$\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-catalyzed hydrogermylation of enones: a facile route to germacycles

Jiangkun Xiong, ${ }^{\text {tab }}$ Maying Yan, ${ }^{\text {ta }}$ Lvnan Jin, ${ }^{a}$ Weihong Song, ${ }^{\text {a }}$ Lei Xiao, ${ }^{a}$ Dong Xu, ${ }^{\text {a }}$ Chunyang Zhai, ${ }^{* b}$ Douglas W. Stephan, *ac and Jing Guo*a
${ }^{\text {a }}$ Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China, guojing@nbu.edu.cn
${ }^{b}$ School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China, zhaichunyang@nbu.edu.cn
 Canada, dstephan@chem.utoronto.ca

*Corresponding Author.

Dr. Jing Guo
Email: quojing@nbu.edu.cn
Professor Chunyang Zhai
Email: zhaichunyang@nbu.edu.cn
Professor Douglas W. Stephan
Email: dstephan@chem.utoronto.ca
Phone: 416-946-3294

Supporting Information

Table of Contents

General information ... 2
Preparation of enones ${ }^{1}$... 2
Preparation of hydrogermane substrates ${ }^{2}$... 3
General procedure for domino hydrogermylation ... 4
Characterization data.. 4
References ... 15
NMR spectra of isolated compounds... 16

General information

All preparative procedures were performed in an inert atmosphere of dry, deoxygenated $\left(\mathrm{O}_{2}<0.5\right.$ ppm) argon, using glovebox techniques or standard Schlenk techniques unless otherwise specified. Solvents were stored over activated $3 \AA ̊$ molecular sieves following drying procedures. Dichloromethane (DCM), toluene, tetrahydrofuran (THF), ethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) and hexane were purchased from Tedia Company, Inc. Deuterated solvents $\left(\mathrm{CDCl}_{3}\right)$ were purchased from Cambridge Isotope Laboratories, Inc. and used without further purification. Benzaldehyde and 2methylallyl magnesium chloride were obtained from Energy Chemical. 2-Chlorobenzaldehyde, 3chlorobenzaldehyde, 4-chlorobenzaldehyde, 2-bromobenzaldehyde, 3-bromobenzaldehyde, 4bromobenzaldehyde, 2-fluorobenzaldehyde, 3-fluorobenzaldehyde, 4-fluorobenzaldehyde, 2,4dichlorobenzaldehyde, 3,5-dichlorobenzaldehyde, 3,4-dichlorobenzaldehyde, 3(trifluoromethyl)benzaldehyde, 4-(trifluoromethyl)benzaldehyde, 3,5bis(trifluoromethyl)benzaldehyde, 3-methylbenzaldehyde, 4-bromoanisole, 4-bromophenetole, 4bromophenoxybenzene, 4-benzyloxybromobenzene, 2,6,10-trimethylundeca-1,9-dien-4-one, N chlorosuccinimide and lithium aluminum hydride were purchased from Adamas-beta. Thin-layer chromatography (TLC) was performed on EMD Silica Gel 60 F254 aluminum plates or EMD basic Aluminium Oxide 60 F254 plastic plates. Silicycle Silia-P Flash Silica Gel was used for all column chromatography.

All NMR spectra were collected at 298 K on Bruker 500 spectrometers in 5 mm diameter NMR tubes. ${ }^{1} \mathrm{H}$ chemical shifts are reported relative to proteo-solvent signals $\left(\mathrm{CDCl}_{3}, \delta=7.26 \mathrm{ppm}\right)$. Data are reported as: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{dt}=$ doublet of triplets, ddd $=$ doublet of doublet of doublets), coupling constants (Hz), integration and assignment. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts are reported relative to proteo-solvent signals $\left(\mathrm{CDCl}_{3}, \delta=77.00 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were measured at 376 MHz and $\mathrm{CFCl}_{3}(-63.2 \mathrm{ppm})$ was used as an external standard. Departmental facilities were used for mass spectrometry (FTMS ESI)

Preparation of enones ${ }^{1}$

Step 1: To a solution of aldehydes (20.0 mmol) in THF (20 mL) was added 2-methylallyl magnesium chloride (1 M in THF, $28 \mathrm{~mL}, 28.0 \mathrm{mmol}$) dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was
allowed to stir for 1.5 h at the same temperature. The reaction was quenched with water (30 mL), acidified with conc. $\mathrm{HCl}(5 \mathrm{~mL})$, and extracted with petroleum ether/EtOAc (9:1) ($30 \mathrm{~mL} \times 2$). Organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with petroleum ether/EtOAc to give the desired product.

