Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Photochemical acridone-mediated direct arylation of

(hetero)arenes with aryl diazonium salts

Zhenhua Li*, Lijun Chen, Dayou Rong, Longfeng Yuan, Yuanyuan, Xie*

Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18, Hangzhou, P. R. China. Email: lizhenhua@zjut.edu.cn

Contents

<u>1. Experimental Section</u>	2
2. Characterization data of products	10
3. References	10
4. Copies of NMR spectra of 3aa-3ff	

1. Experimental Section

1.1 General information

The aryl diazonium tetrafluoroborates were synthesized according to the previously described methods.¹ Other chemicals were purchased from commercial sources and used without further purification. Melting points (m.p.) were obtained on a digital melting point apparatus and uncorrected. Column chromatography was performed on silica gel (200-300 mesh) by standard technique. Thin-layer chromatography was performed using silica gel plates F254. Visualization was accomplished with short wavelength UV light (254 nm) sources. UV-Vis and fluorescence measurements were performed with UV-2600 UV-visible spectrophotometer and F-7000 FL spectrofluorometer. Melting points were determined using a digital melting point apparatus and uncorrected. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) were recorded with CDCl₃. Chemical shifts (δ) were referenced relative to residual solvent signal (CDCl₃: ¹H NMR: δ 7.26 ppm, ¹³C NMR: 77.16 ppm). All chemical shifts were reported as δ values (ppm) relative to TMS and observed coupling constants (J) are given in Hertz (Hz). The followed abbreviations are used to describe peak patterns where appropriate: (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, ddd = doublet of doublets of doublets, td = triplet of doublets, m = multiplet). High-resolution mass spectra were measured with HRMS-ESI-Q-TOF.

1.2 Synthesis of 4-bromobenzenediazonium tetrafluoroborate 1

Sodium nitrite (0.76 g, 11 mmol) dissolved in 1 mL of water was slowly added to the cold mixture of the appropriate aniline (1.27 g, 10 mmol) and 50% of HBF₄ (5 mL, 40 mmol) in 2 mL of water. The mixture was stirred for 1.5 h at 0°C and the precipitate was collected by filtration and redissolved in the least amount of acetone. Then the diazonium salt was recrystallized and washed several times using diethyl ether and dried under vacuum. The same procedure was followed by preparation of other diazonium salts.

1.3 Reaction procedure for C-H arylation of benzene, furan and thiophene.

In a 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged with acridone (0.1 equiv), aryl diazonium tetrafluoroborate 1 (0.5 mmol) and (hetero)arene (5 mmol) dissolved in dry DMSO (2 mL). The reaction mixture was stirred under irradiation of 10 W blue LEDs at room temperature for 6 h, then washed with brine and extracted with ethyl acetate. The organic layers were combined and dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel using petroleum ether to afford the desired products.

1.4 Reaction procedure for C-H arylation of mesitylene.

In a 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged with acridone (0.1 equiv), aryl diazonium tetrafluoroborate 1 (0.5 mmol) and mesitylene (2.5 mmol) dissolved in dry DMSO (2 mL). The reaction mixture was stirred under irradiation of 10 W blue LEDs at room temperature for 6 h, then washed with brine and extracted with ethyl acetate. The organic layers were combined and dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel using petroleum ether to afford the desired products.

1.5 Reaction procedure for C-H arylation of pyrrole and benzofuran

In a 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged with acridone (0.1 equiv), aryl diazonium tetrafluoroborate **1** (0.5 mmol) and heteroarene (2.5 mmol) dissolved in dry DMSO (2 mL). The reaction mixture was stirred under irradiation of 10 W blue LEDs at room temperature for 6 h, then washed with brine and extracted with ethyl acetate. The organic layers were combined and dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure, and the residue

was purified by flash column chromatography on silica gel using petroleum ether to afford the desired products.

