Supporting Information

The Phosphine-Catalyzed Ring-Opening Reaction of Cyclopropenones with Dicarbonyl Compounds

Chen Liang, Zhibin Chen, Xinyue Hu, Shengxia Yu, Zhenlian Wang* and Jiang Cheng*

College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.

Table of Contents

1. General Information…………………………………………………………S2
2. General Experimental Procedures………………………………………S3
3. Mechanism study……………………………………………………………S3
4. Characterization of Products in Details…………………………………S5
5. 1H, 13C NMR Spectra of Products……………………………………S14
1. General Information

All reagents and solvents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros and Meryer. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300 – 400 mesh). 1H NMR and 13C NMR spectra were measured on a 400 MHz Bruker AVANCE spectrometer, using DMSO-d_6 or CDCl$_3$ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts were reported in ppm. 1H NMR spectra were referenced to CDCl$_3$ (7.26 ppm) or DMSO-d_6 (2.50 ppm), and 13C NMR spectra were referenced to CDCl$_3$ (77.0 ppm) or DMSO-d_6 (39.5 ppm). Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. Chemical shifts are given in δ relative to TMS, the coupling constants J are given in Hz. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and Agilent 7890A/5975C. High-resolution mass spectra were recorded on a micrOTOF-Q II 10410 mass spectrometer. A 15 W UV light and a 500 W super high-pressure mercury lamp were used for photoirradiation. Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification. The cyclopropenones1 were prepared according to corresponding literature procedures.
2. General Experimental Procedures

General procedure (method A, 3aa-3ia, 3ab-3aj)

A 10 mL pressure tube equipped with a stir bar was charged with cyclopropenones (0.2 mmol, 1.0 equiv.), dicarbonyl compounds (0.4 mmol, 2.0 equiv), PPh3 (0.002 mmol, 0.01 equiv.) and PhCF3 (2 mL). The reaction mixture was stirred at room temperature under N2 atmosphere for 12 h. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, then 2.0 ml of water was added, and the reaction solution was extracted with ethyl acetate (3 x 2 mL), the combined organic layers were dried over anhydrous magnesium sulfate, filtered and evaporated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

3. Mechanism study

3.1 The reaction of zwitterionic phosphine/cyclopropenone adduct A with ethyl acetoacetate

A solution of 1,2-diphenylcyclopropenone (1.03 g, 5 mmol) and PPh3 (1.31 g, 5 mmol) in dry benzene solution was stirred at room temperature under nitrogen
atmosphere for 3 h to give the zwitterionic phosphine/cyclopropenone adduct A.\(^2\)
(orange crystal, 2.1 g, 91%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.75 (m, 2H), 7.37 – 7.34
(m, 6H), 7.30 (m, 3H), 7.21 (m, 2H), 7.15 (m, 8H), 6.99 (m, 4H); \(^{13}\)C NMR (101
MHz, CDCl\(_3\)) \(\delta\) 163.63, 144.03, 134.91, 134.06, 133.92, 133.72, 131.48, 131.09,
130.02, 129.80, 128.99, 128.80, 128.54, 128.42, 128.31.

Then a 10 mL pressure tube equipped with a stir bar was charged with A (0.2 mmol,
1.0 equiv.), ethyl acetoacetate (0.4 mmol, 2.0 equiv.) and dry PhCF\(_3\) (2 mL). The
reaction mixture was stirred at room temperature under N\(_2\) atmosphere for 12 h. After
completion of the reaction, the reaction mixture was concentrated under reduced
pressure. The residue was then purified by flash chromatography on silica gel to
provide the corresponding product 3aa (55.1 mg, 82%).