Step 2: To a solution of alcohol (5.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added Dess-Martin periodinane $(3.2 \mathrm{~g}, 7.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to stir for overnight at the same temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times$ 2). The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with petroleum ether/EtOAc to give the desired product.

Preparation of hydrogermane substrates ${ }^{2}$

Step 1: To a solution of $M g$ (1.2 equiv) and I_{2} (two crystals) in anhydrous THF was added aryl bromide (1.0 equiv, 1.0 M in THF) under argon atmosphere at room temperature. The resulting mixture was stirred at room temperature for 3 h to afford Grignard reagent. Under argon atmosphere, a 500 mL Schlenk tube was charged with GeCl_{4} (1.2 equiv) and anhydrous $\mathrm{Et}_{2} \mathrm{O}$ $(0.4 \sim 0.5 \mathrm{M})$, and the resulting mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. Then, the Grignard reagent was added dropwise over 1 h to the mixture at $-7{ }^{\circ}{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was stirred at room temperature for 1 h , then refluxed at $46{ }^{\circ} \mathrm{C}$ for 16 h . After being cooled to room temperature, the reaction mixture was filtered off, and the filtrate was concentrated under vacuum.

Step 2: The resulting residue was redissolved in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and the resulting mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, LiAlH_{4} (2.0 equiv, 2.5 M in THF) was added dropwise to the resulting mixture. After 1 h , the reaction mixture was stirred at room temperature overnight. The reaction mixture was quenched with $1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under
vacuum, the resulting residue was collected to give crude trihydrogermane, which was used directly without further purification.

Step 3: NCS (1.05 equiv to the trihydrogermane) and anhydrous THF (1.0 M) were added to a 150 mL Schlenk tube under argon atmosphere. The crude trihydrogermane (1.0 M in THF) was rapidly added to the resulting mixture at room temperature. After being stirred at $60{ }^{\circ} \mathrm{C}$ for $3 \mathrm{~h}-6$ h , the solvent was removed under vacuum and the resulting residue was dissolved in n-hexane. The resulting mixture was filtered off, and the filtrate was concentrated under vacuum to afford crude chlorogermane, which was used directly without further purification.

Step 4: To a solution of Mg (1.2 equiv) and I_{2} (one crystal) in anhydrous THF was added aryl bromide (1.0 equiv, 1.0 M in THF) under argon atmosphere at room temperature. The resulting mixture was stirred at room temperature for 3 h to afford Grignard reagent. Under argon atmosphere, a 500 mL Schlenk tube was charged with crude chlorogermane (1.2 equiv) and anhydrous THF 100 mL , and the resulting mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. Then, the Grignard reagent was added dropwise over 1 h to the mixture at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was quenched with 1 mL saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution at room temperature and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum, and the residue was purified by flash chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ (petroleum ether/EtOAc $=$ 100/0~40/1) to afford dihydrogermane substrates.

General procedure for domino hydrogermylation

In an inert atmosphere glovebox, to a solution of enones ($0.10 \mathrm{mmol}, 1.0$ equiv) and dihydrogermanes ($0.11 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(2.5 \mathrm{mg}, 0.005$ $\mathrm{mmol}, 5 \mathrm{~mol} \%)$. The reaction was stirred at room temperature for the indicated time. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate $=50 / 1$ to $5 / 1$) on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ to afford the desired products.