	CI-N2BF4 +	H conditions		
	1a	2a	3aa	
Entry	Cat. (mol%)	Solvent	Time (h)	Yield ^b (%)
1	PC 1(10.0)	DMSO	12	76
2	PC 1(10.0)	DMSO	10	77
3	PC 1(10.0)	DMSO	8	77
4	PC 1(10.0)	DMSO	6	77
5	PC 1(0)	DMSO	6	N.D.
6 ^c	PC 1(10.0)	DMSO	6	N.D.
7^d	PC 1(10.0)	DMSO	6	77
8 e	PC 1(10.0)	DMSO	6	35
9 <i>f</i>	PC 1(10.0)	DMSO	6	72
10	PC 1(5.0)	DMSO	6	65
11	PC 1(3.0)	DMSO	12	50
12	PC 1(20.0)	DMSO	6	75
13	PC 2(10.0)	DMSO	6	45
14	PC 3(10.0)	DMSO	6	63
15	PC 4(10.0)	DMSO	6	60
16	PC 5(10.0)	DMSO	6	52
17	PC 1(10.0)	DMF	6	49
18	PC 1(10.0)	THF	6	30
19	PC 1(10.0)	MeCN	6	52

1.6 Screening of reaction conditions^{*a*}

^{*a*}Reaction conditions: **1a** (0.5 mmol), **2a** (5 mmoL), **PC** (10 mol%), DMSO (2 ml), blue LEDs, rt, 6h, air. ^{*b*}Isolated yields. ^{*c*}Reaction was conducted in the dark. ^{*d*}Benzene (20 equiv) was used. ^{*e*}With a 10 W green LEDs irradiation. ^{*f*}With a 10 W white LEDs irradiation.

1.7 Radical Capturing Experiments

In a 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged with acridone (0.1 equiv), aryl diazonium tetrafluoroborate **1a** (0.5 mmol), benzene (**2a**) (5 mmol) and TEMPO (2 equiv) dissolved in dry DMSO (2 mL). The reaction mixture was stirred under irradiation of 10 W blue LEDs at room temperature for 6 h, then washed with brine and extracted with ethyl acetate. The organic layers were combined and dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel using petroleum ether to afford the desired products.

Figure S1. Mass spectra of radical trapped compounds with TEMPO.

1.8 Intermolecular Competition Experiments

In a 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged with acridone (0.1 equiv), 4-methoxyphenyl diazonium tetrafluoroborate (1d) (75 mg, 0.25 mmol), 4-(trifluoromethyl)phenyl diazonium tetrafluoroborate (1g) (50.5 mg, 0.25 mmol) and benzene (2a) (10 mmol) dissolved in dry DMSO (2 mL). The reaction mixture was stirred under irradiation of 10 W blue LEDs at room temperature for 6 h, then washed with brine and extracted with ethyl acetate. The organic layers were combined and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel using petroleum ether to afford the desired products 3da (4 mg, 9%) and 3ga (16 mg, 29%) \circ

1.9 Intermolecular Competition Experiments

In a 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged with acridone (0.1 equiv), 4-cyanophenyl diazonium tetrafluoroborate (**1f**) (0.5 mmol), benzene (**2a**) (5 mmol), benzene (**2a**) $-d_6$ (5 mmol) dissolved in dry DMSO (2 mL). The reaction mixture was stirred under irradiation of 10 W blue LEDs at room temperature for 6 h, then washed with brine and extracted with ethyl acetate. The organic layers were combined and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel using petroleum ether to afford the desired products **3fa/[D]₅-3fa** (31 mg, 35%).

Figure S2. ¹H NMR of 3fa and 3fa+[D]₅-3fa.

1.10 The UV-visible absorption experiment:

Figure S3. UV-visible spectra of acridone in DMSO.

2. Characterization data of products

CI

4-chloro-1,1'-biphenyl (3aa)²

Colorless solid; 77% yield. $R_f = 0.9$ (Petroleum ether), m.p. = 78 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.49 (m, 4H), 7.48-7.36 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 13C NMR (101 MHz, Chloroform-d) δ 140.01, 139.69, 133.40, 128.93, 128.91, 128.42, 127.61, 127.01.

4-bromo-1,1'-biphenyl (3ba)³

Colorless solid; 67% yield. $R_f = 0.9$ (Petroleum ether), m.p. = 91 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.53 (m, 4H), 7.49-7.42 (m, 4H), 7.40-7.34 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.16, 140.03, 131.89, 128.93, 128.77, 127.67, 126.97, 121.56.