3.2 The reaction of cyclopropenone adduct A with ethyl acetoacetate in the
presence of D\(_2\)O

\[
\begin{align*}
\text{Ph} & \quad \text{Ph} \quad \text{O} \quad \text{O} \\
1a & \quad + \quad \text{EtO} \quad \text{O} \\
& \quad \text{EtOOC} \quad \text{O} \\
2a & \quad \text{Ph} \quad \text{Ph} \quad \text{H} \\
& \quad \text{3aa}
\end{align*}
\]

A 10 mL pressure tube equipped with a stir bar was charged with
1,2-diphenylcyclopropenone (0.2 mmol, 1.0 equiv.), ethyl acetoacetate (0.4 mmol, 2.0
equiv), PPh\(_3\) (0.002 mmol, 0.01 equiv.), D\(_2\)O (10 equiv.) and PhCF\(_3\) (2 mL). The
reaction mixture was stirred at room temperature under N\(_2\) atmosphere for 12 h. After
completion of the reaction, the reaction mixture was concentrated under reduced
pressure. The residue was then purified by flash chromatography on silica gel to
provide the corresponding product 3aa (58.5 mg, 87%).

3.3 The reaction of cyclopropenone adduct A with d\(_2\)-ethyl acetoacetate

\[
\begin{align*}
\text{EtO} \quad \text{O} \\
2a & \quad \text{D}_2\text{O} \\
\text{rt, 24 h} & \quad \text{EtO} \quad \text{O} \\
& \quad \text{D}_2\text{O} \\
& \quad \text{d}_2\text{-2a}
\end{align*}
\]
Ethyl acetoacetate $2a$ (4.0 g, 4.1 ml) was stirred with D$_2$O (12 mL) for 24 h, then extracted with ethyl ether and concentrated under reduced pressure to get the deuterated ethyl acetoacetate d$_2$-$2a$ (> 99% D). 3H NMR (400 MHz, CDCl$_3$) δ 4.13 (q, $J = 7.0$ Hz, 2H), 2.21 (s, 3H), 1.21 (t, $J = 7.0$ Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 200.78, 167.12, 61.27, 50.12, 30.04, 14.01.

Then a 10 mL pressure tube equipped with a stir bar was charged with 1,2-diphenylcyclopropenone (0.2 mmol, 1.0 equiv.), deuterated ethyl acetoacetate (0.4 mmol, 2.0 equiv.), PPh$_3$ (0.002 mmol, 0.01 equiv.) and PhCF$_3$ (2 mL). The reaction mixture was stirred at room temperature under N$_2$ atmosphere for 12 h. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, The residue was then purified by flash chromatography on silica gel to provide the corresponding product d$_2$-$3aa$ in 92% yield (67% D in vinyl). 1H NMR (400 MHz, CDCl$_3$) δ 7.23 (m, 3H), 7.11 – 7.09 (m, 3H), 7.05 – 7.01 (m, 2H), 6.93 (d, $J = 7.4$ Hz, 2H), 4.04 (q, $J = 7.1$ Hz, 2H), 2.28 (s, 3H), 1.14 (t, $J = 7.1$ Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 166.06, 165.21, 164.44, 142.54, 135.18, 134.23, 134.16, 131.53, 131.42, 130.90, 129.79, 129.70, 128.88, 128.39, 128.24, 110.15, 60.20, 18.23, 14.30.

4. Characterization of Products in Details

ethyl (E)-2-acetyl-3-oxo-4,5-diphenylpent-4-enoate (3aa)

Following the general procedure (Method A), using 20/1 petroleum ether/EtOAc as the eluant afford a colorless oil (54.4 mg, 81%), 1H NMR (400 MHz, CDCl$_3$) δ 7.93
(s, 1H), 7.42-7.40 (m, 3H), 7.29-7.25 (m, 3H), 7.22-7.19 (m, 2H), 7.10-7.08 (m, 2H), 5.76 (s, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 1.30 (t, J = 7.0 Hz 3H). 13C NMR (126 MHz, CDCl\textsubscript{3}) δ 166.03, 165.17, 164.43, 142.47, 135.12, 134.18, 131.47, 130.83, 129.73, 129.62, 128.81, 128.33, 128.17, 110.10, 60.17, 18.22, 14.24. HRMS: (ESI) calculated for C\textsubscript{21}H\textsubscript{21}O\textsubscript{4} [M+H]+ 337.1434, found 337.1437.