Characterization data

2,2-Bis(4-methoxyphenyl)-4-methyl-6-phenyl-1,2-oxagerminane (1)

Prepared according to the general procedure (5 h). The compound 1 was obtained as a colorless oil in 87% yield (39.1 mg) with >19:1 dr value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 7.59 (d, $J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.94 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.22$ (dd, $J=9.0 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (s, $3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.71$ (dd, J=13.5 $\mathrm{Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{dd}, J=13.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 160.94,160.83,146.92,135.15,134.91,129.00,128.94,128.03,126.47,125.75$, 114.13, 113.97, 72.66, 55.09, 55.07, 44.66, 26.08, 22.86, 20.40. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{GeO}_{3}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 451.1323$; Found: 451.1321.

6-(4-Fluorophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (2)

Prepared according to the general procedure (24 h). The compound 2 was obtained as a colorless oil in 77% yield $(36.2 \mathrm{mg})$ with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 6 \mathrm{H}), 5.19(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 2 \mathrm{H})$, $1.35(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$ $161.60(\mathrm{~d}, J=244.4 \mathrm{~Hz}), 160.98,160.87$, 142.61 (d, $J=3.2 \mathrm{~Hz}$), 135.11, 134.88 , 128.77 (d, $J=$ $4.7 \mathrm{~Hz}), 127.29,127.22,114.70$, (d, $J=21.3 \mathrm{~Hz}$), 114.16, 114.00, 72.09, 55.09, 55.07, 44.65, 26.02, 22.83, 20.30. ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta:-117.01$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{FGeO}_{3}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 469.1229$; Found: 469.1228.

6-(4-Chlorophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (3)

Prepared according to the general procedure (4 h). The compound 3 was obtained as a colorless oil in 91% yield $(43.9 \mathrm{mg})$ with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.52$ (d, $J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.38$ - $2.30(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=13.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30$ (dd, $J=13.5 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 161.00$, 160.87, 145.42, 135.09, 134.86, 131.95, 128.73, 128.68, 128.07, 127.15, 114.16, 114.02, 72.14, $55.08,55.05,44.54,25.93,22.91,20.36$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClGeO}_{3}{ }^{+}$, ([M+H] $]^{+}$): 485.0933; Found: 485.0932.

6-(4-Bromophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (4)

Prepared according to the general procedure (5 h). The compound 4 was obtained as a colorless oil in 89% yield (46.9 mg) with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.58$ ($\mathrm{d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.43-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{dd}, \mathrm{J}=13.5 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.13$ (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 161.00, 160.87, 145.94, 135.10, 134.86, $131.01,128.72,128.66,127.56,120.08,114.16,114.03,72.20,55.09,55.06,44.50,25.91,22.94$, 20.37. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrGeO}_{3}{ }^{+}$, ([M+H]+): 529.0428; Found: 529.0428.

2,2-Bis(4-methoxyphenyl)-4-methyl-6-(4-(trifluoromethyl)phenyl)-1,2-oxagerminane (5)

Prepared according to the general procedure (5 h). The compound 5 was obtained as a colorless oil in 99% yield $(51.8 \mathrm{mg})$ with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), $7.55-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.27$ (dd, $J=8.5 \mathrm{~Hz}$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.73$ (dd, $J=14.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 161.06,160.93,150.96(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}), 135.10,134.86$, $128.62(q, J=32.1 \mathrm{~Hz}), 128.62,128.58,126.03,124.94(q, J=6.9 \mathrm{~Hz}), 124.37(q, J=272.2 \mathrm{~Hz})$, $114.20,114.07,72.31,55.09,55.07,44.48,25.95,22.93,20.37 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta:-62.23$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{GeO}_{3}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 519.1197; Found: 519.1199.

6-(3-Fluorophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (6)

Prepared according to the general procedure (5 h). The compound 6 was obtained as a colorless oil in 91% yield $(42.8 \mathrm{mg})$ with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.95 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{td}, J=8.5 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (s, 3H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=$ $14.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36$ (dd, $J=14.0 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 162.93 (d, $J=245.2 \mathrm{~Hz}$), 161.02, $160.89,149.80(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 135.11$, 134.88, 129.37 (d, $J=8.2 \mathrm{~Hz}), 128.68(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 121.21(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 114.18,114.05$, 113.19 ($\mathrm{d}, J=21.0 \mathrm{~Hz}$), 112.77 ($\mathrm{d}, J=22.1 \mathrm{~Hz}$), $72.16(\mathrm{~d}, J=245.1 \mathrm{~Hz}), 55.10,55.07,44.51$, 26.01, 22.87, 20.36. ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ठ: -113.79. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{FGeO}_{3}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 469.1229$; Found: 469.1230.

