), 5.08 (s, 1H), 5.05 (s, 1H), 3.78 (s, 3H), 3.61 (s, 3H), 1.33 (s, 18H), 1.29 (s, 9H); ¹³C NMR (100MHz, CDCl₃): δ 154.6, 152.5, 149.5, 139.4, 135.3, 135.2, 132.6, 132.1, 131.0, 128.0, 125.1, 125.0, 112.4, 110.1, 103.4, 101.0, 59.0, 55.8, 34.4, 34.2, 32.9, 31.3, 30.2; mass (ES-) HRMS (ESI-TOF) calcd

for C₃₅H₄₄NO₂S 542.3098 (M-H)⁻ Found 542.3109.

3-(((2-chlorophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)thio)-1-methyl-1H-indole-5-carbonitrile (3ci)

Yield 86% (258mg); light yellow solid; mp 126-128 °C; (KBr) cm⁻¹: 3567, 1896, 1431, 1117, 890, 757, 642; ¹H NMR (400 MHz, DMSO): δ 7.95-7.93 (dd, J = 7.82 Hz, 1.46Hz, 1H), 7.66 (s, 1H), 7.61-7.56 (m, 2H), 7.48-7.44 (m, 2H), 7.35-7.33 (m, 1H), 7.28-7.24 (m, 1H), 6.99 (s, 2H), 6.88 (s, 1H), 5.65 (s, 1H), 3.77 (s, 3H), 3.33 (s, 3H), 1.25 (s, 18H); ¹³C NMR (100MHz, DMSO): δ 153.4, 139.3, 139.1, 138.8, 138.7, 132.9, 130.8, 130.2, 129.9, 129.8, 129.1, 127.8, 124.8, 124.2, 120.6, 112.1, 103.8, 102.6, 55.5, 34.8, 33.3, 30.6; mass (ES-) HRMS (ESI-TOF) calcd for C₃₁H₃₂ClN₂OS 515.1929 (M-H)⁻ Found 515.1938.

2,6-di-tert-butyl-4-(((1,5-dimethyl-1H-indol-3-yl)thio)(p-tolyl)methyl)phenol (3ce)

Yield 68% (168mg); Colourless solid; mp 128-130 °C; (KBr) cm⁻¹: 3841, 2199, 1872, 1425, 766, 636; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (s, 1H), 7.42-7.26 (m, 5H), 7.0 (d, J = 8.52 Hz, 1H), 7.02 (s, 2H), 6.96 (s, 1H), 5.08 (s, 2H), 3.7 (s, 3H), 2.3 (s, 3H), 1.32 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 152.8, 138.7, 138.3, 136.79, 136.74, 135.6, 132.0, 130.3, 128.9, 128.3, 125.4, 125.3, 125.0, 124.9, 120.5, 110.1, 106.1, 103.1, 59.5, 34.2, 33.1, 30.2, 21.0; mass (ES-) HRMS (ESI-TOF) calcd for C₃₂H₃₅N₂OS 495.2476 (M-H)⁻ Found 495.2483.

2,6-di-tert-butyl-4-(((1-methyl-5-nitro-1H-indol-3-yl)thio)(p-tolyl)methyl)phenol (3fe)

Yield 60% (154mg); Colourless solid; mp 126-128 °C; (KBr) cm⁻¹: 3740, 2067, 1543, 661; ¹H NMR (400 MHz, CDCl₃): δ 8.3 (d, J = 2.14 Hz, 1H), 8.22 (dd, J = 8.98 Hz and 2.22 Hz, 1H), 7.3 (d, J = 7.99 Hz, 2H), 7.2 (d, J = 4.85 Hz, 1H), 7.08-7.04 (m, 4H) , 6.95 (s, 1H), 5.14 (s, 1H), 5.06 (s, 1H), 3.7 (s, 3H), 2.2 (s, 3H), 1.32 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 152.8, 142.2, 139.5, 138.6, 137.5, 136.7, 135.6, 131.8, 129.9, 128.9, 125.0, 117.6, 117.0, 109.3, 108.6, 59.5, 34.2, 33.3, 30.2, 21.0; mass (ES-) HRMS (ESI-TOF) calcd for C₃₁H₃₅N₂O₃S 515.2374 (M-H)⁻ Found 515.2380.