ethyl (E)-2-acetyl-4,5-bis(4-bromophenyl)-3-oxopent-4-enoate (3ba)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a yellow oil (61.8 mg, 63\%). 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.87 (s, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 6.97 (d, J = 8.5 Hz, 2H), 5.75 (s, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl\textsubscript{3}) δ 165.85, 164.42, 164.10, 141.55, 134.57, 132.74, 132.07, 131.80, 131.44, 130.97, 124.31, 122.71, 110.32, 60.27, 18.16, 14.25. HRMS: (ESI) calculated for C\textsubscript{21}H\textsubscript{19}Br\textsubscript{2}O\textsubscript{4} [M+H]+ 492.9645, found 492.9647.

ethyl (E)-2-acetyl-4,5-bis(4-fluorophenyl)-3-oxopent-4-enoate (3ca)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a colorless oil (51.3 mg, 69\%). 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.90 (s, 1H), 7.25-7.22 (m, 2H), 7.14-7.06 (m, 4H), 6.94-6.89 (m, 2H), 5.76 (s, 1H), 4.20 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl\textsubscript{3}) δ 165.93, 164.86, 164.25, 164.22, 163.62, 162.22, 161.65, 141.58, 132.80, 132.73, 131.63, 131.56, 130.71, 130.68, 130.20, 130.17, 130.09, 130.07, 116.18, 116.01, 115.73, 115.56, 110.21, 60.23, 18.17, 14.22. HRMS: (ESI) calculated for C\textsubscript{21}H\textsubscript{18}F\textsubscript{2}O\textsubscript{4}Na [M+Na]+ 395.1065, found 395.1055.
ethyl (E)-2-acetyl-4,5-bis(4-(tert-butyl)phenyl)-3-oxopent-4-enoate (3da)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a white solid (53.8 mg, 60%), Melting Point: 117.2-118.4 °C.

1H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.42 (d, J = 7.9 Hz, 2H), 7.21-7.17 (m, 4H), 7.02 (d, J = 8.2 Hz, 2H), 5.74 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 2.41 (s, 3H), 1.37 (s, 9H), 1.28 (t, J = 7.1 Hz, 3H), 1.26 (s, 9H). 13C NMR (101 MHz, CDCl₃) δ 166.16, 165.63, 164.78, 153.21, 151.09, 142.26, 132.36, 131.51, 130.94, 130.35, 129.32, 125.82, 125.40, 110.05, 60.17, 34.85, 34.74, 31.47, 31.15, 18.35, 14.33. HRMS: (ESI) calculated for C₂₉H₃₆O₄Na [M+Na]+ 471.2506, found 471.2506.

ethyl (E)-2-acetyl-4,5-bis(3-chlorophenyl)-3-oxopent-4-enoate (3ea)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a yellow oil (37.2 mg, 46%), 1H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.42-7.34 (m, 2H), 7.29-7.27 (m, 2H), 7.18-7.11 (m, 3H), 6.94 (d, J = 7.9 Hz, 1H), 5.77 (s, 1H), 4.22 (q, J = 7.2 Hz, 2H), 2.44 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl₃) δ 165.90, 164.30, 164.12, 141.55, 136.32, 135.51, 134.79, 134.47, 131.48, 130.73, 130.27, 129.89, 129.75, 129.72, 128.76, 128.64, 127.99, 110.44, 60.34, 18.20, 14.29. HRMS: (ESI) calculated for C₂₁H₁₈Cl₂O₄Na [M+Na]+ 427.0474, found 427.0475.

ethyl (E)-2-acetyl-4,5-bis(4-chlorophenyl)-3-oxopent-4-enoate (3fa)
Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a yellow oil (42.8 mg, 53%). \textbf{1H NMR} (400 MHz, CDCl$_3$) δ 7.89 (s, 1H), 7.41 (d, $J = 8.4$ Hz, 2H), 7.21 (t, $J = 7.4$ Hz, 4H), 7.04 (dd, $J = 8.6$, 1.8 Hz, 2H), 5.75 (s, 1H), 4.22 (q, $J = 7.2$ Hz, 2H), 2.43 (s, 3H), 1.31 (t, $J = 7.0$ Hz, 3H). \textbf{13C NMR} (126 MHz, CDCl$_3$) δ 165.87, 164.52, 164.12, 141.52, 135.85, 134.48, 133.11, 132.32, 131.89, 131.17, 130.81, 129.25, 128.81, 110.30, 60.26, 18.15, 14.24. HRMS: (ESI) calculated for C$_{21}$H$_{18}$Cl$_2$O$_4$Na [M+Na]$^+$ 427.0474, found 427.0475.