6-(3-Chlorophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (7)

Prepared according to the general procedure (5 h). The compound 7 was obtained as a colorless oil in 95% yield $(46.4 \mathrm{mg})$ with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H})$, $1.97-1.91$ (m, 1H), $1.79-1.69$ (m, 2H), 1.36 (dd, $J=14.0 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.14 (d, $J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 161.03,160.89,149.05,135.11,134.86,133.94,129.26$, $128.64,128.58,126.55,126.06,123.86,114.17,114.06,72.21,55.09,55.06,44.48,26.01,22.89$, 20.30. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{CIGeO}_{3}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 485.0933; Found: 485.0929.

6-(3-Bromophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (8)

Prepared according to the general procedure (5 h). The compound 8 was obtained as a colorless oil in 93% yield $(49.0 \mathrm{mg})$ with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.58$ (d, $J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (t, J=8.0 Hz, 1H), $7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.35$ (dd, $J=13.5 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, ס: 161.04 , $160.89,149.31,135.12,134.87,129.59,129.49,128.99,128.62,128.56,124.33,122.30,114.18$, 114.08, 72.22, 55.10, 55.07, 44.49, 25.99, 22.92, 20.32. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Br}^{78.9183} \mathrm{GeO}_{3}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 527.0438 ;$ Found: 527.0435; $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Br}^{80.9163} \mathrm{GeO}_{3}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 531.0408; Found: 531.0411.

2,2-Bis(4-methoxyphenyl)-4-methyl-6-(3-(trifluoromethyl)phenyl)-1,2-oxagerminane (9)

Prepared according to the general procedure (5 h). The compound 9 was obtained as a colorless oil in 72% yield (37.3 mg) with >19:1 dr value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.59$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{dd}, J=8.5 \mathrm{~Hz}$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.73(\mathrm{dd}, J=13.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), $\delta: 161.07,160.93,147.89,135.09,134.88,130.26$ (q, $J=$ $32.0 \mathrm{~Hz}), 129.12(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 128.62,128.51,128.41,124.33(\mathrm{q}, J=273.0 \mathrm{~Hz}), 123.30(\mathrm{q}, J=$ $3.8 \mathrm{~Hz}), 122.66$ ($\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}$), 114.20, 114.10, 72.32, 55.10, 55.07, 44.47, 25.96, 22.92, 20.37. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta:-62.40$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{GeO}_{3}{ }^{+}$, ([M+H] ${ }^{+}$): 519.1197; Found: 519.1197.

6-(2-Fluorophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (10)

Prepared according to the general procedure (5 h). The compound 10 was obtained as a colorless oil in 87% yield (40.5 mg) with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.75(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1H), $7.01-6.94$ (m, 5H), 5.57 (dd, J = $9.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (s, 3H), 3.83 (s, 3H), 2.46 - 2.40 (m, 1H), $1.95-1.89(m, 1 H), 1.84-1.79(m, 1 H), 1.74(d d, J=13.5 H z, 6.0 H z, 1 H) 1.38(d d, J$ $=13.5 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.15 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: 161.00$, 160.86, 159.07 (d, $J=245.1 \mathrm{~Hz}$), 135.12, $134.87,134.1$ ($\mathrm{d}, J=13.1 \mathrm{~Hz}$), $128.82(\mathrm{~d}, J=4.7 \mathrm{~Hz}$), $127.79,127.74(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 127.72,123.96(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 114.72(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 114.17$, 114.03, $66.60(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 55.09,55.06,43.35,26.16,22.48,20.49 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(471 \mathrm{MHz}$,
CDCl_{3}), $\delta:-119.86$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{FGeO}_{3}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 469.1229; Found: 469.1228.