2,6-di-tert-butyl-4-(((1,5-dimethyl-1H-indol-3-yl)thio)(3-methoxyphenyl)methyl)phenol (3ej)

Yield 75% (188mg); Colourless solid; mp 120-122 °C; (KBr) cm⁻¹: 3629, 1963, 1597, 1432, 769, 699; ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.28 (m, 1H), 7.18-7.12 (m, 2H), 7.06 (s, 2H), 7.03-7.01 (m, 2H), 6.97 (t, J = 2.33 Hz, 1H) , 6.76-6.72 (m, 2H), 5.10 (s, 1H), 5.05 (s, 1H), 3.7 (s, 3H), 3.6 (s, 3H), 2.4 (s, 3H), 1.33 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 159.3, 152.6, 144.02, 135.38, 135.32, 134.7, 132.2, 130.5, 129.3, 129.04, 125.1, 123.6, 121.0, 119.2, 113.9, 112.5, 109.0, 103.2, 59.2, 55.1, 34.2, 32.8, 30.2, 21.4; mass (ES-) HRMS (ESI-TOF) calcd for C₁₂H₃₈NO₂S 500.2629 (M-H)⁺ Found 500.2638.

2,6-di-tert-butyl-4-(((5-methoxy-1-methyl-1H-indol-3-yl)thio)(3-methoxyphenyl)methyl)phenol (3dj)

Yield 78% (201mg); Colourless solid; mp 122-124 °C; (KBr) cm⁻¹: 3585, 2270, 1999, 1452, 687, 629; ¹H NMR (400 MHz, CDCl₃): δ 7.20-7.12 (m, 2H), 7.06(s, 2H) , 7.01 (d, J = 7.52 Hz, 1H), 6.97-6.95 (m, 2H), 6.85 (dd, J = 8.89 Hz and 2.51 Hz, 1H), 6.77-6.71 (m, 2H), 5.08 (s, 1H), 5.07 (s, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.63 (s, 3H), 1.33 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 159.3, 154.7, 152.6, 144.1, 135.38, 135.2, 132.24, 132.14, 131.0, 129.0, 125.0, 120.9, 113.9, 112.5, 110.2, 103.2, 100.9, 59.3, 55.7, 55.1, 34.3, 33.0, 30.2; mass (ES-) HRMS (ESI-TOF) calcd for C₃₂H₃₈NO₃S 516.2578 (M-H)⁻ Found

516.2585.

2,6-di-tert-butyl-4-(((1,2-dimethyl-1H-indol-3-yl)thio)(phenyl)methyl)phenol (3ga)

Yield 90% (212mg); White solid; mp 124-126 °C; (KBr) cm⁻¹: 2887, 1529, 1470, 1236, 700; ¹H NMR (400 MHz, DMSO-d⁶): δ 7.50 (d, J = 7.24 Hz, 1H), 7.45-7.43 (m, 2H), 7.39 (d, J = 8.01 Hz, 1H), 7.32 (td, J = 7.14 Hz, 1.14 Hz, 3H), 7.25-7.21 (m, 1H), 7.12 (td, J = 7.08 Hz, 1.2 Hz, 1H), 7.32 (td, J = 7.8 Hz, 1.04 Hz, 1H), 6.85 (s, 2H), 6.80 (s, 1H), 5.11 (s, 1H), 3.58 (s, 3H), 1.99 (s, 3H), 1.24 (s, 18H); ¹³C NMR (100MHz, DMSO-d⁶): δ 153.0, 142.6, 142.2, 138.9, 136.9, 132.6, 130.0, 128.67, 128.63, 127.2, 124.8, 121.4, 120.2, 118.3, 109.9, 100.2, 57.7, 34.8, 30.6, 30.4, 10.4; mass

(ES-) ESMS (ESI-TOF) calcd for $C_{31}H_{36}NOS^{-}470.2$ (M-H)⁻ Found 470.6.

