Supporting Information

Regioselective [2+1] Photocycloaddition of 2-Pyridones and

Diazo Compounds

Fengya He,^a Ziyi Sun,^a Chenyue Li,^a Zibin Jiang,^a Hui Miao,^{*b} Qinlin Li,^{*a} Chenggui Wu^{*a,b}

^a Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038. P. R. China.

^b Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China.

*E-mail:cgwu@ahtcm.edu.cn

Table of content

1. General information	2
2. Optimization of the reaction conditions	3
3. Substrates involved in this work	6
4 General procedures for the synthesis of Products	14
5 Analytical date	15
6 Characterization data for the new compounds.	16
7 Control experiments	50
8 Synthetic application	53
9 Density Functional Theory (DFT) Studies	60
10 X-ray crystallographic data for 3 and 30	71
11 References	75
12 NMR spectra	77

1. General information

All reactions dealing with air- or moisture-sensitive compound were performed by standard Schlenk techniques in oven-dried reaction vessels under argon atmosphere or in the argon-filled glove box. Unless otherwise noted, all solvents were dried by JC Meyer Solvent Drying System. Most reagents were purchased from commercial sources and used without further purification, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.2 mm commercial silica gel plates, using UV light as the visualizing agent or basic solution of KMnO₄ or acidic solution of *p*-anisaldehyde and heat as a developing agent. All NMR spectra were recorded on a Bruker spectrometer at 400 MHz (¹H NMR), 500 MHz (¹H NMR), 600 MHz (¹H NMR), 100 MHz (¹³C NMR), 125 MHz (¹³C NMR), 150 MHz (¹³C NMR), 375 MHz (¹⁹F NMR), 470 MHz (¹⁹F NMR), 565 MHz (¹⁹F NMR), 243 MHz (³¹P NMR) and were calibrated using residual undeuterated solvent as an internal reference (CDCl₃, 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). The following abbreviations were used to explain multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, dd = doublet of doublets, m = multiplet, br = broad. High resolution mass spectra (HRMS) were recorded on DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer.

2. Optimization of the reaction conditions

2.1 Optimization of conditions for 2-pyridone and diazocompounds

O N Bn	+ Ph CO ₂ Me Blue LEDs solvent, rt, 48 h	ON H CO ₂ Me
1a	2a	3
Entry ^[a]	solvent	3a /[%] ^[b]
1	DMF	0
2	DMSO	0
3	MeCN	0
4	THF	0
5	DME	41
6	DCM	25
7	DCE	41
8	dioxane	trace
9	PhCl	34
10	toluene	42
11	xylene	5
12	PhCF ₃	45
13	Heptane	trace

Table S1. Screening of solvents

[a] Conditions: **1a** (0.1 mmol), **2a** (1.0 equiv) were dissolved in 0.5 mL of solvent indicated and were irradiated at room temperature with blue LEDs (5 W, 465 nm) for 48 h. [b] Isolated yield.

Table S2. Screening the ratio of 1a and 2a

[a] Conditions: **1a** (0.1 mmol), **2a** (x equiv), were dissolved in 0.5 mL of solvent indicated and were irradiated at room temperature with blue LEDs (5 W, 465 nm) for 48 h. [b] equivment [c] Isolated yield

Table S3. Screening the ratio of toluene and DCE

0 N + Bn 1a	$\begin{array}{c} N_2 \\ Ph \\ \hline \\ 2a \end{array} \begin{array}{c} Blue \ LEDs \\ \hline \\ solvent, \ rt, \ 48 \ h \end{array}$	→ ON H Bn 3
Entry ^[a]	solvent ^[b]	3 /[%] ^[c]
1	1:1	63
2	4:1	72
3	9:1	70
4	20:1	75
5	30:1	74

[a] Conditions: **1a** (0.1 mmol), **2a** (2.0 equiv) were dissolved in 0.25 mL of solvent indicated and were irradiated at room temperature with blue LEDs (5 W, 465 nm) for 48 h. [b] The ratio of toluene:DCE. [c] Isolated yield.

Table S4. Screening of solvent mix ratios

0 N + Bn 1a	Ph CO ₂ Me Blue LEDs solvent, rt, 48 h	- O N H Ph Bn 3
Entry ^[a]	solvent ^[b]	3a /[%] ^[c]
1	toluene:DCE (20:1)	75
2	toluene:DCM(20:1)	68
3	toluene:DME(20:1)	67
4	PhCF ₃ :DCE(20:1)	71
5	PhCF ₃ :DCM(20:1)	66
6	PhCF ₃ :DME(20:1)	55
7	PhCI:DCE(20:1)	81
8	PhCI:DCM(20:1)	70
9	PhCI:DME(20:1)	59

[a] Conditions: **1a** (0.1 mmol), **2a** (2.0 equiv) were dissolved in 0.25 mL of solvent indicated and were irradiated at room temperature with blue LEDs (5 W, 465 nm) for 48 h. [b] system concentration with 0.4 mol/L. [c] Isolated yield.

Table S5. Screening of Conditions

on N + Bn 1a	Ph CO ₂ Me	blue LEDs (5 W) PhCI:DCE 20:1 rt, 48 h	H Ph H CO ₂ Me Bn 3
Entry ^[a]	Change of conditions ^[b]		3 /[%] ^[c]
1		none	81
2		PhCl	59
3		DCE	58
4		dark	0

[a] Conditions: **1a** (0.1 mmol), **2a** (2.0 equiv) were dissolved in 0.25 mL of solvent indicated and were irradiated at room temperature with blue LEDs (5 W, 465 nm) for 48 h. [b] system concentration with 0.4 mol/L. [c] Isolated yield.

2.2 Optimization of conditions for 2-pyridone and hydrazones

o N +	Ph CO ₂ Me	Blue LEDs Base PhCI:DCE 20:1 rt, 48 h	
1a	ZA		3
Entry ^[a]	Base		3 /[%] ^[b]
1	DIPEA		61
2	DABCO		65
3	Et ₃ N		64
4	DMAP		38
5	N,N,N'-Trimethylethylenediamine		40
6	DBU		44
7	Cs ₂ CO ₃		68

[a] Conditions: **1a** (0.1 mmol), **2A** (2.0 equiv) and base (4.0 equiv) were dissolved in 0.25 mL of solvent indicated and were irradiated at room temperature with blue LEDs (5 W, 465 nm) for 48 h. [b] Isolated yield.

3. Substrates involved in this work.

The 2-pyridones $(10)^1 (1w)^2 (1z)^3 (1a, 1b, 1x)^4 (1d, 1F, 1B)^5 (1h)^6 (1m, 1E)^7 (1n)^8 (1G)^9 (1H)^{10}$ (1k, 1l)¹¹ (1f, 1g, 1L)¹² (1v)¹³ (1s, 1t, 1u)¹⁴ (1i)¹⁵ (1A)¹⁶ (1J)¹⁷ were prepared according to the literature procedures. The S5, 1c, 1I, 1K obtained by commercial purchase. The diazocompounds (2a, 2f, 2q, 2s)¹⁸ (2b, 2c, 2e, 2g)¹⁹ (2l)²⁰ (2p)²¹ (2n, 2f, 2d, 2g, 2m)²² (2k)²³ (2i)²⁴ (2h, 2j)²⁵ (2r)²⁶ (2n)²⁷ (2o)²⁸ were known compounds and prepared according to literature procedures. The Hydrazone compounds (2B)²⁹ (2A)³⁰ (2C, 2D)³¹ (2E, 2F)³² (2G)²⁸ were known compounds and prepared according to literature procedures.

3.1 Procedure for synthesis of Substrate

3.1.1 Procedure for synthesis of 1e.33

In a round-bottom flask, **S1** (10 mmol), DMAP (3 mol%) and imidazole (2.0 equiv) was dissolved in MeCN (20 ml) at 0 °C. Then TBSCl (1.1 equiv) were dropwise added. and the solution was stirred at room temperature for 30 min. The reaction mixture was poured into water and then the product was extracted with EtOAc (30 mL x 3), the combined layers were dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by column chromatography on silica gel (eluent: Petroleum ether/EtOAc = 10:1-3:1) to give **1e**

1-(2-((tert-Butyldimethylsilyl)oxy)ethyl)pyridin-2(1H)-one (1e)

Physical state: brown solid;

Melting point: 32–35°C;

Yield: 87%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.32 (m, *J* = 7.1, 5.0, 2.2 Hz, 2H), 6.54 (dd, *J* = 9.7, 1.4 Hz, 1H), 6.11 (td, *J* = 6.5, 1.3 Hz, 1H), 4.04 (t, *J* = 4.8 Hz, 2H), 3.92 – 3.83 (m, 2H), 0.82 (s, 9H), -0.09 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 162.74, 139.82, 139.71, 120.68, 105.09, 60.91, 52.46, 25.90, 18.26, -5.62.

HRMS (ESI-TOF): Calc'd. For: C₁₃H₂₄NO₂Si⁺ [M+H⁺] 254.1571, found: 254.1566

3.1.2 Procedure for synthesis of 1y, 1D.⁴

In a round-bottom flask, **S2** (10 mmol) and K₂CO₃ (4.0 equiv) was dissolved in acetone (15 ml). Then BnBr (1.5 equiv) were dropwised at room temperature, and the solution was stirred for 12 hours. The reaction mixture was poured into water and then the product was extracted with EtOAc (30 mL x 3), the combined layers were dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by column chromatography on silica gel (eluent: Petroleum ether/EtOAc = 10:1-3:1) to give **1y**, **1D**.

1-Benzyl-4-iodopyridin-2(1*H*)-one (1y)

Physical state: white solid;

Melting point: 95–96°C;

Yield: 78%;

Rf = 0.4 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 – 7.26 (m, 5H), 7.13 (q, *J* = 1.7 Hz, 1H), 6.93 (d, *J* = 7.2 Hz,

1H), 6.45 (ddt, *J* = 7.1, 2.2, 1.2 Hz, 1H), 5.06 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 160.98, 136.64, 135.81, 130.44, 129.10, 128.37, 128.29, 115.61,

108.88, 51.87.

HRMS (ESI-TOF): Calc'd. For: C₁₂H₁₁INO⁺ [M+H⁺] 311.9880, found: 311.9874.

1-benzyl-4-chloro-5-methylpyridin-2(1H)-one (1D)

Physical state: white solid;

Melting point: 112–113°C;

Yield: 82%;

Rf = 0.2 (silica gel, PE: EtOAc = 10:1);

¹H NMR (400 MHz, CDCl₃): δ 7.59 – 7.41 (m, 6H), 6.89 (s, 1H), 5.27 (s, 2H), 2.23 (s, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 161.36, 148.52, 136.22, 135.21, 129.06, 128.26, 128.18, 119.70, 115.08, 51.53, 16.22.

HRMS (ESI-TOF): Calc'd. For: C₁₃H₁₃ClNO⁺ [M+H⁺] 234.0680, found: 234.0671

3.1.3 Procedure for synthesis of **1q-r**.³⁴

In a round-bottom flask, **S3** (10 mmol) and **S5** or **S6**³⁵ (1.0 equiv) was dissolved in MeCN (15 mL). Then TMSOTf (1.5 equiv) and BSA (N,O-Bis(trimethylsilyl)acetamide) (2.0 equiv) were dropwised at 65°C, and the solution was stirred for 16 hours. The reaction mixture was poured into water and then the product was extracted with EtOAc (30 mL x 3), the combined layers were dried over Na₂SO₄. And then concentrated in *vacuo*. The residue was purified by column chromatography on silica gel (eluent: EtOAc/Petroleum ether = 1:3–1:1) to give **1q-1r**.

(2*S*,3*S*,4*S*,5*S*)-2-((Benzoyloxy)methyl)-5-(2-oxopyridin-1(2*H*)-yl)tetrahydrofuran-3,4-diyl dibenzoate (1q)

Physical state: white solid

Melting point: 86–89°C

Yield: 83%

Rf = 0.4 (silica gel, PE: EtOAc = 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ 8.15 – 8.08 (m, 2H), 8.02 – 7.96 (m, 2H), 7.95 – 7.90 (m, 2H), 7.63 – 7.51 (m, 4H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.41 – 7.28 (m, 5H), 6.62 (d, *J* = 4.3 Hz, 1H), 6.54 (d, *J* = 9.2 Hz, 1H), 6.08 (td, *J* = 6.8, 1.3 Hz, 1H), 5.92 (t, *J* = 5.8 Hz, 1H), 5.81 (dd, *J* = 5.8, 4.3 Hz, 1H), 4.88 (dd, *J* = 12.2, 2.9 Hz, 1H), 4.78 (dt, *J* = 6.3, 3.3 Hz, 1H), 4.69 (dd, *J* = 12.3, 4.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 165.16, 162.42, 161.57, 151.33, 139.79, 133.68, 133.58, 130.51, 130.04, 129.39, 128.92, 128.57, 126.37, 125.71, 120.16, 105.24, 90.53, 82.59, 74.73, 67.89, 65.73, 25.83, 25.66, 18.29, 17.91, -4.65, -4.83, -4.85, -5.35.

HRMS (ESI-TOF): Calc'd. For: C₃₁H₂₆NO₈+[M+H+] 540.1653, found: 540.1655

(2*S*,3*S*,4*R*)-4-((*tert*-Butyldimethylsilyl)oxy)-2-(2-oxopyridin-1(2*H*)-yl)tetrahydrofuran-3-yl benzoate (1r)

Physical state: yellow solid;

Melting point: 112–115°C;

Yield: 62%;

Rf = 0.3 (silica gel, PE: EtOAc = 2:1);

α: β = 3:1

¹**H NMR** (400 MHz, CDCl₃): δ 7.91 – 7.85 (m, 2H), 7.85 – 7.79 (m, 1H), 7.56 (dd, J = 7.1, 2.0 Hz, 1H), 7.44 – 7.35 (m, 1H), 7.28 (s, 1H), 7.25 (d, J = 3.8 Hz, 1H), 7.14 (ddd, J = 9.0, 6.6, 2.1 Hz, 1H), 6.32 (dt, J = 9.1, 1.0 Hz, 1H), 6.17 (s, 1H), 6.00 (td, J = 6.8, 1.3 Hz, 1H), 4.20 – 4.15 (m, 1H), 4.14 – 4.06 (m, 2H), 3.66 (t, J = 5.8 Hz, 1H), 0.61 (s, 9H), -0.06 (d, J = 12.7 Hz, 3H), -0.16 (d, J = 12.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 165.16, 162.42, 139.79, 133.68, 133.58, 130.04, 128.57, 120.16, 105.24, 90.53, 82.59, 74.73, 67.89, 65.73, 25.83, 25.66, 18.29, 17.91, -4.65, -4.83, -4.85, -5.35.
HRMS (ESI-TOF): Calc'd. For: C₂₂H₃₀NO₅Si⁺ [M+H⁺] 416.1888, found: 416.1891

3.1.4 Procedure for synthesis of **1p**.⁷

In a round–bottom flask, **S7** (10 mmol) and **S8** (1.0 equiv), CuI (0.1 equiv) and K₂CO₃ (1.0 equiv) was dissolved in DMF (15 ml) at 150°C. Then the reaction mixture was stirred for 6 hours, the reaction mixture was poured into water and then the product was extracted with EtOAc (30 mL x 3), the combined layers were dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by column chromatography on silica gel (eluent: EtOAc/Petroleum ether = 1:3–1:1) to give **1p**

2-Butyl-6-(2-Oxopyridin-1(2H)-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (1p)

Physical state: yellow solid

Melting point: 203–205°C

Yield: 68%

Rf = 0.3 (silica gel, PE: EtOAc = 1:1);

¹**H NMR** (400 MHz, CDCl₃): δ 8.70 (d, J = 7.7 Hz, 1H), 8.65 (dd, J = 7.2, 1.2 Hz, 1H), 7.88 (dd, J = 8.5, 1.2 Hz, 1H), 7.78 (dd, J = 8.5, 7.2 Hz, 1H), 7.72 (d, J = 7.6 Hz, 1H), 7.57 (ddd, J = 9.1, 6.6, 2.1 Hz, 1H), 7.32 (dd, J = 6.9, 2.1 Hz, 1H), 6.77 (dt, J = 9.3, 1.1 Hz, 1H), 6.39 (td, J = 6.7, 1.2 Hz, 1H), 4.25 – 4.17 (m, 2H), 1.72 (tt, J = 9.2, 3.6 Hz, 2H), 1.45 (h, J = 7.4 Hz, 2H), 0.99 (t, J = 7.3 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 163.94, 163.49, 162.50, 143.05, 140.94, 137.98, 132.02, 131.27, 129.21, 129.07, 128.35, 128.12, 126.44, 123.92, 123.46, 122.34, 106.62, 40.54, 30.31, 20.49, 13.97.

3.1.5 Procedure for synthesis of 2H, 2I.³²

In a round–bottom flask, **S9** (10 mmol) and TSNNH₂ (1.0 equiv) was dissolved in THF (15 ml) at room temperature. Then HCl (cat.) was dropwised. Then the reaction mixture was stirred for 3 hours, the hydrazones precipitate as needle–like crystals. Filtration of the crude mixture gives the pure product.

Ethyl (E)-2-(3,4-dichlorophenyl)-2-(2-tosylhydrazono)acetate (2H)

Physical state: yellow solid

Melting point: 93–95°C

Yield: 48%

Rf = 0.3 (silica gel, PE: EtOAc = 4:1);

¹**H** NMR (400 MHz, CDCl₃): δ 11.79 (s, 1H), 7.86 (d, *J* = 8.4 Hz, 2H), 7.59 (d, *J* = 2.0 Hz, 1H), 7.44 – 7.30 (m, 4H), 4.36 (q, *J* = 7.2 Hz, 2H), 2.43 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 161.59, 144.87, 135.26, 135.18, 134.08, 133.66, 132.40, 130.63,

130.14, 129.96, 128.11, 127.97, 62.86, 21.78, 14.08.

HRMS (ESI-TOF): Calc'd. For: C₁₇H₁₇Cl₂N₂O₄S⁺ [M+H⁺] 415.0281, found: 415.0279

Ethyl (E)-2-(3,4-difluorophenyl)-2-(2-tosylhydrazono)acetate (2I)

Physical state: yellow solid

Melting point: 40–42°C

Yield: 86%

Rf = 0.3 (silica gel, PE: EtOAc = 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ 11.73 (s, 1H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.40 – 7.26 (m, 4H), 7.12 (dt, *J* = 9.7, 8.3 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 2.42 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 161.65, 152.43, 152.30, 151.19, 151.06, 149.93, 149.80, 148.72, 148.60, 144.83, 144.82, 135.52, 135.32, 129.94, 128.05, 125.18, 125.12, 118.01, 117.81, 117.12, 116.94, 62.84, 21.74, 14.05.

¹⁹**F NMR** (375 MHz, CDCl₃): δ –136.07, –137.53.

HRMS (ESI-TOF): Calc'd. For: C₁₇H₁₇F₂N₂O₄S⁺ [M+H⁺] 383.0872, found: 383.0368

4 General procedures for the synthesis of Products

4.1 Reaction of 2-pyridones with aryl diazocompounds

A 4 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 1 (0.1 mmol), 2 (2.0 equiv) and anhydrous PhCl (0.24 mL) and anhydrous DCE (0.012 mL) in the glove box. and the mixture was irradiation with a blue LED under nitrogen atmosphere at room temperature for 48 hours. After completion of the reaction (monitored by TLC), filtered through a thin pad of celite, eluting with EtOAc (30 mL), and the combined filtrate was concentrated *in vacuo*. The residue was directly purified by column chromatography on silica gel to give the desired product.

4.2 Reaction of 2-pyridones with hydrazones

A 4 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 1 (0.1 mmol), 2 (2.0 equiv), Cs₂CO₃ (4.0 equiv) and anhydrous PhCl (0.24 mL) and anhydrous DCE (0.012 mL) in the glove box. and the mixture was irradiation with a blue LED under nitrogen atmosphere at

room temperature for 48 hours. After completion of the reaction (monitored by TLC), filtered through a thin pad of celite, eluting with EtOAc (30 mL), and the combined filtrate was concentrated *in vacuo*. The residue was directly purified by column chromatography on silica gel to give the desired product.

5 Analytical date

Reaction scope of 2-pyridones

Reaction scope of Diazocompounds and Hydrazones

6 Characterization data for the new compounds.

Methyl (1R,6R,7R)-2-benzyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (3)

Physical state: yellow solid

Melting point: 161–164°C;

Yield: 81%;

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.37 (d, *J* = 3.8 Hz, 4H), 7.35 – 7.30 (m, 1H), 7.30 – 7.25 (m, 3H), 7.00 – 6.94 (m, 2H), 6.65 (dd, *J* = 9.8, 5.2 Hz, 1H), 5.70 (d, *J* = 9.9 Hz, 1H), 5.52 (d, *J* = 14.7 Hz, 1H), 4.17 (d, *J* = 14.6 Hz, 1H), 3.89 (d, *J* = 8.9 Hz, 1H), 3.63 (s, 3H), 2.88 (dd, *J* = 8.9, 5.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 173.47, 161.43, 136.31, 136.18, 133.26, 129.50, 128.91, 128.50, 128.32, 128.14, 127.95, 126.47, 53.17, 50.55, 48.71, 33.85, 28.12.
HRMS (ESI–TOF): Calc'd. For: C₂₁H₂₀NO₃⁺[(M+H)⁺] 334.1438, found: 334.1435

Methyl

(1*R*,6*R*,7*R*)-2-(4-methoxybenzyl)-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (4)

Physical state: yellow solid;

Melting point: 113–114°C;

Yield: 81%;

Rf = 0.3 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.32 – 7.26 (m, 4H), 7.25 (s, 1H), 6.98 – 6.93 (m, 2H), 6.92 – 6.87 (m, 2H), 6.63 (dd, *J* = 9.9, 5.2 Hz, 1H), 5.68 (d, *J* = 9.9 Hz, 1H), 5.43 (d, *J* = 14.4 Hz, 1H), 4.11 (d, *J* = 14.4 Hz, 1H), 3.88 (d, *J* = 8.9 Hz, 1H), 3.81 (s, 3H), 3.63 (s, 3H), 2.86 (dd, *J* = 8.9, 5.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 173.57, 161.37, 159.45, 136.16, 133.30, 129.89, 129.57, 128.51, 128.34, 128.15, 126.63, 114.30, 55.45, 53.20, 50.03, 48.58, 33.81, 28.19.

HRMS (ESI–TOF): Calc'd. For: C₂₂H₂₂NO₄⁺ [(M+H)⁺] 364.1543, found: 364.1553

Methyl (1*R*,6*R*,7*R*)-2-methyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (5)

Physical state: white solid; Melting point: 133–137°C; Yield: 84%; Rf = 0.3 (silica gel, PE: EtOAc = 1:1); ¹**H** NMR (400 MHz, CDCl₃): δ 7.31 – 7.26 (m, 2H), 7.26 – 7.22 (m, 1H), 7.02 – 6.97 (m, 2H), 6.63 (ddd, J = 9.8, 5.3, 0.7 Hz, 1H), 5.62 (d, J = 9.8 Hz, 1H), 3.84 (dd, J = 8.8, 0.7 Hz, 1H), 3.64 (s, 3H), 3.21 (s, 3H), 2.91 (dd, J = 8.8, 5.3 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 173.62, 161.58, 135.89, 133.14, 129.51, 128.51, 128.19, 126.46, 53.16, 50.68, 35.27, 33.63, 28.18.

HRMS (ESI–TOF): Calc'd. For: C₁₅H₁₆NO₃⁺ [(M+H)⁺] 258.1125, found: 258.1123.

Methyl

(1*R*,6*R*,7*R*)-2-(2-methoxy-2-oxoethyl)-3-oxo-7-phenyl-2azabicyclo[4.1.0]hept-4-ene-7-caboxyl ate (6)

Physical state: white solid;

Melting point: 130–133°C;

Yield: 51%;

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.33 – 7.28 (m, 2H), 7.25 (d, *J* = 6.8 Hz, 1H), 6.99 (dd, *J* = 7.4, 2.0 Hz, 2H), 6.73 (dd, *J* = 9.9, 5.3 Hz, 1H), 5.67 (d, *J* = 9.9 Hz, 1H), 4.95 (d, *J* = 17.1 Hz, 1H), 3.99 (d, *J* = 9.0 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 1H), 3.64 (d, *J* = 1.1 Hz, 3H), 2.98 (dd, *J* = 8.9, 5.3 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 173.21, 169.02, 161.46, 137.13, 133.16, 129.48, 128.59, 128.25, 125.86, 53.22, 52.59, 49.99, 48.57, 34.00, 28.03.

HRMS (ESI–TOF): Calc'd. For: $C_{17}H_{18}NO_5^+$ [(M+H)⁺] 316.1179, found: 316.1184

Methyl (1*R*,6*R*,7*R*)-2-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-3-oxo-7-phenyl-2– azabicyclo[4.1.0]hept-4-ene-7-carboxylate (7)

Physical state: yellow oil;

Yield: 82%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.36 – 7.27 (m, 1H), 7.20 – 7.15 (m, 2H), 6.96 (dd, *J* = 6.5, 1.8 Hz, 2H), 6.57 (dd, *J* = 9.9, 5.3 Hz, 1H), 5.54 (d, *J* = 9.9 Hz, 1H), 4.19 (d, *J* = 8.9 Hz, 1H), 4.11 (dt, *J* = 13.6, 3.5 Hz, 1H), 3.86 (ddd, *J* = 10.5, 9.2, 3.5 Hz, 1H), 3.78 (dt, *J* = 10.8, 3.9 Hz, 1H), 3.56 (s, 3H), 3.25 (ddd, *J* = 13.5, 9.1, 4.2 Hz, 1H), 2.84 (dd, *J* = 8.9, 5.3 Hz, 1H), 0.85 (s, 9H), 0.00 (s, 6H).

¹³C NMR (125 MHz, CDCl₃):δ 173.41, 161.53, 136.30, 133.37, 129.74, 128.43, 128.05, 126.49, 61.87, 53.06, 51.13, 50.47, 33.55, 28.25, 25.93, 18.28, -5.34, -5.39.

HRMS (ESI–TOF): Calc'd. For: C₂₂H₃₂NO₄Si⁺ [(M+H)⁺] 402.2095, found: 402.2091.

2-(*tert*-Butyl)

7-methyl

(1R,6R,7R)-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-2,7-dicarboxylate (8)

Physical state: white solid;

Melting point: 113–115°C;

Yield: 71%;

Rf = 0.6 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (500 MHz, CDCl₃): δ 7.27 (dd, *J* = 5.4, 2.1 Hz, 3H), 7.10 – 7.04 (m, 2H), 6.76 (dd, *J* = 9.8, 5.2 Hz, 1H), 5.62 (d, *J* = 9.8 Hz, 1H), 4.41 (d, *J* = 8.9 Hz, 1H), 3.65 (s, 3H), 2.93 (dd, *J* = 8.9, 5.2 Hz, 1H), 1.60 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 172.69, 160.20, 152.27, 137.99, 133.26, 129.22, 128.59, 128.32, 127.16, 84.19, 53.21, 46.14, 35.48, 28.10, 26.43.

HRMS (ESI–TOF): Calc'd. For: C₁₉H₂₂NO₅⁺ [(M+H)⁺] 344.1492, found: 344.1502.

Methyl (1R,6R,7R)-3-oxo-7-phenyl-2-tosyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (9)

Physical state: white solid;

Melting point: 175–177°C;

Yield: 75%;

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹**H** NMR (400 MHz, CDCl₃): δ 8.04 – 7.94 (m, 2H), 7.35 – 7.27 (m, 5H), 7.26 – 7.19 (m, 2H), 6.81 (ddd, J = 9.8, 5.3, 0.7 Hz, 1H), 5.52 (d, J = 9.8 Hz, 1H), 4.81 (dd, J = 9.0, 0.7 Hz, 1H), 3.70 (s, 3H), 3.00 (dd, J = 9.0, 5.3 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.54, 159.51, 145.47, 139.88, 135.74, 133.73, 129.55, 129.07, 128.56, 128.47, 128.43, 125.71, 53.48, 46.72, 35.34, 26.94, 21.82.

HRMS (ESI–TOF): Calc'd. For: $C_{21}H_{20}NO_5S^+$ [(M+H)⁺] 398.1057, found: 398.1065.

Methyl (1R,6R,7R)-3-oxo-2,7-diphenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (10)

Physical state: yellow solid

Melting point: 121–124°C;

Yield: 79%;

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.61 – 7.53 (m, 2H), 7.51 – 7.44 (m, 2H), 7.34 – 7.26 (m, 4H), 7.19 – 7.09 (m, 2H), 6.74 (dd, *J* = 9.9, 5.3 Hz, 1H), 5.78 (d, *J* = 9.8 Hz, 1H), 4.29 (d, *J* = 8.9 Hz, 1H), 3.67 (s, 3H), 3.06 (dd, *J* = 8.9, 5.3 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃): δ 173.37, 160.90, 141.55, 136.53, 133.45, 129.48, 129.18, 128.59, 128.35, 127.54, 126.50, 124.92, 53.33, 50.63, 34.55, 28.09.

HRMS (ESI–TOF): Calc'd. For: C₂₀H₁₈NO₃⁺ [(M+H)⁺] 320.1281, found: 320.1276.

Methyl

(1*R*,6*R*,7*R*)-2-(3-fluorophenyl)-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (11)

Physical state: yellow solid

Melting point: 115–116°C;

Yield: 52%;

Rf = 0.3 (silica gel, PE: EtOAc = 2:1);

¹**H** NMR (600 MHz, CDCl₃): δ 7.46 – 7.34 (m, 4H), 7.29 – 7.26 (m, 2H), 7.12 – 7.07 (m, 2H), 6.99 (tdd, *J* = 8.2, 2.4, 1.0 Hz, 1H), 6.74 (dd, *J* = 9.8, 5.2 Hz, 1H), 5.76 (d, *J* = 9.9 Hz, 1H), 4.25 (d, *J* = 8.9 Hz, 1H), 3.68 (s, 3H), 3.04 (dd, *J* = 8.9, 5.3 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 173.07, 163.50, 161.87, 160.67, 142.85, 142.78, 136.77, 133.22, 130.18, 130.11, 129.18, 128.57, 128.35, 127.23, 119.75, 119.73, 113.34, 113.20, 112.54, 112.37, 53.34, 50.06, 34.61, 27.90.

¹⁹**F NMR** (565 MHz, CDCl₃): δ –111.18.

HRMS (ESI-TOF): Calc'd. For:,found: C₂₀H₁₇FNO₃⁺ [M+H⁺] 338.1187, found: 338.1193.

Methyl

(1*R*,6*R*,7*R*)-2-(4-formylphenyl)-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (12)

Physical state: yellow solid **Melting point**: 125–129°C;

Yield: 87%;

Rf = 0.3 (silica gel, PE: EtOAc = 2:1);

¹**H** NMR (600 MHz, CDCl₃): δ 10.03 (s, 1H), 8.01 – 7.96 (m, 2H), 7.83 – 7.77 (m, 2H), 7.28 – 7.26 (m, 3H), 7.09 – 7.04 (m, 2H), 6.78 (dd, J = 9.9, 5.3 Hz, 1H), 5.80 (d, J = 9.8 Hz, 1H), 4.29 (d, J = 8.9 Hz, 1H), 3.71 (s, 3H), 3.08 (dd, J = 8.9, 5.3 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 191.14, 173.03, 160.77, 146.62, 137.12, 133.76, 133.15, 130.60, 129.04, 128.72, 128.53, 127.25, 124.47, 53.50, 49.56, 34.96, 27.92.

HRMS (ESI-TOF): Calc'd. For: C₂₁H₁₇NNaO₄⁺ [M+Na⁺] 370.1050, found: 370.1054.

Methyl

(1*R*,6*R*,7*R*)-3-oxo-7-phenyl-2-(thiophen-2-yl)-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (13)

Physical state: white solid;

Melting point: 138–141°C;

Yield: 62%;

Rf = 0.2 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.53 (dd, *J* = 5.2, 1.5 Hz, 1H), 7.49 (dd, *J* = 3.3, 1.5 Hz, 1H), 7.39 – 7.36 (m, 1H), 7.23 (dt, *J* = 3.7, 2.7 Hz, 3H), 7.06 – 7.01 (m, 2H), 6.71 (ddd, *J* = 9.9, 5.3, 0.8 Hz, 1H), 5.75 (d, *J* = 9.8 Hz, 1H), 4.32 (dd, *J* = 9.0, 0.8 Hz, 1H), 3.70 (s, 3H), 3.03 (dd, *J* = 9.0, 5.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 173.35, 159.93, 140.12, 136.09, 133.07, 129.26, 128.63, 128.35, 127.19, 124.85, 123.21, 114.07, 53.38, 49.75, 34.34, 28.03.

HRMS (ESI–TOF): Calc'd. For: $C_{18}H_{16}NO_3S^+$ [(M+H)⁺] 326.0845, found: 326.0851.

Methyl

(1R,6R,7R)-3-oxo-7-phenyl-2-(thiazol-2-yl)-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (14)

Methyl

(1*S*,5*R*,6*R*)-3-(2-oxopyridin-1(2*H*)-yl)-6-phenyl-2-thia-4-azabicyclo[3.1.0]hex-3-ene-6-carbox ylate (14')

Physical state: black solid;

Melting point: 141–144°C;

Yield: 50% (14), 16% (14')

Rf = 0.4 (silica gel, PE: EtOAc = 2: 1);

¹**H NMR** (400 MHz, CDCl₃) (14-¹H): δ 7.67 (d, *J* = 3.6 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 3H), 7.11 (d, *J* = 3.6 Hz, 1H), 6.94 (dd, *J* = 9.9, 5.3 Hz, 1H), 6.85 (d, *J* = 7.2 Hz, 2H), 5.84 (d, *J* = 9.8 Hz, 1H), 5.23 (d, *J* = 8.7 Hz, 1H), 3.71 (s, 3H), 3.13 (dd, *J* = 8.7, 5.3 Hz, 1H).

¹**H NMR** (400 MHz, CDCl₃) (14'-¹H): δ 7.89 (dd, *J* = 7.3, 2.0 Hz, 1H), 7.24 – 7.18 (m, 6H), 6.45 (d, *J* = 9.3 Hz, 1H), 6.14 – 6.08 (m, 1H), 4.86 (d, *J* = 6.5 Hz, 1H), 4.00 (d, *J* = 6.6 Hz, 1H), 3.67 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) (Mixed Spectra): δ 173.46, 172.97, 161.42, 159.51, 158.99, 140.55, 138.79, 137.93, 133.33, 132.98, 128.98, 128.50, 128.34, 127.82, 127.73, 124.96, 121.88, 115.80, 107.13, 60.60, 53.38, 53.13, 46.90, 41.35, 34.47, 27.43.

HRMS (ESI–TOF): Calc'd. For: $C_{17}H_{14}N_2NaO_3S^+$ [(M+H)⁺] 349.0617, found: 349.0630.

Methyl

(1R,6R,7R)-3-oxo-7-phenyl-2-(pyridin-2-yl)-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (15)

Physical state: yellow solid;

Melting point: 89–90°C;

Yield: 86%;

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 8.57 (ddd, J = 4.9, 2.0, 0.9 Hz, 1H), 7.94 (dt, J = 8.4, 1.0 Hz, 1H), 7.72 (ddd, J = 8.4, 7.3, 2.0 Hz, 1H), 7.22 – 7.12 (m, 6H), 6.81 (ddd, J = 9.8, 5.4, 0.9 Hz, 1H), 5.76 (d, J = 9.8 Hz, 1H), 4.76 (dd, J = 8.8, 0.9 Hz, 1H), 3.69 (s, 3H), 3.05 (dd, J = 8.8, 5.3 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 173.63, 161.53, 153.05, 148.34, 137.77, 137.15, 133.63, 129.67, 128.38, 128.07, 127.09, 120.87, 120.16, 53.23, 47.82, 34.67, 27.78.

HRMS (ESI–TOF): Calc'd. For: $C_{19}H_{17}N_2O_3^+$ [(M+H)⁺] 321.1234, found: 321.1231.

Methyl

(1R,6R,7R)-3-oxo-7-phenyl-2-((E)-styryl)-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (16)

Physical state: white solid;

Melting point: 90–92°C;

Yield: 70%;

Rf = 0.2 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 8.17 (d, J = 14.9 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.39 – 7.32 (m, 3H), 7.24 (dd, J = 5.3, 2.4 Hz, 3H), 7.04 – 6.99 (m, 2H), 6.80 (dd, J = 9.9, 5.2 Hz, 1H), 6.33 (d, J = 14.9 Hz, 1H), 5.77 (d, J = 9.9 Hz, 1H), 4.25 (d, J = 8.9 Hz, 1H), 3.74 (s, 3H), 3.01 (dd, J = 8.9, 5.2 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 173.40, 159.01, 137.16, 136.26, 132.85, 128.94, 128.67, 128.50, 127.22, 126.58, 126.30, 125.99, 113.10, 53.46, 44.82, 35.05, 27.46.

HRMS (ESI–TOF): Calc'd. For $C_{22}H_{20}NO_3^+$ [(M+H)⁺] 346.1438, found: 346.1446.

Methyl

(1*R*,6*R*,7*R*)-2-((*E*)-3-methoxy-3-oxoprop-1-en-1-yl)-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept– 4-ene-7-carboxylate (17)

Physical state: yellow solid;

Melting point: 154–157°C;

Yield: 85%;

Rf = 0.4(silica gel, PE: EtOAc = 2:1);

¹H NMR (400 MHz, CDCl₃): δ 8.65 (d, J = 14.4 Hz, 1H), 7.28 (s, 1H), 7.26 (d, J = 6.3 Hz, 3H),
6.96 - 6.91 (m, 2H), 6.89 (dd, J = 9.9, 5.2 Hz, 1H), 5.77 (d, J = 10.0 Hz, 1H), 5.68 (d, J = 14.4 Hz, 1H),
4.09 (d, J = 8.7 Hz, 1H), 3.82 (s, 3H), 3.70 (s, 3H), 3.00 (dd, J = 8.8, 5.3 Hz, 1H).
¹³C NMR (125 MHz, CDCl₃): δ 172.57, 167.57, 158.81, 140.75, 139.19, 132.74, 128.76, 128.64,

128.43, 125.15, 101.29, 53.54, 51.78, 44.44, 36.13, 26.65.

HRMS (ESI-TOF): Calc'd. For: C₁₈H₁₇NNaO₅⁺ [(M+Na)⁺] 350.0999, found: 350.1007.

Methyl

(1*R*,6*R*,7*R*)-2-(2-butyl-1,3-dioxo-2,3-dihydro-1*H*-benzo[de]isoquinolin-6-yl)-3-oxo-7-phenyl-2 -azabicyclo[4.1.0]hept-4-ene-7-carboxylate (18)

Physical state: yellow solid; Melting point: 203–205°C; Yield: 52%; Rf = 0.3 (silica gel, PE: EtOAc = 2: 1);

¹**H NMR** (600 MHz, CDCl₃): δ 8.72 (d, *J* = 7.8 Hz, 1H), 8.64 (d, *J* = 7.2 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.81 (t, *J* = 7.8 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.37 (d, *J* = 7.3 Hz, 1H), 7.27 (s, 2H), 7.02 (dd, *J* = 10.2, 5.3 Hz, 1H), 5.94 (d, *J* = 10.0 Hz, 1H), 4.28 (d, *J* = 8.7 Hz, 1H), 4.19 (d, *J* = 7.6 Hz, 2H), 3.59 (s, 3H), 3.18 (dd, *J* = 8.7, 5.4 Hz, 1H), 1.74 – 1.70 (m, 2H), 1.47 – 1.43 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 172.95, 164.04, 163.58, 161.48, 143.54, 138.39, 133.79, 131.72, 131.22, 129.74, 128.97, 128.66, 127.90, 127.82, 127.41, 126.59, 123.73, 122.76, 53.41, 52.09, 40.45, 35.35, 30.30, 27.70, 20.47, 13.96.

HRMS (ESI-TOF): Calc'd. For: C₃₀H₂₆N₂NaO₅⁺ [(M+Na)⁺] 517.1734, found: 517.1737.

(2*S*,3*S*,4*S*,5*S*)-2-((Benzoyloxy)methyl)-5-((1*R*,6*R*,7*R*)-7-(methoxycarbonyl)-3-oxo-7-phenyl-2azabicyclo[4.1.0]hept-4-en-2-yl)tetrahydrofuran-3,4-diyl dibenzoate (19)

Physical state: yellow solid;

Melting point: 91–92°C;

Yield: 62%;

Rf = 0.3 (silica gel, PE: EtOAc = 2:1);

Dr = 3:2;

¹**H NMR** (400 MHz, CDCl₃): δ 8.16 – 7.92 (m, 6H), 7.61 – 7.30 (m, 10H), 7.25 – 6.95 (m, 4H), 6.71 – 6.65 (m, 1H), 6.35 – 6.00 (m, 1H), 5.91 (dd, *J* = 9.7, 6.1 Hz, 1H), 5.70 – 5.57 (m, 1H), 4.88 – 4.34 (m, 4H), 4.25 – 4.04 (m, 1H), 3.47 (d, *J* = 4.6 Hz, 3H), 2.92 (dt, *J* = 8.7, 5.8 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 173.00, 172.92, 166.45, 166.30, 165.65, 165.52, 165.44, 161.95, 161.42, 138.10, 137.59, 133.87, 133.77, 133.70, 133.60, 133.45, 133.39, 133.31, 130.09, 130.06, 130.00, 129.96, 129.91, 129.76, 129.59, 129.52, 129.28, 129.02, 128.88, 128.80, 128.69, 128.59, 128.54, 128.37, 128.19, 127.99, 127.92, 126.42, 126.13, 86.43, 79.96, 79.67, 73.05, 71.85, 71.63, 71.60, 64.76, 53.18, 46.33, 44.91, 34.13, 34.06, 29.83, 27.48, 26.99.

HRMS (ESI–TOF): Calc'd. For: C₄₀H₃₄NO₁₀⁺ [(M+H)⁺] 688.2177, found: 688.2191.

Methyl

(1*R*,6*R*,7*R*)-2-((2*S*,3*S*,4*R*)-3-(Benzoyloxy)-4-((*tert*-butyldimethylsilyl)oxy)tetrahydrofuran-2-y l)-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (20)

Physical state: yellow oil;

Yield: 87%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

Dr = 1:1;

¹**H NMR** (400 MHz, CDCl₃): δ 8.10 – 8.02 (m, 2H), 7.60 – 7.55 (m, 1H), 7.44 (d, *J* = 5.7 Hz, 2H), 7.39 – 7.27 (m, 4H), 7.23 (d, *J* = 7.3 Hz, 3H), 6.68 (dd, *J* = 9.8, 5.3 Hz, 1H), 6.07 (s, 1H), 5.59 (d, *J* = 9.8 Hz, 1H), 5.24 (s, 1H), 4.43 (d, *J* = 9.0 Hz, 1H), 4.40 – 4.35 (m, 1H), 4.27 – 4.18 (m, 2H), 3.65 (s, 3H), 2.90 (dd, *J* = 9.0, 5.4 Hz, 1H), 0.94 (s, 9H), 0.19 (s, 3H) ,0.18 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 173.57, 165.26, 161.33, 136.76, 133.66, 133.51, 130.17, 130.01, 129.50, 128.86, 128.54, 128.36, 127.89, 127.81, 126.28, 90.13, 82.99, 76.83, 74.52, 53.05, 52.55, 45.10, 33.43, 27.83, 25.72, 18.04, -4.63, -5.22.

HRMS (ESI-TOF): Calc'd. For: C₃₁H₃₈NO₇Si⁺ [(M+H)⁺] 564.2412, found: 564.2416.

Methyl

(1*R*,6*R*,7*R*)-2-Benzyl-4-chloro-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (21)

Physical state: white solid; Melting point: 179–182°C; Yield: 55%; Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.27 (s, 2H), 7.24 (d, *J* = 2.6 Hz, 2H), 7.22 – 7.12 (m, 4H), 6.86 – 6.80 (m, 2H), 6.70 (d, *J* = 5.8 Hz, 1H), 5.32 (d, *J* = 14.5 Hz, 1H), 4.14 (d, *J* = 14.5 Hz, 1H), 3.82 (d, *J* = 8.9 Hz, 1H), 3.52 (s, 3H), 2.79 (dd, *J* = 9.1, 5.9 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃): δ 173.17, 157.47, 135.70, 133.34, 132.56, 130.17, 129.06, 128.85, 128.77, 128.67, 128.48, 128.31, 53.33, 51.98, 48.59, 33.84, 28.21.

HRMS (ESI-TOF): Calc'd. For: C₂₁H₁₈ClNNaO₃⁺ [(M+Na)⁺] 390.0867, found: 390.0864.

Methyl

(1*R*,6*R*,7*R*)-2-benzyl-4-bromo-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (22)

Physical state: white solid;

Melting point: 122–124°C;

Yield: 98%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 – 7.26 (m, 8H), 7.09 (dd, *J* = 5.8, 0.7 Hz, 1H), 6.99 – 6.89 (m, 2H), 5.44 (d, *J* = 14.5 Hz, 1H), 4.27 (d, *J* = 14.5 Hz, 1H), 3.95 (d, *J* = 8.9 Hz, 1H), 3.65 (s, 3H), 2.87 (dd, *J* = 9.0, 5.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 173.03, 157.14, 137.16, 135.66, 133.29, 128.98, 128.77, 128.67, 128.60, 128.38, 128.21, 121.41, 53.27, 52.19, 48.79, 33.74, 29.50.

HRMS (ESI–TOF): Calc'd. For: C₂₁H₁₉BrNO₃⁺ [(M+H)⁺] 412.0543, found: 412.0541.

Methyl

(1*R*,6*R*,7*R*)-2-benzyl-3-oxo-7-phenyl-4-(trifluoromethyl)-2-azabicyclo[4.1.0]hept-4-ene-7-car boxylate (23)

Physical state: colourless oil;

Yield: 86%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 (d, *J* = 3.0 Hz, 5H), 7.32 – 7.27 (m, 3H), 7.22 (d, *J* = 5.6 Hz, 1H), 6.88 (dd, *J* = 6.6, 3.0 Hz, 2H), 5.45 (d, *J* = 14.5 Hz, 1H), 4.25 (d, *J* = 14.5 Hz, 1H), 3.95 (d, *J* = 8.7 Hz, 1H), 3.67 (s, 3H), 2.98 (dd, *J* = 8.6, 5.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 150.25, 136.28, 135.54, 130.28, 129.83, 129.01, 127.64, 126.57,

116.22, 107.88, 47.32, 38.59, 34.98, 29.83, 20.84.

¹⁹**F** NMR (375 MHz, CDCl₃): δ –65.97.

HRMS (ESI-TOF): Calc'd. For: C₂₂H₁₉F₃NO₃⁺ [(M+H)⁺] 402.1312, found: 402.1318.

Methyl

(1R,6R,7R)-2-benzyl-4-nitro-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (24)

Physical state: white solid;

Melting point: 301–304°C;

Yield: 54%;

Rf = 0.2 (silica gel, PE: EtOAc = 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 (t, *J* = 2.7 Hz, 5H), 7.33 (td, *J* = 5.2, 1.8 Hz, 4H), 6.91 (dd, *J* = 4.1, 2.0 Hz, 2H), 5.41 (d, *J* = 14.5 Hz, 1H), 4.32 (d, *J* = 14.5 Hz, 1H), 3.98 (d, *J* = 8.6 Hz, 1H), 3.68 (s, 3H), 3.02 (dd, *J* = 8.5, 6.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃):δ 172.33, 153.53, 145.56, 134.95, 134.85, 133.10, 129.20, 129.07, 129.01, 128.81, 128.61, 127.57, 53.69, 51.34, 48.31, 36.16, 25.87.

HRMS (ESI-TOF): Calc'd. For: C₂₁H₁₉N₂O₅⁺ [(M+H)⁺] 379.1288, found: 379.1298.

Dimethyl

(1R,6R,7R)-2-benzyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-4,7-dicarboxylate (25)

Physical state: white solid;

Melting point: 122–124°C;

Yield: 52%

Rf = 0.3 (silica gel, PE: EtOAc = 2:1);

¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 5.6 Hz, 1H), 7.39 – 7.32 (m, 5H), 7.28 (dd, J = 4.9, 1.9 Hz, 3H), 6.92 (dd, J = 6.6, 2.9 Hz, 2H), 5.48 (d, J = 14.6 Hz, 1H), 4.22 (d, J = 14.6 Hz, 1H), 3.95 (d, J = 8.6 Hz, 1H), 3.69 (s, 3H), 3.65 (s, 3H), 2.98 (dd, J = 8.6, 5.7 Hz, 1H).
¹³C NMR (125 MHz, CDCl₃): δ 172.88, 164.59, 158.00, 143.28, 135.87, 133.18, 129.37, 128.97, 128.67, 128.61, 128.57, 128.51, 128.13, 53.35, 52.50, 50.94, 48.91, 35.76, 27.36.
HRMS (ESI–TOF): Calc'd. For: C₂₃H₂₂NO₅⁺ [(M+H)⁺] 392.1492, found: 392.1501.

Methyl

(1*R*,6*R*,7*R*)-2-benzyl-5-methyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (26)

Physical state: yellow solid;

Melting point: 109–111°C;

Yield: 58%;

Rf = 0.5 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.35 (d, J = 3.8 Hz, 3H), 7.34 – 7.29 (m, 2H), 7.29 (d, J = 1.7 Hz, 1H), 7.28 – 7.25 (m, 2H), 7.00 – 6.95 (m, 2H), 5.58 (d, J = 14.7 Hz, 1H), 5.53 – 5.50 (m, 1H), 4.13 (d, J = 14.7 Hz, 1H), 3.85 (d, J = 8.9 Hz, 1H), 3.63 (s, 3H), 2.74 (d, J = 8.9 Hz, 1H), 2.08 (d, J = 1.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 173.64, 162.19, 146.65, 136.48, 131.88, 130.03, 128.88, 128.62, 128.29, 128.27, 127.86, 122.42, 53.14, 50.22, 48.65, 33.78, 32.12, 23.53.
HRMS (ESI–TOF): Calc'd. For: C₂₂H₂₂NO₃⁺ [(M+H)⁺] 348.1594, found: 348.1593.

Methyl

(1R,6R,7R)-2-benzyl-5-iodo-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (27)

Physical state: white solid;

Melting point: 139–140°C;

Yield: 60%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H** NMR (600 MHz, CDCl₃): δ 7.39 – 7.31 (m, 8H), 7.14 – 7.10 (m, 2H), 6.39 (s, 1H), 5.50 (d, J = 14.6 Hz, 1H), 4.16 (d, J = 14.6 Hz, 1H), 3.78 (dd, J = 9.2, 1.4 Hz, 1H), 3.65 (d, J = 1.4 Hz, 3H), 3.32 (d, J = 9.1 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 172.71, 159.32, 135.70, 135.26, 132.25, 129.00, 128.73, 128.64, 128.37, 128.15, 107.86, 53.37, 50.43, 49.95, 38.72, 35.14.

HRMS (ESI–TOF): Calc'd. For: C₂₁H₁₉INO₃⁺ [(M+H)⁺] 460.0404, found: 460.0410.

Methyl

(1*R*,6*R*,7*R*)-2-benzyl-5-(benzyloxy)-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxyl ate (28)

Physical state: yellow solid;

Melting point: 135–137°C;

Yield: 54%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.46 – 7.39 (m, 5H), 7.37 (d, *J* = 4.3 Hz, 4H), 7.35 – 7.26 (m, 4H), 7.08 – 7.02 (m, 2H), 5.55 (d, *J* = 14.8 Hz, 1H), 5.00 (s, 1H), 4.83 (d, *J* = 11.3 Hz, 1H), 4.72 (d, *J* = 11.3 Hz, 1H), 4.17 (d, *J* = 14.8 Hz, 1H), 3.88 (d, *J* = 9.5 Hz, 1H), 3.61 (s, 3H), 2.98 (dd, *J* = 9.5, 1.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 172.97, 164.35, 163.22, 136.69, 134.97, 131.70, 130.14, 128.96, 128.93, 128.91, 128.68, 128.42, 128.31, 127.89, 97.28, 71.25, 53.17, 50.03, 47.22, 33.09, 29.87.
HRMS (ESI–TOF): Calc'd. For: C₂₈H₂₆NO₄⁺ [(M+H)⁺] 440.1856, found: 440.1860.

Dimethyl

(1R,6R,7R)-2-benzyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-5,7-dicarboxylate (29)

Physical state: yellow solid;

Melting point: 146–148°C;

Yield: 84%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.41 – 7.26 (m, 7H), 7.25 (d, *J* = 2.0 Hz, 1H), 6.89 (dd, *J* = 6.5, 3.0 Hz, 2H), 6.46 (s, 1H), 5.52 (d, *J* = 14.5 Hz, 1H), 4.22 (d, *J* = 14.6 Hz, 1H), 3.96 (d, *J* = 9.1 Hz, 1H), 3.89 (s, 3H), 3.66 (s, 3H), 3.26 (d, *J* = 9.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 172.98, 165.51, 161.17, 137.18, 135.69, 132.48, 130.69, 129.29,

129.07, 128.86, 128.48, 128.45, 128.24, 53.32, 53.09, 50.79, 48.24, 33.49, 27.06.

HRMS (ESI–TOF): Calc'd. For: C₂₃H₂₂NO₅⁺ [(M+H)⁺] 392.1492, found: 392.1495.

Methyl (7S)-6-methyl-3-oxo-2,7-diphenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (30)

Physical state: white solid;

Melting point: 69–72°C;

Yield: 24%;

Rf = 0.6 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (600 MHz, CDCl₃):δ 7.71 (d, *J* = 7.4 Hz, 2H), 7.50 – 7.45 (m, 2H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.25 – 7.20 (m, 3H), 7.16 – 7.11 (m, 2H), 6.45 (dd, *J* = 9.9, 1.3 Hz, 1H), 5.65 (d, *J* = 9.8 Hz, 1H), 4.31 (s, 1H), 3.71 (s, 3H), 1.59 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 171.10, 160.59, 141.79, 141.64, 132.96, 131.52, 129.05, 128.51, 128.10, 126.11, 125.99, 124.18, 53.08, 52.91, 39.40, 31.39, 18.41.

HRMS (ESI–TOF): Calc'd. For: $C_{21}H_{20}NO_3^+$ [(M+H)⁺] 334.1438, found: 334.1436.

Methyl

(7*S*)-2-benzyl-4-bromo-6-methyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (31)

Physical state: white solid;

Melting point: 162–164°C;

Yield: 57%;

Rf = 0.4 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.45 – 7.34 (m, 5H), 7.24 (dd, *J* = 4.8, 1.9 Hz, 3H), 6.84 (dd, *J* = 6.3, 2.5 Hz, 3H), 5.25 (d, *J* = 14.3 Hz, 1H), 4.44 (d, *J* = 14.4 Hz, 1H), 4.01 (d, *J* = 1.2 Hz, 1H), 3.64 (s, 3H), 1.47 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 170.90, 156.90, 142.29, 135.93, 132.92, 130.90, 129.02, 128.58, 128.27, 128.14, 120.18, 53.09, 52.50, 51.47, 38.79, 33.07, 17.95.

HRMS (ESI–TOF): Calc'd. For: C₂₂H₂₁BrNO₃⁺ [(M+H)⁺] 426.0699, found: 426.0715.

Methyl (7*S*)-2-benzyl-5-chloro-6-methyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7carboxylate (32)

Physical state: yellow solid;

Melting point: 236–237°C;

Yield: 64%;

Rf = 0.4 (silica gel, PE: EtOAc = 10:1);

¹**H** NMR (400 MHz, CDCl₃):δ 7.43 – 7.28 (m, 6H), 7.26 – 7.21 (m, 2H), 7.07 – 6.98 (m, 2H), 5.75 (s, 1H), 5.33 (d, *J* = 14.5 Hz, 1H), 4.34 (d, *J* = 14.5 Hz, 1H), 3.96 (s, 1H), 3.65 (s, 3H), 1.53 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 170.48, 160.33, 147.66, 136.06, 131.51, 130.76, 129.05, 128.76, 128.64, 128.52, 128.18, 123.69, 53.23, 51.36, 50.42, 39.47, 34.28, 17.19.

HRMS (ESI-TOF): Calc'd. For: $C_{22}H_{20}CINNaO_3^+$ [(M+Na)⁺] 404.1024, found: 404.1036.

Methyl

(7*R*)-1-methyl-3-oxo-7-phenyl-2-(pyridin-2-yl)-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (37)

Physical state: yellow solid;

Melting point: 165–166°C;

Yield: 51%;

Rf = 0.4 (silica gel, PE: EtOAc = 1:1);

¹**H NMR** (400 MHz, CDCl₃): δ 8.68 (ddd, *J* = 4.9, 2.0, 0.9 Hz, 1H), 7.78 – 7.67 (m, 3H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.25 – 7.14 (m, 4H), 6.79 (dd, *J* = 9.8, 5.6 Hz, 1H), 5.71 (d, *J* = 9.8 Hz, 1H), 3.69 (s, 3H), 3.00 (d, *J* = 5.6 Hz, 1H), 1.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.97, 162.13, 151.57, 148.39, 138.19, 136.94, 133.76, 131.42, 128.23, 127.83, 125.28, 124.49, 121.76, 53.27, 50.44, 41.86, 31.43, 20.74.

HRMS (ESI–TOF): Calc'd. For: C₂₀H₁₉N₂O₃⁺ [(M+H)⁺] 335.1390, found: 335.1402.

Methyl (7*R*)-2-benzyl-1-methyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate

(34)

Physical state: yellow solid;

Melting point: 76–79°C;

Yield: 30%;

Rf = 0.6 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.33 – 7.27 (m, 6H), 7.25 (s, 2H), 7.13 (dd, *J* = 8.0, 1.7 Hz, 2H), 6.77 (dd, *J* = 9.8, 5.7 Hz, 1H), 5.71 (d, *J* = 9.8 Hz, 1H), 5.42 (d, *J* = 15.7 Hz, 1H), 4.26 (d, *J* = 15.7 Hz, 1H), 3.66 (s, 3H), 2.93 (d, *J* = 5.7 Hz, 1H), 1.51 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 171.60, 162.76, 138.74, 136.49, 133.31, 130.95, 129.06, 128.67, 128.41, 128.25, 126.73, 125.04, 53.23, 52.69, 49.56, 41.56, 31.80, 20.27.

HRMS (ESI-TOF): Calc'd. For: C₂₂H₂₂NO₃⁺ [(M+H)⁺] 348.1594, found: 348.1585.

Methyl

(8R)-5-oxo-8-phenyl-2,3,7a,8-tetrahydro-1H,5H-cyclopropa[h]indolizine-8-carboxylate (35)

Physical state: white solid;

Melting point: 282–285°C;

Yield: 38%;

Rf = 0.2 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 (d, *J* = 9.3 Hz, 1H), 7.38 – 7.28 (m, 3H), 7.22 (d, *J* = 8.0 Hz,

2H), 6.41 (d, *J* = 9.4 Hz, 1H), 4.81 (s, 1H), 4.16 (t, *J* = 7.5 Hz, 2H), 3.76 (s, 3H), 3.15 – 2.99 (m,

2H), 2.20 (tt, *J* = 7.3, 4.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 172.39, 161.74, 148.65, 140.81, 137.39, 129.03, 128.22, 127.78, 117.96, 111.89, 52.68, 51.95, 49.29, 30.82, 20.97.

HRMS (ESI–TOF): Calc'd. For: $C_{17}H_{18}NO_3^+$ [(M+H)⁺] 284.1281, found: 284.1282.

Methyl

(2*R*,6*R*,7*R*)-4-benzoyl-10-oxo-7-phenyl-1,2,3,4,5,6,7a,10-octahydro-7*H*-2,6-methanocycloprop a[2,3]pyrido[1,2-a][1,5]diazocine-7-carboxylate (36)

Physical state:pink solid;

Melting point: 155–156°C;

Yield: 56%;

Rf = 0.3 (silica gel, PE: EtOAc = 2:1);

Dr = 1:1

¹**H NMR** (600 MHz, CDCl₃): δ 7.37 – 7.33 (m, 3H), 7.28 (dd, *J* = 5.7, 2.3 Hz, 3H), 7.26 – 7.22 (m, 2H), 7.15 – 7.05 (m, 2H), 6.78 (s, 1H), 5.70 (d, *J* = 9.8 Hz, 1H), 4.99 (d, *J* = 13.2 Hz, 1H), 4.52 (d, *J* = 14.0 Hz, 1H), 3.85 (d, *J* = 12.8 Hz, 1H), 3.66 (s, 3H), 3.37 – 3.26 (m, 1H), 3.18 (d, *J* = 12.6 Hz, 1H), 3.07 (s, 1H), 2.27 (dt, *J* = 12.8, 2.6 Hz, 1H), 2.11 – 2.00 (m, 2H), 1.96 (s, 1H), 1.32 – 1.24 (m, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 171.62, 171.25, 161.28, 135.87, 135.33, 133.29, 130.15, 129.42, 128.49, 128.35, 128.29, 127.33, 125.30, 56.09, 53.33, 53.13, 45.42, 44.48, 42.76, 30.58, 30.01, 29.80, 29.76, 28.20.

HRMS (ESI–TOF): Calc'd. For: C₂₇H₂₇N₂O₄⁺ [(M+H)⁺] 443.1965, found: 443.1963.

Ethyl (1*R*,6*R*,7*R*)-2-benzyl-3-oxo-7-(o-tolyl)-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (37)

Physical state: yellow solid;
Melting point: 171–172°C;

Yield: 46%;

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.38 (d, *J* = 4.4 Hz, 4H), 7.35 – 7.31 (m, 1H), 7.21 – 7.14 (m, 2H), 7.10 (td, *J* = 7.4, 1.9 Hz, 1H), 6.87 (dd, *J* = 7.7, 1.4 Hz, 1H), 6.58 (ddd, *J* = 9.9, 5.2, 0.8 Hz, 1H), 5.69 (d, *J* = 14.6 Hz, 1H), 5.63 (d, *J* = 9.9 Hz, 1H), 4.24 – 4.16 (m, 2H), 4.03 (dd, *J* = 10.8, 7.1 Hz, 1H), 3.86 (dd, *J* = 8.9, 0.8 Hz, 1H), 2.95 (dd, *J* = 8.9, 5.2 Hz, 1H), 2.18 (s, 3H), 1.14 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.88, 161.73, 139.16, 136.23, 134.53, 131.90, 130.80, 128.95, 128.74, 128.42, 128.33, 127.99, 126.34, 125.87, 61.93, 50.77, 48.74, 31.75, 28.96, 19.66, 14.28.
HRMS (ESI–TOF): Calc'd. For: C₂₃H₂₄NO₃⁺ [M+H]⁺ 362.1756, found: 362.1754.

Ethyl (1R,6R,7R)-2-benzyl-3-oxo-7-(m-tolyl)-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (38)

Physical state: yellow solid;

Melting point: 121–123°C;

Yield: 88%;

Rf = 0.6 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.41 – 7.27 (m, 5H), 7.15 (t, J = 7.5 Hz, 1H), 7.04 (ddt, J = 7.6, 1.8, 0.9 Hz, 1H), 6.79 – 6.72 (m, 2H), 6.64 (ddd, J = 9.9, 5.3, 0.7 Hz, 1H), 5.69 (d, J = 9.9 Hz, 1H), 5.47 (d, J = 14.6 Hz, 1H), 4.20 (d, J = 14.6 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.85 (dd, J = 8.9, 0.7 Hz, 1H), 2.85 (dd, J = 8.9, 5.3 Hz, 1H), 2.28 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 172.96, 161.50, 137.78, 136.46, 136.26, 133.87, 130.25, 129.47, 128.92, 128.84, 128.40, 128.22, 127.92, 126.28, 61.88, 50.58, 48.49, 33.99, 27.80, 21.56, 14.25. **HRMS** (ESI–TOF): Calc'd. For: C₂₃H₂₄NO₃⁺ [(M+H)⁺] 362.1751, found: 362.1750.

Ethyl (1R,6R,7R)-2-benzyl-3-oxo-7-(p-tolyl)-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (39)

Physical state: yellow solid;

Melting point: 114–115°C;

Yield: 76%

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 – 7.30 (m, 5H), 7.06 (d, *J* = 7.7 Hz, 2H), 6.83 (d, *J* = 8.1 Hz, 2H), 6.64 (ddd, *J* = 9.8, 5.3, 0.8 Hz, 1H), 5.70 (d, *J* = 9.9 Hz, 1H), 5.50 (d, *J* = 14.6 Hz, 1H), 4.17 (d, *J* = 14.7 Hz, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.85 (dd, *J* = 8.8, 0.7 Hz, 1H), 2.85 (dd, *J* = 8.8, 5.3 Hz, 1H), 2.30 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 173.07, 161.54, 137.68, 136.44, 136.29, 133.07, 129.22, 128.91, 128.41, 127.93, 126.47, 126.42, 61.87, 50.59, 48.49, 33.75, 27.92, 21.36, 14.26.

HRMS (ESI–TOF): Calc'd. For: C₂₃H₂₄NO₃⁺ [(M+H)⁺] 362.1751, found: 362.1752.

Ethyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(4-chlorophenyl)-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (40)

Physical state: yellow solid;

Melting point: 75–78°C;

Yield: 57%

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹**H** NMR (400 MHz, CDCl₃): δ 7.41 – 7.31 (m, 5H), 7.25 – 7.19 (m, 2H), 6.85 – 6.78 (m, 2H), 6.64 (ddd, J = 9.8, 5.3, 0.8 Hz, 1H), 5.74 (d, J = 9.9 Hz, 1H), 5.38 (d, J = 14.6 Hz, 1H), 4.26 (d, J = 14.6 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.87 (dd, J = 8.9, 0.8 Hz, 1H), 2.87 (dd, J = 8.9, 5.3 Hz, 1H), 1.13 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.41, 161.26, 136.18, 136.05, 134.58, 134.00, 128.98, 128.77, 128.50, 128.23, 128.09, 126.72, 62.09, 50.67, 48.67, 33.34, 27.83, 14.21.
HRMS (ESI–TOF): Calc'd. For: C₂₂H₂₁ClNO₃⁺ [(M+H)⁺] 382.1204, found: 382.1206.

Ethyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(4-methoxyphenyl)-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (41)

Physical state: white solid;

Melting point: 125–126°C;

Yield: 90%

Rf = 0.3 (silica gel, PE: EtOAc = 3:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 – 7.29 (m, 5H), 6.85 (d, *J* = 8.8 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.64 (ddd, *J* = 9.9, 5.3, 0.7 Hz, 1H), 5.72 (d, *J* = 9.8 Hz, 1H), 5.48 (d, *J* = 14.6 Hz, 1H), 4.18 (d, *J* = 14.6 Hz, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.84 (dd, *J* = 8.9, 0.8 Hz, 1H), 3.77 (s, 3H), 2.84 (dd, *J* = 8.9, 5.3 Hz, 1H), 1.13 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 173.23, 161.55, 159.05, 136.42, 136.26, 134.36, 128.92, 128.41, 127.95, 126.49, 121.37, 113.92, 61.88, 55.18, 50.60, 48.58, 33.39, 28.09, 14.25.