\textbf{ethyl (E)-2-acetyl-3-oxo-4,5-di-p-tolypent-4-enoate (3ga)}

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a colorless oil (64.1 mg, 88%). \textbf{1H NMR} (400 MHz, CDCl$_3$) δ 7.91 (s, 1H), 7.25-7.23 (m, 2H), 7.19-7.17 (m, 2H), 7.04-7.03 (m, 4H), 5.77 (s, 1H), 4.22 (q, $J = 7.1$ Hz, 2H), 2.46 (s, 3H), 2.44 (s, 3H), 2.33 (s, 3H), 1.32 (t, $J = 7.1$ Hz, 3H). \textbf{13C NMR} (126 MHz, CDCl$_3$) δ 166.08, 165.48, 164.64, 142.35, 140.01, 137.84, 132.34, 131.56, 130.91, 130.41, 129.61, 129.59, 129.11, 110.02, 60.13, 21.40, 18.26, 14.27. HRMS: (ESI) calculated for C$_{23}$H$_{25}$O$_4$ [M+H]$^+$ 365.1747, found 365.1749.

\textbf{ethyl (E)-2-acetyl-3-oxo-4-phenylhex-4-enoate (3ha)}

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a colorless oil (26.3 mg, 48%). \textbf{1H NMR} (400 MHz, CDCl$_3$) δ 7.46-7.39 (m, 3H), 7.37-7.31 (m, 1H), 7.26-7.24 (m, 2H), 5.74 (s, 1H), 4.22 (q, $J =$
7.1 Hz, 2H), 2.42 (s, 3H), 1.86 (d, J = 7.1 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 166.10, 164.41, 142.83, 134.21, 133.98, 129.78, 128.20, 127.79, 110.04, 60.17, 29.74, 18.22, 15.85, 14.26. HRMS: (ESI) calculated for C$_{16}$H$_{18}$O$_4$Na [M+Na]$^+$ 297.1097, found 297.1087.

ethyl 2-acetyl-3-oxo-4-(p-tolyl)pent-4-enoate (3ia)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a yellow oil (29.6 mg, 54%), 1H NMR (400 MHz, CDCl$_3$) δ 7.46 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 7.8 Hz, 2H), 6.57 (s, 1H), 6.08 (s, 1H), 5.69 (s, 1H), 4.18 (q, J = 7.2 Hz, 2H), 2.41 (s, 3H), 2.12 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 163.77, 163.68, 159.84, 140.20, 138.30, 133.40, 128.92, 128.42, 128.24, 108.88, 60.18, 29.76, 21.65, 21.27, 14.26. HRMS: (ESI) calculated for C$_{16}$H$_{18}$O$_4$Na [M+Na]$^+$ 297.1097, found 297.1098.

ethyl (E)-2-(2,3-diphenylacryloyl)-3-oxoheptanoate (3ab)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a colorless oil (67.0 mg, 92%), 1H NMR (400 MHz, CDCl$_3$) δ 7.93 (s, 1H), 7.42-7.40 (m, 3H), 7.28-7.25 (m, 3H), 7.22-7.18 (m, 2H), 7.10-7.09 (m, 2H), 5.79 (s, 1H), 4.20 (q, J = 7.4, 2H), 2.88 (t, J = 7.6 Hz, 2H), 1.54 (q, J = 7.5 Hz, 2H), 1.30 (t, J = 6.9 Hz, 3H), 0.96-0.92 (t, J = 7.0 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 167.40, 165.94, 165.16, 142.35, 135.22, 134.19, 131.57, 130.87, 129.65, 129.62, 128.79, 128.33, 128.12, 110.02, 60.14, 32.70, 20.08, 14.23, 13.64. HRMS: (ESI) calculated for C$_{23}$H$_{25}$O$_4$ [M+H]$^+$ 365.1747, found 365.1746.

tert-butyl (E)-2-acetyl-3-oxo-4,5-diphenylpent-4-enoate (3ac)
Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a colorless oil (54.6 mg, 75%), 1H NMR (400 MHz, CDCl$_3$) δ 7.92 (s, 1H), 7.41-7.39 (m, 3H), 7.28-7.26 (m, 3H), 7.25-7.18 (m, 2H), 7.10-7.08 (m, 2H), 5.67 (s, 1H), 2.40 (s, 3H), 1.50 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 165.37, 165.36, 142.38, 135.19, 134.23, 131.55, 130.88, 129.76, 129.64, 128.85, 128.37, 128.18, 111.87, 80.58, 28.25, 18.08. HRMS: (ESI) calculated for $\text{C}_{23}\text{H}_{25}\text{O}_4\ [\text{M+H}]^+$ 365.1747, found 365.1747.

propyl (E)-2-acetyl-3-oxo-4,5-diphenylpent-4-enoate (3ad)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a colorless oil (53.9 mg, 77%), 1H NMR (400 MHz, CDCl$_3$) δ 7.92 (s, 1H), 7.40-7.38 (m, 3H), 7.26-7.23 (m, 2H), 7.22-7.16 (m, 2H), 7.08-7.06 (m, 2H), 5.75 (s, 1H), 4.09 (t, $J = 6.6$ Hz, 2H), 2.42 (s, 3H), 1.68 (dd, $J = 14.1, 7.1$ Hz, 3H), 0.96(t, $J = 7.5$ Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 166.13, 165.19, 164.41, 142.49, 135.11, 134.17, 131.46, 130.85, 129.73, 129.63, 128.83, 128.34, 128.18, 110.12, 77.31, 77.06, 76.80, 65.86, 22.00, 18.24, 10.46. HRMS: (ESI) calculated for $\text{C}_{22}\text{H}_{23}\text{O}_4\ [\text{M+H}]^+$ 351.1591, found 351.1593.

(E)-2-(2,3-diphenylacryloyl)cyclopentane-1,3-dione (3ae)

Following the general procedure (Method A), using 3 / 1 petroleum ether / EtOAc as the eluant afford a white solid (37.1 mg, 61%), Melting Point: 101.2-102.1 °C . 1H NMR (400 MHz, CDCl$_3$) δ 8.03 (s, 1H), 7.44-7.43 (m, 3H), 7.29-7.27 (m, 3H), 7.24-7.22 (m, 2H), 7.12-7.11 (m, 2H), 6.33 (s, 1H), 2.83-2.77 (m, 2H), 2.49-2.47 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 195.69, 164.66, 158.43, 142.91, 135.28, 134.28,
131.43, 131.00, 129.97, 129.68, 128.89, 128.36, 128.21, 117.04, 31.10, 21.63. HRMS: (ESI) calculated for C_{20}H_{17}O_3 [M+H]^+ 305.1172, found 305.1171.

(E)-2-(2,3-diphenylacryloyl)cyclohexane-1,3-dione (3af)

Following the general procedure (Method A), using 3 / 1 petroleum ether / EtOAc as the eluant afford a colorless oil (52.1 mg, 82%), 1H NMR (400 MHz, DMSO) δ 7.98 (s, 1H), 7.33-7.31 (m, 3H), 7.19-7.17 (m, 3H), 7.14-7.10 (m, 2H), 7.02-7.00 (m, 2H), 5.80 (s, 1H), 2.46 (t, J = 5.9 Hz, 2H), 2.33 (t, J = 6.6 Hz, 2H), 1.87 (dd, J = 6.4, 6.0 Hz, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 199.60, 170.55, 164.50, 143.25, 134.96, 134.06, 131.11, 130.98, 129.92, 129.78, 128.96, 128.45, 128.38, 117.69, 36.83, 28.44, 21.37. HRMS: (ESI) calculated for C_{21}H_{18}O_3Na [M+Na]^+ 341.1148, found 341.1144.