4-(((1,2-dimethyl-1H-indol-3-yl)thio)(phenyl)methyl)-2,6-diisopropylphenol (3gk)

Yield 88% (195mg); White solid; mp 122-124 °C; (KBr) cm⁻¹: 2900, 1529, 1141, 736, 698; ¹H NMR (400 MHz, DMSO-d⁶): δ 7.95 (s, 1H), 7.53 (d, *J* = 7.12 Hz, 1H), 7.39-7.35 (m, 3H), 7.29-7.26 (m, 2H), 7.22-7.18 (m, 1H), 7.14-7.04 (m, 2H), 6.85 (s, 2H), 5.13 (s, 1H), 3.58 (s, 3H), 3.22 (sep, J = 6.83 Hz, 2H), 2.05 (s, 3H), 1.06 (d, *J* = 6.83 Hz 6H), 1.01 (d, *J* = 6.83 Hz 6H); ¹³C NMR (100MHz, DMSO-d⁶): δ 150.0, 143.4, 142.6, 136.9, 135.1, 132.8, 129.9, 128.56, 128.54, 127.1, 123.3, 121.4, 120.1, 118.4, 109.9, 100.3, 57.9, 30.4, 26.5, 23.3, 23.2, 10.5; mass (ES-) ESMS (ESI-TOF)

calcd for C₂₉H₃₂NOS⁻442.2 (M-H)⁻ Found 442.6

2,6-di-tert-butyl-4-(furan-2-yl((1-methyl-1H-indol-3-yl)thio)methyl)phenol (3ak)

Yield 85% (182mg); White solid; mp 120-122 °C; (KBr) cm⁻¹: 3607, 3105, 2958, 1457, 693; ¹H NMR (400 MHz, DMSO-d⁶): δ 7.96 (s, 1H), 7.51 (d, *J* = 7.86 Hz, 1H), 7.41-7.37 (m, 3H), 7.27 (t, *J* = 7.73 Hz, 2H), 7.20-7.14 (m, 3H), 7.06 (t, *J* = 7.10 Hz, 1H), 6.97 (s, 2H), 5.33 (s, 1H), 3.67 (s, 3H), 3.26-3.19 (m, 2H), 1.09 (d, *J* = 6.93 Hz 6H), 1.05 (d, *J* = 6.93 Hz 6H); ¹³C NMR (100MHz, DMSO-d⁶): δ 150.0, 142.9, 137.1, 135.4, 135.2, 132.9, 130.0, 128.6, 128.5, 127.1, 123.2, 122.0, 120.0, 119.2, 110.5, 102.9, 58.5, 32.9, 26.6, 23.3, 23.2; mass (ES-) ESMS (ESI-TOF) calcd for C₂₈H₃₀NOS⁻

428.2 (M-H)⁻ Found 428.5.

2,6-di-tert-butyl-4-(((1-methyl-1H-indol-3-yl)thio)(thiophen-2-yl)methyl)phenol (3dl)

Yield 85% (219mg); light yellow solid ; mp 106-108 °C; (KBr) cm⁻¹: 3624, 2954, 1734, 1430, 1234, 788, 695; ¹H NMR (400 MHz, CDCl₃): δ 7.23 (m, 1H), 7.19 (m, 1H), 7.13-7.11 (d, *J* = 7.96 Hz, 1H), 7.06 (s, 2H), 7.02-6.99 (dd, *J* = 8.32 Hz, 1.33 Hz, 1H), 6.87-6.86 (m, 2H), 6.78 (s, 1H) , 5.32 (s, 1H), 5.07 (s, 1H), 3.63 (s, 3H), 2.40 (s, 3H), 1.32 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 152.9, 146.6, 135.3, 135.1, 132.18, 130.6, 129.4, 126.3, 125.8, 125.0, 124.6, 123.6, 119.1, 109.0, 102.9, 54.6, 34.2, 32.9, 30.2, 21.4; mass (ES⁺) calcd for C₂₉H₃₅NO₂SNa 516.2 (M+Na)⁺ Found 516.5.

