Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Photoactive glycoconjugates with very large Stokes shift. Synthesis, photophysics, and copper (II) and BSA sensing

Cláudia Brito da Silva,ª Luana Silva,^b Natalí Pires Debia,^b Otávio Augusto Chaves,^{c,d}

Diogo Seibert Lüdtke*b and Fabiano Severo Rodembusch*a

^aGrupo de Pesquisa em Fotoquímica Orgânica Aplicada. Instituto de Química (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970. Porto Alegre-RS, Brazil.

^bInstituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.

^cCQC-IMS, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.

^dLaboratório de Imunofarmacologia, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4036 - Bloco 2, 21040-361 Rio de Janeiro – RJ, Brazil

Summary

Spectroscopic characterization	2
Additional UV-vis spectra	14
Additional docking data	31

Spectroscopic characterization

Fig. S1 FTIR spectrum (ATR mode) of compound 3.

Fig. S2 FTIR spectrum (ATR mode) of compound 4.

Fig. S3 FTIR spectrum (ATR mode) of compound 15.

Fig. S4 FTIR spectrum (ATR mode) of compound 16.

Fig. S5 FTIR spectrum (ATR mode) of compound 17.

Fig. S6 FTIR spectrum (ATR mode) of compound 18.

Fig. S7 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3.

Fig. S8 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4.

Fig. S9 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 8.

Fig. S10 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 11.

Fig. S11 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 14.

Fig. S12 ¹H NMR spectrum with amplification (400 MHz, CDCl₃) of compound 15.

Fig. S13 ¹H NMR spectrum with amplification (400 MHz, CDCl₃) of compound 16.

Fig. S14 ¹H NMR spectrum with amplification (400 MHz, CDCl₃) of compound 17.

Fig. S15 ¹H NMR spectrum with amplification (400 MHz, CDCl₃) of compound 18.

Fig. S16 ¹³C-APT NMR spectrum (101 MHz, CDCl₃) of compound 3.

Fig. S17 ¹³C-APT NMR spectrum (101 MHz, CDCl₃) of compound 4.

Fig. S18 ¹³C-APT NMR spectrum (101 MHz, CDCl₃) of compound 8.

Fig. S19 ¹³C-APT NMR spectrum (101 MHz, CDCl₃) of compound 11.

Fig. S20 ¹³C-APT NMR spectrum (101 MHz, CDCl₃) of compound 14.

Fig. S22 ¹³C-APT NMR spectrum (101 MHz, CDCl₃) of compound 16.

Fig. S24 ¹³C-APT NMR spectrum (101 MHz, CDCl₃) of compound 18.

Fig. S25 UV-Vis absorption spectra of the glycoconjugates (a) 15, (b) 16, (c) 17, and (d) 18 in the presence of different NO_3^- salts (20 equiv.).

Fig. S26 UV-Vis absorption spectra of the glycoconjugates (a) 15, (b) 16, (c) 17, and (d) 18 in the presence of different $Cu(NO_3)_2$ equivalents in acetonitrile solution,

Fig. S27 UV-Vis absorption spectra of BSA in the presence of different concentrations of glycoconjugates (a) 15, (b) 16, (c) 17, and (d) 18 (10-100 μ M).

Fig. S28 Double logarithm plots for the K_a and *n* calculations of glycoconjugate 16 (enol).

Fig. S29 Double logarithm plots for the K_a and *n* calculations of glycoconjugate 16 (keto).

Fig. S28 Double logarithm plots for the K_a and n calculations of glycoconjugate 18.

Fig. S29 UV-Vis absorption spectra of azide 3 ($1.92x10^{-5}$ M) in the presence of different amounts of Cu(NO₃)₂.

Fig. S30 Fluorescence emission spectra of azide 3 ($1.92x10^{-5}$ M) at different excitation wavelengths in the presence of 12 equiv. of Cu(NO₃)₂.

Fig. S31 UV-Vis absorption spectra of azide 3 (1.92×10^{-5} M) in the presence of different amounts of Cu(NO₃)₂. ($\lambda = 347$ nm, Slit 5.0 nm/5.0 nm).