HRMS (ESI–TOF): Calc'd. For: C₂₃H₂₄NO₄⁺ [(M+H)⁺] 378.1700, found: 378.1722.

Ethyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(4-fluorophenyl)-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (42)

Physical state: blue solid;

Melting point: 80–82°C;

Yield: 60%

Rf = 0.3 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 – 7.31 (m, 5H), 6.96 – 6.90 (m, 2H), 6.90 – 6.84 (m, 2H), 6.65 (ddd, *J* = 9.8, 5.3, 0.8 Hz, 1H), 5.73 (d, *J* = 9.9 Hz, 1H), 5.41 (d, *J* = 14.6 Hz, 1H), 4.24 (d, *J* = 14.5 Hz, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.87 (dd, *J* = 8.9, 0.8 Hz, 1H), 2.87 (dd, *J* = 8.9, 5.3 Hz, 1H), 1.13 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.62, 163.42, 161.29, 160.96, 136.25, 136.07, 135.00, 134.92, 128.93, 128.44, 128.03, 126.63, 125.43, 125.39, 115.64, 115.43, 61.99, 50.62, 48.64, 33.22, 27.88, 14.16.

¹⁹**F NMR** (470 MHz, CDCl3): δ –113.45.

HRMS (ESI–TOF): Calc'd. For: C₂₂H₂₁FNO₃⁺ [(M+H)⁺] 366.1500, found: 366.1498.

Ethyl

(1*R*,6*R*,7*R*)-2-benzyl-3-oxo-7-(4-(trifluoromethyl)phenyl)-2-azabicyclo[4.1.0]hept-4-ene-7-car boxylate (43)

Physical state: yellow solid;

Melting point: 119–121°C;

Yield: 42%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.42 – 7.32 (m, 5H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.67 (dd, *J* = 9.9, 5.2 Hz, 1H), 5.73 (d, *J* = 9.9 Hz, 1H), 5.36 (d, *J* = 14.5 Hz, 1H), 4.33 (d, *J* = 14.6 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.92 (d, *J* = 8.8 Hz, 1H), 2.91 (dd, *J* = 8.9, 5.2 Hz, 1H), 1.12 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 172.06, 161.16, 136.09, 135.99, 133.98, 133.64, 130.22, 129.06, 128.59, 128.22, 126.81, 125.45, 125.42, 62.24, 50.76, 48.73, 33.61, 27.73, 14.22.

¹⁹**F NMR** (375 MHz, CDCl3): δ –62.60.

HRMS (ESI–TOF): Calc'd. For: C₂₃H₂₀F₃NNaO₃⁺ [(M+H)⁺] 438.1287, found: 438.1283.

Ethyl (1*R*,6*R*,7*R*)-2-benzyl-7-(4-(ethoxycarbonyl)phenyl)-3-oxo-2-azabicyclo[4.1.0]hept-4ene-7-carboxylate (44)

Physical state: yellow oil;

Yield: 38%;

Rf = 0.1 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.96 – 7.90 (m, 2H), 7.42 – 7.30 (m, 5H), 7.04 – 6.94 (m, 2H), 6.66 (ddd, J = 9.8, 5.3, 0.8 Hz, 1H), 5.70 (d, J = 9.9 Hz, 1H), 5.41 (d, J = 14.6 Hz, 1H), 4.36 (qd, J = 7.2, 1.1 Hz, 2H), 4.27 (d, J = 14.6 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.91 (dd, J = 8.8, 0.7 Hz, 1H), 2.90 (dd, J = 8.9, 5.3 Hz, 1H), 1.38 (t, J = 7.1 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 172.22, 166.32, 161.20, 136.18, 136.06, 134.88, 133.30, 130.08, 129.64, 129.01, 128.52, 128.13, 126.68, 62.17, 61.16, 50.67, 48.72, 33.82, 27.84, 14.47, 14.20. **HRMS** (ESI–TOF): Calc'd. For: C₂₅H₂₆NO₅⁺ [(M+H)⁺] 420.1805, found: 420.1795.

Methyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(4-bromophenyl)-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (45)

Physical state: yellow solid;

Melting point: 121–122°C;

Yield: 62%;

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 6.6 Hz, 2H), 7.38 – 7.29 (m, 5H), 6.81 – 6.73 (m, 2H),
6.63 (dd, J = 9.9, 5.3 Hz, 1H), 5.75 (d, J = 9.9 Hz, 1H), 5.41 (d, J = 14.6 Hz, 1H), 4.24 (d, J = 14.6 Hz, 1H), 3.89 (d, J = 8.9 Hz, 1H), 3.63 (s, 3H), 2.88 (dd, J = 8.9, 5.3 Hz, 1H).
¹³C NMR (100 MHz, CDCl₃): δ 172.91, 161.24, 136.08, 136.00, 134.94, 131.84, 129.01, 128.68,

 $128.49,\,128.12,\,126.90,\,122.51,\,53.25,\,50.70,\,48.85,\,33.33,\,28.04.$

HRMS (ESI–TOF): Calc'd. For: $C_{21}H_{19}BrNO_3^+$ [(M+H)⁺] 412.0543, found: 412,0553.

Ethyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(4-bromophenyl)-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (46)

Physical state: yellow solid ;

Melting point: 103–105°C;

Yield: 56%;

Rf = 0.2 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.37 (t, *J* = 3.9 Hz, 7H), 6.75 (d, *J* = 8.4 Hz, 2H), 6.64 (dd, *J* = 9.9, 5.2 Hz, 1H), 5.74 (d, *J* = 9.9 Hz, 1H), 5.37 (d, *J* = 14.6 Hz, 1H), 4.26 (d, *J* = 14.6 Hz, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.87 (d, *J* = 8.9 Hz, 1H), 2.87 (dd, *J* = 8.8, 5.3 Hz, 1H), 1.13 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃): δ 172.34, 161.27, 136.16, 136.07, 134.91, 131.74, 129.01, 128.80, 128.55, 128.13, 126.77, 122.35, 62.13, 50.72, 48.67, 33.45, 27.80, 14.23.

HRMS (ESI–TOF): Calc'd. For: $C_{22}H_{21}BrNO_{3}^{+}$ [(M+H)⁺] 426.0699, found: 426.0699.

Ethyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(3,4-dimethylphenyl)-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carboxyla te (47)

Physical state: white solid;

Melting point: 111–113°C;

Yield: 32%;

Rf = 0.6 (silica gel, PE: EtOAc =2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 – 7.29 (m, 5H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.69 (d, *J* = 7.4 Hz, 2H), 6.63 (ddd, *J* = 9.9, 5.3, 0.7 Hz, 1H), 5.69 (d, *J* = 9.8 Hz, 1H), 5.48 (d, *J* = 14.7 Hz, 1H), 4.17 (d, *J* = 14.7 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.83 (dd, *J* = 8.8, 0.7 Hz, 1H), 2.83 (dd, *J* = 8.9, 5.3 Hz, 1H), 2.19 (s, 3H), 2.17 (s, 3H), 1.14 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 173.15, 161.60, 136.51, 136.42, 136.36, 136.29, 134.31, 130.55, 129.70, 128.90, 128.36, 127.89, 126.74, 126.26, 61.84, 50.55, 48.46, 33.76, 27.88, 19.99, 19.68, 14.30.

HRMS (ESI–TOF): Calc'd. For: C₂₄H₂₆NO₃⁺ [(M+H)⁺] 376.1907, found: 376.1915.

Ethyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(3,4-dichlorophenyl)-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carboxyla te (48)

Physical state: yellow oil;

Yield: 42%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.37 (d, *J* = 4.9 Hz, 5H), 7.30 (d, *J* = 8.3 Hz, 1H), 6.97 (d, *J* = 2.1 Hz, 1H), 6.72 – 6.62 (m, 2H), 5.79 (d, *J* = 9.9 Hz, 1H), 5.32 – 5.28 (m, 1H), 4.33 (d, *J* = 14.5 Hz, 1H), 4.10 (qd, *J* = 7.1, 1.4 Hz, 2H), 3.89 (d, *J* = 8.9 Hz, 1H), 2.88 (dd, *J* = 8.9, 5.2 Hz, 1H), 1.14 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.89, 161.13, 135.95, 135.89, 135.27, 132.52, 132.39, 130.53, 130.06, 129.11, 128.63, 128.24, 127.08, 62.30, 50.80, 48.86, 33.15, 27.77, 14.25.
HRMS (ESI–TOF): Calc'd. For: C₂₂H₂₀Cl₂NO₃⁺ [(M+H)⁺] 416.0815, found: 416.0818.

Ethyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(3,4-difluorophenyl)-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylat e (49)

Physical state:white solid;

Melting point: 114–115°C;

Yield: 55%;

Rf = 0.3(silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.42 – 7.32 (m, 5H), 7.02 (dt, *J* = 10.1, 8.3 Hz, 1H), 6.71 – 6.55 (m, 3H), 5.78 (d, *J* = 9.9 Hz, 1H), 5.30 (d, *J* = 14.5 Hz, 1H), 4.33 (d, *J* = 14.5 Hz, 1H), 4.10 (qd, *J* = 7.1, 1.0 Hz, 2H), 3.88 (d, *J* = 9.1 Hz, 1H), 2.87 (dd, *J* = 8.9, 5.3 Hz, 1H), 1.14 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.13, 161.18, 136.01, 135.98, 129.56, 129.50, 129.08, 128.62, 128.23, 126.99, 126.61, 122.38, 122.21, 117.43, 117.26, 62.23, 50.81, 48.90, 33.19, 27.86, 14.22.
¹⁹F NMR (375 MHz, CDCl₃): δ –136.92, –137.78.

HRMS (ESI-TOF): Calc'd. For: $C_{22}H_{20}F_2NO_3^+$ [(M+H)⁺] 384.1406, found: 384.1392.

Ethyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(3,5-dimethylphenyl)-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carboxyla te (50)

Physical state: yellow solid;

Melting point: 82–85°C;

Yield: 54%;

Rf = 0.5 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 – 7.30 (m, 5H), 6.86 (d, *J* = 1.7 Hz, 1H), 6.63 (ddd, *J* = 9.9, 5.3, 0.7 Hz, 1H), 6.55 (d, *J* = 1.6 Hz, 2H), 5.70 (d, *J* = 9.8 Hz, 1H), 5.44 (d, *J* = 14.6 Hz, 1H), 4.21 (d, *J* = 14.6 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.84 (dd, *J* = 8.9, 0.7 Hz, 1H), 2.83 (dd, *J* = 8.9, 5.3 Hz, 1H), 2.23 (s, 6H), 1.15 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 173.06, 161.59, 137.56, 136.51, 136.31, 130.94, 129.84, 129.30, 128.93, 128.42, 127.91, 126.18, 61.86, 50.61, 48.50, 33.98, 27.75, 21.45, 14.30.

HRMS (ESI–TOF): Calc'd. For: C₂₄H₂₆NO₃⁺ [(M+H)⁺] 376.1907, found: 376.1902.

Ethyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(naphthalen-1-yl)-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (51)

Physical state: yellow solid;

Melting point: 122–123°C;

Yield: 66%;

Rf = 0.3 (silica gel, PE: EtOAc = 5:1);

¹**H** NMR (400 MHz, CDCl₃): δ 7.84 (dd, J = 7.3, 2.0 Hz, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.51 – 7.33 (m, 8H), 7.06 (d, J = 7.1 Hz, 1H), 6.36 (dd, J = 9.9, 5.1 Hz, 1H), 5.67 (d, J = 14.5 Hz, 1H), 5.33 (d, J = 9.9 Hz, 1H), 4.32 (d, J = 14.5 Hz, 1H), 4.11 (ddd, J = 10.5, 7.1, 3.6 Hz, 1H), 3.99 (t, J = 8.1 Hz, 2H), 3.20 (dd, J = 8.9, 5.2 Hz, 1H), 0.99 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃):8 173.16, 161.87, 136.29, 135.46, 134.23, 133.40, 131.08, 129.25, 129.13, 129.03, 128.51, 128.10, 126.56, 125.68, 125.23, 125.18, 123.78, 61.98, 50.87, 48.83, 30.87, 29.25, 14.15.

HRMS (ESI–TOF): Calc'd. For: C₂₆H₂₄NO₃⁺ [(M+H)⁺] 398.1751, found: 398.1748.

Ethyl

(1*R*,6*R*,7*R*)-7-(benzo[d][1,3]dioxol-4-yl)-2-benzyl-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-carb oxylate (52)

Physical state: red solid;

Melting point: 158–161°C;

Yield: 75%;

Rf = 0.2 (silica gel, PE: EtOAc = 5:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.41 – 7.30 (m, 5H), 6.69 (d, *J* = 8.6 Hz, 1H), 6.67 – 6.61 (m, 1H), 6.42 – 6.35 (m, 2H), 5.94 (s, 2H), 5.77 (d, *J* = 9.8 Hz, 1H), 5.46 (d, *J* = 14.6 Hz, 1H), 4.18 (d, *J* = 14.6 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.83 (dd, *J* = 8.8, 0.7 Hz, 1H), 2.83 (dd, *J* = 8.9, 5.3 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 172.98, 161.61, 147.50, 147.34, 136.38, 136.19, 128.97, 128.42, 128.01, 127.00, 126.58, 113.28, 108.35, 101.27, 61.99, 50.68, 48.74, 33.76, 28.93, 28.08, 14.29.
HRMS (ESI-TOF): Calc'd. For: C₂₃H₂₂NO₅⁺ [(M+H)⁺] 392.1492, found: 392,1497.

Benzyl (1R,6R,7R)-2-benzyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (53)

Physical state: yellow solid;

Melting point: 154–156°C;

Yield: 38%;

Rf = 0.5 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 – 7.32 (m, 5H), 7.29 (td, *J* = 4.3, 1.9 Hz, 4H), 7.28 – 7.26 (m, 2H), 7.14 – 7.07 (m, 2H), 7.00 – 6.93 (m, 2H), 6.69 – 6.61 (m, 1H), 5.71 (d, *J* = 9.8 Hz, 1H), 5.48

(d, *J* = 14.5 Hz, 1H), 5.09 (s, 2H), 4.19 (d, *J* = 14.5 Hz, 1H), 3.88 (d, *J* = 8.8 Hz, 1H), 2.90 (dd, *J* = 8.9, 5.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 172.66, 161.39, 136.28, 136.16, 135.85, 133.27, 129.48, 128.94, 128.58, 128.51, 128.15, 128.15, 128.00, 127.32, 126.56, 67.10, 50.59, 48.61, 34.15, 27.90.

HRMS (ESI-TOF): Calc'd. For: C₂₇H₂₄NO₃⁺ [(M+H)⁺] 410.1751, found: 410.1758.

Dimethyl

((1R,6S,7R)-2-benzyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-en-7-yl)phosphonate (54)

Physical state: yellow solid;

Melting point: 172–173°C;

Yield: 20%

Rf = 0.4(silica gel,DCM: MeOH = 50:1);

¹**H NMR** (600 MHz, CDCl₃): δ 7.42 – 7.28 (m, 5H), 7.26 – 7.18 (m, 3H), 6.95 (dt, *J* = 7.4, 2.0 Hz, 2H), 6.62 (dd, *J* = 9.9, 5.2 Hz, 1H), 5.67 (d, *J* = 9.9 Hz, 1H), 5.39 (d, *J* = 14.5 Hz, 1H), 4.29 (d, *J* = 14.6 Hz, 1H), 3.87 (dd, *J* = 11.0, 8.6 Hz, 1H), 3.69 – 3.59 (m, 6H), 2.81 – 2.72 (m, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 161.43, 136.27, 135.89, 135.87, 133.96, 128.95, 128.61, 128.59, 128.26, 128.24, 128.16, 128.06, 126.40, 53.74, 53.72, 53.70, 53.68, 50.82, 44.39, 27.46, 26.23, 22.94, 22.92.

³¹**P NMR** (243 MHz, CDCl₃): δ 26.48.

HRMS (ESI-TOF): Calc'd. For: C₂₁H₂₂NNaO₄P⁺ [(M+Na)⁺] 406.1179, found: 406.1191.

(S)-3,7-Dimethyloct-6-en-1-yl

(1R,6R,7R)-2-benzyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (55)

Physical state: colorless oil;

Yield: 47%;

Rf = 0.3 (silica gel, PE: EtOAc = 4:1);

Dr = 1:1

¹**H** NMR (400 MHz, CDCl₃): δ 7.41 – 7.31 (m, 5H), 7.25 – 7.13 (m, 3H), 7.00 – 6.87 (m, 2H), 6.66 (dd, J = 9.9, 5.3 Hz, 1H), 5.70 (d, J = 9.9 Hz, 1H), 5.51 (dd, J = 14.6, 7.0 Hz, 1H), 5.07 – 4.98 (m, 1H), 4.17 (dd, J = 14.6, 6.5 Hz, 1H), 4.10 – 4.01 (m, 2H), 3.86 (d, J = 8.8 Hz, 1H), 2.86 (dd, J = 8.9, 5.2 Hz, 1H), 1.92 – 1.81 (m, 2H), 1.68 (s, 3H), 1.58 (s, 3H), 1.54 – 1.45 (m, 2H), 1.11 – 0.81 (m, 4H), 0.77 (d, J = 5.9 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 172.96, 161.47, 136.40, 136.24, 133.22, 131.42, 129.69, 129.67, 128.93, 128.45, 128.40, 128.00, 127.98, 126.43, 124.62, 64.51, 50.63, 50.62, 48.46, 48.42, 36.97, 36.94, 35.32, 34.10, 29.62, 29.60, 27.81, 27.79, 25.84, 25.53, 25.51, 19.36, 17.77.

HRMS (ESI–TOF): Calc'd. For: $C_{30}H_{36}NO_3^+$ [(M+H)⁺] 458.2690, found: 458.2692.

(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl

(1R,6R,7R)-2-benzyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (56)

Physical state: white solid;

Melting point: 105–107°C;

Yield: 59%;

Rf = 0.3 (silica gel, PE: EtOAc = 4:1);

Dr = 1:1

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 – 7.30 (m, 5H), 7.22 (td, *J* = 5.8, 2.5 Hz, 3H), 6.94 – 6.81 (m, 2H), 6.66 (dt, *J* = 10.8, 5.7 Hz, 1H), 5.70 (dd, *J* = 9.9, 2.8 Hz, 1H), 5.50 – 5.33 (m, 1H), 4.58 (tdd, *J* = 10.8, 8.0, 4.4 Hz, 1H), 4.31 – 4.18 (m, 1H), 3.82 (d, *J* = 8.9 Hz, 1H), 2.85 (ddd, *J* = 14.3, 8.9, 5.3 Hz, 1H), 2.00 – 1.86 (m, 1H), 1.63 (td, *J* = 6.9, 2.9 Hz, 1H), 1.59 – 1.52 (m, 1H), 1.47 – 1.37 (m, 1H), 1.16 – 1.07 (m, 1H), 1.03 – 0.94 (m, 1H), 0.87 (dd, *J* = 12.2, 6.6 Hz, 4H), 0.83 – 0.76 (m, 3H), 0.76 – 0.63 (m, 5H).

¹³C NMR (125 MHz, CDCl₃): δ 172.35, 172.13, 161.43, 136.53, 136.50, 136.22, 133.21, 133.14, 129.85, 129.72, 128.96, 128.78, 128.69, 128.32, 128.26, 128.05, 127.88, 127.84, 126.37, 126.32, 76.01, 75.98, 50.83, 50.63, 48.25, 48.02, 46.83, 46.81, 40.74, 40.66, 34.34, 34.24, 34.17, 34.13, 31.40, 27.32, 27.23, 26.47, 26.35, 23.54, 23.47, 22.10, 22.06, 20.75, 20.70, 16.61, 16.46. HRMS (ESI–TOF): Calc'd. For: C₃₀H₃₆NO₃⁺ [(M+H)⁺] 458.2690, found: 458.2693.

(2*R*,5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-Dimethyl-17-((*R*)-6-methylheptan-2-yl)hexadecahydro -1*H*-cyclopenta[a]phenanthren-2-yl

(1R,6R,7R)-2-benzyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (57)

Physical state: colorless oil;

Yield: 31%;

Rf = 0.4 (silica gel, PE: EtOAc = 5:1);

Dr = 1:1

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 – 7.33 (m, 5H), 7.24 (p, *J* = 2.4 Hz, 3H), 6.92 (dt, *J* = 6.7, 1.7 Hz, 2H), 6.64 (dd, *J* = 9.9, 5.3 Hz, 1H), 5.68 (d, *J* = 9.9 Hz, 1H), 5.46 (dd, *J* = 14.5, 2.3 Hz, 1H), 4.63 (tt, *J* = 11.0, 4.7 Hz, 1H), 4.20 (dd, *J* = 14.7, 2.2 Hz, 1H), 3.83 (d, *J* = 8.8 Hz, 1H), 2.84 (dd, *J* = 8.9, 5.3 Hz, 1H), 1.97 – 1.91 (m, 1H), 1.79 (dd, *J* = 9.0, 4.6 Hz, 1H), 1.64 (s, 1H), 1.54 – 1.48 (m, 2H), 1.32 (d, *J* = 8.2 Hz, 5H), 1.25 – 1.17 (m, 5H), 1.15 – 1.03 (m, 8H), 1.01 – 0.94 (m, 4H), 0.91 – 0.83 (m, 13H), 0.73 (s, 3H), 0.63 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.35, 161.50, 136.53, 136.30, 133.25, 129.87, 128.96, 128.58, 128.35, 128.01, 127.90, 126.39, 75.49, 56.53, 56.40, 54.29, 50.66, 48.32, 44.76, 42.71, 40.08, 39.65, 36.78, 36.30, 35.92, 35.57, 35.54, 34.28, 33.96, 32.10, 28.70, 28.36, 28.15, 27.65, 27.43, 24.32, 23.97, 22.95, 22.69, 21.33, 18.80, 12.36, 12.19.

HRMS (ESI–TOF): Calc'd. For: C₄₇H₆₄NO₃⁺ [(M+H)⁺] 690.4881, found: 690.4878.

7 Control experiments

A 4 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **1I** (0.1 mmol), **2a** (2.0 equiv) and anhydrous PhCl (0.24 mL) and anhydrous DCE (0.012 mL) in the glove box. And then mixture was irradiation with a blue LED under nitrogen atmosphere at room temperature for 48 h. After completion of the reaction (monitored by TLC), filtered through a thin pad of celite, eluting with EtOAc (30 mL), and the combined filtrate was concentrated *in vacuo*. The residue was directly purified by column chromatography on silica gel to give the product **58** (10.9 mg, 45%).

Methyl (1R,6R,7R)-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (58)

Physical state: yellow solid

Melting point: 157–159°C;

Yield: 45%;

Rf = 0.2 (silica gel, PE: EtOAc = 1:1);

¹**H** NMR (400 MHz, CDCl₃): δ 7.56 – 7.49 (m, 1H), 7.34 – 7.27 (m, 3H), 7.16 – 7.07 (m, 2H), 6.75 (ddd, *J* = 10.0, 5.5, 0.8 Hz, 1H), 5.60 (dd, *J* = 10.0, 1.6 Hz, 1H), 3.92 (ddd, *J* = 8.7, 3.6, 0.7 Hz, 1H), 3.62 (s, 3H), 2.94 (dd, *J* = 8.6, 5.4 Hz, 1H)

¹³C NMR (125 MHz, CDCl₃): δ 173.28, 163.53, 138.50, 133.86, 129.51, 128.41, 128.04, 125.72, 53.15, 44.11, 33.24, 27.14.

HRMS (ESI–TOF): Calc'd. For: $C_{14}H_{14}NO_{3^+}$ [(M+H)⁺] 244.0968, found: 244.0970.

A 4 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **1J** (0.1 mmol), **2a** (2.0 equiv) and anhydrous PhCl (0.24 mL) and anhydrous DCE (0.012 mL) in the glove box. And then mixture was irradiation with a blue LED under nitrogen atmosphere at room temperature for 48 h. After completion of the reaction (monitored by TLC), filtered through a thin pad of celite, eluting with EtOAc (30 mL), and the combined filtrate was concentrated *in vacuo*. The residue was directly purified by column chromatography on silica gel to give the desired product.

Methyl (1*R*,6*R*,7*R*)-2-benzyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]heptane-7-carboxylate (61)

Physical state: yellow oil;

Yield: 98%;

Rf = 0.2 (silica gel, EtOAc);

¹H NMR (400 MHz, CDCl₃): δ 7.40 – 7.29 (m, 8H), 7.17 – 7.09 (m, 2H), 5.53 (d, J = 14.6 Hz, 1H), 4.14 (d, J = 14.6 Hz, 1H), 3.59 (s, 3H), 3.56 (d, J = 9.3 Hz, 1H), 2.37 (ddd, J = 9.4, 6.5, 2.8 Hz, 1H), 2.25 (ddt, J = 14.0, 9.4, 6.8 Hz, 1H), 2.15 – 1.98 (m, 2H), 1.21 – 1.10 (m, 1H).
¹³C NMR (100 MHz, CDCl₃): δ 172.90, 169.36, 136.78, 132.02, 131.28, 129.14, 128.85, 128.34, 128.15, 127.82, 52.85, 50.98, 46.09, 37.54, 28.89, 24.26, 17.92.

HRMS (ESI-TOF): Calc'd. For: C₂₁H₂₁NNaO₃⁺ [(M+Na)⁺] 358.1414, found: 358.1411.

A 4 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 1K (0.1 mmol), 2a (2.0 equiv) and anhydrous PhCl (0.24 mL) and anhydrous DCE (0.012 mL) in the glove box. And then the mixture was irradiation with a blue LED under nitrogen atmosphere at room temperature for 48 h. After completion of the reaction (monitored by TLC), the desired product was not got.

A 4 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **1a** (0.1 mmol), **2a** (2.0 equiv), TEMPO (2,2,6,6–Tetramethyl–1–piperinedinyloxy, 5.0 equiv)and anhydrous PhCl (0.24 mL) and anhydrous DCE (0.012 mL) in the glove box. And then the mixture was irradiation with a blue LED under nitrogen atmosphere at room temperature for 48 h. After completion of the reaction (monitored by TLC), filtered through a thin pad of celite, eluting with EtOAc (30 mL), and the combined filtrate was concentrated *in vacuo*. The residue was directly purified by column chromatography on silica gel to give the **3** as yellow solid (23.6 mg, 71%).

Then, A 4 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **3** (0.1 mmol), **2a** (2.0 equiv) and anhydrous PhCl (0.24 mL) and anhydrous DCE (0.012 mL) in the glove box. And then the mixture was irradiation with a blue LED under nitrogen atmosphere at room temperature for 48 h. After completion of the reaction (monitored by TLC), the desired product was not got.

8 Synthetic application

In a round-bottom flask, **3** (1.40 mmol) and NaBH₄ (5.0 equiv) was dissolved in MeOH (10 mL). The solution was stirred at 0 °C for 3 h. The solvent was evaporated under reduced pressure and the residue was purified by silica gel chromatography column (Petroleum ether/EtOAc = 1:1–1:2) to give **64** as yellow oil (329 mg, 76%)

In a round-bottom flask, **64** (0.4 mmol) and TsOH·H₂O (10 mol%) was dissolved in toluene (3 mL). The solution was stirred at 110 °C for 6 h. The solvent was evaporated under reduced pressure and the residue was purified by silica gel chromatography column (Petroleum ether/EtOAc = 1:1–1:2) to give **65** as yellow solid (91 mg, 79%)

(1R,6R,7R)-2-Benzyl-7-(hydroxymethyl)-7-phenyl-2-azabicyclo[4.1.0]hept-4-en-3-one (64)

Physical state: yellow oil;

Yield: 76%;

Rf = 0.3 (silica gel, PE: EtOAc = 1:1);

¹**H** NMR (600 MHz, CDCl₃): δ 7.39 – 7.28 (m, 6H), 7.25 – 7.15 (m, 2H), 7.00 – 6.95 (m, 2H), 6.62 (dd, J = 10.0, 5.2 Hz, 1H), 5.58 (d, J = 9.9 Hz, 1H), 5.44 (d, J = 14.5 Hz, 1H), 4.24 (d, J = 14.6 Hz, 1H), 3.67 (d, J = 11.4 Hz, 1H), 3.56 (d, J = 11.4 Hz, 1H), 3.30 (d, J = 8.5 Hz, 1H), 2.12 (dd, J = 8.4, 5.3 Hz, 1H), 1.68 (s, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 161.70, 137.75, 136.69, 133.03, 132.55, 130.78, 129.45, 128.88, 128.53, 127.84, 124.26, 69.78, 50.60, 44.08, 34.62, 22.58.

HRMS (ESI–TOF): Calc'd. For: $C_{20}H_{20}NO_2^+$ [(M+H)⁺] 306.1489, found: 306.1484.

5-Benzoyl-1-benzylpyridin-2(1H)-one (65)

Physical state: yellow solid;

Melting point: 295–296°C;

Yield: 79%;

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 2.5 Hz, 1H), 7.87 (dd, J = 9.5, 2.6 Hz, 1H), 7.62 – 7.54 (m, 3H), 7.44 (t, J = 7.7 Hz, 2H), 7.39 – 7.29 (m, 5H), 6.65 (d, J = 9.5 Hz, 1H), 5.17 (s, 2H).
¹³C NMR (125 MHz, CDCl₃): δ 191.78, 162.41, 144.31, 139.19, 137.26, 135.52, 132.49, 129.26, 129.23, 128.68, 128.65, 128.49, 120.33, 117.56, 52.81.

HRMS (ESI–TOF): Calc'd. For: C₁₉H₁₆NO₂⁺ [(M+H)⁺] 290.1176, found: 290.1172.

In a round-bottom flask, **26** (0.52 mmol) and NaBH₄ (5.0 equiv) was dissolved in MeOH (10 mL). The solution was stirred at 0 °C for 3 h. The solvent was evaporated under reduced pressure and the residue was purified by silica gel chromatography column (Petroleum ether/EtOAc = 1:1–1:2) to give **66** as yellow oil (128 mg, 77%)

In a round-bottom flask, **66** (0.17 mmol) and TsOHH₂O (10 mol%) was dissolved in toluene (1 mL). The solution was stirred at 110 °C for 6 h. The solvent was evaporated under reduced pressure and the residue was purified by silica gel chromatography column (Petroleum ether/EtOAc = 1:1–1:2) to give **67** as yellow solid (46.8 mg, 92%)

(1*R*,6*R*,7*R*)-2-Benzyl-7-(hydroxymethyl)-5-methyl-7-phenyl-2-azabicyclo[4.1.0]hept-4-en-3-o ne (66)

Physical state: white solid;

Melting point: 170–171°C;

Yield: 77%;

Rf = 0.3 (silica gel, PE: EtOAc = 1:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.37 – 7.27 (m, 5H), 7.21 (tt, *J* = 6.9, 4.6 Hz, 3H), 6.99 – 6.88 (m, 2H), 5.44 (ddd, *J* = 14.7, 5.8, 1.9 Hz, 1H), 5.36 (d, *J* = 1.8 Hz, 1H), 4.17 (d, *J* = 14.7 Hz, 1H), 3.62 (ddd, *J* = 11.5, 5.5, 1.7 Hz, 1H), 3.50 (dd, *J* = 11.4, 4.1 Hz, 1H), 3.27 (d, *J* = 8.6 Hz, 1H), 2.61 (s, 1H), 2.02 (d, *J* = 1.6 Hz, 3H), 1.96 (d, *J* = 8.4 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 162.71, 148.61, 136.86, 133.79, 131.16, 128.75, 128.25, 127.68, 127.65, 119.63, 69.12, 50.19, 43.65, 34.14, 26.25, 23.85.

HRMS (ESI–TOF): Calc'd. For: C₂₁H₂₂NO₂⁺ [(M+H)⁺] 320.1645, found: 320.1643.

1-Benzyl-4-methyl-5-(1-phenylvinyl)pyridin-2(1*H*)-one (67)

Physical state: colorless oil;

Yield: 92%;

Rf = 0.4 (silica gel, PE: EtOAc = 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.35 – 7.26 (m, 8H), 7.26 – 7.21 (m, 2H), 7.18 (s, 1H), 6.41 (s, 1H), 5.59 (s, 1H), 5.14 (s, 2H), 5.13 (s, 1H), 1.77 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 162.30, 150.80, 144.96, 139.85, 136.63, 135.84, 128.91, 128.64, 128.21, 128.02, 127.95, 126.45, 122.29, 120.03, 116.27, 51.56, 20.29.

HRMS (ESI–TOF): Calc'd. For: $C_{21}H_{20}NO^+$ [(M+H)⁺] 302.1539, found: 302.1538.