2,6-di-tert-butyl-4-(((1-methyl-1H-indol-3-yl)thio)(thiophen-2-yl)methyl)phenol (3dk)

Yield 83% (192mg);Llight Brown solid; mp 104-106 °C; (KBr) cm⁻¹: 3784, 2161, 1525, 660, 621; ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.52 (m, 1H), 7.25-7.24 (m, 1H), 7.22-7.17 (m, 2H), 7.12-7.08 (m, 1H), 7.05 (s, 2H), 6.88-6.86 (m, 2H), 6.81 (s, 1H) , 5.35 (s, 1H), 5.06 (s, 1H), 3.66 (s, 3H), 1.32 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 152.9, 146.5, 136.9, 135.4, 135.0, 131.9, 130.4, 126.3, 125.8, 125.0, 124.6, 122.0, 120.1, 119.4, 109.3, 103.6, 54.4, 34.2, 32.8, 30.2; mass (ES-) HRMS (ESI-TOF) calcd for C₂₈H₃₂NOS₂ 462.1931 (M-H)⁻

Found 462.1947.

2,6-di-tert-butyl-4-(furan-2-yl((1-methyl-1H-indol-3-yl)thio)methyl)phenol (3am)

Yield 80% (178mg); Light Yellow solid; mp 124-126 °C; (KBr) cm⁻¹: 3697, 2238, 1541, 719, 635; ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 7.88 Hz, 1H), 7.389-7.386 (m, 1H), 7.25-7.24 (m, 1H), 7.21-7.18 (m, 1H), 7.11-7.08 (m, 1H), 7.0 (s, 2H), 6.8 (s, 1H), 6.28-6.27 (m, 1H), 6.20-6.19 (m, 1H), 5.13 (s, 1H), 5.06 (s, 1H), 3.68 (s, 3H), 1.31 (s, 18H); ¹³C NMR (100MHz, CDCl₃): δ 154.4, 152.9, 141.8, 136.9, 135.4, 135.3, 130.5, 130.0, 125.1, 122.0, 120.0, 119.5, 110.2, 109.2, 107.8, 103.0, 52.3, 34.1, 32.8, 30.1; mass (ES-) HRMS (ESI-TOF) calcd for C₂₈H₃₂NO₂S 446.2159 (M-

H)⁻ Found 446.2165.

4-((2-fluorophenyl)((1-methyl-1H-indol-3-yl)thio)methyl)phenol (4)

Yield 50% (90mg); Pale Yellow oil; (KBr) cm⁻¹: 2844, 1689, 1470, 1221, 730; ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.28 (m, 1H), 7.21-7.16 (m, 3H), 7.10-6.95 (m, 7H), 7.75-6.73 (m, 2H), 6.42 (s, 1H), 5.90 (s, 1H, 3.69 (s, 3H); ¹³C NMR (100MHz, CDCl₃): δ 161.8, 159.4, 154.0, 137.5, 135.1, 131.4, 131.2, 130.48, 130.44, 129.9, 128.6, 127.90, 127.82, 127.19, 123.85, 123.81, 121.6, 119.8, 118.8, 117.1, 115.3, 109.1, 40.34, 40.31, 32.69; mass (ES+) ESMS (ESI-TOF) calcd for C₂₂H₁₈FNOSNa 386.0 (M+Na)⁻ Found 385.6.