Fig. S31 UV-Vis spectra of glycoconjugate **16** (1.92x10⁻⁵ M) after addition of Copper(I) and Copper(II). (Slit 5.0 nm/5.0 nm).

Fig. S32 Fluorescence emission spectra of glycoconjugate **16** (1.92x10⁻⁵ M) after addition of Copper(I) and Copper(II). (Slit 5.0 nm/5.0 nm).

Fig. S33 Time-resolved fluorescence decay ($\lambda_{exc}=330$ nm) of the 15 in dichloromethane solution (~10⁻⁵ M), IRF (instrument response factor), and respective exponential fit. Below: Residuals from the exponential fit.

Fig. S34 Time-resolved fluorescence decay ($\lambda_{exc}=330$ nm) of the 16 in dichloromethane solution (~10⁻⁵ M), IRF (instrument response factor), and respective exponential fit. Below: Residuals from the exponential fit.

Fig. S35 Time-resolved fluorescence decay ($\lambda_{exc}=330$ nm) of the 17 in dichloromethane solution (~10⁻⁵ M), IRF (instrument response factor), and respective exponential fit. Below: Residuals from the exponential fit.

Fig. S36 Time-resolved fluorescence decay ($\lambda_{exc}=330$ nm) of the 18 in dichloromethane solution (~10⁻⁵ M), IRF (instrument response factor), and respective exponential fit. Below: Residuals from the exponential fit.

Time-resolved Spectroscopy data

Decay curve : Glycoconjugate 15 IRF curve : irf2 Start Time : 61.16 End Time : 70.04 Offset will be calculated Shift will be calculated Pre-exp. 1 : 1 Lifetime 1 : 1 Pre-exp. 2 : 1 Lifetime 2 : 1 ***** Statistics ***** Job done after 181 iterations in 4.821 sec. Fitted curve : FLD Fit (46) Residuals : FLD Residuals (46) : FLD Autocorrelation (46) Autocorrelation Deconvolved Fit : FLD Deconvoluted (46) Chi2 : 1.252 Durbin Watson : 1.359 Ζ :-0.07679 Pre-exp. 1 : 0.1464 $\pm 8.693e-003$ (9.666 $\pm 0.5739\%$) Lifetime 1 : 17.32 $\pm 1.523e+000$ $\pm 4.825e-003$ (90.33 $\pm 0.3185\%$) Pre-exp. 2 : 1.368 Lifetime 2 : 1.554 $\pm 4.681e-003$ F1 : 0.5438 F2 : 0.4562 Tau-av1 : 10.13 Tau-av2 : 3.078 Offset : -242.2 Shift : -0.1286 *****

Decay curve : Glycoconjugate 16 IRF curve : irf

 Start Time
 : 61.08

 End Time
 : 70.32

Offset will be calculated Shift will be calculated

Pre-exp. 1: 1Lifetime 1: 1Pre-exp. 2: 1Lifetime 2: 1

***** Statistics *****

Job done after 90 iterations in 2.48 sec.

Fitted curve : FLD Fit (95) Residuals : FLD Residuals (95) Autocorrelation : FLD Autocorrelation (95) Deconvolved Fit : FLD Deconvoluted (95) Chi2 : 1.466 Durbin Watson : 1.421 Ζ : -0.01761 Pre-exp. 1 : 0.08194 $\pm 3.539e-003$ (3.435 $\pm 0.1483\%$) Lifetime 1 : 11.47 $\pm 1.365e+000$ Pre-exp. 2 : 2.304 $\pm 9.299e-003$ (96.57 $\pm 0.3898\%$) Lifetime 2 : 0.7059 $\pm 3.590e-003$ F1 : 0.3662 F2 : 0.6338 Tau-av1 : 4.646 Tau-av2 : 1.075 Offset : -59.87 Shift : 0.04997 ******

Decay curve : Glycoconjugate 17 IRF curve : irf

 Start Time
 : 61.22

 End Time
 : 70.71

Offset will be calculated Shift will be calculated

 Pre-exp. 1
 : 1

 Lifetime 1
 : 1

 Pre-exp. 2
 : 1

 Lifetime 2
 : 10

***** Statistics *****

Job done after 43 iterations in 1.295 sec.