4-fluoro-1,1'-biphenyl (3ca)²

White solid; 69% yield. R_f = 0.9 (Petroleum ether), m.p. = 74 °C. ¹**H** NMR (400 MHz, CDCl₃) δ7.56 (dd, *J* = 8.2, 3.9 Hz, 4H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.39-7.33 (m, 1H), 7.14 (t, *J* = 8.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.71, 161.27, 140.28, 137.35, 128.84, 128.75, 128.67, 127.28, 127.04, 115.74, 115.52.

4-methoxy-1,1'-biphenyl (3da)²

Colorless solid; 34% yield. $R_f = 0.6$ (Petroleum ether), m.p. = 90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.50 (m, 4H), 7.47-7.38 (m, 2H), 7.35-7.28 (m, 1H), 7.04-6.95 (m, 2H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.16, 140.85, 133.80, 128.75, 128.18, 126.76, 126.68, 114.22, 55.37.

White solid; 44% yield. $R_f = 0.9$ (Petroleum ether), m.p. = 50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.53 (m, 4H), 7.52-7.45 (m, 2H), 7.38 (td, J = 7.2, 1.6 Hz, 1H), 7.31 (dd, J = 7.7, 4.7 Hz, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.26, 138.57, 138.46, 138.34, 137.08, 129.57, 128.80, 127.87, 127.81, 127.08, 127.06, 124.18, 121.17.

[1,1'-biphenyl]-4-carbonitrile (3fa)⁵

Off white solid; 65% yield. $R_f = 0.2$ (Petroleum ether), m.p. = 85 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.65 (m, 4H), 7.62-7.57 (m, 2H), 7.52-7.46 (m, 2H), 7.45-7.40 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.70, 139.20, 132.61, 129.13, 128.67, 127.75, 127.24, 118.94, 110.95.

4-trifluoromethyl -1,1'-biphenyl (3ga)³

Colorless solid; 72% yield. R_f = 0.9 (Petroleum ether), m.p. = 70 °C. ¹H NMR (400 MHz, CDCl₃) δ7.70 (s, 4H), 7.63-7.58 (m, 2H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.44-7.38 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.75, 139.79, 129.52, 129.20, 129.00, 128.38, 128.20, 127.44, 127.30, 125.78, 125.74, 125.70, 125.67, 122.98.

4-methylsulfonyl -1,1'-biphenyl (3ha)⁶

Colorless solid; 60% yield. $R_f = 0.5$ (10% of Ethyl acetate in Petroleum ether), m.p. = 145 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07-8.01 (m, 2H), 7.83-7.77 (m, 2H), 7.67-7.61 (m, 2H), 7.55-7.49 (m, 2H), 7.49-7.43 (m, 1H), 3.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.75, 139.15, 139.10, 129.14, 128.72, 128.02, 127.94, 127.42, 44.66.

ethyl [1,1'-biphenyl]-4-carboxylate (3ia)⁷

Colorless solid; 70% yield. $R_f = 0.3$ (Petroleum ether), m.p. = 93 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.07 (m, 2H), 7.70-7.60 (m, 4H), 7.51-7.44 (m, 2H), 7.43-7.37 (m, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.66, 145.67, 140.21, 130.19, 129.40, 129.05, 128.23, 127.41, 127.13, 61.09, 14.49.

2-bromo-1,1'-biphenyl (3ka)⁸

Colorless oil; 65% yield. $R_f = 0.9$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.5 Hz, 1H), 7.50-7.41 (m, 5H), 7.41-7.35 (m, 2H), 7.24 (ddd, J = 8.8, 6.6,2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.63, 141.15, 133.14, 131.31, 129.41, 128.74, 127.99, 127.63, 127.39, 122.67.

2-nitro-1,1'-biphenyl (3la)⁹

Yellow solid; 69% yield. $R_f = 0.2$ (Petroleum ether), m.p. = 37 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 8.1, 1.3 Hz, 1H), 7.62 (td, J = 7.5, 1.3 Hz, 1H), 7.52-7.40 (m, 5H), 7.33 (dd, J = 7.4, 2.0 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 149.33, 137.40, 136.37, 132.30, 131.98, 128.71, 128.26, 128.18, 127.91, 124.10.