1-methyl-1H-indole(1a)

Light Brown oil; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (dt, J = 7.94 Hz, 0.94Hz 1H), 7.31 (dd, J = 8.25 Hz, 0.83Hz 1H), 7.23-7.19 (m, 1H), 7.12-7.08 (m, 1H), 7.03(d, J = 3.05 Hz 1H), 6.47(dd, J = 3.12 Hz, 0.85 Hz 1H), 3.77(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ 136.7, 128.7, 128.5, 121.5, 120.8, 119.2, 109.1, 100.9, 32.3 mass (ES+) ESMS (ESI-TOF) calcd for C₉H₁₀N⁺ 132.08 (M+H)⁺ Found 132.2.

2-(1-methyl-1H-indol-3-yl)isothiouronium iodide (I)

Light Yellow Solid; ¹H NMR (400 MHz, DMSO-d⁶): δ 8.88(s, 2H), 8.55(s, 2H), 7.98(s, 1H), 7.64 (d, J = 7.98 Hz, 1H), 7.5(d, J = 7.59 Hz, 1H), 7.34 (dd, J = 7.13 Hz, 1.07 Hz 1H), 7.27-7.23 (m, 1H), 3.88(s, 3H) ; ¹³C NMR (100MHz, CDCl₃): δ 171.2, 139.9, 138.0, 129.2, 123.2, 121.7, 118.2, 111.6, 89.1, 33.8.

1-methyl-1H-indole-3-thiol (II)

Light Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 7.72 Hz, 1H), 7.31-7.27 (m, 2H), 7.17-7.09 (m, 1H), 6.94 (s, 1H), 3.68(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ 137.4, 134.9, 129.5, 122.5, 120.39, 120.16, 109.5, 107.2, 33.0; mass (ES+) ESMS (ESI-TOF) calcd for C₉H₁₀NS⁺ 164.05 (M+H)⁺ Found 164.

3. Copies of ¹H and ¹³C NMR spectra

¹H NMR spectrum of compound- 3aa (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ab (100 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ac (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3ad (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ad (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3ae (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ae (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3af (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3af (100 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ag (100 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3be (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3ca (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ca (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3dh (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3dh (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3eh (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3eh (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3dc (100 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3dc (100 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3de (100 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ei (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3ee (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ee (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3dg (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3dg (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3ci (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ci (100 Mz, CDCl₃)

¹³CNMR spectrum of compound- 3ce (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3fe (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3fe (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3ej (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ej (100 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3dj (100 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3ga (100 Mz, DMSO-d⁶)

¹³C NMR spectrum of compound- 3gk (100 Mz, DMSO-d⁶)

¹³C NMR spectrum of compound- 3ak (100 Mz, DMSO-d⁶)

¹H NMR spectrum of compound- 3dl (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3dl (100 Mz, CDCl₃)

¹H NMR spectrum of compound- 3al (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3al (100 Mz, CDCl₃)

¹³C NMR spectrum of compound- 3am (100 Mz, CDCl₃)

¹³C NMR spectrum of compound- 4 (100 Mz, CDCl₃, X = grease)

¹H NMR spectrum of compound- 1a (400 Mz, CDCl₃)

¹³C NMR spectrum of compound- 1a (100 Mz, CDCl₃)

¹³C NMR spectrum of intermediate compound- I (100 Mz, DMSO-d⁶)

¹³C NMR spectrum of intermediate compound- II (100 Mz, CDCl₃)

4. Comparative data of mechanistic study

¹H NMR spectrum of 1a, intermediate compound I and II

¹H NMR spectrum of 1a, intermediate compound I and II (expanded spectra)