6-(2-Chlorophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (11)

Prepared according to the general procedure (5 h). The compound 11 was obtained as a colorless oil in 81% yield (39.3 mg) with >19:1 dr value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.74$ (d, $J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H})$, 6.98 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.95 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.56$ (dd, $J=9.0 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (s, 3H), 3.81 (s, 3H), $2.49-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{dd}, \mathrm{J}=13.5 \mathrm{~Hz}$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 160.98,160.85,144.42$, 135.08, 134.86, 130.83, 128.93, 128.91, 128.76, 127.71, 127.55, 126.86, 114.17, 114.04, 69.16, 55.08, 55.05, 42.74, 26.47, 21.92, 20.30. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClGeO}_{3}{ }^{+}$, ([M+H]+): 485.0933; Found: 485.0928.

6-(2-Bromophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (12)

Prepared according to the general procedure (5 h). The compound 12 was obtained as a colorless oil in 78% yield $(41.0 \mathrm{mg})$ with $>19: 1$ dr value. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.74$ (dd, $J=7.5 \mathrm{~Hz}$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{td}, J=7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.14 (dd, J=9.0 Hz, 2.0 Hz, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 2.52-2.45 (m, 1H), $1.93-$ $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{dd}, J=13.5 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 160.99,160.85,145.90,135.08,134.87,132.19,128.95$, $128.75,128.05,127.98,127.51,121.05,114.18,114.04,71.44,55.10,55.06,42.82,26.58,21.82$,
20.26. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Br}^{78.9183} \mathrm{GeO}_{3}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 529.0428; Found: 529.0423;
$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Br}^{80.9163} \mathrm{GeO}_{3}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 531.0408$; Found: 531.0413.
6-(2,4-Diclorophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (13)

Prepared according to the general procedure (5 h). The compound 13 was obtained as a colorless oil in 72% yield (37.3 mg) with $>19: 1$ dr value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.67(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (dd, $J=8.5$ $\mathrm{Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ (dd, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.39$ (dd, $J=13.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.17$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 161.06$, 160.92, 143.14, 135.06, 134.84, 132.42, 131.37, 128.80, 128.72, 128.61, 128.54, 127.13, 114.22, 114.10, 68.92, 55.11, 55.07, 42.62, 26.41, 21.93, 20.23. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{GeO}_{3}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 519.0544 ;$ Found: 519.0540.

6-(3,4-Diclorophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (14)

Prepared according to the general procedure (5 h). The compound 14 was obtained as a colorless oil in 89% yield $(46.1 \mathrm{mg})$ with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.56$ (d, $J=8.5 \mathrm{~Hz}$, 2H), $7.50-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $2.42-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{dd}, J=13.5 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.13 (d, J=7.0 Hz, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: 161.10,160.94,147.26,135.09$, 134.84, 132.00, 130.03, 129.88, 128.44, 128.40, 127.96, 125.14, 114.21, 114.12, 71.80, 55.11,
55.08, 44.35, 25.90, 22.99, 20.31. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{GeO}_{3}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right):$ 519.0544; Found: 519.0536.

6-(3,5-Diclorophenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (15)

Prepared according to the general procedure (5 h). The compound 15 was obtained as a colorless oil in 95% yield (49.4 mg) with >19:1 dr value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.43-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{dd}, J=13.5 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 161.13,160.96,150.46,135.10,134.83$, 134.49, 128.30, 128.27, 126.49, 124.40, 114.23, 114.15, 71.93, 55.11, 55.07, 44.30, 25.98, 22.92, 20.23. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{GeO}_{3}{ }^{+}$, ([M+H] ${ }^{+}$): 519.0544; Found: 519.0536.