3-chloro-1,1'-biphenyl (3ma)¹⁰

Colorless oil; 45% yield. $R_f = 0.9$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.43 (m, 5H), 7.41 (dt, J = 5.7, 3.3 Hz, 1H), 7.33 (dtd, J = 16.1, 7.2, 2.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 140.56, 139.44, 132.54, 131.41, 129.97, 129.48,

3-methoxy-1,1'-biphenyl (3na)¹¹

White solid; 60% yield. R_f = 0.6 (Petroleum ether), m.p. = 89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.50 (m, 4H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.34-7.28 (m, 1H), 7.03-6.95 (m, 2H), 3.86 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.15, 140.84, 133.80, 128.74, 128.18, 126.76, 126.68, 114.21, 55.37.

3-nitro-1,1'-biphenyl (30a)¹²

Yellow solid; 65% yield. $R_f = 0.2$ (Petroleum ether), m.p. = 62 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (t, J = 2.0 Hz, 1H), 8.20 (ddd, J = 8.2, 2.3, 1.1 Hz, 1H), 7.92 (dt, J = 7.8, 1.4 Hz, 1H), 7.66-7.58 (m, 3H), 7.54-7.47 (m, 2H), 7.47-7.41 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 146.88, 146.56, 143.07, 130.31, 129.95, 129.86, 125.21, 124.13, 119.27, 116.32.

3,4-dichloro-1,1'-biphenyl (3pa)¹³

Little yellow solid; 60% yield. $R_f = 0.8$ (Petroleum ether), m.p. = 46 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.60-7.34 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 141.26, 138.79, 132.84, 131.44, 130.70, 129.03, 128.14, 126.98, 126.39.

1,1'-biphenyl (3qa)¹⁴

Colorless solid; 75% yield. $R_f = 0.9$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ

7.72-7.66 (m, 4H), 7.53 (t, *J* = 7.6 Hz, 4H), 7.46-7.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.34, 128.87, 127.37, 127.28.

4'-methoxy-2,4,6-trimethyl-1,1'-biphenyl (3db)²

White solid; 32% yield. R_f = 0.9 (Petroleum ether), m.p. = 74 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.10-7.05 (m, 2H), 7.00-6.94 (m, 4H), 3.87 (s, 3H), 2.35 (s, 3H), 2.04 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 158.21, 138.70, 136.46, 133.32, 130.34, 128.05, 113.78, 55.23, 21.05, 20.84.

2',4',6'-trimethyl-[1,1'-biphenyl]-4-carbonitrile (3fb)¹⁵

White oil; 81% yield. $R_f = 0.2$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.71 (m, 2H), 7.28 (d, J = 8.3 Hz, 2H), 6.97 (s, 2H), 2.35 (s, 3H), 1.99 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 146.45, 137.60, 137.17, 135.33, 132.34, 130.38, 128.39, 119.05, 110.67, 21.07, 20.64.

2,4,6-trimethyl-4'-(trifluoromethyl)-1,1'-biphenyl (3gb)⁷

White solid; 69% yield. R_f = 0.9 (Petroleum ether), m.p. = 59 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 6.99 (s, 2H), 2.37 (s, 3H), 2.02 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 145.08, 137.65, 137.28, 135.65, 129.81, 129.09, 128.77, 128.28, 125.76, 125.49, 125.45, 125.41, 125.37, 123.06, 21.05, 20.69.

2,4,6-trimethyl-4'-nitro-1,1'-biphenyl (3jb)¹⁶

Yellow solid; 80% yield. R_f = 0.3 (Petroleum ether), m.p. = 94 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.36-8.26 (m, 2H), 7.38-7.29 (m, 2H), 6.97 (s, 2H), 2.35 (s, 3H), 1.99 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 148.59, 146.87, 137.75, 136.79, 135.28, 130.49, 128.43, 123.78, 21.06, 20.65.

2-(4-chlorophenyl) furan (3ac)¹⁷

Colorless solid; 70% yield. $R_f = 0.8$ (Petroleum ether), m.p. = 67 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.57 (m, 2H), 7.47 (d, J = 1.3 Hz, 1H), 7.38-7.33 (m, 2H), 6.64 (d, J = 2.7 Hz, 1H), 6.48 (dd, J = 3.4, 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.95, 142.35, 132.97, 129.39, 128.89, 125.03, 111.80, 105.44.