In a round-bottom flask, **68** (0.45 mmol) and NaBH₄ (5.0 equiv) was dissolved in MeOH (10 mL). The solution was stirred at 0 $^{\circ}$ C for 3 h. The solvent was evaporated under reduced pressure and

the residue was purified by silica gel chromatography column (Petroleum ether/EtOAc = 1:1-1:2) to give **69** as yellow oil (113 mg, 65%)

In a round-bottom flask, **69** (0.15 mmol) and TsOHH₂O (10 mol%) was dissolved in toluene (1 mL). The solution was stirred at 110 °C for 6 h. The solvent was evaporated under reduced pressure and the residue was purified by silica gel chromatography column (Petroleum ether/EtOAc = 1:1–1:2) to give **70** as yellow solid (52 mg, 91%)

Methyl

(1*R*,6*R*,7*R*)-2-benzyl-7-(2-bromophenyl)-5-methyl-3-oxo-2-azabicyclo[4.1.0]hept-4-ene-7-car boxylate (68)

Physical state: white solid;

Melting point: 142–143°C;

Yield: 63%;

Rf = 0.3 (silica gel, DCM);

Dr = 3:1;

¹**H** NMR (400 MHz, CDCl₃):δ 7.64 – 7.54 (m, 1H), 7.39 – 7.27 (m, 5H), 7.24 – 7.13 (m, 2H), 6.94 (dd, *J* = 7.8, 1.8 Hz, 1H), 5.76 – 5.65 (m, 1H), 5.60 – 5.52 (m, 1H), 4.56 – 4.17 (m, 1H), 4.17 – 3.79 (m, 1H), 3.67 (d, *J* = 4.1 Hz, 3H), 3.10 – 2.62 (m, 1H), 2.16 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 172.73, 172.64, 162.45, 162.16, 147.44, 146.31, 137.11, 136.08, 134.22, 133.79, 133.59, 132.40, 131.28, 130.38, 129.89, 129.70, 128.96, 128.77, 128.34, 128.05, 127.98, 127.75, 127.58, 127.32, 126.94, 123.99, 121.85, 53.30, 53.18, 50.54, 50.37, 50.09, 49.94, 34.74, 33.55, 33.36, 32.61, 24.28, 24.09.

HRMS (ESI-TOF): Calc'd. For: C₂₂H₂₁BrNO₃⁺ [(M+H)⁺] 426.0699, found: 426.0698.

(1*R*,6*R*,7*R*)-2-Benzyl-7-(2-bromophenyl)-7-(hydroxymethyl)-5-methyl-2-azabicyclo[4.1.0]hep t-4-en-3-one (69)

Physical state: yellow oil;

Yield: 65%;

Rf = 0.4 (silica gel, PE: EtOAc = 1:1);

Dr = 3:1;

¹**H NMR** (400 MHz, CDCl₃): δ 7.53 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.39 – 7.28 (m, 4H), 7.25 – 7.12 (m, 2H), 7.07 (ddt, *J* = 9.3, 7.6, 3.1 Hz, 1H), 6.94 (dd, *J* = 7.6, 1.8 Hz, 1H), 5.71 – 5.36 (m, 2H), 4.56 – 4.34 (m, 1H), 4.25 (t, *J* = 15.5 Hz, 1H), 3.42 (t, *J* = 8.8 Hz, 1H), 3.33 – 3.17 (m, 1H), 2.35 (s, 1H), 2.22 – 2.16 (m, 3H), 1.41 – 1.08 (m, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 162.85, 162.73, 148.49, 148.46, 137.49, 136.79, 135.35, 134.61, 134.04, 132.86, 132.69, 132.16, 129.59, 129.49, 129.38, 128.84, 128.75, 128.42, 128.39, 127.80, 127.71, 127.42, 127.13, 126.40, 126.16, 121.16, 119.96, 67.19, 66.92, 51.06, 50.45, 46.20, 44.15, 35.42, 33.63, 29.17, 26.23, 24.83, 24.35.

HRMS (ESI-TOF): Calc'd. For: C₂₁H₂₁BrNO₂⁺ [(M+H)⁺] 398.0750, found: 398.0748.

1-Benzyl-5-(1-(2-bromophenyl)vinyl)-4-methylpyridin-2(1H)-one (70)

Physical state: colorless oil;

Yield: 91%;

Rf = 0.4 (silica gel, PE: EtOAc = 1:1);

¹**H NMR** (400 MHz, CDCl₃): δ 7.54 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.36 – 7.26 (m, 5H), 7.26 – 7.14 (m, 3H), 7.13 (s, 1H), 6.41 (s, 1H), 5.42 (s, 2H), 5.13 (s, 2H), 1.92 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 162.05, 150.41, 144.63, 141.66, 136.88, 136.60, 133.79, 131.33,

129.36, 128.95, 128.02, 128.00, 127.54, 122.62, 122.36, 120.86, 120.27, 51.68, 20.96.

HRMS (ESI–TOF): Calc'd. For: C₂₁H₁₉BrNO⁺ [(M+H)⁺] 380.0645, found: 380.0641.

A 4 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **1L** (0.1 mmol), **2a** (2.0 equiv) and anhydrous PhCl (0.24 mL) and anhydrous DCE (0.012 mL) in the glove box. And The the mixture was irradiation with a blue LED under nitrogen atmosphere at room temperature for 48 h. After completion of the reaction (monitored by TLC), filtered through a thin pad of celite, eluting with EtOAc (30 mL), and the combined filtrate was concentrated *in vacuo*. The residue was directly purified by column chromatography on silica gel to give the desired product. (Petroleum ether/EtOAc = 5:1-1:1) to give desired **71** (71%)

2-(*tert*-Butyl)

7-methyl

(1R,6R,7R)-5-methyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-2,7-dicarboxylate (71)

Physical state: yellow solid;

Melting point: 82–85°C;

Yield: 71%;

Rf = 0.4 (silica gel, PE: EtOAc = 5:1);

¹H NMR (400 MHz, CDCl₃): δ 7.28 – 7.25 (m, 3H), 7.05 (dd, *J* = 6.5, 3.1 Hz, 2H), 5.47 – 5.42 (m, 1H), 4.38 (d, *J* = 9.0 Hz, 1H), 3.65 (s, 3H), 2.79 (d, *J* = 9.0 Hz, 1H), 2.13 (s, 3H), 1.59 (s, 9H).
¹³C NMR (100 MHz, CDCl₃): δ 172.54, 159.51, 145.47, 139.88, 135.74, 133.73, 129.55, 129.07, 128.56, 128.47, 128.43, 125.71, 53.48, 46.72, 35.34, 26.94, 21.82.

HRMS (ESI–TOF): Calc'd. For: $C_{20}H_{24}NO_5^+$ [(M+H)⁺] 358.1649, found: 358.1654.

In a round-bottom flask, **71** (0.40 mmol) was dissolved in DCM (3 mL). Then TFA (3.0 equiv) were added, and the solution was stirred at room temperature for 6 h. The solvent was evaporated under reduced pressure and the residue was purified by silica gel chromatography column (Petroleum ether/EtOAc = 1:1-1:2) to give **72** as yellow solid (103 mg, 93%)

Methyl (1*R*,6*R*,7*R*)-5-methyl-3-oxo-7-phenyl-2-azabicyclo[4.1.0]hept-4-ene-7-carboxylate (72)

Physical state: yellow solid;

Melting point: 153–154°C;

Yield: 93%;

Rf = 0.2 (silica gel, PE: EtOAc = 1:1);

¹H NMR (400 MHz, CDCl₃): δ 7.98 (s, 1H), 7.29 (dd, J = 5.3, 1.8 Hz, 3H), 7.10 (dd, J = 6.8, 2.7 Hz, 2H), 5.40 (s, 1H), 3.88 (d, J = 8.8 Hz, 1H), 3.61 (s, 3H), 2.81 (d, J = 8.7 Hz, 1H), 2.12 (s, 3H).
¹³C NMR (125 MHz, CDCl₃): δ 173.49, 149.31, 132.54, 129.96, 128.99, 128.48, 128.12, 121.48, 53.13, 44.01, 32.96, 31.22, 24.01.

HRMS (ESI–TOF): Calc'd. For: C₁₅H₁₆NO₃⁺ [(M+H)⁺] 258.1125, found: 258.1129.

9 Density Functional Theory (DFT) Studies

9.1 Computational methods

All density functional theory (DFT) calculations were performed using the Gaussian 16 software package.³⁵ Geometries were optimized using the M06³⁶ with 6-31G(d) for all atoms. Vibrational frequencies were calculated for all the stationary points to confirm if each optimized structure is a local minimum on the respective potential energy surface or a transition state structure with only one imaginary frequency. Solvation energy corrections were calculated in chlorobenzene solvent with the SMD continuum solvation model³⁷ based on the gas phase optimized geometries. The M06 functional with 6-311+G(d, p) for all atoms were used for single-point energy calculations. The optimized transition state structures were plotted using CYLview³⁸. Orbital composition analysis by Multiwfn^{39,40}.

9.2 Orbital composition of 1a and 2a analysis

Figure S1. Frontier molecular orbitals of **1a** and **2a** that interact strongly in the ambimodal transition state.

The structure of **1** acts as the electrophilic component and the 2-pyridones **2** is the nucleophilic component. The HOMO orbital of **1a** has a larger distribution at the C1 and C2 position (10.8% and 22.4%) as compared to the C3 and C4 position (0.8% and 16.3%) due to the electron-withdrawing effect of CONH. The LUMO orbital of **2** has a larger distribution at the C1

position (45.2%) as compared to the others position due to the electron-withdrawing effect of ester substituent, which leads to the intrinsic regioselectivity of the C1 and C2 alkene addition.

9.3 DFT-computed free energy profile with 1a and 2a

Structure	ZDE	АН	АН АG	F	н	C	Imaginary
	ZI L			Ľ	11	U	Frequency
1a	0.202792	0.214777	0.16445	-593.61944	-593.404663	-593.45499	
2a	0.146714	0.157794	0.10975	-497.923431	-497.765637	-497.813681	
TS-1	0.350814	0.373621	0.297139	-1091.546507	-1091.172886	-1091.249368	-92.91 <i>i</i>
TS-2	0.350636	0.373541	0.296659	-1091.538958	-1091.165417	-1091.242299	-148.70 <i>i</i>
TS-3	0.350965	0.373817	0.297778	-1091.551673	-1091.177856	-1091.253895	-28.90 <i>i</i>
TS-4	0.350162	0.373335	0.293871	-1091.541848	-1091.168513	-1091.247977	-90.41 <i>i</i>
3a	0.354679	0.373869	0.307045	-1091.635561	-1091.262557	-1091.328516	

Table S5. Energies for all calculated species

Zero-point correction (ZPE), thermal correction to enthalpy (Δ H), thermal correction to Gibbs free energy (Δ G), energies (E), enthalpies (H), and Gibbs free energies (G) (in Hartree) of the structures calculated at the M06/6-311+G(d,p)-SMD(chlorobenzene)//M06/6-31G(d) level of theory.

1a

С	-1.48868	1.45414	0.15299
С	-2.57882	1.6551	-0.64267
С	-3.35735	0.52229	-1.00851
С	-3.01251	-0.72811	-0.58086
С	-1.84529	-0.96529	0.24111
Ν	-1.14085	0.21318	0.60015
С	0.06129	0.0531	1.44009
Н	0.08514	0.88537	2.14935
Н	-0.0828	-0.87883	1.98789
С	1.33132	0.01201	0.62201
С	1.6137	-1.1023	-0.18045
С	2.22174	1.08932	0.6351
С	2.76989	-1.129	-0.95758
Н	0.91801	-1.9358	-0.18569

С	3.38215	1.06083	-0.14145
Н	2.0112	1.95334	1.26186
С	3.65662	-0.04852	-0.94064
Н	2.98287	-1.99664	-1.57583
Н	4.06853	1.90275	-0.12041
Н	4.55843	-0.07396	-1.54591
Н	-0.83804	2.26152	0.47136
Н	-2.83247	2.65346	-0.97693
Н	-3.58332	-1.60923	-0.85036
Н	-4.23366	0.65619	-1.63756
0	-1.44904	-2.06899	0.62329

2a

С	-3.25327	0.6591	-0.17213
С	-2.1459	1.48681	0.03404
С	-0.88749	0.92663	0.14789
С	-0.71219	-0.47839	0.08172
С	-1.85584	-1.28848	-0.10361
С	-3.11358	-0.72619	-0.24674
Н	-4.24235	1.10464	-0.27162
Н	-2.27821	2.56527	0.09535
Н	-0.01449	1.55662	0.31593
Н	-1.70186	-2.36541	-0.13837
Н	-3.9875	-1.35527	-0.40258
С	0.54781	-1.13387	0.17234
С	1.73134	-0.34133	0.31041
0	2.08601	0.04003	1.41653
0	2.43523	-0.16136	-0.82088
С	3.69182	0.48366	-0.64482
Н	4.33504	-0.09393	0.02827

Н	4.13937	0.54192	-1.63923
Н	3.56391	1.48908	-0.22757

С	2.00359	0.74447	-0.2774
Н	2.0005	1.6905	0.28171
Н	1.67767	0.94802	-1.30322
С	0.84761	-0.19043	1.66316
С	-0.12127	-0.92521	2.27166
С	-0.90641	-1.59499	0.08085
С	-1.05117	-1.61427	1.44839
Ν	0.96794	-0.11793	0.30501
С	0.14029	-0.84474	-0.57392
0	0.31344	-0.79486	-1.78739
Н	-0.19494	-0.94593	3.35402
Н	1.58904	0.38084	2.22141
С	3.36292	0.10473	-0.25433
С	3.62729	-0.99224	-1.07913
С	4.36189	0.57722	0.59432
С	4.87392	-1.60349	-1.04908
Н	2.84155	-1.35184	-1.74451
С	5.61311	-0.0336	0.62255
Н	4.16036	1.43816	1.23476
С	5.86933	-1.12562	-0.19847
Н	5.0741	-2.45584	-1.69649
Н	6.38777	0.34566	1.2872
Н	6.84667	-1.60522	-0.17895
С	-0.6493	3.47515	-0.61979
С	-1.2566	2.63751	-1.55829
С	-1.95159	1.51824	-1.13422

С	-2.05594	1.21147	0.24061
С	-1.43866	2.07619	1.16643
С	-0.74025	3.19895	0.74285
Н	-0.10449	4.35594	-0.95787
Н	-1.1782	2.86226	-2.6202
Н	-2.4221	0.85445	-1.85839
Н	-1.54204	1.83921	2.22316
Н	-0.27793	3.86642	1.46846
С	-2.75905	0.0725	0.76454
С	-3.81335	-0.57463	0.04271
0	-4.78648	0.09978	-0.27131
0	-3.79125	-1.9218	-0.06392
С	-4.99524	-2.48035	-0.57358
Н	-5.82533	-2.32026	0.12422
Н	-5.26095	-2.03246	-1.53745
Н	-4.80187	-3.54863	-0.6927
Н	-1.83919	-2.2168	1.89422
Н	-1.55861	-2.16494	-0.57272

С	2.44537	0.78927	-0.58283
Н	2.50425	1.86726	-0.38444
Н	2.01712	0.65026	-1.58127
С	1.39564	0.70619	1.61455
С	0.41121	0.35752	2.48832
С	-0.52359	-1.05199	0.75606
С	-0.58574	-0.53841	2.03433
Ν	1.46396	0.22292	0.34924
С	0.5167	-0.67846	-0.17428
0	0.6066	-1.09438	-1.3239

Н	0.3926	0.77394	3.48961
Н	2.19258	1.39805	1.88565
С	3.79105	0.13237	-0.46504
С	3.96009	-1.18562	-0.89841
С	4.87255	0.81008	0.09403
С	5.19376	-1.81047	-0.7703
Н	3.10819	-1.70664	-1.33694
С	6.11068	0.18502	0.2204
Н	4.74535	1.84196	0.42694
С	6.2718	-1.12666	-0.21064
Н	5.31876	-2.83668	-1.11268
Н	6.94996	0.72533	0.65581
Н	7.23875	-1.61798	-0.11365
С	-5.20712	-2.17387	-0.64961
С	-4.35312	-1.55851	-1.56692
С	-3.40863	-0.64793	-1.12478
С	-3.30114	-0.32938	0.2462
С	-4.16884	-0.96963	1.1508
С	-5.11719	-1.88091	0.70955
Н	-5.94838	-2.89075	-1.00016
Н	-4.42632	-1.80077	-2.62555
Н	-2.7221	-0.17743	-1.82867
Н	-4.08053	-0.71309	2.20605
Н	-5.78808	-2.36353	1.41787
С	-2.36689	0.63526	0.77343
С	-1.77315	1.65122	-0.06803
0	-0.61215	1.96929	-0.24741
0	-2.81234	2.40338	-0.54388
С	-2.4319	3.65766	-1.08787
Н	-3.36157	4.15233	-1.37965

Н	-1.898	4.26372	-0.34597
Н	-1.78102	3.52622	-1.9598
Н	-1.35447	-0.88926	2.71966
Н	-1.20091	-1.8262	0.41039

С	0.52914	-1.95551	0.51202
С	-0.49462	0.38627	1.78418
С	0.38201	0.46884	0.73243
С	-0.90255	-0.89905	2.21427
С	-3.87442	-2.56586	-0.47212
С	-4.38882	-1.38742	0.08205
С	-3.66889	-0.21223	-0.00974
С	-2.41742	-0.17916	-0.67104
С	-1.93421	-1.37908	-1.2345
С	-2.6498	-2.5653	-1.13002
Н	-4.44251	-3.49139	-0.38792
Н	-5.35301	-1.40246	0.58732
Н	-4.06299	0.71209	0.41125
Н	-0.9847	-1.34919	-1.76635
Н	-2.24873	-3.48327	-1.55485
С	-1.59566	0.98461	-0.77247
С	-2.10183	2.28219	-0.4284
0	-2.98155	2.78113	-1.11669
0	-1.44552	2.96848	0.53719
С	-1.85527	4.3243	0.67173
Н	-1.67171	4.88105	-0.25388
Н	-2.92262	4.39221	0.91061
Н	-1.25806	4.73771	1.48772
Н	0.77214	1.41962	0.37698

Н	-0.85878	1.29709	2.24613
Ν	0.89215	-0.6436	0.13807
Н	-1.61432	-0.99185	3.03378
0	1.00189	-2.9272	-0.06656
С	1.75772	-0.46751	-1.0345
Н	1.73483	-1.42473	-1.56764
Н	1.28906	0.30254	-1.66412
С	3.16248	-0.09683	-0.6545
С	3.97858	-1.03917	-0.02304
С	3.659	1.1812	-0.90142
С	5.27158	-0.70223	0.35501
Н	3.5828	-2.03873	0.16231
С	4.95678	1.51883	-0.5252
Н	3.0246	1.91626	-1.39989
С	5.76328	0.57787	0.10444
Н	5.90315	-1.44214	0.8443
Н	5.33692	2.51938	-0.72546
Н	6.7783	0.83939	0.3994
С	-0.42893	-2.01641	1.59665
Н	-0.73698	-3.01785	1.8873

С	-1.40757	2.45155	0.42395
С	0.46041	0.5992	1.54231
С	-0.45659	0.21685	0.59036
С	0.43253	1.95701	1.97193
С	2.96406	-3.61113	1.12135
С	3.65181	-2.46579	1.52445
С	3.18662	-1.21496	1.15246
С	2.02667	-1.07805	0.36008

С	1.35611	-2.25256	-0.03485
С	1.81551	-3.50625	0.33927
Н	3.32989	-4.5933	1.41713
Н	4.55077	-2.55727	2.13163
Н	3.71997	-0.31676	1.46296
Н	0.47388	-2.1426	-0.66708
Н	1.28884	-4.4033	0.01906
С	1.51094	0.18735	-0.10898
С	2.32477	1.38483	-0.0897
0	2.1287	2.48162	0.39304
0	3.3831	1.13486	-0.92373
С	4.09786	2.29289	-1.32835
Н	4.86787	1.94343	-2.02057
Н	3.43581	3.00954	-1.82867
Н	4.55798	2.79219	-0.46786
Н	-0.57783	-0.82041	0.28571
Н	1.05034	-0.14861	2.06141
Ν	-1.30204	1.09667	0.01285
Н	1.14344	2.29133	2.72486
0	-2.24236	3.18435	-0.08637
С	-2.09488	0.64681	-1.13837
Н	-2.45731	1.56034	-1.62154
Н	-1.40494	0.13421	-1.82416
С	-3.23248	-0.24451	-0.73246
С	-4.3036	0.28859	-0.01042
С	-3.22597	-1.60295	-1.04195
С	-5.35024	-0.52974	0.39311
Н	-4.30173	1.35409	0.22396
С	-4.27663	-2.42423	-0.63987
Н	-2.39237	-2.01863	-1.61202

С	-5.33865	-1.88804	0.07898
Н	-6.18359	-0.10735	0.95234
Н	-4.26442	-3.484	-0.88978
Н	-6.16169	-2.52733	0.39431
С	-0.46906	2.83021	1.45686
Н	-0.51372	3.87023	1.76794

3a

С	-2.4376	1.02519	-0.61571
Н	-2.03363	1.1994	-1.6235
Н	-2.85875	1.96392	-0.23939
С	-0.34643	-0.15427	-0.20427
С	0.94119	-0.37937	0.50872
С	-0.11657	0.93255	2.34627
С	0.88529	0.166	1.90936
Ν	-1.31059	0.70663	0.2642
С	-1.27215	1.30037	1.51634
0	-2.15192	2.06584	1.90214
Н	1.09476	-1.47147	0.56406
Н	-0.53797	-0.60994	-1.17236
С	-3.47709	-0.06077	-0.63325
С	-4.27538	-0.26855	0.49464
С	-3.64583	-0.87925	-1.74796
С	-5.22465	-1.28225	0.50255
Н	-4.14156	0.37978	1.36146
С	-4.59849	-1.89497	-1.7418
Н	-3.02823	-0.715	-2.63301
С	-5.38803	-2.09795	-0.61576
Н	-5.84561	-1.43563	1.38387
Н	-4.72321	-2.52773	-2.61922

Н	-6.13461	-2.89057	-0.60856
С	-0.52697	4.05774	1.47951
С	-0.90383	3.82608	0.1565
С	-0.42656	2.7287	-0.53675
С	0.46958	1.8078	0.07141
С	0.83041	2.06581	1.42127
С	0.34136	3.16419	2.10548
Н	-0.90816	4.92321	2.01853
Н	-1.58227	4.51546	-0.34352
Н	-0.71787	2.56843	-1.56943
Н	1.48969	1.3837	1.9535
Н	0.63718	3.32432	3.14093
С	0.97119	0.65479	-0.61574
С	0.45126	0.26099	-1.94042
0	-0.00036	0.99673	-2.79652
0	0.54632	-1.06882	-2.11665
С	0.18321	-1.55743	-3.39898
Н	0.40649	-2.62775	-3.37991
Н	-0.88258	-1.39122	-3.59258
Н	0.76229	-1.05595	-4.18326
Н	1.73233	-0.06296	2.55869
Н	-0.1341	1.34503	3.35281

10 X-ray crystallographic data for 3 and 30

The crystal structures have been deposited at the Cambridge Crystallographic Data Centre. CCDC 2224293(3), CCDC 2233144(30) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via the internet at https://www.ccdc.cam.ac.uk/structures/.

X-ray crystallographic data for 3and 30

Method of crystallization: A purified compound **3**, **30** was dissolved in a mixed solvent of dichloromethane and petroleum ether. This solution was placed in a cabinet to slowly evaporate.

Empirical formula	C ₂₁ H ₁₉ NO ₃		
Formula weight	333.37		
Identification code	3		
Temperature/K	293(2)		
Crystal system	monoclinic		
Space group	P21/n		
	a=10.1369(7) Å	α=90°	
Unit cell dimensions	b=11.3965(8) Å	β=98.344(7)°	
	c=15.5049(11) Å	γ=90°	
Volume/Å ³	1772.2(2)		
Z	4		
$\rho_{calc}g/cm^3$	1.249		
µ/mm ⁻¹	0.084		
---	--		
F(000)	704.0		
Crystal size/mm ³	0.2 imes 0.18 imes 0.16		
Radiation	Mo Kα ($\lambda = 0.71073$)		
20 range for data collection/°	4.452 to 59.35		
Index ranges	$-13 \le h \le 13, -14 \le k \le 15, -19 \le l \le 19$		
Reflections collected	12761		
Independent reflections	4376 [$R_{int} = 0.0298, R_{sigma} = 0.0405$]		
Data/restraints/parameters	4376/0/227		
Goodness–of–fit on F ²	1.072		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0512, wR_2 = 0.1366$		
Final R indexes [all data]	$R_1 = 0.0711, wR_2 = 0.1496$		
Largest diff. peak/hole / e Å ⁻³	0.17/-0.18		

Formula weight	333.37				
Identification code	30				
Temperature/K	293(2)				
Crystal system	monoclinic				
Space group	P2 ₁ /n				
	a= 11.0203(6) Å	α= 90°			
Unit cell dimensions	b= 12.3994(6) Å	β= 110.799(6)°			
	c= 13.7932(8) Å	γ= 90°			
Volume/Å ³	1761.95(18)				
Z	4				
$\rho_{calc}g/cm^3$	1.257				
µ/mm ⁻¹	0.084				
F(000)	704.0				
Crystal size/mm ³	$0.17 \times 0.15 \times 0.14$				
Radiation	Mo Kα (λ = 0.71073)				
2 Θ range for data collection/°	4.092 to 59.326				
Index ranges	$-14 \le h \le 14, -16 \le k \le 16, -10 \le l \le 17$				
Reflections collected	11756				
Independent reflections	4343 [$R_{int} = 0.0419, R_{sigma} = 0.0461$]				
Data/restraints/parameters	4343/0/229				
Goodness–of–fit on F ²	1.055				
Final R indexes [I>=2σ (I)]	$R_1 = 0.0564, wR_2 = 0.1754$				
Final R indexes [all data]	$R_1 = 0.0767, wR_2 = 0.1$	920			
Largest diff. peak/hole / e Å ⁻³	0.26/-0.28				

11 References

- 1. L. Mola, J. Font, L. Bosch, J. Caner, A. M. Costa, G. Etxebarría-Jardí, O. Pineda, D. de Vicente, and J. Vilarrasa, *J. Org. Chem.*, 2013, **78**, 5832-5842.
- 2. S. Krawczyk, M. Otto, A. Otto, C. Coburger, M. Krug, M. Seifert, V. Tell, J. Molnár and A. Hilgeroth, *Bioorg. Med. Chem.*, 2011, **19**, 6309-6315.
- 3. M. Lamblin, H. Bares, J. Dessolin, C. Marty, N. Bourgougnon and F.-X. Felpin, *Eur. J. Org. Chem.*, 2012, **2012**, 5525-5533.
- 4. B. Feng, Y. Li, H. Li, X. Zhang, H. Xie, H. Cao, L. Yu and Q. Xu, *J. Org. Chem.*, 2018, **83**, 6769-6775.
- 5. T. Kittikool, K. Phakdeeyothin, T. Chantarojsiri and S. Yotphan, *Eur. J. Org. Chem.*, 2021, 2021, 3071-3078.
- 6. L. Huang, Y. Gu and A. Fürstner, Chem. Asian. J., 2019, 14, 4017-4023.
- H. Zhao, X. Xu, H. Yu, B. Li, X. Xu, H. Li, L. Xu, Q. Fan and P. J. Walsh, *Org. Lett.*, 2020, 22, 4228-4234.
- 8. J. Li, Y. Yang, Z. Wang, B. Feng and J. You, Org. Lett., 2017, 19, 3083-3086.
- 9. E. W. Thomas, J. Org. Chem., 1986, 51, 2184-2191
- 10. Pavel A. Donets and C. Nicolai, Angew. Chem. Int. Ed., 2015, 54, 633-737
- 11. C. S. Li and D. D. Dixon, Tetrahedron Lett., 2004, 45, 4257-4260.
- 12. J. Su, Q. Li, Y. Shao and J. Sun, Org. Lett., 2022, 24, 1637-1641.
- 13. W. A. Loughlin, I. D. Jenkins, N. D. Karis and P. C. Healy, *Eur. J. Med. Chem.*, 2017, **127**, 341-356.
- 14. F. Sakurai, T. Yukawa and T. Taniguchi, Org. Lett., 2019, 21, 7254-7257.
- 15. S. Tao, J. Xiao, Y. Li, F. Sun and Y. Du, Chinese J. Chem., 2021, 39, 2536-2546.
- B. Zhong, L. Sun, H. Shi, J. Li, C. Chen and Z. Chen, UNIV TEXAS. cGAS ANTAGONIST COMPOUNDS. WO2017US26019
- 17. S. Jana and J. D. Rainier, Org. Lett., 2013, 15, 4426-4429
- 18. S. Roy, G. Kumar and I. Chatterjee, Org. Lett., 2021, 23, 6709-6713.
- F. Ye, S. Qu, L. Zhou, C. Peng, C. Wang, J. Cheng, M. L. Hossain, Y. Liu, Y. Zhang, Z. X.
 Wang and J. Wang, *J. Am. Chem. Soc.*, 2015, **137**, 4435-4444.
- 20. Q. Q. Cheng, S. F. Zhu, Y. Z. Zhang, X. L. Xie and Q. L. Zhou, *J. Am. Chem. Soc.*, 2013, **135**, 14094-14097.
- 21. Q. Wang, C. Ni, M. Hu, Q. Xie, Q. Liu, S. Pan and J. Hu, *Angew. Chem. Int. Ed.*, 2020, **59**, 8507-8511.

22. S. Thurow, A. A. G. Fernandes, Y. Quevedo-Acosta, M. F. de Oliveira, M. G. de Oliveira and I. D. Jurberg, *Org. Lett.*, 2019, **21**, 6909-6913.

23. J. Zheng, J. H. Lin, L. Y. Yu, Y. Wei, X. Zheng and J. C. Xiao, Org. Lett., 2015, 17, 6150-6153.

24. D. M. Guptill and H. M. Davies, J. Am. Chem. Soc., 2014, 136, 17718-17721.

- 25. R. D. C. Gallo, M. Duarte, A. F. da Silva, C. Y. Okada, Jr., V. M. Deflon and I. D. Jurberg, *Org. Lett.*, 2021, **23**, 8916-8920.
- 26. F. Ye, C. Wang, Y. Zhang and J. Wang, Angew. Chem. Int. Ed., 2014, 53, 11625-11628.
- 27. R. D. C. Gallo and A. C. B. Burtoloso, Green Chem., 2018, 20, 4547-4556.
- 28. M. N. Alam, M. L. K and P. Maity, Org. Biomol. Chem., 2018, 16, 8922-8926.
- 29. L.-Z. Yuan, G. Zhao, A. Hamze, M. Alami and O. Provot, Adv. Synth., 2017, 359, 2682-2691.
- 30. Z. Cai, Z. Yao and L. Jiang, Org. Lett., 2021, 23, 311-316.
- 31. X. Creary and M. E. Mehrsheikh-Mohammadi, ChemInform, 1987, 18.
- 32. Y. Wang, P. Jia, Y. Hao, J. Li, R. Lai, L. Guo and Y. Wu, *Tetrahedron Lett.*, 2022, 107, 154098
- 33. S. Schneller and W. Ye, Synthesis, 2014, 47, 228-234.
- 34. F. Seela and R. Gumbiowski, Liebigs Annalen der Chemie, 1992, 1992, 679-686.

35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford*, CT, 2016.

36 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.

37 A. V. Marenich, C. J. Cramer and D. G. Truhlar., *The J. Phys. Chem. B*, 2009, **113**, 6378-6396.

38 Legault, C. Y. CYLView, 1.0b; Université de Sherbrooke: Canada, 2009, http://www.cylview.org.

39 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.

40 T. Lu and F. Chen, *Acta Chim. Sinica*, 2011, **69**, 2393-2406.

12 NMR spectra

						25.90		
		71	80	Ø	=77.48 =77.16	0		5.62
	162.74	139.		105.(
)0 190 180		0 140 13	0 120	110 100	90 80 70	60 50 4	40 30 20 10	0 -10

fl (ppm)

-N-Bn 1y

	136.64 135.81 130.44 129.10 128.37 128.29			
		 77.48 77.16	-51.87	
— 160.98				

N Bn 1y

ю Bn 1D

Ó fl (ppm)

fl (ppm)

190

-80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 f1 (ppm)

	136.31 136.31 133.26 123.26 128.50 128.32 128.14 126.47	77.41 77.16 76.91			
73.47 61.43			53.17 50.55 48.71	83.85 28.12	

fl (ppm)

CO₂ Me e 100₂Me 6

CO₂ Me °CO₂Me 6

--111.18

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

℃O₂Me 15

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

)0

fl (ppm)

		136.48 131.88 130.03 128.88 128.62 128.29	128.27 127.86 122.42		■ <u>77</u> .41				
	146.65					53.14 50.22 48.65	33.78	23.53	
 		140 130	120 110	100 90 f1 (ppm)	1 1 1 1 1 1 1 1 1 1	60 50	40 30	20 10	

OBn н CO2Me 0 н Β'n. 28

CI Me

 133.76 131.42 131.42 127.83 125.28 124.49 121.76 121.76 77.48 77.48		
 130 120 110 100 90 80 7 f1 (ppm)	0 60 50 40 30	20 10 0 -1

fl (ppm)

℃O₂⊟ 0 Bn 37

CO2E 03 Τ̈́Η Β'n. 40

CL

C

fl (ppm)

′℃O₂Et 02 ĥ Β'n. 42

---113.45

	· · ·		· · ·		•	· .	· I			· I	. 1	· 1	· I	· I	•	· I	• •		· I	. 1	• •	• •		
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												fl (ppm))											

fl (ppm)

---62.60

	·	·	·	· ·	'	· I	'	'	· 1	· I	· I	· I	· I		· I		'		· I
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
										fl (ppm)									

-1 fl (ppm)

	·			- I - '				1	·	· · ·		· I	· I	<u> </u>		·	· 1	· I	·	·	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1(
	f1 (ppm)																				

CL

CO2E ₿n 49

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

CO2B O^{*} ĥ Β'n. 51

– 1

16 84

Т		·							·				'	·	·	·	·		·	· ·	'	
00	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-1:
f1 (ppm)																						

fl (ppm)

Ó 56

CH2OH Β'n 66

					· · · ·			· · ·	'			'	· ·		'	'				
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
fl (ppm)																				

Me Br н [°]°CO₂Me O Z ĥ Β'n. 68

fl (ppm)

Ò fl (ppm)