6-(3,5-Bis(trifluoromethyl)phenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminan (16)

Prepared according to the general procedure (5 h). The compound 16 was obtained as a colorless oil in 72% yield (42.1 mg) with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.83(\mathrm{~s}, 2 \mathrm{H}), 7.71$ (s, 1H), $7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.32 (dd, J = $8.5 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.98-$ $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{dd}, J=13.5 \mathrm{~Hz}, 6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 161.22, 161.05, 149.57, $135.03,134.86,131.15$ (q, $J=33.0 \mathrm{~Hz}$), 128.21, $128.09,126.05(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 123.51$ (q, $J=$
$273.2 \mathrm{~Hz}), 120.52-120.39(\mathrm{~m}), 114.29,114.23,71.99,55.12,55.10,44.31,25.94,22.95,20.30$. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta:-62.70$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{GeO}_{3}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 587.1071; Found: 587.1071.

6-(3-Methylphenyl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (17)

Prepared according to the general procedure (12 h). The compound 17 was obtained as a colorless oil in 47% yield $(21.7 \mathrm{mg})$ with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.59$ (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (d, J= $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{dd}, \mathrm{J}=13.5 \mathrm{~Hz}$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 160.94,160.81,146.77$, $137.54,135.20,134.92,128.99,127.91,127.21,126.57,122.78,114.11,113.95,72.81,55.09$, 55.07, 44.63, 26.08, 22.96, 21.47, 20.40. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{GeO}_{3}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$: 465.1479; Found: 465.1478.

3-Isopropyl-2,2-bis(4-methoxyphenyl)-6-methyl-1,2-oxagerminane (18)

Prepared according to the general procedure (12 h). The compound 18 was obtained as a colorless oil in 88% yield $(36.6 \mathrm{mg})$ with $9: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}_{\text {mixture }}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.59$ (d, $J=8.0 \mathrm{~Hz}, 1.8 \mathrm{H}$), $7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.50(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1.8 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1.8 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1.8 \mathrm{H}$), $4.15-4.10(\mathrm{~m}, 0.1 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 0.9 \mathrm{H}), 3.85(\mathrm{~s}, 2.7 \mathrm{H}), 3.83(\mathrm{~s}, 0.3 \mathrm{H}), 3.80(\mathrm{~s}$, 0.3 H), $3.79(\mathrm{~s}, 2.7 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2.7 \mathrm{H}), 0.98(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2.7 \mathrm{H})$,
$0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2.7 \mathrm{H}), 0.82(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 0.3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}_{\text {major }} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 160.73$, 160.70, 136.00, 135.33, 129.83, 126.31, 114.11, 113.90, 72.09, 55.02, 38.78, 38.59, 30.45, 29.12, 25.68, 25.08, 21.67. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ minor $N M R\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: 160.73,160.70,135.65,135.35$, 128.86, 128.13, 113.99, 113.88, 69.71, 53.40, 36.39, 34.63, 28.88, 24.69, 24.39, 24.18, 21.62. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{GeO}_{3}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 417.1479; Found: 417.147.

6-(2,6-Dimethylhept-5-en-1-yl)-2,2-bis(4-methoxyphenyl)-4-methyl-1,2-oxagerminane (19)

Prepared according to the general procedure at $50{ }^{\circ} \mathrm{C}(12 \mathrm{~h})$. The compound 19 was obtained as a colorless oil in 53% yield (26.3 mg) with $1.3: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}_{\text {mixture }} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.51$ - 7.48 (m, 4H), $6.95-6.92(\mathrm{~m}, 4 \mathrm{H}), 5.08-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.81$ (s, 3H), 2.35-2.25(m, 1H), $1.99-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.47-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.21$ - $1.35(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.94(\mathrm{~m}, 5 \mathrm{H}), 0.83(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1.7 \mathrm{H}), 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1.3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ mixture $\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 160.83,160.77,135.05,135.00,134.94,130.79,130.62$, 129.10, 129.09, 129.02, 128.97, 125.20, 125.10, 113.99, 113.97, 69.84, 69.79, 55.06, 55.04, $55.01,45.56,45.33,43.33,42.25,37.80,36.82,29.23,28.82,25.70,25.45,25.12,24.79,20.69$, 20.59, 19.95, 18.94, 17.60, 17.60. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{GeO}_{3}{ }^{+}$, ([M+H] $\left.{ }^{+}\right): 499.2262$; Found: 499.2258.