2-(4-bromophenyl) furan (3bc)⁷

Colorless solid; 76% yield. R_f = 0.8 (Petroleum ether), m.p. = 85 °C. ¹H NMR (400 MHz, CDCl₃) δ7.57-7.44 (m, 5H), 6.65 (d, *J* = 3.4 Hz, 1H), 6.47 (dd, *J* = 3.4, 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.96, 142.40, 131.81, 129.81, 125.30, 121.07, 111.81, 105.54.

2-(4-methoxyphenyl) furan (3dc)¹⁸

Colorless solid; 33% yield. $R_f = 0.5$ (Petroleum ether), m.p. = 58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.55 (m, 2H), 7.43 (dd, J = 1.9, 0.8 Hz, 1H), 6.97-6.87 (m, 2H), 6.48 (ddd, J = 28.0, 3.4, 1.3 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.06, 154.08, 141.38, 125.26, 124.09, 114.15, 103.37, 55.32.

4-(furan-2-yl) benzonitrile (3fc)¹⁷

Pale orange solid; 80% yield. $R_f = 0.2$ (Petroleum ether), m.p. = 49 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.72 (m, 2H), 7.68-7.63 (m, 2H), 7.54 (d, J = 1.7 Hz, 1H), 6.81 (dd, J = 3.4, 0.7 Hz, 1H), 6.53 (dd, J = 3.4, 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.98, 143.71, 134.66, 132.61, 123.95, 118.99, 112.27, 110.27, 108.19.

2-(4-(trifluoromethyl) phenyl) furan (3gc)¹⁷

Colorless solid; 74% yield. R_f = 0.8 (Petroleum ether), m.p. = 88 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.52 (d, *J* = 1.7 Hz, 1H), 6.77 (d, *J* = 3.4 Hz, 1H), 6.51 (dd, *J* = 3.4, 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.52, 143.10, 133.97, 129.12, 128.80, 125.77, 125.74, 125.70, 125.66, 125.54, 123.77, 122.84, 111.97, 106.98.

2-(4-chlorophenyl) thiophene (3ad)⁷

Colorless solid; 66% yield. $R_f = 0.9$ (Petroleum ether), m.p. = 83 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.52 (m, 2H), 7.36-7.33 (m, 2H), 7.31-7.28 (m, 2H), 7.10-7.06 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.11, 133.22, 132.95, 129.05, 128.18, 127.13, 125.23, 123.48.

2-(4-fluorophenyl) thiophene (3cd)⁷

Colorless solid; 65% yield. $R_f = 0.9$ (Petroleum ether), m.p. = 48 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (t, J = 6.9 Hz, 2H), 7.36-7.26 (m, 2H), 7.13 (d, J = 8.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.57, 161.12, 143.36, 130.76, 130.73, 128.09, 127.68, 127.60, 124.81, 123.13, 115.95, 115.74.

2-(4-methoxyphenyl) thiophene (3dd)¹⁸

Colorless solid; 40% yield. $R_f = 0.9$ (Petroleum ether), m.p. = 103 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.49 (m, 2H), 7.25-7.18 (m, 2H), 7.06 (dd, J = 5.1, 3.6 Hz, 1H), 6.95-6.89 (m, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.19, 144.35, 127.95, 127.32, 127.25, 123.86, 122.10, 114.29, 55.38.

4-(thiophen-2-yl) benzonitrile (3fd)¹⁹

Colorless solid; 66% yield. $R_f = 0.9$ (Petroleum ether), m.p. = 85 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.63 (m, 4H), 7.43-7.38 (m, 2H), 7.13 (dd, J = 5.1, 3.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.08, 138.67, 132.76, 128.57, 127.10, 126.10, 125.14, 118.88, 110.56.

2-(3-nitrophenyl) thiophene (3od)¹⁹

Yellow oil; 72% yield. $R_f = 0.9$ (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (t, J = 2.1 Hz, 1H), 8.14-8.08 (m, 1H), 7.91 (dt, J = 7.9, 1.5 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.45-7.37 (m, 2H), 7.14 (dd, J = 5.1, 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.88, 146.56, 143.07, 130.31, 129.95, 129.86, 125.21, 124.13, 119.27, 116.32.