5. Antimicrobial activity data

Material and Methods

Growth media, reagents and bacterial strains

All bacterial media and supplements including Mueller–Hinton cation supplemented broth II (MHBII) and Mueller–Hinton agar (MHA) were purchased from Becton-Dickinson (Franklin Lakes, NJ, USA). All other chemicals and antibiotics were procured from Sigma-Aldrich (St. Louis, MO, USA). While performing the experiments all the relevant guidelines and regulations were followed. All the synthesized compounds were primarily screened by following Clinical and Laboratory Standard Institute (CLSI) guidelines¹, against *E. coli* ATCC 25922, *S. aureus* ATCC 29213, *K. pneumoniae* BAA 1705, *A. baumannii* BAA-1605 and *P. aeruginosa* ATCC 27853. The further screening includes drug-resistant clinical strains of *S. aureus* including those resistant to vancomycin and other clinically utilized antibiotics. These strains were procured from Biodefense and Emerging Infections Research Resources Repository/Network on Antimicrobial Resistance in *Staphylococcus aureus*/American Type Culture Collection (BEI/NARSA/ATCC, USA), and routinely cultivated on MHA and MHBII. To obtain the starter culture, a single colony was picked from MHA plate, inoculated in MHBII, and incubated overnight at 37°C with shaking for 18–24h.

Cell cytotoxicity against Vero cells (ATCC CCL-81)

3am was tested for cytotoxicity against Vero cells using MTT assay as described earlier². $\sim 10^3$ cells/well were seeded in 96 well plate and incubated at 37°C with 5% CO₂ atmosphere. After 24 h, compound was added ranging from 100–5 mg/L and incubated for 72 h at 37°C. After the incubation was over, MTT was added at 5 mg/L in each well, incubated at 37°C for further 4 hours, residual medium was discarded, 0.1 mL of DMSO was added to solubilize the formazan crystals and OD₅₄₀ for the calculation of CC₅₀. CC₅₀ is defined as the lowest concentration of compound, which leads to a 50% reduction in cell viability. Doxorubicin was used as positive control and each experiment was repeated in triplicate.

Tables:

Table1: MIC values (mg/L)of synthesized compounds against gram-positive and gram-negative pathogen.

S. No	compounds	Escherichia coli ATCC 25922	S. aureus ATCC 29213	K. pneumoniae BAA-1705	A. baumannii BAA-1605	P. aeruginosa ATCC 25923
1	3aa	>64	>64	>64	>64	>64
2	3ab	>64	>64	>64	>64	>64
3	3ac	>64	>64	>64	>64	>64
4	3ad	>64	>64	>64	>64	>64
5	3ae	>64	>64	>64	>64	>64
6	3af	>64	>64	>64	>64	>64
7	3ag	>64	>64	>64	>64	>64
8	3de	>64	>64	>64	>64	>64
9	3ei	>64	>64	>64	>64	>64
10	3dg	>64	>64	>64	>64	>64
11	3dl	>64	>64	>64	>64	>64
12	3al	>64	>64	>64	>64	>64
13	3am	>64	2	>64	>64	>64
14	Levofloxacin	0.0156	0.25	64	8	1

Table 2: MIC	(mg/L) (of 3al against	clinical MDR	MRSA an	d VRSA	isolates
10010 2. WIIC	$(m_{\mathcal{B}}, L)$	or our against		WIICO/ L ul		15014105

Organisms					
		3am	Levofloxacin	Meropenem	Vancomycin
MSSA	ATCC 29213	2	0.25	0.125	1
MRSA	NRS 100	4	0.25	32	2
	NRS 119	4	16	64	2
	NRS 129	2	0.25	8	1
VRSA	VRS 1	4	32	64	>64

Table 3: Cytotoxicity profile and selectivity Index of 3al against Vero cells (ATCC CCL-81)

Compound	MIC (mg/L)	SI (CC ₅₀ /MIC)	
3am	2	>100	

References:

2. 2.Twentyman, P. R.; Luscombe, M., A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. *British journal of cancer* 1987,56 (3), 279-285.

^{1.} Wayne, P., Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement. *CLSI document M100-S21* 2012.