2,2-Bis(4-methoxyphenyl)-4,7-dimethyl-1,2-oxagermepane (20)

Prepared according to the general procedure (5 h). The compound $\mathbf{2 0}$ was obtained as a colorless oil in 99% yield with $3: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}_{\text {mixture }}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.52-7.47(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 0.75 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 0.25 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 0.75 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 0.25 \mathrm{H}), 1.81-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.35$ ($\mathrm{m}, 1 \mathrm{H}$), $1.24(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.0 .75 \mathrm{H}), 1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2.25 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2.25 \mathrm{H})$,
$1.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.75 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}_{\text {major }}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 160.68,160.68,134.94,134.90$, 129.62, 129.01, 114.03, 113.90, 70.93, 55.03, 36.88, 35.22, 29.66, 25.82, 25.46, 24.55. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}_{\text {minor }}$ NMR (126 MHz, CDCl_{3}), $\delta: 160.75,160.72,135.03,134.97,128.96,128.74,114.03$, 113.94, 72.71, 55.03, 39.74, 39.17, 31.48, 28.18, 26.07, 25.25. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{GeO}_{3}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 403.1323$; Found: 403.1317.

4-Methyl-6-phenyl-2,2-di-p-tolyl-1,2-oxagerminane (21)

Prepared according to the general procedure (24 h). The compound 21 was obtained as a colorless oil in 73% yield $(30.6 \mathrm{mg})$ with $>19: 1 \mathrm{dr}$ value. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 7.44 (d, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 5.31(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 1 \mathrm{H})$, $2.47(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.50$ (dd, $J=13.5 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: 146.96,139.65,139.45,134.59,134.33,133.69,133.48,129.17,129.01,128.01,126.46$, $125.74,72.63,44.70,26.06,22.83,21.53,21.51,20.28$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{GeO}^{+}$, ([M+H] $]^{+}$): 419.1425; Found: 419.1423.

References

1 K. Shin, S. Joung, Y. Kim, S. Changa, Adv. Synth. Catal., 2017, 359, 3428 - 3436.
2 W. Lin, L. You, W. Yuan, C. He, ACS Catal., 2022, 12, 14592 - 114600.

NMR spectra of isolated compounds

$1{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$1{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

COSY

NOESY (No obvious signal)
\square

$2{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$2{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$2{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

은
0

$3{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$4{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
응

$4{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$5{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
高

$5{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$5{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\text { ®̃ }}{\oplus}$

$6{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\underbrace{\text { OM, }}$

$6{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$6{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 $7{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$7{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$8{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

우융	\%	¢-¢ুু
¢	F	ผั่ กั่

	 - 11	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \underset{\sim}{+} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \underset{\sim}{N} \end{aligned}$
	Ulil		

$\begin{array}{lllllllllllllllll}136 & 135 & 134 & 133 & 132 & 131 & 130 & 129 & 128 & 127 & 126 & 125 & 124 & 123 & 122 \\ & & & & & & (\mathrm{ppm})\end{array}$

$9{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{aligned}
& \text { V }
\end{aligned}
$$

$9{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\section*{$10{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 | |
| :---: |}

$10{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$10{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$11{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$11{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]

$12{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
응

$12{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Abstract

| $\stackrel{\circ}{\circ}$ |
 |
| :---: | :---: | 쓴 $\frac{m}{0}$ UOU $13{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$13{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$14{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$14{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$15{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
응
0
0

$15{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$16{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$16{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

쭈유융				

$\begin{array}{lllllllllll}131 & 130 & 129 & 128 & 127 & 126 & 125 & 124 & 123 & 122 & 121 \\ & & & 120\end{array}$

$16{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\stackrel{\rightharpoonup}{\text { ㅇ }}}{\substack{\text { ì } \\ i}}$

$17{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
粟

$17{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$18{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$18{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$19{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

呂

$19{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$20{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

```
皆
```


$21{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllll} \\ 7.65 & 7.60 \\ 7.55 & 7.50 \\ 7.45 \\ 7.40 \\ 7.35 \\ 7.30 \\ 7.25\end{array}$
f1 (ppm)

$21{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]:

