Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

# AITF (4-acetamidophenyl triflimide) mediated synthesis of amides, peptides and esters

Eti Chetankumar, Swetha Bharamawadeyar, Chinthaginjala Srinivasulu and Vommina V Sureshbabu\*

Peptide Research Laboratory, Department of Chemistry, Jnana Bharathi, Bangalore University, Bengaluru

560 056, India.

E-mail: <u>hariccb@gmail.com</u>, <u>sureshbabuvommina@rediffmail.com</u>.

# Contents

| 1. | General Experimental information                                        | <b>S2</b>  |
|----|-------------------------------------------------------------------------|------------|
| 2. | General procedure for the synthesis of coupling reagents                | <b>S</b> 3 |
| 3. | General procedure for the synthesis of amides peptides and esters       | <b>S</b> 5 |
| 4. | Characterization data of compounds                                      | <b>S6</b>  |
| 5. | HRMS, <sup>1</sup> H and <sup>13</sup> C NMR spectra of compounds       | S32        |
| 6. | <b>RP-HPLC</b> Chromatograms of compounds                               | S210       |
| 7. | Single crystal X-ray diffraction analysis                               | S253       |
| 8. | Differential scanning calorimetry (DSC) analysis of triflate surrogates | S266       |

### **General Experimental Information**

All commercially available reagents were used as received without further purification. The solvents were purified and dried by standard procedures prior to use. Reaction progress was monitored by MERCK thin layer chromatography (TLC) performed on aluminium plates coated with silica gel 60 F254. Chromatograms were visualized by UV light at 254 nm or by staining using KMnO<sub>4</sub>, Iodine. High resolution mass spectra were recorded on a Micromass O-TOF micromass spectrometer using electron spray ionization mode. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on a Bruker AMX 400 MHz and 100 MHz spectrometer, respectively in DMSO $d_6$  using TMS as internal standard. Chemical shifts ( $\delta$ ) for <sup>1</sup>H and <sup>13</sup>C are given in ppm and coupling constants (J) quoted in Hz. <sup>1</sup>H NMR splitting patterns were designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad signal. The RP-HPLC analysis of isomers was carried out by using an Agilent instrument at  $\lambda = 254$  nm; column: Phenomenex Lux Cellulose-1, pore size-5  $\mu$ m, diameter  $\times$  length = 4.6  $\times$  250 mm. For purification of products, column chromatography was performed on silica gel (100-200 mesh) using ethyl acetate and hexane mixture as eluent. Evaporation of solvents was performed under reduced pressure with a Büchi rotary evaporator. Melting points were determined in an open capillary using VEEGO, model: VMP-DS. Differential scanning calorimetry (DSC) was recorded on a Perkin Elmer Differential scanning calorimeter 8000.

**Experimental section:** 

**Procedure for synthesis of coupling reagents:** 



R = H (III); *meta*-fluoro (IV); *ortho*-fluoro (V)

To a solution of acetanilide (0.5 mmol, 1.0 equiv) and  $\text{LiNTf}_2$  (0.6 mmol, 1.2 equiv) in DCE (8 mL, 0.06 M) in a Schlenk flask under argon was added (diacetoxyiodo)benzene (DIB) (0.6 mmol, 1.2 equiv). The resulting mixture was stirred for 1.5 hours at 50 °C then filtered through a short plug of celite and concentrated under reduced pressure. The crude product was purified by silica gel chromatography.



N-(4-((1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methyl)sulfonamido)phenyl)acetamide (**III**) White solid; Yield 78 %; M.p.154-162 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  10.40 (s, 1H), 7.80 (d, J = 9.0 Hz, 2H), 7.61 (d, J = 8.8 Hz, 2H), 2.10 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.0, 142.8, 131.8, 128.6, 124.4, 120.4, 119.7, 118.9, 117.1, 24.0. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>10</sub>H<sub>8</sub>F<sub>6</sub>N<sub>2</sub>O<sub>5</sub>S<sub>2</sub> 414.9857, found 414.9845.



N-(2-fluoro-4-((1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methyl)sulfonamido)phenyl)acetamide (**IV**) White solid; Yield 59 %; M.p.136-137 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.14 (s, 1H), 8.28 (t, *J* = 8.7 Hz, 1H), 7.95 – 7.88 (m, 1H), 7.54 (d, *J* = 8.9 Hz, 1H), 2.15 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  169.2, 154.8, 152.4, 131.5, 131.4, 131.3, 131.2, 128.42 (2), 125.4, 125.2, 123.6, 123.5, 119.45 (2), 111.1, 110.9, 23.8.



N-(3-fluoro-4-((1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methyl)sulfonamido)phenyl)acetamide (V)

White solid; Yield 50 %; M.p.137-138 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  10.14 (s, 1H), 8.27 (t, J = 8.7 Hz, 1H), 7.92 (d, J = 10.8 Hz, 1H), 7.54 (d, J = 8.9 Hz, 1H), 2.15 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.2, 154.8, 152.4, 131.5, 131.4, 131.3, 131.2, 128.4, 125.4, 125.2 (2), 121.7, 119.4 (2), 118.5, 111.1, 110.9, 23.8.

#### Procedure for synthesis of peptides:



AITF (1.0 equiv) was added to a stirred solution of  $N^{\alpha}$ -protected amino acid **1** (1.0 equiv) and DIPEA (1.0 equiv) in CH<sub>3</sub>CN (3 mL) at room temperature. Then the reaction mixture was stirred for 20 min and amino acid ester (1.2 equiv) was added and the reaction mixture was stirred for 2.5 h at room temperature. The progress of the reaction was monitored by TLC. Thereafter, the reaction mixture was concentrated using rotary evaporator and then diluted with 15 mL of ethyl acetate and washed with 5% HCl (10 mL x 2) 5% Na<sub>2</sub>CO<sub>3</sub> (10 mL x 2), saturated NaCl solution and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed in vacuo, and the resulting crude product was purified by silica gel column chromatography using the mixture of hexane and ethyl acetate as eluents to afford **3**.



(S)-methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-methylbutanamido)-3phenylpropanoate (**3a**)

White solid; Yield 93 %; M.p. 168-172 °C;  $[\alpha]_D^{25} = -11.00$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.34 (d, *J* = 8Hz, 1H), 7.89 (d, *J* = 8Hz, 2H), 7.73 (dd, *J* = 8Hz, *J* = 4Hz, 2H), 7.42 (t, *J* = 8Hz, 2H), 7.31 (dd, *J* = 16Hz, *J* = 4Hz, 3H), 7.23-7.16 (m, 5H), 4.48 (dd, *J* = 12Hz, *J* = 8Hz, 1H), 4.30-4.21 (m, 3H), 3.87 (t, *J* = 8Hz, 1H), 3.55 (s, 3H), 3.02 (dd, *J* = 12Hz, *J* = 8Hz, 1H), 2.92 (dd, *J* = 12Hz, *J* = 8Hz, 1H), 1.99 (dd, *J* = 12Hz, *J* = 8Hz, 1H), 0.82 (d, *J* = 4Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.7, 171.2, 155.9, 143.9, 143.7, 140.6, 137.0, 128.9, 128.1,

127.6, 127.0, 125.3, 120.0, 65.6, 59.8, 53.4, 51.6, 46.6, 36.5, 30.4, 19.0,18.1; IR (cm<sup>-1</sup>): 3290, 2960, 1741, 1696, 1645, 1529, 1444, 1291, 1245, 1212, 1103, 1027, 757, 697; HRMS (ESI-TOF) m/z :  $[M+H]^+$  Calcd for C<sub>30</sub>H<sub>33</sub>N<sub>2</sub>O<sub>5</sub> 501.2389, found 501.2384.



(S)-methyl 2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-methylbutanamido)-3phenylpropanoate (**3a**\*)

White solid; Yield 90 %; M.p. 193-197 °C;  $[\alpha]_D^{25} = +29.52$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.38 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.42 (dd, *J* = 8.0, 8.0 Hz, 2H), 7.34 – 7.16 (m, 8H), 4.54-4.48 (m, 1H), 4.32 – 4.17 (m, 3H), 3.89 (dd, *J* = 8.0, 8.0 Hz, 1H), 3.61 (s, 3H), 3.06 (dd, *J* = 16, 8 Hz, 1H), 2.87 (dd, *J* = 12, 12 Hz, 1H), 1.87-1.78 (m, 1H), 0.66 (dd, *J* = 8.0, 8.0 Hz, 6H);<sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.9, 171.1, 156.0, 143.8, 143.7, 140.6 (2), 137.1, 129.0, 128.1, 127.6, 127.0, 126.4, 125.4, 125.3, 120.0, 65.7, 59.7, 53.4, 51.8, 46.6, 36.7, 30.4, 19.0, 17.6; HRMS (ESI-TOF) m/z : [M+H]<sup>+</sup> Calcd for C<sub>30</sub>H<sub>33</sub>N<sub>2</sub>O<sub>5</sub> 501.2389, found 501.2386.



(S)-methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)propanamido)-3methylbutanoate (**3b**)

White solid; Yield 91%; M.p. 149-153 °C;  $[\alpha]_D^{25} = +207.70$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.08 (d, *J* = 12Hz, 1H), 7.89 (d, *J* = 8Hz, 2H), 7.72 (t, *J* = 8Hz, 2H), 7.53 (d, *J* = 8Hz, 1H), 7.41 (t, *J* = 8Hz, 2H), 7.32 (t, *J* = 8Hz, 2H), 4.27-4.15 (m, 5H), 3.62 (s, 3H), 2.05-1.99 (m, 1H), 1.21 (d, *J* = 8Hz, 3H), 0.87 (t, *J* = 4Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.9, 171.9, 155.5, 143.8, 143.7, 140.6, 127.6, 127.0, 125.2 (2), 120.0, 65.5, 57.2, 51.6, 49.5, 46.5, 29.9, 18.8, 18.1 (2); IR (cm<sup>-1</sup>): 3304, 2927, 1733, 1686, 1650, 1549, 1447, 1255, 1208,

1016, 794, 664; HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>5</sub> 447.1896, found 447.1873.



methyl (S)-2-((S)-2-(((benzyloxy)carbonyl)amino)propanamido)-2-phenylacetate (3c)

White solid; Yield 92%; M.p. 122-125 °C;  $[\alpha]_D^{25} = +226.46$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.66 (d, *J* = 4Hz, 1H), 7.45 (d, *J* = 8Hz, 1H), 7.39-7.27 (m, 10H), 5.41 (d, *J* = 4Hz, 1H), 5.00 (s, 2H), 4.24-4.17 (m, 1H), 3.62 (s, 3H), 1.24 (d, *J* = 4Hz, 3H); <sup>13</sup>C NMR(101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.6, 170.9, 155.5, 137.0, 135.9, 128.6, 128.3, 127.7, 127.6, 65.3, 56.1, 52.2, 49.5, 18.1; IR (cm<sup>-1</sup>): 3304, 2952, 1735, 1693, 1650, 1527, 1496, 1210, 1122, 1060, 731, 694; HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>5</sub> 393.1426, found 393.1424.



(S)-ethyl 2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-phenylpropanoate (3d)

White solid; Yield 86%; M.p. 100.5-102 °C;  $[\alpha]_D^{25} = -98.97$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.13 (d, *J* = 8Hz, 1H), 7.29-7.20 (m, 5H), 6.86 (d, *J* = 8Hz, 1H), 4.42 (dd, *J* = 16Hz, *J* = 8Hz, 1H), 4.04-3.95 (m, 3H), 3.01-2.94 (m, 2H), 1.36 (s, 9H), 1.13-1.06 (m, 6H); <sup>13</sup>C NMR(101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.8, 171.3, 154.8, 137.0, 129.1, 128.1, 126.5, 77.9, 60.4, 53.4, 49.4, 36.6, 28.1, 18.1, 13.8; HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>5</sub> 387.1896, found 387.1857.



S)-methyl 2-((2S,3R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-methylpentanamido)-3-phenylpropanoate(**3e**)

White solid; Yield 89%; M.p. 175-178 °C;  $[\alpha]_D^{25} = -139.96$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.41 (d, *J* = 7.4 Hz, 1H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.75 (d, *J* = 6.5 Hz, 2H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.37 – 7.31 (m, 3H), 7.24 – 7.17 (m, 5H), 4.52 – 4.46 (m, 1H), 4.32 – 4.22 (m, 3H), 3.91 (t, *J* = 8.7 Hz, 1H), 3.56 (s, 3H), 3.03 (dd, *J* = 13.8, 6.0 Hz, 1H), 2.94 (dd, *J* = 13.8, 8.8 Hz, 1H), 1.72-1.66 (m, 1H), 1.13 – 1.05 (m, 2H), 0.83 – 0.78 (m, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.7, 171.3, 155.8, 143.9, 143.7, 140.6, 137.0, 128.9, 128.1, 127.6, 127.0, 126.4, 125.3, 120.0, 65.5, 58.7, 53.4, 51.6, 46.6, 36.5, 36.3 24.2, 15.0, 10.7; IR (cm<sup>-1</sup>): 2964, 1751, 1691, 1649, 1536, 1449, 1289, 1206, 1121, 1031, 757; HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>31</sub>H<sub>34</sub>N<sub>2</sub>NaO<sub>5</sub> 537.2365, found 537.2351.



(S)-methyl 2-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-methylpentanamido)acetate (**3f**)

White solid; Yield 91%; M.p. 125-128 °C;  $[\alpha]_D^{25} = -268.94$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.35 (t, *J* = 5.8 Hz, 1H), 7.90 (d, *J* = 7.5 Hz, 2H), 7.74 (dd, *J* = 7.3, 3.4 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.33 (td, *J* = 7.2, 3.5 Hz, 2H), 4.33 – 4.20 (m, 3H), 4.11 – 4.05 (m, 1H), 3.84 (qd, *J* = 17.4, 5.9 Hz, 2H), 3.62 (s, 3H), 1.69 – 1.60 (m, 1H), 1.55 – 1.41 (m, 2H), 0.88 (dd, *J* = 15.3, 6.6 Hz, 6H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  173.4, 170.7, 156.3, 144.3 (2), 141.1, 128.1, 127.5, 125.8, 120.5, 66.0, 53.2, 52.1, 47.1, 41.1, 40.9, 24.5, 23.4, 21.8; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>31</sub>H<sub>34</sub>N<sub>2</sub>NaO<sub>5</sub> 425.2076, found 425.2075.