tert-butyl 2-(4-bromophenyl)-1H-pyrrole-1-carboxylate (3be)²⁰

Colorless oil; 45% yield. $R_f = 0.5$ (5% of Ethyl acetate in Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.45 (m, 2H), 7.34 (dd, J = 3.3, 1.8 Hz, 1H), 7.24-7.19 (m, 2H), 6.22 (t, J = 3.3 Hz, 1H), 6.18 (dd, J = 3.3, 1.8 Hz, 1H), 1.39 (s, 9H). ¹³C NMR

(101 MHz, CDCl₃) δ 133.79, 133.27, 130.79, 130.72, 122.89, 121.29, 114.81, 110.70, 83.92, 27.69.

tert-butyl 2-(4-methoxyphenyl)-1H-pyrrole-1-carboxylate (3de)²¹

Colorless oil; 63% yield. $R_f = 0.3$ (5% of Ethyl acetate in Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd, J = 3.3, 1.8 Hz, 1H), 7.30-7.26 (m, 2H), 6.92-6.87 (m, 2H), 6.21 (t, J = 3.3 Hz, 1H), 6.14 (dd, J = 3.3, 1.8 Hz, 1H), 3.83 (s, 3H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.91, 149.43, 134.88, 130.41, 126.90, 122.18, 114.01, 113.05, 110.48, 83.44, 55.29, 27.72.

tert-butyl 2-(4-cyanophenyl)-1H-pyrrole-1-carboxylate (3fe)²²

Colorless oil; 75% yield. $R_f = 0.2$ (5% of Ethyl acetate in Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.60 (m, 2H), 7.48-7.43 (m, 2H), 7.39 (dd, J = 3.2, 1.8 Hz, 1H), 6.29-6.24 (m, 2H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 148.96, 138.82, 133.12, 131.41, 129.59, 123.99, 119.02, 116.12, 111.07, 110.53, 84.40, 27.71.

tert-butyl 2-(4-nitrophenyl)-1H-pyrrole-1-carboxylate (3je)²²

Colorless oil; 66% yield. $R_f = 0.2$ (5% of Ethyl acetate in Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.26-8.17 (m, 2H), 7.56-7.48 (m, 2H), 7.41 (dd, J = 3.3, 1.8 Hz, 1H), 6.32 (dd, J = 3.4, 1.7 Hz, 1H), 6.27 (t, J = 3.4 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 148.92, 146.62, 140.71, 132.79, 129.56, 124.32, 122.96, 111.17, 84.55, 27.74.

2-(4-methoxyphenyl) benzofuran (3df)²³

Colorless solid; 40% yield. $R_f = 0.2$ (Petroleum ether), m.p. = 152 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.80 (m, 2H), 7.61-7.56 (m, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.31-7.22 (m, 2H), 7.04-6.98 (m, 2H), 6.92 (d, J = 0.9 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.00, 156.07, 154.71, 129.51, 126.44, 123.76, 123.36, 122.85, 120.59, 114.27, 111.01, 99.70, 55.39.

4-(benzofuran-2-yl) benzonitrile (3ff)²⁴

Colorless solid; 71% yield. $R_f = 0.3$ (Petroleum ether), m.p. = 143 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H), 7.68-7.63 (m, 1H), 7.57 (d, J = 8.2 Hz, 1H), 7.44-7.24 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.27, 153.57, 134.49, 132.66, 128.68, 125.58, 125.14, 123.47, 121.53, 118.78, 111.53, 111.46, 104.37.

1-(4-chlorophenoxy)-2,2,6,6-tetramethylpiperidine (5).

Colorless oil; 51% yield. $R_f = 0.9$ (Petroleum ether), m.p. = 320 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.09 (m, 4H), 1.64-1.53 (m, 5H), 1.45-1.38 (m, 1H), 1.22 (s, 6H), 0.99 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.22, 128.57, 124.33, 115.20, 60.47, 39.74, 32.50, 20.43, 17.00.

3. References

- W. Guo, L. Q. Lu, Y. Wang, Y. N. Wang, J. R. Chen and W. J. Xiao, *Angew. Chem. Int. Ed.* 2015, 54, 2265.
- J. Ahmed, S. Chakraborty, A. Jose, S. P and S. K. Mandal, J. Am. Chem. Soc. 2018, 140, 8330-8339.
- W. Liu, H. Cao, H. Zhang, H. Zhang, K. H. Chung, C. He, H. Wang, F. Y. Kwong and A. Lei, J. Am. Chem. Soc. 2010, 132, 16737-16740.
- 4. J. Cuthbertson, V. J. Gray and J. D. Wilden, Chem. Commun. 2014, 50, 2575-2578.
- S. De, S. Ghosh, S. Bhunia, J. A. Sheikh and A. Bisai, Org. Lett. 2012, 14, 4466-4469.
- Lingling Shi, Lianyou Zheng, Shulin Ning, Qiansong Gao, Chengcheng Sun, Zhuoqi Zhang, and Jinbao Xiang, Org. Lett. 2022, 24, 31, 5782-5786.
- Y. F. Liang, R. Steinbock, L. Yang and L. Ackermann, *Angew. Chem. Int. Ed.* 2018, 57, 10625.
- 8. A. Kasprzak and P. A. Guńka, Dalton Trans. 2020, 49, 6974-6979.
- 9. A. Boelke, L. D. Caspers and B. J. Nachtsheim, Org. Lett. 2017, 19, 5344.
- 10. C. Dunst and P. Knochel, Synlett, 2011, 14, 2064-2068.
- J. Il So, S. Hwang, M. Y. Lee, M. Song, S. H. Baeck, S. E. Shim and Y. Qian, ACS Appl. Polym. Mater. 2020, 2, 3122-3134.
- S. Chang, L. L. Dong, H. Q. Song and B. Feng, Org. Biomol. Chem. 2018, 16, 3282.
- 13. Garima Pandey and Béla Török, Green Chem. 2017, 19, 5390.
- 14. Wang, L, Liu, G. Cat. Commun. 2019, 131, 105785.
- A. DewanJi, S. Murarka, D. P. Curran and A. Studer, *Org. Lett.* 2013, *15*, 6102-6105.
- K. Okura, T. Teranishi, Y. Yoshida and E. Shirakawa, *Angew. Chem.* 2018, 130, 7304.
- 17. R. Saritha, S. B. Annes, S. Saravanan and S. Ramesh, Org. Biomol. Chem. 2020,

18, 2510-2515.

- J. Ahmed, S. P, G. ViJaykumar, A. Jose, M. RaJ and S.K. Mandal, *Chem. Sci.* 2017, *8*, 7798-7806.
- Y. S. Feng, X. S. Bu, B. Huang, C. Rong, J. J. Dai, J. Xu and H. J. Xu, *Tetrahedron Lett.* 2017, 58, 1939.
- 20. A. Honraedt, M. A. Raux, E. L. Grognec, D. Jacquemin and F. X. Felpin, *Chem. Commun.* 2014, *50*, 5236.
- 21. S. Crespi, S. Protti and M. Fagnoni, J. Org. Chem, 2016, 81, 9612.
- 22. D. P. Hari, P. Schroll and B. König, J. Am. Chem. Soc. 2012, 134, 2958.
- 23. A. Tyagi, N. U-D. Reshi, P. Daw and J. K. Bera, *Dalton Trans.* **2020**, *49*, 15238-15248.
- 24. Guo-Jie Wu, Fu-She Han and Yu-Long Zhao, RSC Adv. 2015, 5, 69776.

4. Copies of NMR spectra of 3aa-3ff

3aa ¹H NMR

3aa ¹³C NMR

3ba ¹H NMR

3ba ¹³C NMR

3ca¹H NMR

3da ¹H NMR

3fa ¹H NMR

3ga ¹H NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3ha ¹³C NMR

3ka ¹H NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3na ¹³C NMR

3pa ¹H NMR

3pa¹³C NMR

3qa ¹H NMR

3qa¹³C NMR

3db ¹H NMR

3db ¹³C NMR

3jb ¹³C NMR

3ac ¹H NMR

3ac ¹³C NMR

3bc ¹³C NMR

S63

3dc ¹H NMR

3fc ¹H NMR

3gc ¹H NMR

3gc ¹³C NMR

3ad ¹H NMR

3cd ¹H NMR

S→−F

3cd ¹³C NMR

3dd ¹H NMR

f1 (ppm)

i

3od ¹³C NMR

3be ¹H NMR

3be ¹³C NMR

3de ¹³C NMR

3fe ¹H NMR

3je ¹H NMR

3je¹³C NMR

3df ¹H NMR

3ff ¹H NMR

5¹³C NMR