Fitted curve : FLD Fit (25) Residuals : FLD Residuals (25) Autocorrelation : FLD Autocorrelation (25) Deconvolved Fit : FLD Deconvoluted (25) Chi2 : 1.085 Durbin Watson : 1.549 Ζ : -0.02834 Pre-exp. 1 $: 1.51 \pm 1.390e-002 (87.3 \pm 0.8033\%)$ Lifetime 1 : 1.405 $\pm 1.059e-002$ Pre-exp. 2 : 0.2198 $\pm 6.933e-003$ (12.7 $\pm 0.4007\%$) Lifetime 2 : 10.54 $\pm 1.202e+000$ F1 : 0.4781 F2 : 0.5219 Tau-av1 : 6.174 Tau-av2 : 2.566 Offset : -148 Shift : 0.1835 ******

Decay curve : Glycoconjugate 18 IRF curve : irf2

 Start Time
 : 61.28

 End Time
 : 71.36

Offset will be calculated Shift will be calculated

Pre-exp. 1: 1Lifetime 1: 1Pre-exp. 2: 1Lifetime 2: 1

***** Statistics *****

Job done after 100 iterations in 3.276 sec.

Fitted curve : FLD Fit (71) Residuals : FLD Residuals (71) Autocorrelation : FLD Autocorrelation (71) : FLD Deconvoluted (71) Deconvolved Fit Chi2 : 1.448 Durbin Watson : 1.437 Ζ : -0.04191 : 1.315 Pre-exp. 1 $\pm 5.797e-003$ (89.71 $\pm 0.3953\%$) Lifetime 1 : 1.487 $\pm 4.446e-003$ $\pm 7.659e-003$ (10.29 $\pm 0.5223\%$) Pre-exp. 2 : 0.1509 Lifetime 2 : 18.82 $\pm 1.256e+000$ F1 : 0.4079 F2 : 0.5921 Tau-av1 : 11.75 Tau-av2 : 3.271 Offset : -257.5 Shift : -0.1057 *****

Additional Docking data

Sample	Amino acid residues	Interaction	Distance (Å)
	Trp-213	Hydrophobic	3.78
	Trp-213	Hvdrogen bond	2.34
	Arg-217	Hydrogen bond	2.98
	Ser-342	Hydrophobic	3.51
15	Ser-343	Hydrogen bond	2.10
	Leu-346	Hydrophobic	3.24
	Asp-450	Hydrogen bond	2.89
	Ser-453	Hydrogen bond	2.13
	Leu-480	Hydrophobic	3.26
	Trp-213	Hydrogen bond	3.42
	Arg-217	Hydrogen bond	3.00
	Arg-217	π-cation	4.06
16	Lys-294	Hydrogen bond	2.10
	Val-342 (peptidic bond)	Hydrogen bond	2.09
	Ser-343	Hydrogen bond	2.99
	Arg-483	Hydrophobic	3.62
	Leu-197	Hydrophobic	3.34
	Ser-201	Hydrogen bond	2.10
	Trp-213	Hydrogen bond	2.50
	Arg-217	Hydrogen bond	2.86
	Arg-217	π -cation	4.15
	Glu-291	Hydrophobic	3.95
17	Lys-294	Hydrogen bond	2.05
	Val-342 (peptidic bond)	Hydrogen bond	1.88
	Ser-343	Hydrogen bond	2.19
	Leu-346	Hydrophobic	3.38
	Leu-480	Hydrophobic	3.40
	Ser-453	Hydrogen bond	2.22
	Trp-213	Hydrophobic	3.83
	Trp-213	Hydrogen bond	2.38
	Arg-217	Hydrogen bond	2.86
	Val-342	Hydrophobic	3.35
	Ser-343	Hydrogen bond	2.07
18	Leu-346	Hydrophobic	2.95
	Arg-409	π -cation	4.72
	Lys-413	π -cation	3.40
	Asp-450	Hydrogen bond	3.30
	Ser-453	Hydrogen bond	2.09
	Leu-490	Hydrophobic	3.37

Table S1 The main amino acid residues and intermolecular forces for the interaction BSA-glycoconjugates 15-18 into site I of BSA.