(S)-benzyl 2-(((benzyloxy)carbonyl)amino)-4-methylpentanamido)-3-phenylpropanoate(3g)

White solid; Yield 90%; M.p. 96-102 °C;  $[\alpha]_D^{25} = -312.26$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.42 (d, *J* = 7.3 Hz, 1H), 7.40 – 7.10 (m, 15H), 5.11 – 4.97 (m, 4H), 4.60 – 4.47 (m, 1H), 4.10 – 4.04 (m, 1H), 3.08 – 2.96 (m, 2H), 1.67 – 1.45 (m, 2H), 1.41 – 1.33 (m, 1H), 0.85 – 0.78 (m, 6H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.9, 171.7, 156.2, 137.5, 136.1, 129.5, 128.8, 128.6, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 126.9, 66.4, 65.7, 54.0, 53.2, 41.1, 36.9, 24.5, 23.4, 21.8; HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>30</sub>H<sub>34</sub>N<sub>2</sub>NaO<sub>5</sub> 525.2365, found 525.2369.



(S)-methyl 2-((S)-2-((tert-butoxycarbonyl)amino)-2-phenylacetamido)-4-methylpentanoate (3h)

White solid; Yield 92%; M.p. 81-82 °C;  $[\alpha]_D^{25} = -69.86$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.52 (d, *J* = 8Hz, 1H), 7.39 (t, *J* = 8Hz, 2H), 7.34-7.27 (m, 4H), 5.23 (d, *J* = 8Hz, 1H), 4.33-4.27 (m, 1H), 3.53 (s, 3H), 1.60-1.53 (m, 3H), 1.38 (s, 9H), 0.85 (dd, *J* = 20Hz, *J* = 8Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.5, 170.0, 154.8, 138.3, 128.0, 127.4, 127.1, 78.3, 57.3, 51.7, 50.2, 40.1, 28.1, 24.0, 22.7, 21.2; IR (cm<sup>-1</sup>): 2964, 2888, 1725, 1670, 1522, 1377, 1152, 700; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>31</sub>N<sub>2</sub>O<sub>5</sub> 379.2233, found 379.2223.



(S)-methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-2-phenylacetamido)-4-methylpentanoate(3h\*)

White solid; Yield 89 %; M.p. 110-114 °C;  $[\alpha]_D^{25} = -162.88$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.54 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 2H), 7.33 – 7.26 (m, 3H), 7.19 (d, *J* = 12 Hz, 1H), 5.24 (d, *J* = 8.0 Hz, 1H), 4.25-4.19 (m, 1H), 3.62 (s, 3H), 1.58-1.42 (m, 3H), 1.38 (s, 9H), 0.71 (dd, *J* = 44.4, 6.3 Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.7, 170.1, 154.7, 138.8, 128.1, 127.4, 127.0, 78.4, 57.5, 51.8, 50.2, 40.2, 28.0, 24.0, 22.6, 20.9; HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>30</sub>N<sub>2</sub>NaO<sub>5</sub> 401.2052, found 401.2052.



(S)-methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino(methylthio)butanamido)propanoate (3i)

White solid; Yield 88 %; M.p. 155-158 °C;  $[\alpha]_D^{25} = +46.31$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.39 (d, *J* = 8Hz, 1H), 7.89 (d, *J* = 8Hz, 2H), 7.73 (t, *J* = 4Hz, 2H), 7.58 (d, *J* = 8Hz, 1H), 7.44-7.31 (m, 4H), 4.28-4.19 (m, 4H), 4.14-4.09 (m, 1H), 3.61 (s, 3H), 2.47 (d, *J* = 8Hz, 2H), 2.05 (s, 3H), 1.92-1.78 (m, 2H), 1.28 (d, *J* = 8Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.9, 171.4, 155.8, 143.8, 143.7, 140.6, 127.6, 127.0, 125.3, 120.1, 65.5, 53.4, 51.8, 47.5, 46.6, 31.7, 29.4, 16.7, 14.6; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>S 457.1719, found 457.1789.



(S)-ethyl 2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tritylthio)propanamido)-3methylbutanoate (**3j**)

White solid; Yield 88 %; M.p. 110-132 °C;  $[\alpha]_D^{25} = +219.28$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.99 (d, *J* = 8Hz, 1H), 7.89 (d, *J* = 4Hz, 2H), 7.72 (t, *J* = 8Hz, 2H), 7.42-7.22 (m, 20H), 4.30-4.17 (m, 4H), 4.08-3.95 (m, 3H), 2.41-2.33 (m, 2H), 2.03-1.95 (m, 1H), 1.05 (t, *J* = 8Hz, 3H), 0.82 (t, *J* = 8Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  170.8, 170.2, 155.6, 144.2,

143.7, 143.6, 140.6, 129.0, 128.0, 127.6, 127.0, 126.7, 125.3, 120.0, 65.7, 60.2, 57.4, 53.3, 46.5, 33.9, 29.8, 18.7, 18.0, 13.9; HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>44</sub>H<sub>44</sub>N<sub>2</sub>NaO<sub>5</sub>S 735.2869, found 735.2848.



(S)-methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-(tertbutoxy)phenyl)propanamido)-3-methylbutanoate (**3k**)

White solid; Yield 90%; M.p. 80.2-82.5 °C;  $[\alpha]_D^{25} = +13.77$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.24 (d, *J* = 8Hz, 1H), 7.87 (d, *J* = 8Hz, 2H), 7.66-7.61 (m, 3H), 7.40 (t, *J* = 8Hz, 2H), 7.32-7.21 (m, 4H), 6.82 (d, *J* = 8Hz, 2H), 4.39-4.34 (m, 1H), 4.22-4.08 (m, 4H), 3.63 (s, 3H), 2.92 (dd, *J* = 12Hz, *J* = 4Hz, 1H), 2.72 (dd, *J* = 12Hz, *J* = 12Hz, 1H), 2.09-2.01 (m, 1H), 1.19 (s, 9H), 0.89 (dd, *J* = 12Hz, *J* = 4Hz, 6H); <sup>13</sup>C NMR(101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.0, 171.8, 155.7, 153.3, 143.7, 140.6 (2), 132.5, 129.7, 127.5, 127.0, 125.3, 125.2, 123.2, 120.0, 77.5, 65.6, 57.3, 55.7, 51.6, 46.5, 36.7, 29.9, 28.4, 18.9, 18.2; HRMS (ESI-TOF) m/z:[M+H]<sup>+</sup> Calcd for C<sub>34</sub>H<sub>41</sub>N<sub>2</sub>O<sub>6</sub> 573.2965, found 573.2932.



(S)-methyl 2-((S)-2-(((benzyloxy)carbonyl)amino)-3-phenylpropanamido)propanoate (31)

White solid; Yield 93%; M.p. 126-128 °C;  $[\alpha]_D^{25} = -47.79$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.52 (d, *J* = 8Hz, 1H), 7.51 (d, *J* = 8Hz, 1H), 7.34-7.20 (m, 10H), 4.92 (s, 2H), 4.33-4.25 (m, 2H), 3.62 (s, 3H), 3.00 (dd, *J* = 8Hz, *J* = 4Hz, 1H), 2.71 (dd, *J* = 12Hz, *J* = 12Hz, 1H), 1.31 (d, *J* = 8Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.9, 171.6, 155.8, 138.0, 136.9, 129.1, 128.2, 128.0, 127.6, 127.4, 126.2, 65.1, 55.7, 51.8, 47.5, 37.3, 16.8; IR (cm<sup>-1</sup>): 2950, 1742,

1650, 1536, 1257, 745, 696; HRMS (ESI-TOF) m/z:  $[M+H]^+$  Calcd for  $C_{21}H_{25}N_2O_5$  385.1763, found 385.1760.



(S)-methyl 2-(((R)-2-(((benzyloxy)carbonyl)amino)-3-phenylpropanamido)propanoate (**3**I\*)

White solid; Yield 92%; M.p. 132-135 °C;  $[\alpha]_D^{25} = +60.22$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.42 (d, *J* = 8Hz, 1H), 7.45 (d, *J* = 12Hz, 1H), 7.34-7.18 (m, 10H), 4.95 (d, *J* = 4Hz, 2H), 4.34-4.24 (m, 2H), 3.63 (s, 3H), 2.95 (dd, *J* = 12Hz, *J* = 4Hz, 1H), 2.76 (t, *J* = 12Hz, 1H), 1.23 (d, *J* = 8Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.8, 171.2, 155.6, 137.8, 137.0, 129.2, 128.2, 127.9, 127.6, 127.3, 126.2, 66.1, 55.8, 51.8, 47.5, 37.8, 17.1; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub> 385.1763, found 385.1759.



(S)-isopropyl 2-((S)-2-((tert-butoxycarbonyl)amino)-3-phenylpropanamido)propanoate (**3m**)

White solid; Yield %; M.p. 98-102 °C;  $[\alpha]_D^{25} = -224.80$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.32 (d, J = 4Hz, 1H), 7.28-7.17 (m, 5H), 6.85 (d, J = 8Hz, 1H), 4.92-4.85 (m, 1H), 4.25-4.16 (m, 2H), 2.98 (dd, J = 12Hz, J = 4Hz, 1H), 2.71 (dd, J = 16Hz, J = 8Hz, 1H), 1.28 (s, 9H), 1.19 (dd, J = 12Hz, J = 8Hz, 9H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>): 171.9, 171.7, 155.2, 138.3, 129.1, 127.9, 126.1, 77.8, 67.7, 55.3, 47.8, 37.3, 28.1, 21.4 (2), 16.8; HRMS (ESI-TOF) m/z : [M+Na]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>30</sub>N<sub>2</sub>NaO<sub>5</sub> 401.2052, found 401.2042.



(S)-benzyl 3-(((benzyloxy)carbonyl)amino)-4-(((S)-1-isopropoxy-1-oxopropan-2-yl)amino)-4oxobutanoate (**3n**)

White solid; Yield 90%; M.p. 98-105 °C;  $[\alpha]_D^{25} = -60.77$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.33 (d, *J* = 4Hz, 1H), 7.58 (d, *J* = 8Hz, 1H), 7.38-7.29 (m, 10H), 5.10 (d, *J* = 4Hz, 2H), 5.02 (s, 2H), 4.89-4.83 (m, 1H), 4.51-4.45 (m, 1H), 4.20-4.13 (m, 1H), 2.78 (dd, *J* = 16Hz, *J* = 4Hz, 1H), 2.62 (dd, *J* = 20Hz, *J* = 8Hz, 1H), 1.25 (d, *J* = 8Hz, 3H), 1.16 (t, *J* = 4Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.8, 170.5, 169.8, 155.7, 136.8, 136.0, 128.3, 128.3, 127.9, 127.7, 127.6, 67.8, 65.6, 65.4, 50.9, 47.9, 36.3, 21.4, 21.3, 16.6; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>31</sub>N<sub>2</sub>O<sub>7</sub> 471.2131, found 471.2118.



(S)-tert-butyl 4-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(((S)-1-methoxy-1-oxo-phenylpropan-2-yl)amino)-5-oxopentanoate (**30**)

White solid; Yield 83%; M.p. 85-109 °C;  $[\alpha]_D^{25} = -153.60$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.33 (d, *J* = 8Hz, 1H), 7.89 (d, *J* = 8Hz, 2H), 7.72 (t, *J* = 8Hz, 2H), 7.49-7.40 (m, 3H), 7.34-7.18 (m, 7H), 4.47 (dd, *J* = 12Hz, *J* = 8Hz, 1H), 4.30-4.18 (m, 3H), 4.04 (dd, *J* = 16Hz, *J* = 8Hz, 1H), 3.58 (s, 3H), 3.02 (dd, *J* = 16Hz, *J* = 4Hz, 1H), 2.94 (dd, *J* = 16Hz, *J* = 8Hz, 1H), 2.19 (t, *J* = 8Hz, 2H), 1.87-1.78 (m, 1H), 1.75-1.65 (m, 1H), 1.39 (s, 9H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.7, 171.6, 171.4, 155.7, 143.8, 143.7, 140.6, 136.9, 129.0, 128.1, 127.6, 127.0, 126.5, 125.2, 120.0, 79.6, 65.6, 53.5, 51.8, 46.6, 40.1, 36.4, 31.1, 27.7, 27.3; IR (cm<sup>-1</sup>):

2977, 1730, 1693, 1645, 1530, 1204, 1153, 1083, 737, 697; HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>34</sub>H<sub>38</sub>N<sub>2</sub>NaO<sub>7</sub> 609.2577, found 609.2508.



(S)-methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-oxo-5-(tritylamino)pentanamido)-3-methylbutanoate (**3p**)

White solid; Yield 87%; M.p. 102-106 °C;  $[\alpha]_D^{25} = +224.60$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.58 (s, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.90 (d, *J* = 7.5 Hz, 2H), 7.73 (d, *J* = 7.4 Hz, 2H), 7.48 – 7.38 (m, 3H), 7.35 – 7.16 (m, 18H), 4.31 – 4.15 (m, 4H), 4.10 - 4.04 (m, 1H), 3.60 (s, 3H), 2.46 – 2.35 (m, 1H), 2.34 – 2.25 (m, 1H), 2.08 – 1.98 (m, 1H), 1.86 – 1.79 (m, 1H), 1.72 – 1.64 (m, 1H), 0.85 (dd, *J* = 6.7, 4.4 Hz, 7H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.5, 172.4, 171.9, 156.3, 145.3, 144.2 (2), 141.1, 128.9, 128.1, 127.9, 127.5, 126.8, 125.7, 120.6, 69.6, 66.0, 57.7, 54.4, 52.1, 47.1, 33.3, 30.3, 28.4, 19.3, 18.5; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>45</sub>H<sub>46</sub>N<sub>3</sub>O<sub>6</sub> 724.3387, found 724.3328.



(S)-ethyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentanamido)propanoate (**3q**)

White solid; Yield 81%; M.p. 84-96°C;  $[\alpha]_D^{25} = -25.48$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.37 (s, 1H), 7.90 (d, *J* = 7.5 Hz, 1H), 7.69 (dd, *J* = 23.1, 7.5 Hz, 4H), 7.44 – 7.32 (m, 5H), 4.44 – 4.16 (m, 6H), 4.07 – 3.94 (m, 2H), 3.62 – 3.55 (m, 1H), 3.00 (s, 3H), 2.55 (s, 1H), 2.48 (s, 3H), 2.44 (s, 3H), 2.03 (s, 6H), 1.93 – 1.65 (m, 5H), 1.42 (s, 6H), 1.29 – 1.12 (m, 1H), 3.00 (s, 2H), 3.62 – 3.55 (m, 2H), 3.62 – 3.55 (m, 2H), 3.62 – 3.55 (m, 2H), 3.60 (s, 3H), 2.55 (s, 2H), 3.64 (s, 3H), 3.65 (s, 6H), 3.65 (s, 5H), 3.65 (s, 5H), 3.65 (s, 6H), 3.65 (s, 5H), 3.65 (s, 5H),

3H). <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  176.1, 158.7, 156.5, 154.4, 144.2 (2), 141.2, 138.4, 132.5, 128.1, 127.5, 125.6, 125.2, 120.6, 117.2, 87.2, 66.1, 60.2, 52.8, 47.0, 43.7, 42.7, 28.7, 25.2, 20.2, 19.3, 18.1, 12.7; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>39</sub>H<sub>50</sub>N<sub>5</sub>O<sub>8</sub>S 748.3380, found 748.3332.



(S)-methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-6-((tertbutoxycarbonyl)amino)hexanamido)propanoate (**3r**)

White solid; Yield 88%; M.p. 103-110 °C;  $[\alpha]_D^{25} = -52.60$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.34 (d, *J* = 8Hz, 1H), 7.89 (d, *J* = 8Hz, 2H), 7.73 (dd, *J* = 8Hz, 2H), 7.47-7.30 (m, 6H), 4.28-4.20 (m, 4H), 4.03-3.97 (m, 1H), 3.61 (s, 3H), 2.91-2.85 (m, 2H), 1.64-1.51 (m, 4H), 1.36 (s, 9H), 1.28 (d, *J* = 8Hz, 3H), 1.22-1.10 (m, 2H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.9, 171.9, 155.8, 155.5, 143.8, 143.7, 140.6, 127.6, 127.0, 125.3, 120.0, 77.3, 65.5, 54.1, 51.7, 47.4, 46.6, 31.6, 29.2, 28.2, 22.7, 16.8; HRMS (ESI-TOF) m/z:[M+H]<sup>+</sup> Calcd for C<sub>30</sub>H<sub>40</sub>N<sub>3</sub>O<sub>7</sub> 554.2866, found 554.2823.



(5R,8R)-methyl 1-(9H-fluoren-9-yl)-8-isopropyl-5-methyl-3,6,9-trioxo-2-oxa-4,7,10triazadodecan-12-oate (**6a**)

White solid; Yield 92%; M.p. 188-192 °C;  $[\alpha]_D^{25} = -187.96$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.45 (s, 1H), 7.87 (dd, *J* = 18.5, 7.5 Hz, 3H), 7.72 (t, *J* = 6.9 Hz, 2H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.36 (dd, *J* = 10.8, 4.3 Hz, 2H), 4.28 – 4.12 (m, 5H), 3.88 – 3.82 (m, 2H), 3.61 (s, 3H), 2.00 – 1.95 (m, 1H), 1.21 (d, *J* = 7.1 Hz, 3H), 0.88 – 0.83 (m, 6H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  175.9, 171.8, 170.6, 143.0, 141.1, 139.8, 129.4, 127.7,

121.8, 120.5, 110.2, 66.0, 57.7, 52.0, 50.7, 47.0, 31.3, 19.5, 18.3; IR (cm<sup>-1</sup>): 3294, 1734, 1692, 1634, 1538, 736, 552; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>32</sub>N<sub>3</sub>O<sub>6</sub> 482.2291, found 482.2322.



(6R,9R,12R)-methyl 9-benzyl-2,2,6-trimethyl-12-(2-(methylthio)ethyl)-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (**6b**)

White solid; Yield 88%; M.p. 99-103 °C;  $[\alpha]_D^{25} = -29.06$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.41 (d, *J* = 4Hz, 1H), 7.79 (d, *J* = 8Hz, 1H), 7.26–7.17 (m, 5H), 6.91 (d, *J* = 8Hz, 1H), 4.58–4.50 (m, 1H), 4.42-4.36 (m, 1H), 3.88 (dd, *J* = 16Hz, *J* = 4Hz, 1H), 3.62 (s, 3H), 3.00 (dd, *J* = 16Hz, *J* = 8Hz, 1H), 2.81 (dd, *J* = 16Hz, *J* = 8Hz, 1H), 2.47–2.38 (m, 2H), 2.03 (s, 3H), 1.98 – 1.86 (m, 2H), 1.36 (s, 9H), 1.07 (d, *J* = 8Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.3, 171.9, 171.0, 154.9, 137.4, 129.2, 127.9, 126.2, 78.0, 53.2, 51.9, 50.8, 49.8, 37.4, 30.5, 29.3, 28.1, 18.0, 14.5; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>36</sub>N<sub>3</sub>O<sub>6</sub>S 482.2325, found 482.2322.



(5R,8R,11R,14S)-methyl 5-benzyl-11-isobutyl-14-isopropyl-8-methyl-3,6,9,12-tetraoxo-1phenyl-2-oxa-4,7,10,13-tetraazapentadecan-15-oate (**6c**)

White solid; Yield 90%; M.p. 182-194 °C;  $[\alpha]_D^{25} = -113.72$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.20 (d, J = 7.3 Hz, 1H), 8.07 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.40 – 7.12 (m, 10H), 4.93 (s, 1H), 4.44 – 4.24 (m, 3H), 4.20 - 4.13 (m, 2H), 3.62 (s, 1H), 3.00 (dd, J = 13.9, 3.3 Hz, 1H), 2.74 – 2.67 (m, 1H), 2.06 – 2.01 (m, 1H), 1.66 – 1.58 (m, 1H), 1.44 (dd, J = 14.6, 7.4 Hz, 1H), 1.22 (d, J = 7.0 Hz, 3H), 0.89 – 0.85 (m, 12H).

<sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 172.7, 172.3, 171.7, 156.3, 138.6, 137.4, 129.8, 129.6, 128.7, 128.4, 128.4, 128.1, 127.8, 126.6, 65.6, 57.7, 56.4, 52.1, 51.2, 48.4, 41.2, 30.3, 24.5, 23.5, 22.6, 22.2, 19.3, 18.6, 18.5; IR (cm<sup>-1</sup>): 3285, 2962, 1742, 1697, 1634, 1537, 696, 454; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>32</sub>H<sub>45</sub>N<sub>4</sub>O<sub>7</sub> 597.3288, found 597.3283.



(6R,9R,12R,15R)-methyl 6-benzyl-15-(4-(benzyloxy)benzyl)-9-isobutyl-2,2,12-trimethyl-4,7,10,13-tetraoxo-3-oxa-5,8,11,14-tetraazahexadecan-16-oate (**6d**)

White solid; Yield 84%; M.p. 189-196 °C;  $[\alpha]_D^{25} = +25.31$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.29 (d, *J* = 8Hz, 1H), 8.07 (d, *J* = 8Hz, 1H), 7.99 (d, *J* = 8Hz, 1H), 7.43–7.11 (m, 12H), 6.92 (dd, *J* = 16Hz, *J* = 8Hz, 3H), 5.04 (s, 2H), 4.40–4.24 (m, 3H), 4.18–4.12 (m, 1H), 3.54 (s, 3H), 2.98–2.84 (m, 3H), 2.71 (dd, *J* = 12Hz, *J* = 12Hz, 1H), 1.64–1.57 (m, 1H), 1.44 (d, *J* = 4Hz, 2H), 1.28 (s, 9H), 1.18 (d, *J* = 4Hz, 3H), 0.84 (dd, *J* = 12Hz, *J* = 8Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.1, 171.7, 171.4 (2), 157.0, 155.2, 138.2, 137.1, 130.1, 129.1, 129.0, 128.3, 127.9, 127.7, 127.6, 126.0, 114.5, 78.0, 69.0, 55.7, 53.8, 51.7, 50.7, 47.8, 40.9, 37.1, 35.7, 28.0, 23.9, 23.1, 21.5, 18.1; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>52</sub>N<sub>4</sub>NaO<sub>8</sub> 739.3683, found 739.3678.

Procedure for synthesis of amides:



AITF (1.0 equiv) was added to a stirred solution of carboxylic acid/ $N^{\alpha}$ -protected amino acid **7** (1.0 equiv) and DIPEA (1.0 equiv) in CH<sub>3</sub>CN (3 mL) at room temperature. Then the reaction mixture was stirred for 20 min and amine (1.2 equiv) was added and the reaction mixture was stirred for 2.0 h at room temperature. The progress of the reaction was monitored by TLC. Thereafter, the reaction mixture was concentrated using rotary evaporator and then diluted with 15 mL of ethyl acetate and washed with 5% HCl (10 mL x 2) 5% Na<sub>2</sub>CO<sub>3</sub> (10 mL x 2), saturated NaCl solution and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed in vacuo, and the resulting crude product was purified by silica gel column chromatography using the mixture of hexane and ethyl acetate as eluents to afford **9**.



N-benzyl-4-chlorobenzamide (9a)

White solid; Yield 95%; M.p. 38-46 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.14 (t, J = 8Hz, 1H), 7.93-7.90 (m, 2H), 7.57-7.54 (m, 2H), 7.35-7.22 (m, 5H), 4.48 (d, J = 4Hz, 2H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  165.1, 139.4, 136.0, 133.0, 129.1, 128.3, 128.2, 127.2, 126.7, 42.6; IR (cm<sup>-1</sup>) 3311, 3029, 1637, 1549, 761, 523; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>13</sub>ClNO 246.0686, found 246.0677.



### 4-methoxy-N-phenylbenzamide (9b)

White solid; Yield 90%; M.p. 170-172 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.10 (s, 1H), 7.98-7.95 (m, 2H), 7.77 (d, *J* = 8Hz, 2H), 7.34 (dd, *J* = 8Hz, *J* = 8Hz, 2H), 7.10-7.04 (m, 3H), 3.84 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  164.8, 161.8, 139.3, 129.5, 128.5, 126.9, 123.3, 120.3, 113.5, 55.3; IR (cm<sup>-1</sup>) 3335, 3015, 1653, 1594, 750, 578; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>13</sub>NNaO<sub>2</sub> 250.0844, found 250.0823.



4-nitro-N-phenylbenzamide (**9c**)

Yellow solid; Yield 84%; M.p. 207-210 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.57 (s, 1H), 8.37 (t, *J* = 8Hz, 2H), 8.18 (d, *J* = 8Hz, 2H), 7.78 (d, *J* = 8Hz, 2H), 7.38 (t, *J* = 8Hz, 2H), 7.14 (t, *J* = 8Hz, 1H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  163.8, 149.1, 140.6, 138.6, 129.1, 128.7, 124.1, 123.5, 120.4; IR (cm<sup>-1</sup>) 3320, 3083, 1650, 1515, 757, 585; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>11</sub>N<sub>2</sub>O<sub>3</sub> 243.0770, found 243.0770.



N-(4-bromo-3-methylphenyl)-3-nitrobenzamide (9d)

Pale Yellow solid; Yield 86%; M.p. 177-181°C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  10.53–10.45 (m, 1H), 8.81 (d, J = 1.8 Hz, 1H), 8.37 (d, J = 7.7 Hz, 2H), 7.80–7.70 (m, 2H), 7.54–7.41 (m, 2H), 2.34 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  163.6, 148.1, 138.5, 137.7, 136.4, 134.4,

132.4, 130.3, 126.4, 123.2, 122.8, 120.2, 118.9, 23.1; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>12</sub>BrN<sub>2</sub>O<sub>3</sub> 335.0031, found 335.0026.



N-(2-fluorophenyl)furan-2-carboxamide (9e)

White solid; Yield 92%; M.p. 76-79 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.95 (s, 1H), 7.94 (dd, J = 4Hz, 1H), 7.62-7.58 (m, 1H), 7.34-7.19 (m, 4H), 6.70 (dd, J = 4Hz, J = 4Hz, 1H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  156.8, 156.2, 154.4, 147.1, 145.8, 126.9 (4), 124.9, 124.8, 124.3, 124.2, 115.8, 115.6, 114.9, 112.1; IR (cm<sup>-1</sup>) 3425, 3142, 1672, 1535, 769, 581; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>11</sub>H<sub>9</sub>FNO<sub>2</sub> 206.0617, found 206.0612.



N-phenylbutyramide (9f)

White solid; Yield 91%; M.p. 93-95 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.85 (s, 1H), 7.59 (t, *J* = 8Hz, 2H), 7.29-7.25 (m, 2H), 7.03-6.99 (m, 1H), 2.27 (t, *J* = 8Hz, 2H), 1.65-1.56 (m, 2H), 0.91 (t, *J* = 8Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.0, 139.3, 128.6, 122.8, 118.9, 38.2, 18.5, 13.6; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>10</sub>H<sub>14</sub>NO 164.1075, found 164.1062.



N-(tert-butyl)-2-phenylacetamide (9g)

White solid; Yield 92%; M.p. 106-109 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.65 (s, 1H), 7.32 – 7.19 (m, 5H), 3.36 (s, 2H), 1.26 (s, 9H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.5, 136.9, 128.8,

128.0, 126.0, 49.9, 43.0, 28.4; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>18</sub>NO 192.1388, found 192.1382.



(E)-3-(4-hydroxyphenyl)-N-(4-methoxyphenyl)acrylamide (9h)

Pale Yellow solid; Yield 87%; M.p. 189-191 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.92 (s, 1H), 9.87 (s, 1H), 7.60 (d, *J* = 8Hz, 2H), 7.45 (dd, *J* = 16Hz, 3H), 6.89 (dd, *J* = 8Hz, *J* = 4Hz, 2H), 6.82 (d, *J* = 8Hz, 2H), 6.58 (d, *J* = 16Hz, 1H), 3.73 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  163.5, 159.0, 155.1, 139.7, 132.6, 129.3, 125.8, 120.5, 118.7, 115.8, 113.8, 55.1; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>NO<sub>3</sub> 270.1130, found 270.1120.



(9H-fluoren-9-yl)methyl (S)-(3-methyl-1-oxo-1-(phenylamino)butan-2-yl)carbamate (9i)

White solid; Yield 91%; M.p. 230-234 °C;  $[\alpha]_D^{25} = -47.53$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  10.02 (s, 1H), 7.88 (d, *J* = 8Hz, 2H), 7.75 (t, *J* = 8Hz, 2H), 7.60 (t, *J* = 8Hz, 3H), 7.43-7.39 (m, 2H), 7.33-7.28 (m, 4H), 7.05 (t, *J* = 8Hz, 1H), 4.29-4.20 (m, 3H), 3.99 (t, *J* = 8Hz, 1H), 2.08-1.99 (m, 1H), 0.93 (t, *J* = 8Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>):  $\delta$ 170.4, 156.2, 143.8, 143.7, 140.6, 138.7, 128.7, 127.6, 127.0. 125.3 (2), 120.0, 119.2, 65.7, 61.0, 46.6, 30.3, 19.1, 18.5; IR (cm<sup>-1</sup>) 3286, 3064, 2960, 1694, 1246, 737, 533; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub> 415.2022, found 415.2021.



(9H-fluoren-9-yl)methyl (S)-(1-((3,4-dimethylphenyl)amino)-4-methyl-1-oxopentan-2yl)carbamate (**9**j)

White solid; Yield 87%; M.p. 150-154 °C;  $[\alpha]_D^{25} = -79.73(c 1.0, CH_3OH)$ ; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.81 (s, 1H), 7.89 (d, *J* = 8Hz, 2H), 7.73 (d, *J* = 4Hz, 2H), 7.58 (d, *J* = 8Hz, 1H), 7.41-7.32 (m, 6H), 7.04 (d, *J* = 8Hz, 1H), 4.30-4.20 (m,4H), 2.17 (d, *J* = 8Hz, 6H), 1.68-1.55 (m, 2H), 1.49-1.42 (m, 1H), 0.90 (t, *J* = 4Hz, 6H) <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.1.155.9, 143.8, 143.7, 140.7, 136.6, 136.1, 130.9, 129.4, 127.6, 127.0, 125.2, 120.5, 120.0, 116.8, 65.5, 53.7, 46.6, 40.6, 24.2, 22.9, 21.4, 19.5, 18.7; IR (cm<sup>-1</sup>) 3292, 3065, 2956, 1684, 1284, 737, 680; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>29</sub>H<sub>33</sub>N<sub>2</sub>O<sub>3</sub> 457.2491, found 457.2487.



(S)-benzyl (1-(benzylamino)-1-oxo-3-phenylpropan-2-yl)carbamate (9k)

White solid; Yield 90%; M.p. 146-150 °C;  $[\alpha]_D^{25} = +2.38$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.43 (t, *J* = 8Hz, 1H), 7.52 (d, *J* = 8Hz, 1H), 7.34-7.17 (m, 15H), 4.95 (s, 2H), 7.31-7.25 (m, 3H), 3.00 (dd, *J* = 12Hz, *J* = 4Hz, 1H), 2.79 (dd, *J* = 12Hz, *J* = 12Hz, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.3, 155.8, 139.1, 138.0, 137.0, 129.1, 128.2 (2), 128.0, 127.6, 127.4, 127.0, 126.6, 126.2, 65.2, 56.3, 42.0, 37.6; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>3</sub> 411.1685, found 411.1692.



(9H-fluoren-9-yl)methyl ((2S,3R)-3-methyl-1-oxo-1-(pyridin-2-ylamino)pentan-2-yl)carbamate (9l)

White solid; Yield 87 %; M.p. 150-153 °C;  $[\alpha]_D^{25} = -30.81$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.44 (s, 1H), 8.32 (d, *J* = 4Hz, 1H), 8.09 (d, *J* = 8Hz, 1H), 7.88 (d, *J* = 8Hz, 2H), 7.80-7.72 (m, 3H), 7.60 (d, *J* = 12Hz, 1H), 7.40 (dd, *J* = 8Hz, *J* = 8Hz, 2H), 7.30 (dd, *J* = 16Hz, *J* = 4Hz, 2H), 7.11 (t, *J* = 8Hz, 1H), 4.30-4.19 (m, 4H), 1.86-1.80 (m, 1H), 1.53-1.46 (m, 1H), 1.24-1.15 (m, 1H), 0.89-0.82 (m, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.5, 156.1, 151.6, 147.9, 143.7, 140.6, 138.1, 127.6, 127.0, 125.2, 120.0, 119.5, 113.5, 65.6, 59.7, 46.6, 36.1, 24.4, 15.2, 10.7; IR (cm<sup>-1</sup>) 3253, 3206, 2964, 1725, 1298, 780, 534; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>28</sub>N<sub>3</sub>O<sub>3</sub> 430.2131, found 430.2126.



(S)-tert-butyl 3-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(benzylamino)-3oxopropyl)-1H-indole-1-carboxylate (**9m**)

White solid; Yield 90%; M.p. 153-155 °C;  $[\alpha]_D^{25} = -84.04$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.64 (t, *J* = 4Hz, 1H), 8.04 (d, *J* = 8Hz, 1H), 7.87-7.76 (m, 4H), 7.62 (dd, *J* = 12Hz, *J* = 4Hz, 2H), 7.39-7.17 (m, 12H), 4.45-4.38 (m, 1H), 4.31 (brs, 2H), 4.23-4.10 (m, 3H), 3.13 (dd, *J* = 16Hz, *J* = 4Hz, 1H), 3.00 (dd, *J* = 12Hz, *J* = 12Hz, 1H), 1.56 (s, 9H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.3, 155.8, 149.0, 143.7, 143.6, 140.6 (2), 139.1, 134.6, 130.2, 128.1, 127.5, 127.0, 126.6, 125.3, 125.2, 124.2, 124.1, 122.4, 120.0, 119.5, 116.7, 114.6, 83.4, 65.7, 54.6, 46.5, 42.1, 27.6, 27.4; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>38</sub>H<sub>38</sub>N<sub>3</sub>O<sub>5</sub> 616.2811, found 616.2769.



(S)-ethyl 2-(3-bromobenzamido)-2-phenylacetate (9n)

White solid; Yield 86%; M.p. 98-102 °C;  $[\alpha]_D^{25} = +47.50$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.29 (d, *J* = 4Hz, 1H), 8.12 (s, 1H), 7.91 (d, *J* = 8Hz, 1H), 7.77-7.74 (m, 1H), 7.48-7.37 (m, 6H), 5.62 (d, *J* = 8Hz, 1H), 4.18-4.10 (m, 2H), 1.16-1.17 (m, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  170.3, 165.0, 135.9, 135.6, 134.2, 130.5, 130.2, 128.5, 128.4, 128.2, 127.7, 126.9, 121.5, 60.9, 57.1, 13.9; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>16</sub>BrNNaO<sub>3</sub> 384.0211, found 384.0206.



(S)-methyl 2-(4-methoxybenzamido)-3-methylbutanoate (90)

White solid; Yield 86%; M.p. 100.7-101.1 °C;  $[\alpha]_D^{25} = -2.49$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78-7.75 (m, 2H), 6.94-6.90 (m, 2H), 6.52 (d, J = 8Hz, 1H), 4.76 (dd, J = 8Hz, J = 4Hz, 1H), 3.84 (s, 3H), 3.76 (s, 3H), 2.29-2.21 (m, 1H), 0.98 (dd, J = 8Hz, J = 8Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.9, 166.8, 162.4, 128.9, 126.4, 113.8, 57.4, 55.5, 52.3, 31.7, 19.0, 18.0; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>19</sub>NNaO<sub>4</sub> 288.1212, found 288.1200.



(S)-methyl 2-(4-fluorobenzamido)-4-methylpentanoate (9p)

White solid; M.p. 97-100°C;  $[\alpha]_D^{25} = -18.57$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.76 (d, J = 7.6 Hz, 1H), 7.97 (dd, J = 8.2, 5.8 Hz, 2H), 7.31 (t, J = 8.5 Hz, 2H), 4.53-4.48 (m, 1H), 3.65 (s, 3H), 1.82-1.75 (m, 1H), 1.72-1.66 (m, 1H), 1.61-1.54 (m, 1H), 0.90 (dd, J = 18.2, 6.5 Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  173.5, 166.0, 165.7, 163.2, 130.6, 130.5, 115.7, 115.5, 52.3, 51.4, 39.6, 24.9, 23.2, 21.5; IR (cm<sup>-1</sup>) 3276, 3076, 2957, 1745, 1273, 766, 503; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>19</sub>FNO<sub>3</sub> 268.1349, found 268.1345.



(S)-methyl 2-benzamido-4-methylpentanoate (9q)

White solid; Yield 89%; M.p. 102-104 °C;  $[\alpha]_D^{25} = -18.08$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.70 (d, *J* = 8Hz, 1H), 7.89-7.87 (m, 2H), 7.57-7.46 (m, 3H), 4.53-4.48 (m, 1H), 3.64 (s, 3H), 1.83-1.76 (m, 1H), 1.73-1.66 (m, 1H), 1.61-1.54 (m, 1H), 0.90 (dd, *J* = 16Hz, *J* = 8Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  173.0, 166.5, 133.7, 131.4, 128.2, 127.4, 51.8, 50.9, 39.2, 24.4, 22.8, 21.1; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>20</sub>NO<sub>3</sub> 250.1443, found 250.1429.



(S)-benzyl (1-(dibenzylamino)-1-oxopropan-2-yl)carbamate (11a)

White solid; Yield 88%; M.p. 82-88 °C;  $[\alpha]_D^{25} = -69.44$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.72 (d, *J* = 8Hz, 1H), 7.39-7.15 (m, 15H), 5.03 (s, 2H), 4.65-4.48 (m, 4H), 4.29 (d, *J* = 16Hz, 1H), 1.20 (d, *J* = 4Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  173.0, 155.8, 137.3, 137.0, 136.9, 128.6, 128.4, 128.3, 128.0, 127.7, 127.6, 127.3 (2), 126.9, 65.3, 49.4, 47.7, 46.7, 17.5; IR (cm<sup>-1</sup>) 3290, 2982, 1716, 1645, 729, 578; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub> 403.2022, found 403.2027.



(S)-tert-butyl (2-(methyl(phenyl)amino)-2-oxo-1-phenylethyl)carbamate (11b)

Gel; Yield 86%;  $[\alpha]_D^{25} = +164.13$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.38 (d, *J* = 4Hz, 2H), 7.21 (dd, *J* = 28Hz, *J* = 52Hz, 7H), 6.88 (d, *J* = 4Hz, 2H), 5.21 (d, *J* = 8Hz, 1H), 3.15 (s, 3H), 1.35 (s, 9H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  169.7, 154.7, 142.4, 137.2, 129.4, 128.1, 127.8, 127.6, 78.2, 55.1, 37.4, 28.1; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>3</sub> 363.1685, found 363.1654.



(S)-(9H-fluoren-9-yl)methyl (1-oxo-3-phenyl-1-(piperidin-1-yl)propan-2-yl)carbamate (11c)

White solid; Yield 81%; M.p. 99-105°C;  $[\alpha]_D^{25} = -137.64$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.89 (d, *J* = 8Hz, 1H), 7.68 (dd, *J* = 8Hz, *J* = 4Hz, 2H), 7.41 (t, *J* = 8Hz, 2H), 7.34-7.19 (m, 9H), 4.63 (dd, *J* = 12Hz, *J* = 8Hz, 1H), 4.19-4.13 (m, 3H), 2.90 (dd, *J* = 12Hz, *J* = 8Hz, 1H), 2.82 (dd, *J* = 16Hz, *J* = 8Hz, 1H), 1.50-1.33 (m, 6H), 1.26-1.10 (m, 4H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  169.1, 155.6, 143.7, 140.6, 137.7, 129.3, 128.0, 127.6, 127.0, 126.3, 125.3, 120.0, 65.6, 51.7, 46.5, 45.8, 42.4, 37.5, 25.7, 25.2, 23.9; IR (cm<sup>-1</sup>) 3259, 2932, 1713, 1623, 757, 540; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>29</sub>H<sub>30</sub>N<sub>2</sub>NaO<sub>3</sub> 477.2154, found 477.2078.



N,N-diethylbenzamide (11d)

Colorless oil; Yield 91%; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.45-7.33 (m, 5H), 3.46 (s, 2H), 3.17 (s, 2H), 1.08 (d, *J* = 41.7 Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  170.4, 137.7, 129.3,

128.7, 126.4, 43.2, 39.1, 14.4, 13.2; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>11</sub>H<sub>16</sub>NO178.1232, found 178.1238.



4-chloro-N,N-diethylbenzamide (11e)

Colourless oil; Yield 90%; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.48-7.45 (m, 1H), 7.38-7.36 (m, 1H), 3.41 (s, 2H), 3.16 (s, 2H), 1.08 (d, J = 21.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  168.8, 136.0, 133.6, 128.3, 128.0, 42.7, 38.7, 13.8, 12.7; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>11</sub>H<sub>14</sub>ClNNaO234.0662, found 234.0657.

**Procedure for synthesis of esters:** 



AITF (1.0 equiv) was added to a stirred solution of carboxylic acid/ $N^{\alpha}$ -protected amino acid **7** (1.0 equiv) and DIPEA (1.0 equiv) in CH<sub>3</sub>CN (3 mL) at room temperature. Then the reaction mixture was stirred for 20 min and alcohol (1.2 equiv) was added and the reaction mixture was stirred for 3.0 h at room temperature. The progress of the reaction was monitored by TLC at room temperature. Thereafter, the reaction mixture was concentrated using rotary evaporator and then diluted with 15 mL of ethyl acetate and washed with 5% HCl (10 mL x 2) 5% Na<sub>2</sub>CO<sub>3</sub> (10 mL x 2), saturated NaCl solution and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed in vacuo, and the resulting crude product was purified by silica gel column chromatography using the mixture of hexane and ethyl acetate as eluents to afford **13**.



(S)-phenyl 2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)propanoate (13a)

White solid; Yield 87%; M.p. 135-139 °C;  $[\alpha]_D^{25} = + 61.04$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.02 (d, *J* = 4Hz, 1H), 7.89 (d, *J* = 8Hz, 2H), 7.72 (dd, *J* = 8Hz, *J* = 4Hz, 2H), 7.44 -7.25 (m, 8H), 7.09 (d, *J* = 8Hz, 1H), 4.41-4.23 (m, 4H), 1.44 (d, *J* = 8Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.8, 155.9, 150.4, 143.7 (2), 140.7, 129.5, 127.6, 127.0, 125.9, 125.1 (2), 121.5, 120.1, 65.6, 49.5, 46.5, 16.7; IR (cm<sup>-1</sup>) 2928, 1762, 1531, 1450, 1302, 1260, 1161, 1064, 757, 690; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>21</sub>NNaO<sub>4</sub> 410.1368, found 410.1384.



(R)-phenyl 2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)propanoate (13a\*)

White solid; Yield 85%; M.p 134-137. $[\alpha]_D^{25} = +486.20$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.99 (d, *J* = 6.8 Hz, 1H), 7.89 (d, *J* = 7.5 Hz, 2H), 7.72 (t, *J* = 8.0 Hz, 2H), 7.44-7.25 (m, 7H), 7.09 (d, *J* = 7.9 Hz, 2H), 4.41-4.23 (m, 4H), 1.45 (d, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.7, 155.9, 150.4, 143.7 (2), 140.7, 129.5, 127.6, 127.0, 125.9, 125.1 (2), 121.4, 120.1, 65.6, 49.5, 46.6, 16.7; HRMS (ESI-TOF): m/z [M+H]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>22</sub>NO<sub>4</sub> 388.1549, found 388.1558.



(S)-benzyl (1-((4-nitrobenzyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate (13b)

White solid; Yield 78%; M.p. 102-110 °C;  $[\alpha]_D^{25} = -8.60$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.19 (d, J = 8Hz, 2H), 7.96 (d, J = 8Hz, 1H), 7.53 (d, J = 8Hz, 2H), 7.33-7.22 (m, 10H), 5.26 (s, 2H), 5.00 (d, J = 8Hz, 2H), 4.42-4.36 (m, 1H), 3.09 (dd, J = 16Hz, J = 4Hz, 1H), 2.94 (dd, J = 12Hz, J = 12Hz, 1H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.6, 156.0, 147.0,

143.5, 137.2, 136.8, 129.1, 128.2 (2), 127.7, 127.5, 126.5, 123.4, 65.4, 64.7, 55.6, 36.3; IR (cm<sup>-1</sup>) 2921, 1707, 1511, 1450, 1347, 1285, 1035, 1011, 752, 661; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>6</sub> 457.1376, found 457.1333.



(S)-benzyl 2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)propanoate (13c)

White solid; Yield 84%; M.p. 69-102 °C;  $[\alpha]_D^{25} = +2.08$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.88 (dd, J = 12Hz, J = 8Hz, 3H), 7.71 (dd, J = 4Hz, J = 4Hz, 2H), 7.43-7.30 (m, 9H), 5.12 (s, 2H), 4.32-4.14 (m, 4H), 1.31 (d, J = 8Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.7, 155.8, 143.8, 143.7, 140.7, 135.9, 128.3, 127.9, 127.6, 127.0, 125.1 (2), 120.1, 65.8, 65.6, 49.4, 46.5, 16.8; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>23</sub>NNaO<sub>4</sub> 424.1525, found 424.1490.



phenyl benzoate (13d)

White solid; Yield 89%; M.p. 62-68 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.14 (t, *J* = 8Hz, 2H), 7.35 (t, *J* = 8Hz, 1H), 7.61 (t, *J* = 8Hz, 2H), 7.50-7.45 (m, 2H), 7.31 (dd, *J* = 16Hz, *J* = 8Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  164.5, 150.6, 134.0, 129.7, 129.5, 128.9, 126.0, 121.9; IR (cm<sup>-1</sup>) 2982, 1734, 1593, 1471, 1262, 1192, 1062, 811, 747, 689; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>10</sub>NaO<sub>2</sub> 221.0578, found 221.0576.



(S)-methyl 2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-methylpentanoate (13e)

White solid; Yield 91%; M.p. 59-64 °C;  $[\alpha]_D^{25} = -29.04$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.89 (d, *J* = 4Hz, 2H), 7.75 (dd, *J* = 28Hz, *J* = 8Hz, 3H), 7.44-7.31 (m, 4H), 4.32-4.21 (m, 3H), 4.08-4.03 (m, 1H), 3.62 (s, 3H), 1.66-1.55 (m, 2H), 1.48-1.42 (m, 1H), 0.86 (dd, *J* = 16Hz, *J* = 8Hz, 6H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  173.2, 156.0, 143.8, 143.7, 140.7, 127.6, 127.0, 125.2, 120.1, 65.5, 52.1, 51.8, 46.6, 39.4, 24.1, 22.7, 21.0; IR (cm<sup>-1</sup>): 2955, 1751, 1534, 1447, 1263, 1120, 1081, 756, 538; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>25</sub>NNaO<sub>4</sub> 390.1681, found 390.1646.



(S)-methyl 2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)propanoate (13f)

White solid; Yield 86%; M.p. 112-114 °C;  $[\alpha]_D^{25} = -390.20$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.89 (d, *J* = 8Hz, 2H), 7.80-7.70 (m, 3H), 7.44-7.32 (m, 4H), 4.35-4.21 (m, 3H), 4.14-4.07 (m, 1H), 3.63 (s, 3H), 1.29 (d, *J* = 8Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  173.3, 155.8, 143.8, 143.7, 140.7, 127.6, 127.0, 125.1, 120.0, 65.5, 51.8, 49.2, 46.6, 16.9; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>19</sub>NNaO<sub>4</sub> 348.1212, found 348.1232.



(S)-ethyl 2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)propanoate (13g)

White solid; Yield 89%; M.p. 103-105 °C;  $[\alpha]_D^{25} = -181.08$  (1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  7.89 (d, *J* = 8Hz, 2H), 7.77-7.70 (m, 3H), 7.44-7.32 (m, 4H), 4.36-4.21 (m, 3H), 4.11-4.03 (m, 3H), 1.28 (d, *J* = 8Hz, 3H), 1.17 (t, *J* = 4Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.8, 155.8, 143.8, 143.7, 140.7, 127.6, 127.0, 125.2, 125.1, 120.0, 65.5, 60.4, 49.3, 46.6, 16.8, 14.0; IR (cm<sup>-1</sup>) 2982, 1748, 1527, 1449, 1298, 1255, 1179, 1029, 758, 583; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>21</sub>NNaO<sub>4</sub> 362.1368, found 362.1370.



(S)-methyl 2-(((benzyloxy)carbonyl)amino)-3-phenylpropanoate (13h)

Colorless oil; Yield 84%;  $[\alpha]_D^{25} = +143.90$  (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.86 (d, J = 8Hz, 1H), 7.37-7.22 (m, 10H), 5.02 (s, 2H), 4.38-4.32 (m, 1H), 3.64 (s, 3H), 3.10 (dd, J = 12Hz, J = 8Hz, 1H), 2.94 (dd, J = 16Hz, J = 8Hz, 1H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.3, 155.9, 137.4, 136.9, 129.0, 128.2 (2), 127.7, 127.5, 126.4, 65.4, 55.5, 51.8, 36.5; IR (cm<sup>-1</sup>) 2952, 1707, 1585, 1497, 1349, 1207, 1049, 1027, 742, 696; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>19</sub>NNaO<sub>4</sub> 336.1212, found 336.1185.



2,5-dioxopyrrolidin-1-yl 4-methoxybenzoate (13i)

White solid; Yield 84%; M.p. 138-141 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.05 (d, *J* = 8Hz, 2H), 7.17 (d, *J* = 8Hz, 2H), 3.89 (s, 3H), 2.88 (s, 4H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  170.4, 164.7, 161.2, 132.3, 116.2, 114.8, 55.8, 25.4; IR (cm<sup>-1</sup>) 2981, 1790, 1513, 1426, 1375, 1210, 1071, 1020, 756, 689; HRMS (ESI-TOF): m/z [M+Na]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>11</sub>NNaO<sub>5</sub> 272.0535, found 272.0535.



Figure S1. <sup>1</sup>H NMR Spectrum of III (400MHz, DMSO-d<sub>6</sub>)



Figure S2. <sup>13</sup>C NMR Spectrum of III (400MHz, DMSO-d<sub>6</sub>)



Figure S3. HRMS Spectrum of III (AITF)



Figure S4. <sup>1</sup>H NMR Spectrum of IV (400MHz, DMSO-d<sub>6</sub>)



Figure S5. <sup>13</sup>C NMR Spectrum of IV (400MHz, DMSO-d<sub>6</sub>)


Figure S6. <sup>1</sup>H NMR Spectrum of V (400MHz, DMSO-d<sub>6</sub>)



Figure S7. <sup>13</sup>C NMR Spectrum of V (400MHz, DMSO-d<sub>6</sub>)



Figure S8. <sup>1</sup>H NMR Spectrum of 3a (400MHz, DMSO-d<sub>6</sub>)



Figure S9. <sup>13</sup>C NMR Spectrum of 3a (101MHz, DMSO-d<sub>6</sub>)



Figure S10. HRMS Spectrum of 3a



Figure S11. <sup>1</sup>H NMR Spectrum of 3a\* (400MHz, DMSO-d<sub>6</sub>)



Figure S12. <sup>13</sup>C NMR Spectrum of 3a\* (101MHz, DMSO-d<sub>6</sub>)



Figure S13. HRMS Spectrum of 3a\*



Figure S14. <sup>1</sup>H NMR Spectrum of 3b (400MHz, DMSO-d<sub>6</sub>)



Figure S15. <sup>13</sup>C NMR Spectrum of 3b (101MHz, DMSO-d<sub>6</sub>)



Figure S16. HRMS Spectrum of 3b



Figure S17. <sup>1</sup>H NMR Spectrum of 3c (400MHz, DMSO-d<sub>6</sub>)



Figure S18. <sup>13</sup>C NMR Spectrum of 3c (101MHz, DMSO-d<sub>6</sub>)



Figure S19. HRMS Spectrum of 3c



Figure S20. <sup>1</sup>H NMR Spectrum of 3d (400MHz, DMSO-d<sub>6</sub>)



Figure S21. <sup>13</sup>C NMR Spectrum of 3d (101MHz, DMSO-d<sub>6</sub>)



Figure S22. HRMS Spectrum of 3d



Figure S23. <sup>1</sup>H NMR Spectrum of 3e (400MHz, DMSO-d<sub>6</sub>)



Figure S24. <sup>13</sup>C NMR Spectrum of 3e (101MHz, DMSO-d<sub>6</sub>)



Figure S25. HRMS Spectrum of 3e



Figure S26. <sup>1</sup>H NMR Spectrum of 3f (400MHz, DMSO-d<sub>6</sub>)



Figure S27. <sup>13</sup>C NMR Spectrum of 3f (101MHz, DMSO-d<sub>6</sub>)



Figure S28. HRMS Spectrum of 3f



Figure S29. <sup>1</sup>H NMR Spectrum of 3g (400MHz, DMSO-d<sub>6</sub>)



Figure S30. <sup>13</sup>C NMR Spectrum of 3g (101MHz, DMSO-d<sub>6</sub>)



Figure S31. HRMS Spectrum of 3g



Figure S32. <sup>1</sup>H NMR Spectrum of 3h (400MHz, DMSO-d<sub>6</sub>)



Figure S33. <sup>13</sup>C NMR Spectrum of 3h (101MHz, DMSO-d<sub>6</sub>)



Figure S34. HRMS Spectrum of 3h



Figure S35. <sup>1</sup>H NMR Spectrum of 3h\* (400MHz, DMSO-d<sub>6</sub>)



Figure S36. <sup>13</sup>C NMR Spectrum of 3h\* (101MHz, DMSO-d<sub>6</sub>)



Figure S37. HRMS Spectrum of 3h\*



Figure S38. <sup>1</sup>H NMR Spectrum of 3i (400MHz, DMSO-d<sub>6</sub>)



Figure S39. <sup>13</sup>C NMR Spectrum of 3i (101MHz, DMSO-d<sub>6</sub>)



Figure S40. HRMS Spectrum of 3i



Figure S41. <sup>1</sup>H NMR Spectrum of 3j (400MHz, DMSO-d<sub>6</sub>)


Figure S42. <sup>13</sup>C NMR Spectrum of 3j (101MHz, DMSO-d<sub>6</sub>)



Figure S43. HRMS Spectrum of 3j



Figure S44. <sup>1</sup>H NMR Spectrum of 3k (400MHz, DMSO-d<sub>6</sub>)



Figure S45. <sup>13</sup>C NMR Spectrum of 3k (101MHz, DMSO-d<sub>6</sub>)



Figure S46. HRMS Spectrum of 3k



Figure S47. <sup>1</sup>H NMR Spectrum of 3l (400MHz, DMSO-d<sub>6</sub>)



Figure S48. <sup>13</sup>C NMR Spectrum of 3l (101MHz, DMSO-d<sub>6</sub>)



Figure S49. HRMS Spectrum of 31



Figure S50. <sup>1</sup>H NMR Spectrum of 3l\* (400MHz, DMSO-d<sub>6</sub>)



Figure S51. <sup>13</sup>C NMR Spectrum of 3l\* (101MHz, DMSO-d<sub>6</sub>)



Figure S52. HRMS Spectrum of 31\*



Figure S53. <sup>1</sup>H NMR Spectrum of 3m (400MHz, DMSO-d<sub>6</sub>)



Figure S54. <sup>13</sup>C NMR Spectrum of 3m (101MHz, DMSO-d<sub>6</sub>)



Figure S55. HRMS Spectrum of 3m



Figure S56. <sup>1</sup>H NMR Spectrum of 3n (400MHz, DMSO-d<sub>6</sub>)



Figure S57. <sup>13</sup>C NMR Spectrum of 3n (101MHz, DMSO-d<sub>6</sub>)



Figure S58. HRMS Spectrum of 3n



Figure S59. <sup>1</sup>H NMR Spectrum of 30 (400MHz, DMSO-d<sub>6</sub>)



Figure S60. <sup>13</sup>C NMR Spectrum of 30 (101MHz, DMSO-d<sub>6</sub>)



Figure S61. HRMS Spectrum of 30



Figure S62. <sup>1</sup>H NMR Spectrum of 3p (400MHz, DMSO-d<sub>6</sub>)



Figure S63. <sup>13</sup>C NMR Spectrum of **3p** (101MHz, DMSO-d<sub>6</sub>)



Figure S64. HRMS Spectrum of 3p



Figure S65. <sup>1</sup>H NMR Spectrum of 3q (400MHz, DMSO-d<sub>6</sub>)



Figure S66. <sup>13</sup>C NMR Spectrum of 3q (101MHz, DMSO-d<sub>6</sub>)



Figure S67. HRMS Spectrum of 3q



Figure S68. <sup>1</sup>H NMR Spectrum of 3r (400MHz, DMSO-d<sub>6</sub>)



Figure S69. <sup>13</sup>C NMR Spectrum of 3r (101MHz, DMSO-d<sub>6</sub>)



Figure S70. HRMS Spectrum of 3r



Figure S71. <sup>1</sup>H NMR Spectrum of 6a (400MHz, DMSO-d<sub>6</sub>)



Figure S72. <sup>13</sup>C NMR Spectrum of (101MHz, DMSO-d<sub>6</sub>)



Figure S73. HRMS Spectrum of 6a



Figure S74. <sup>1</sup>H NMR Spectrum of 6b (400MHz, DMSO-d<sub>6</sub>)



Figure S75. <sup>13</sup>C NMR Spectrum of 6b(101MHz, DMSO-d<sub>6</sub>)



Figure S76. HRMS Spectrum of 6b



Figure S77. <sup>1</sup>H NMR Spectrum of 6c (400MHz, DMSO-d<sub>6</sub>)


Figure S78. <sup>13</sup>C NMR Spectrum of 6c (101MHz, DMSO-d<sub>6</sub>)



Figure S79. HRMS Spectrum of 6c



Figure S80. <sup>1</sup>H NMR Spectrum of 6d (400MHz, DMSO-d<sub>6</sub>)



Figure S81. <sup>13</sup>C NMR Spectrum of 6d (101MHz, DMSO-d<sub>6</sub>)



Figure S82. HRMS Spectrum of 6d



Figure S83. <sup>1</sup>H NMR Spectrum of 9a (400MHz, DMSO-d<sub>6</sub>)



Figure S84. <sup>13</sup>C NMR Spectrum of 9a (101MHz, DMSO-d<sub>6</sub>)



Figure S85. HRMS Spectrum of 9a



Figure S86. <sup>1</sup>H NMR Spectrum of 9b (400MHz, DMSO-d<sub>6</sub>)



Figure S87. <sup>13</sup>C NMR Spectrum of 9b (101MHz, DMSO-d<sub>6</sub>)



Figure S88. HRMS Spectrum of 9b



Figure S89. <sup>1</sup>H NMR Spectrum of 9c (400MHz, DMSO-d<sub>6</sub>)



Figure S90. <sup>13</sup>C NMR Spectrum of 9c (101MHz, DMSO-d<sub>6</sub>)



Figure S91. HRMS Spectrum of 9c



Figure S92. <sup>1</sup>H NMR Spectrum of 9d (400MHz, DMSO-d<sub>6</sub>)







Figure S94. HRMS Spectrum of 9d



Figure S95. <sup>1</sup>H NMR Spectrum of 9e (400MHz, DMSO-d<sub>6</sub>)



Figure S96. <sup>13</sup>C NMR Spectrum of 9e (101MHz, DMSO-d<sub>6</sub>)



Figure S97. HRMS Spectrum of 9e



Figure S98. <sup>1</sup>H NMR Spectrum of 9f (400MHz, DMSO-d<sub>6</sub>)



Figure S99. <sup>13</sup>C NMR Spectrum of 9f (101MHz, DMSO-d<sub>6</sub>)



Figure S100. HRMS Spectrum of 9f



Figure S101. <sup>1</sup>H NMR Spectrum of 9g (400MHz, DMSO-d<sub>6</sub>)



Figure S102. <sup>13</sup>C NMR Spectrum of 9g (101MHz, DMSO-d<sub>6</sub>)



Figure S103. HRMS Spectrum of 9g



Figure S104. <sup>1</sup>H NMR Spectrum of 9h (400MHz, DMSO-d<sub>6</sub>)



Figure S105. <sup>13</sup>C NMR Spectrum of 9h (101MHz, DMSO-d<sub>6</sub>)



Figure S106. HRMS Spectrum of 9h



Figure S107. <sup>1</sup>H NMR Spectrum of 9i (400MHz, DMSO-d<sub>6</sub>)



Figure S108. <sup>13</sup>C NMR Spectrum of 9i (101MHz, DMSO-d<sub>6</sub>)



Figure S109. HRMS Spectrum of 9i



Figure S110. <sup>1</sup>H NMR Spectrum of 9j (400MHz, DMSO-d<sub>6</sub>)



Figure S111. <sup>13</sup>C NMR Spectrum of 9j (101MHz, DMSO-d<sub>6</sub>)



Figure S112. HRMS Spectrum of 9j



Figure S113. <sup>1</sup>H NMR Spectrum of 9k(400MHz, DMSO-d<sub>6</sub>)


Figure S114. <sup>13</sup>C NMR Spectrum of 9k (101MHz, DMSO-d<sub>6</sub>)



Figure S115. HRMS Spectrum of 9k



Figure S116. <sup>1</sup>H NMR Spectrum of 9I(400MHz, DMSO-d<sub>6</sub>)



Figure S117. <sup>13</sup>C NMR Spectrum of 9l (101MHz, DMSO-d<sub>6</sub>)



Figure S118. HRMS Spectrum of 91



Figure S119. <sup>1</sup>H NMR Spectrum of 9m (400MHz, DMSO-d<sub>6</sub>)



Figure S120. <sup>13</sup>C NMR Spectrum of 9m (101MHz, DMSO-d<sub>6</sub>)



Figure S121. HRMS Spectrum of 9m



Figure S122. <sup>1</sup>H NMR Spectrum of 9n (400MHz, DMSO-d<sub>6</sub>)



Figure S123. <sup>13</sup>C NMR Spectrum of 9n (101MHz, DMSO-d<sub>6</sub>)



Figure S124. HRMS Spectrum of 9n



Figure S125. <sup>1</sup>H NMR Spectrum of 90 (400MHz, CDCl<sub>3</sub>)



Figure S126. <sup>13</sup>C NMR Spectrum of 90 (101MHz, CDCl<sub>3</sub>)



Figure S127. HRMS Spectrum of 90



Figure S128. <sup>1</sup>H NMR Spectrum of 9p (400MHz, DMSO-d<sub>6</sub>)



Figure S129. <sup>13</sup>C NMR Spectrum of 9p (101MHz, DMSO-d<sub>6</sub>)



Figure S130. HRMS Spectrum of 9p



Figure S131. <sup>1</sup>H NMR Spectrum of 9q (400MHz, DMSO-d<sub>6</sub>)



Figure S132. <sup>13</sup>C NMR Spectrum of 9q(101MHz, DMSO-d<sub>6</sub>)



Figure S133. HRMS Spectrum of 9q



Figure S134. <sup>1</sup>H NMR Spectrum of 11a (400MHz, DMSO-d<sub>6</sub>)



Figure S135. <sup>13</sup>C NMR Spectrum of 11a (101MHz, DMSO-d<sub>6</sub>)



Figure S136. HRMS Spectrum of 11a



Figure S137. <sup>1</sup>H NMR Spectrum of 11b (400MHz, DMSO-d<sub>6</sub>)



Figure S138. <sup>13</sup>C NMR Spectrum of 11b (101MHz, DMSO-d<sub>6</sub>)



Figure S139. HRMS Spectrum of 11b



Figure S140. <sup>1</sup>H NMR Spectrum of 11c (400MHz, DMSO-d<sub>6</sub>)



Figure S141. <sup>13</sup>C NMR Spectrum of 11c (101MHz, DMSO-d<sub>6</sub>)



Figure S142. HRMS Spectrum of 11c



Figure S143. <sup>1</sup>H NMR Spectrum of 11d (400MHz, DMSO-d<sub>6</sub>)



Figure S144. <sup>13</sup>C NMR Spectrum of 11d (101MHz, DMSO-d<sub>6</sub>)



Figure S145. HRMS Spectrum of 11d



Figure S146. <sup>1</sup>H NMR Spectrum of 11e (400MHz, DMSO-d<sub>6</sub>)



Figure S147. <sup>13</sup>C NMR Spectrum of 11e (101MHz, DMSO-d<sub>6</sub>)



Figure S148. HRMS Spectrum of 11e



Figure S149. <sup>1</sup>H NMR Spectrum of 13a (400MHz, DMSO-d<sub>6</sub>)


Figure S150. <sup>13</sup>C NMR Spectrum of 13a (101MHz, DMSO-d<sub>6</sub>)



Figure S151. HRMS Spectrum of 13a



Figure S152. <sup>1</sup>H NMR Spectrum of 13a\* (400MHz, DMSO-d<sub>6</sub>)



Figure S153. <sup>13</sup>C NMR Spectrum of 13a\*(101MHz, DMSO-d<sub>6</sub>)



Figure S154. HRMS Spectrum of 13a\*



Figure S155. <sup>1</sup>H NMR Spectrum of 13b (400MHz, DMSO-d<sub>6</sub>)



Figure S156. <sup>13</sup>C NMR Spectrum of 13b(101MHz, DMSO-d<sub>6</sub>)



Figure S157. HRMS Spectrum of 13b



Figure S158. <sup>1</sup>H NMR Spectrum of 13c (400MHz, DMSO-d<sub>6</sub>)



Figure S159. <sup>13</sup>C NMR Spectrum of 13c (101MHz, DMSO-d<sub>6</sub>)



Figure S160. HRMS Spectrum of 13c



Figure S161. <sup>1</sup>H NMR Spectrum of 13d (400MHz, DMSO-d<sub>6</sub>)



Figure S162. <sup>13</sup>C NMR Spectrum of 13d (101MHz, DMSO-d<sub>6</sub>)



Figure S163. HRMS Spectrum of 13d



Figure S164. <sup>1</sup>H NMR Spectrum of 13e (400MHz, DMSO-d<sub>6</sub>)



Figure S165. <sup>13</sup>C NMR Spectrum of 13e(101MHz, DMSO-d<sub>6</sub>)



Figure S166. HRMS Spectrum of 13e



Figure S167. <sup>1</sup>H NMR Spectrum of 13f (400MHz, DMSO-d<sub>6</sub>)



Figure S168. <sup>13</sup>C NMR Spectrum of 13f(101MHz, DMSO-d<sub>6</sub>)



Figure S169 HRMS Spectrum of 13f



Figure S170. <sup>1</sup>H NMR Spectrum of 13g (400MHz, DMSO-d<sub>6</sub>)



Figure S171. <sup>13</sup>C NMR Spectrum of 13g (101MHz, DMSO-d<sub>6</sub>)



Figure S172. HRMS Spectrum of 13g





Figure S173. <sup>1</sup>H NMR Spectrum of 13h (400MHz, DMSO-d<sub>6</sub>)



Figure S174. <sup>13</sup>C NMR Spectrum of 13h (101MHz, DMSO-d<sub>6</sub>)



Figure S175 HRMS Spectrum of 13h



Figure S176. <sup>1</sup>H NMR Spectrum of 13i (400MHz, DMSO-d<sub>6</sub>)



Figure S177. <sup>13</sup>C NMR Spectrum of 13i (101MHz, DMSO-d<sub>6</sub>)



Figure S178. HRMS Spectrum of 13i





**HPLC condition:** water-acetonitrile (35-65%) in 60 min; VWD at  $\lambda = 254$  nm; flow rate: 0.5 mL/min; column: phenomenex made Lux, pore size-5 $\mu$ , Cellulose-1, diameter x length = 250 x 4.6 mm).

1) Mixed HPLC data of (L,L)-3a and (D,L) 3a\*

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 37.512         | 4681.70166 | 78.72181     | 56.1238 |
| 02   | 39.904         | 3660.03784 | 58.05646     | 43.8762 |

### 2) Pure HPLC data of (L,L)-3a

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 38.834         | 1.71320e4 | 262.20193    | 100.0000 |

# HPLC studies for determining racemization of 3b



**HPLC condition:** water-acetonitrile (30-70%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 0.5 mL/min; column: phenomenex made Lux, pore size-5 $\mu$ , Cellulose-1, diameter x length = 250 x 4.6 mm).

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 15.045         | 600.54443 | 13.01576     | 51.2951 |
| 02   | 18.596         | 570.21930 | 10.15413     | 48.7049 |

1) Mixed HPLC data of (L,L)-3b and (D,L) 3b\*

2) Pure HPLC data of (L,L)-3b

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 14.803         | 973.65771 | 20.89940     | 100.0000 |

HPLC studies for determining racemization of 3c



**HPLC condition:** water-acetonitrile (30-70%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: phenomenex made Lux,

pore size- $5\mu$ , Cellulose-1, diameter x length =  $250 \times 4.6 \text{ mm}$ ).

1) Mixed HPLC data of (L,L)-3c and (D,L) 3c\*

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 7.068          | 1779.08960 | 119.15787    | 45.3229 |
| 02   | 9.187          | 2146.27686 | 107.67322    | 54.6771 |

### 2) Pure HPLC data of (L,L)-3c

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 7.080          | 613.83362 | 40.67035     | 100.0000 |

# HPLC studies for determining racemization of 3e



**HPLC condition:** water-methanol (30-70%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: phenomenex made Lux, pore size-5 $\mu$ , Cellulose-1, diameter x length = 250 x 4.6 mm).

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 8.179          | 1.10687e4 | 760.18402    | 49.6071 |
| 02   | 8.751          | 1.12440e4 | 623.56458    | 50.3929 |

1) Mixed HPLC data of (L,L)-3e and (D,L) 3e\*

2) Pure HPLC data of (L,L)-3e

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 8.926          | 878.66614 | 39.93617     | 100.0000 |



## HPLC studies for determining racemization of 3f

**HPLC condition:** water-acetonitrile (25-75%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: phenomenex made Lux,

pore size- $5\mu$ , Cellulose-1, diameter x length =  $250 \times 4.6 \text{ mm}$ ).

1) Mixed HPLC data of (L,L)-3f and (D,L) 3f\*
| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 7.050          | 571.71155 | 31.61432     | 49.1314 |
| 02   | 7.870          | 591.92725 | 27.71265     | 50.8686 |

2) Pure HPLC data of (L,L)-3f

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 7.086          | 997.24335 | 51.54872     | 100.0000 |

# HPLC studies for determining racemization of 3g



**HPLC condition:** water-acetonitrile (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: phenomenex made Lux, pore size-5 $\mu$ , Cellulose-1, diameter x length = 250 x 4.6 mm).

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 13.623         | 1964.21533 | 69.83543     | 59.7167 |
| 02   | 14.800         | 1325.00928 | 42.06074     | 40.2833 |

1) Mixed HPLC data of (L,L)-3g and (D,L)  $3g^*$ 

2) Pure HPLC data of (L,L)-3g

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %   |
|------|----------------|------------|--------------|----------|
| 01   | 13.613         | 1910.98755 | 65.43951     | 100.0000 |





**HPLC condition:** water-acetonitrile (45-55%) in 45 min; VWD at  $\lambda = 254$  nm; flow rate: 0.5 mL/min; column: phenomenex made

Lux, pore size- $5\mu$ , Cellulose-1, diameter x length =  $250 \times 4.6 \text{ mm}$ ).

1) Mixed HPLC data of (L,L) 3h and (D,L) 3h\*

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 23.628         | 2936.18945 | 46.86104     | 49.4232 |
| 02   | 26.622         | 3004.72339 | 42.84006     | 50.5768 |

2) Pure HPLC data of (L,L) 3h

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 26.950         | 3071.90132 | 10.98769     | 99.1460 |
| 02   | 24.020         | 10.30883   | 2.34351e-1   | 0.8540  |

# HPLC studies for determining racemization of 31



**HPLC condition:** water-acetonitrile (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 0.5 mL/min; column: phenomenex made Lux, pore size-5 $\mu$ , Cellulose-1, diameter x length = 250 x 4.6 mm).

1) Mixed HPLC data of (L,L) 3l and (D,L) 3l\*

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 6.734          | 1643.57092 | 128.69798    | 45.1775 |
| 02   | 7.798          | 1994.46069 | 135.09608    | 54.8225 |

2) Pure HPLC data of (L,L) 31

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 6.600          | 413.22910 | 28.17320     | 100.0000 |



#### HPLC studies for determining racemization of 3m

**HPLC condition:** water-acetonitrile (10-90%) in 40 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: phenomenex made Lux,

pore size- $5\mu$ , Cellulose-1, diameter x length =  $250 \times 4.6 \text{ mm}$ ).

1) Mixed HPLC data of (L,L)-3m and (D,L) 3m\*

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 26.359         | 6084.63623 | 143.03291    | 55.5591 |
| 02   | 27.894         | 4867.00586 | 106.26966    | 44.4409 |

2) Pure HPLC data of (L,L)-3m

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 2.588          | 24.85943   | 1.46002      | 0.2623  |
| 02   | 3.044          | 11.20006   | 2.52789      | 0.1182  |
| 03   | 25.758         | 9443.19336 | 120.97589    | 99.6196 |

# HPLC studies for determining purity of 3d



**HPLC condition:** water-acetonitrile (10-80%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore size-5 $\mu$ , diameter x length = 4.6 x 150mm).

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %   |
|------|----------------|------------|--------------|----------|
| 01   | 9.387          | 7186.17773 | 226.27376    | 100.0000 |

#### HPLC studies for determining purity of 3i



**HPLC condition:** water-acetonitrile (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore size-5 $\mu$ , diameter x length = 4.6 x 150mm).

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 7.131          | 1.24626e4 | 626.05316    | 100.0000 |

### HPLC studies for determining purity of 3j



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 8.871          | 4.26956e4 | 2271.42090   | 100.0000 |

### HPLC studies for determining purity of 3k



**HPLC condition:** water-acetonitrile (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 5.982          | 13.60264  | 1.26654      | 0.0387  |
| 02   | 8.345          | 3.51652e4 | 1052.47986   | 99.9613 |

### HPLC studies for determining purity of 3n



**HPLC condition:** water-methanol (10-80%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %   |
|------|----------------|------------|--------------|----------|
| 01   | 11.601         | 9131.27148 | 239.25229    | 100.0000 |

### HPLC studies for determining purity of 30



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 10.606         | 1.30119e4 | 681.39630    | 100.0000 |

### HPLC studies for determining purity of 3p



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %   |
|------|----------------|------------|--------------|----------|
| 01   | 20.375         | 7294.27002 | 98.69247     | 100.0000 |

### HPLC studies for determining purity of 3q



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 4.760          | 49.42589  | 5.50452      | 0.1857  |
| 02   | 9.615          | 107.03154 | 6.03026      | 0.4022  |
| 03   | 10.975         | 2.64578e4 | 988.27802    | 99.4121 |

### HPLC studies for determining purity of 3r



**HPLC condition:** water-acetonitrile (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 10.981         | 4.41475e4 | 1804.00330   | 100.0000 |

### HPLC studies for determining purity of 6a



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 2.532          | 8.98613    | 1.41761      | 0.1095  |
| 02   | 19.806         | 8194.95605 | 159.09897    | 99.8905 |

### HPLC studies for determining purity of 6b



**HPLC condition:** water-acetonitrile (10-80%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 5.635          | 5.76925   | 1.02053      | 0.8540  |
| 02   | 6.094          | 669.78314 | 59.91338     | 99.1460 |

### HPLC studies for determining purity of 6c



**HPLC condition:** water-methanol (10-95%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 6.323          | 46.68183   | 3.01123      | 0.5603  |
| 02   | 16.076         | 8285.20215 | 195.39769    | 99.4397 |

### HPLC studies for determining purity of 6d



**HPLC condition:** water-methanol (10-90%) in 40 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 9.716          | 30.02806  | 3.01123      | 2.08486 |
| 02   | 17.721         | 1.17986e4 | 438.12491    | 99.7461 |

# HPLC studies for determining racemization of 9i



**HPLC condition:** water-acetonitrile (20-80%) in 40 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: phenomenex made Lux, pore size-5 $\mu$ , Cellulose-1, diameter x length = 250 x 4.6 mm).

| 1) | Mixed HPLC data | of (L)-9i and | (D) 9i* |
|----|-----------------|---------------|---------|
|----|-----------------|---------------|---------|

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 13.307         | 1.70683e4 | 361.95816    | 57.3414 |
| 02   | 17.431         | 1.26978e4 | 199.26224    | 42.6586 |

2) Pure HPLC data of (L)-9i

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 2.932          | 12.77854  | 1.15554      | 0.0243  |
| 02   | 4.105          | 15.76748  | 1.20070      | 0.0300  |
| 03   | 17.222         | 5.25043e4 | 606.95490    | 99.9457 |

### HPLC studies for determining purity of 9j



**HPLC condition:** water-methanol (10-80%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 4.315          | 2.46149e4 | 1954.96155   | 100.0000 |

### HPLC studies for determining purity of 9k



**HPLC condition:** water-acetonitrile (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 7.051          | 1.99362e4 | 1405.59753   | 100.0000 |

### HPLC studies for determining purity of 91



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 7.131          | 1.24626e4 | 626.05316    | 100.0000 |

### HPLC studies for determining purity of 9m



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 5.517          | 116.08534 | 7.31107      | 0.9083  |
| 02   | 13.275         | 1.26645e4 | 224.07771    | 99.0917 |

### HPLC studies for determining purity of 11a



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 3.820          | 19.06471  | 2.39236      | 0.0568  |
| 02   | 12.774         | 109.43756 | 4.34640      | 0.3263  |
| 03   | 15.999         | 3.34085e4 | 705.88959    | 99.6168 |



HPLC studies for determining racemization of 11b

**HPLC condition:** water-acetonitrile (20-80%) in 40 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: phenomenex made Lux, pore size-5µ, Cellulose-1, diameter x length = 250 x 4.6 mm).

1) Mixed HPLC data of (L)-11b and (D) 11b\*

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 17.888         | 2525.66382 | 92.45739     | 49.4966 |
| 02   | 18.982         | 2577.03687 | 88.03035     | 50.5034 |

2) Pure HPLC data of (L)-11b

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 17.721         | 1.17986e4 | 438.12491    | 100.0000 |

### HPLC studies for determining purity of 11c



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 9.594          | 1.64776e4 | 796.59033    | 100.0000 |

# HPLC studies for determining racemization of 13a



**HPLC condition:** water-acetonitrile (5-95%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1.0 mL/min; column: phenomenex made Lux, pore size-5 $\mu$ , Cellulose-1, diameter x length = 250 x 4.6 mm).

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 5.385          | 6370.93359 | 623.85791    | 17.6248 |
| 02   | 9.521          | 2.97765e4  | 704.49756    | 82.3752 |

1) Mixed HPLC data of (L) 13a and (D)  $13a^*$ 

2) Pure HPLC data of (L) 13a

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 8.885          | 4.08192e4 | 1052.43628   | 100.0000 |



HPLC studies for determining racemization of 13e

**HPLC condition:** water-methanol (20-80%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: phenomenex made Lux, pore size-5 $\mu$ , Cellulose-1, diameter x length = 250 x 4.6 mm).

1) Mixed HPLC data of (L)-13b and (D) 13b\*

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %  |
|------|----------------|------------|--------------|---------|
| 01   | 13.046         | 3427.85913 | 87.93016     | 48.7894 |
| 02   | 15.223         | 3597.96167 | 79.31252     | 51.2106 |

2) Pure HPLC data of (L)-13b

| Peak | Ret Time [min] | Area       | Height [mAU] | Area %   |
|------|----------------|------------|--------------|----------|
| 01   | 15.193         | 6081.11279 | 126.53349    | 100.0000 |

## HPLC studies for determining purity of 13b



**HPLC condition:** water-acetonitrile (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore size-5 $\mu$ , diameter x length = 4.6 x 150mm).

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %  |
|------|----------------|-----------|--------------|---------|
| 01   | 5.401          | 12.72812  | 1.02119      | 0.0961  |
| 02   | 8.893          | 1.32302e4 | 796.37695    | 99.9039 |

#### HPLC studies for determining purity of 13c



**HPLC condition:** water-acetonitrile (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore size-5 $\mu$ , diameter x length = 4.6 x 150mm).

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 19.289         | 3.40364e4 | 921.13031    | 100.0000 |

## HPLC studies for determining purity of 13f



**HPLC condition:** water-methanol (10-90%) in 20 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 8.812          | 1.96162e4 | 869.33234    | 100.0000 |

### HPLC studies for determining purity 13g



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 8.345          | 3.51652e4 | 1052.47986   | 100.0000 |

### HPLC studies for determining purity 13h



**HPLC condition:** water-methanol (10-90%) in 30 min; VWD at  $\lambda = 254$  nm; flow rate: 1 mL/min; column: Eclipse XDB-C18, pore

| Peak | Ret Time [min] | Area      | Height [mAU] | Area %   |
|------|----------------|-----------|--------------|----------|
| 01   | 12.836         | 1.82512e4 | 329.72797    | 100.0000 |
### Crystal Structure Analysis of (III) AITF (Code =TRY\_a):

Crystals were grown from CDCl<sub>3</sub> solution by slow evaporation. A single crystal  $(0.18 \times 0.11 \times 0.16 \text{ mm})$  was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 296K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K $\alpha$  radiation ( $\lambda = 0.71073\text{ Å}$ ),  $\omega$ -scans (2 $\theta = 56.72$ ), for a total of 3763 independent reflections. Space group P2<sub>1</sub>/n, a = 5.5295(13), b = 21.270(5), c = 12.923(3),  $\alpha$ ,  $\gamma = 90$  and  $\beta = 98.235(8)$ ,V = 1504.2(6)Å<sup>3</sup>, monoclinic, Z = 4 for chemical formula C<sub>10</sub>H<sub>8</sub> N<sub>2</sub>O<sub>5</sub>F<sub>6</sub>S<sub>2</sub>, with one molecule in asymmetric unit;  $\rho$ calcd = 1.829 gcm<sup>-3</sup>,  $\mu = 0.451$  mm<sup>-1</sup>, F (000) = 832, The structure was obtained by direct methods using SHELXS-97.<sup>1</sup> The final R value was 0.0727 (wR2 = 0.2050) 3763 observed reflections ( $F_0 \ge 4\sigma$  ( $|F_0|$ )) and 216 variables, S = 1.047.

## checkCIF/PLATON report

Structure factors have been supplied for datablock(s) TRY\_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

### Datablock: TRY\_a

| Bond precision:  | C-C = 0.0074 A           | Wavelength=0.71073            |                                  |  |
|------------------|--------------------------|-------------------------------|----------------------------------|--|
| Cell:            | a=5.5295(13)<br>alpha=90 | b=21.270(5)<br>beta=98.235(8) | c=12.923(3)<br>gamma=90          |  |
| Temperature:     | 296 K                    |                               |                                  |  |
|                  | Coloulated               | Departed                      |                                  |  |
| Volumo           |                          | 1504 2(6)                     |                                  |  |
|                  | 1304.2(8)                | 1504.2(8)                     |                                  |  |
| Space group      | P 21/H                   | P 21/H                        |                                  |  |
| Hall group       | -P 2yn                   | -P 2yn                        |                                  |  |
| Molety formula   | CIU H8 F6 N2 05 S2       | ?                             |                                  |  |
| Sum formula      | C10 H8 F6 N2 05 S2       | C10 H8 F6                     | N2 05 S2                         |  |
| Mr               | 414.30                   | 414.30                        |                                  |  |
| Dx,g cm-3        | 1.829                    | 1.830                         |                                  |  |
| Z                | 4                        | 4                             |                                  |  |
| Mu (mm-1)        | 0.451                    | 0.451                         |                                  |  |
| F000             | 832.0                    | 832.0                         |                                  |  |
| F000'            | 833.69                   |                               |                                  |  |
| h,k,lmax         | 7,28,17                  | 7,28,17                       |                                  |  |
| Nref             | 3769                     | 3763                          |                                  |  |
| Tmin, Tmax       |                          |                               |                                  |  |
| Tmin'            |                          |                               |                                  |  |
| Correction metho | od= Not given            |                               |                                  |  |
| Data completenes | ss= 0.998                | Theta(max) = 28.360           |                                  |  |
| R(reflections)=  | 0.0727( 2610)            |                               | wR2(reflections)<br>0.2050(3763) |  |
| S = 1.047        | Npar= 21                 | 6                             |                                  |  |
|                  |                          |                               |                                  |  |

=

The following ALERTS were generated. Each ALERT has the format test-name\_ALERT\_alert-type\_alert-level. Click on the hyperlinks for more details of the test.

--

🥯 Alert level B

| PLAT031_ALERT_4_B | Refined Extinct: | ion H | Paramete | r Wit | hin Range | e of    | 1.632 | Sigma |
|-------------------|------------------|-------|----------|-------|-----------|---------|-------|-------|
| PLAT097_ALERT_2_B | Large Reported 1 | Max.  | (Posit   | ive)  | Residual  | Density | 2.52  | eA-3  |
| PLAT230_ALERT_2_B | Hirshfeld Test 1 | Diff  | for      | C3    | C4        |         | 9.0   | s.u.  |
| PLAT230_ALERT_2_B | Hirshfeld Test 1 | Diff  | for      | C3    | C8        | (*)     | 9.2   | s.u.  |

#### Alert level C

DIFMX02\_ALERT\_1\_C The maximum difference density is > 0.1\*ZMAX\*0.75 The relevant atom site should be identified. RINTA01\_ALERT\_3\_C The value of Rint is greater than 0.12 Rint given 0.144 PLAT020\_ALERT\_3\_C The Value of Rint is Greater Than 0.12 ..... 0.144 Report PLAT052\_ALERT\_1\_C Info on Absorption Correction Method Not Given Please Do ! PLAT053\_ALERT\_1\_C Minimum Crystal Dimension Missing (or Error) ... Please Check PLAT054\_ALERT\_1\_C Medium Crystal Dimension Missing (or Error) ... Please Check PLAT055\_ALERT\_1\_C Maximum Crystal Dimension Missing (or Error) ... Please Check PLAT094\_ALERT\_2\_C Ratio of Maximum / Minimum Residual Density .... 2.52 Report PLAT213\_ALERT\_2\_C Atom N1 has ADP max/min Ratio ..... 3.3 prolat PLAT230\_ALERT\_2\_C Hirshfeld Test Diff for N1 --C2 7.0 s.u. PLAT241\_ALERT\_2\_C High 'MainMol' Ueq as Compared to Neighbors of C3 Check PLAT250\_ALERT\_2\_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.7 Note 0.00743 Ang. PLAT340\_ALERT\_3\_C Low Bond Precision on C-C Bonds ..... PLAT906\_ALERT\_3\_C Large K Value in the Analysis of Variance ..... 16.063 Check PLAT906\_ALERT\_3\_C Large K Value in the Analysis of Variance ..... 2.582 Check PLAT971\_ALERT\_2\_C Check Calcd Resid. Dens. 2.17Ang From 01 PLAT976\_ALERT\_2\_C Check Calcd Resid. Dens. 1.00Ang From 01 2.39 eA-3 -0.45 eA-3 .

### Alert level G

| PLAT007_ALERT_5_G N  | Number of Unrefined Donor-H Atoms 1                     | Report |
|----------------------|---------------------------------------------------------|--------|
| PLAT171_ALERT_4_G    | The CIF-Embedded .res File Contains EADP Records 2      | Report |
| PLAT242_ALERT_2_G 1  | Low 'MainMol' Ueq as Compared to Neighbors of C9        | Check  |
| PLAT242_ALERT_2_G 1  | Low 'MainMol' Ueq as Compared to Neighbors of C10       | Check  |
| PLAT434_ALERT_2_G \$ | Short Inter HLHL Contact F2F6 . 2.78                    | Ang.   |
|                      | $1/2+x, 3/2-y, 1/2+z = 4_676$ Che                       | ck     |
| PLAT883_ALERT_1_G N  | No Info/Value for _atom_sites_solution_primary . Please | Do !   |
| PLAT910_ALERT_3_G N  | Missing # of FCF Reflection(s) Below Theta(Min). 2      | Note   |
| PLAT912_ALERT_4_G N  | Missing # of FCF Reflections Above STh/L= 0.600 4       | Note   |
| PLAT965_ALERT_2_G    | The SHELXL WEIGHT Optimisation has not Converged Please | Check  |
| PLAT978_ALERT_2_G N  | Number C-C Bonds with Positive Residual Density. 1      | Info   |
|                      |                                                         |        |

0 ALERT level A = Most likely a serious problem - resolve or explain

4 ALERT level B = A potentially serious problem, consider carefully

17 ALERT level C = Check. Ensure it is not caused by an omission or oversight

10 ALERT level G = General information/check it is not something unexpected

6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

15 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

#### Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_DIFMX02_TRY_a
PROBLEM: The maximum difference density is > 0.1*ZMAX*0.75
RESPONSE: ...
;
_vrf_RINTA01_TRY_a
PROBLEM: The value of Rint is greater than 0.12
RESPONSE: ...
;
_vrf_PLAT031_TRY_a
PROBLEM: Refined Extinction Parameter Within Range of ...
                                                           1.632 Sigma
RESPONSE: ...
;
_vrf_PLAT097_TRY_a
PROBLEM: Large Reported Max. (Positive) Residual Density
                                                              2.52 eA-3
RESPONSE: ...
;
_vrf_PLAT230_TRY_a
PROBLEM: Hirshfeld Test Diff for C3
                                          --C4
                                                               9.0 s.u.
                                                     .
RESPONSE: ...
;
_vrf_PLAT020_TRY_a
PROBLEM: The Value of Rint is Greater Than 0.12 .....
                                                           0.144 Report
RESPONSE: ...
;
_vrf_PLAT052_TRY_a
PROBLEM: Info on Absorption Correction Method Not Given
                                                          Please Do !
RESPONSE: ...
;
_vrf_PLAT053_TRY_a
PROBLEM: Minimum Crystal Dimension Missing (or Error) ...
                                                           Please Check
RESPONSE: ...
;
_vrf_PLAT054_TRY_a
PROBLEM: Medium Crystal Dimension Missing (or Error) ...
                                                           Please Check
RESPONSE: ...
```

<sup>;</sup> 

| _vrf_PLAT055_TRY_a                                                            |         |        |
|-------------------------------------------------------------------------------|---------|--------|
| PROBLEM: Maximum Crystal Dimension Missing (or Error)<br>RESPONSE:            | Please  | Check  |
| ; _vrf_PLAT094_TRY_a                                                          |         |        |
| <pre>PROBLEM: Ratio of Maximum / Minimum Residual Density<br/>RESPONSE:</pre> | 2.52    | Report |
| ;<br>_vrf_PLAT213_TRY_a                                                       |         |        |
| ;<br>PROBLEM: Atom N1 has ADP max/min Ratio<br>RESPONSE:                      | 3.3     | prolat |
| ;<br>_vrf_PLAT241_TRY_a<br>;                                                  |         |        |
| PROBLEM: High 'MainMol' Ueq as Compared to Neighbors of RESPONSE:             | C3      | Check  |
| /vrf_PLAT250_TRY_a                                                            |         |        |
| ;<br>PROBLEM: Large U3/U1 Ratio for Average U(i,j) Tensor<br>RESPONSE:        | 2.7     | Note   |
| ;<br>_vrf_PLAT340_TRY_a                                                       |         |        |
| ;<br>PROBLEM: Low Bond Precision on C-C Bonds<br>RESPONSE:                    | 0.00743 | Ang.   |
| ;<br>vrf PLAT906 TRY a                                                        |         |        |
| ;<br>PROBLEM: Large K Value in the Analysis of Variance<br>RESPONSE:          | 16.063  | Check  |
| ;<br>_vrf_PLAT971_TRY_a                                                       |         |        |
| ;<br>PROBLEM: Check Calcd Resid. Dens. 2.17Ang From O1<br>RESPONSE:           | 2.39    | eA-3   |
| ;<br>_vrf_PLAT976_TRY_a                                                       |         |        |
| ;<br>PROBLEM: Check Calcd Resid. Dens. 1.00Ang From O1 .<br>RESPONSE:         | -0.45   | eA-3   |
| ;<br># end Validation Reply Form                                              |         |        |

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special\_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

#### Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

### Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 12/09/2022; check.def file version of 09/08/2022

Datablock TRY\_a - ellipsoid plot



**Figure S175.** ORTEP diagram of (**III**) **AITF** (**CCDC** = **2209512**). Ellipsoids are drawn at 50%

probability.

### Crystal Structure Analysis of 9e (Code =TRY6\_a):

Crystals were grown from MeOH solution by slow evaporation. A single crystal  $(0.16 \times 0.10 \times 0.12 \text{ mm})$  was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 273K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K $\alpha$  radiation ( $\lambda = 0.71073\text{ Å}$ ),  $\omega$ -scans ( $2\theta = 56.646$ ), for a total of 2376 independent reflections. Space group C2/c, a = 11.206(3), b = 9.424(3), c = 18.834(6),  $\alpha$ ,  $\gamma = 90$  and  $\beta = 106.89(9)$ , V = 3440(3)Å<sup>3</sup>, monoclinic, Z = 8 for chemical formula C<sub>11</sub> H<sub>8</sub> NO<sub>2</sub>F, with one molecule in asymmetric unit;  $\rho$ calcd = 1.432 gcm<sup>-3</sup>,  $\mu = 0.112$  mm<sup>-1</sup>, F (000) = 848, The structure was obtained by direct methods using SHELXS-97.<sup>1</sup> The final R value was 0.0407 (wR2 = 0.0931) 1838 observed reflections ( $F_0 \ge 4\sigma$  (|F<sub>0</sub>|)) and 137 variables, S = 0.935

# checkCIF/PLATON report

Structure factors have been supplied for datablock(s) TRY6\_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

### Datablock: TRY6\_a

| Bond precision:  | C-C = 0.0020 A          | Wavelength=0.71073            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------------|-------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cell:            | a=11.206(3)<br>alpha=90 | b=9.424(3)<br>beta=106.890(9) | c=18.834(6)<br>gamma=90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Temperature:     | 273 K                   |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                  | Calculated              | Reported                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Volume           | 1903.2(10)              | 1903.2(10)                    | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Space group      | C 2/c                   | C 2/c                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Hall group       | -C 2yc                  | -C 2yc                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Moiety formula   | C11 H8 F N O2           | ?                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sum formula      | C11 H8 F N O2           | C11 H8 F 1                    | N 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Mr               | 205.18                  | 205.18                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Dx,g cm-3        | 1.432                   | 1.432                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Z                | 8                       | 8                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Mu (mm-1)        | 0.112                   | 0.112                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| F000             | 848.0                   | 848.0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| F000'            | 848.51                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| h,k,lmax         | 14,12,25                | 14,12,25                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Nref             | 2376                    | 1838                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Tmin, Tmax       |                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Tmin'            |                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Correction metho | od= Not given           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Data completenes | ss= 0.774               | Theta(max) = 28.323           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| R(reflections)=  | 0.0407( 1288)           |                               | wR2(reflections)<br>0.0931( 1838)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| S = 0.935        | Npar= 1                 | 137                           | 1999-1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 |  |
|                  |                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

=

| The following ALERTS were generated. Each ALERT has the format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|
| Click on the hyperlinks for more details of the test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                                                                     |
| Alert level B<br>PLAT911_ALERT_3_B Missing FCF Refl Between Thmin & STh/L= 0.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 489                                                            | Report                                                              |
| <pre>Alert level C PLAT052_ALERT_1_C Info on Absorption Correction Method Not Given PLAT053_ALERT_1_C Minimum Crystal Dimension Missing (or Error) PLAT054_ALERT_1_C Medium Crystal Dimension Missing (or Error) PLAT055_ALERT_1_C Maximum Crystal Dimension Missing (or Error) PLAT906_ALERT_3_C Large K Value in the Analysis of Variance PLAT934_ALERT_3_C Number of (Iobs-Icalc)/Sigma(W) &gt; 10 Outliers</pre>                                                                                                                                                                                                  | Please<br>Please<br>Please<br>2.292<br>1                       | Do !<br>Check<br>Check<br>Check<br>Check<br>Check                   |
| Alert level G<br>PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms<br>PLAT019_ALERT_1_G _diffrn_measured_fraction_theta_full/*_max < 1.0<br>PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K)<br>PLAT200_ALERT_1_G Reporteddiffrn_ambient_temperature (K)<br>PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for 03 .<br>PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .<br>PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600<br>PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF<br>PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. | 1<br>0.926<br>273<br>273<br>106.0<br>Please<br>50<br>1<br>4    | Report<br>Report<br>Check<br>Degree<br>Do !<br>Note<br>Note<br>Info |
| <pre>0 ALERT level A = Most likely a serious problem - resolve or expla<br/>1 ALERT level B = A potentially serious problem, consider carefull<br/>6 ALERT level C = Check. Ensure it is not caused by an omission or<br/>9 ALERT level G = General information/check it is not something un<br/>8 ALERT type 1 CIF construction/syntax error, inconsistent or miss<br/>2 ALERT type 2 Indicator that the structure model may be wrong or<br/>4 ALERT type 3 Indicator that the structure quality may be low<br/>1 ALERT type 4 Improvement, methodology, query or suggestion</pre>                                   | ain<br>Ly<br>r oversigh<br>nexpected<br>sing data<br>deficient | nt<br>:                                                             |

### Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT911_TRY6_a
;
PROBLEM: Missing FCF Refl Between Thmin & STh/L=
                                                  0.600
                                                               489 Report
RESPONSE: ...
;
_vrf_PLAT052_TRY6_a
PROBLEM: Info on Absorption Correction Method Not Given
                                                          Please Do !
```

| RESPONSE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| _vrf_PLAT053_TRY6_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| PROBLEM: Minimum Crystal Dimension Missing (or Error)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Please Check |
| RESPONSE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| _vrf_PLAT054_TRY6_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| PROBLEM: Medium Crystal Dimension Missing (or Error)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Please Check |
| RESPONSE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| _vrf_PLAT055_TRY6_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| PROBLEM: Maximum Crystal Dimension Missing (or Error)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Please Check |
| RESPONSE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| _vrf_PLAT906_TRY6_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| PROBLEM: Large K Value in the Analysis of Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.292 Check  |
| RESPONSE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| _vrf_PLAT934_TRY6_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| PROBLEM: Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Check      |
| RESPONSE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| The second |              |
| # end Validation Reply Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special\_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

#### Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

### Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 12/09/2022; check.def file version of 09/08/2022



Figure S76. ORTEP diagram of 9e (CCDC = 2209513). Ellipsoids are drawn at 50%

probability.

## **Reference:**

1) Sheldrick, G. M. Acta Crystallography. Sect A. 1990, 46, 467.

### Differential scanning calorimetry (DSC) analysis of triflate surrogates

- (A) DSC data was obtained on Perkin Elmer Differential scanning calorimeter 8000 II (5.050mg) was loaded into aluminum volatile pan and held at 25 °C for 10 min then 25 °C to 180 °C at 10 °C/min.
- (B) DSC data was obtained on Perkin Elmer Differential scanning calorimeter 8000 III (4.150mg) was loaded into aluminum volatile pan and held at 25 °C for 10 min then 25 °C to 180 °C at 10 °C/min.
- (C) DSC data was obtained on Perkin Elmer Differential scanning calorimeter 8000 IV (4.150mg) was loaded into aluminum volatile pan and held at 25 °C for 10 min then 25 °C to 180 °C at 10 °C/min.
- (D) DSC data was obtained on Perkin Elmer Differential scanning calorimeter 8000 V (3.930mg) was loaded into aluminum volatile pan and held at 25 °C for 10 min then 25 °C to 180 °C at 10 °C/min.



Figure S177. DSC data of triflate surrogates II-V