(E)-3-acetyl-5,6-diphenylhex-5-ene-2,4-dione (3ag)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a yellow oil (50.8 mg, 83%), 1H NMR (400 MHz, CDCl$_3$) δ 8.02 (s, 1H), 7.44-7.42 (m, 3H), 7.37-7.34 (m, 2H), 7.30-7.26 (m, 1H), 7.23-7.19 (m, 2H), 7.13-7.11 (m, 2H), 5.87 (s, 1H), 2.20 (s, 3H), 2.13 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 195.67, 164.64, 158.42, 142.88, 135.28, 134.26, 131.43, 130.98, 129.96, 129.67, 128.88, 128.35, 128.20, 117.00, 31.06, 21.59. HRMS: (ESI) calculated for C_{20}H_{18}O_3Na [M+Na]^+ 329.1148, found 329.1150.

ethyl (E)-2-(2-chloroacetyl)-3-oxo-4,5-diphenylpent-4-enoate (3ah)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as
the eluant afford a colorless oil (51.8 mg, 70%), 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.02 (s, 1H), 7.44-7.42 (m, 3H), 7.34-7.32 (m, 2H), 7.31-7.27 (m, 1H), 7.24-7.20 (m, 2H), 7.14-7.12 (m, 2H), 5.97 (s, 1H), 4.91 (s, 2H), 4.26 (q, \(J = 7.1\) Hz, 2H), 1.32 (t, \(J = 7.2\) Hz, 3H). 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 164.94, 159.58, 143.46, 134.92, 134.15, 131.08, 130.89, 129.94, 129.88, 128.96, 128.47, 128.40, 112.70, 61.00, 38.85, 14.24. HRMS: (ESI) calculated for \(C_{21}H_{19}ClO_4Na\) [M+Na]\(^+\) 393.0864, found 393.0865.

ethyl (E)-3-oxo-4,5-diphenyl-2-(2,2,2-trifluoroacetyl)pent-4-enoate (3ai)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a colorless oil (40.5 mg, 52%), 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.05 (s, 1H), 7.45-7.42 (m, 2H), 7.37-7.35 (m, 2H), 7.29-7.27 (m, 1H), 7.24-7.20 (m, 2H), 7.15-7.13 (m, 2H), 6.41 (s, 1H), 4.27 (q, \(J = 7.1\) Hz, 2H), 1.32 (t, \(J = 7.2\) Hz, 3H). 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 163.28, 162.11, 144.10, 134.76, 134.08, 131.16, 131.12, 130.18, 129.98, 128.90, 128.41, 113.46, 113.43, 61.48, 14.12. \(J_{C:F}\): 3.03 HRMS: (ESI) calculated for \(C_{21}H_{18}F_3O_4\) [M+H]\(^+\) 391.1152, found 391.1153.

((E)-3-benzoyl-5,6-diphenylhex-5-ene-2,4-dione (3aj)

Following the general procedure (Method A), using 20 / 1 petroleum ether / EtOAc as the eluant afford a colorless oil (57.4 mg, 78%), 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.02 (s, 1H), 7.99-7.96 (m, 2H), 7.60-7.56 (m, 1H), 7.49-7.44 (m, 5H), 7.35-7.32 (m, 2H), 7.29-7.27 (m, 1H), 7.25-7.21 (m, 2H), 7.14-7.12 (m, 2H), 6.92 (s, 1H), 2.51 (s, 3H). 13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 190.47, 165.37, 164.46, 142.73, 138.76, 135.19, 134.22, 132.93, 131.56, 130.96, 129.84, 128.97, 128.66, 128.45, 128.27, 113.66, 19.22. HRMS: (ESI) calculated for \(C_{25}H_{21}O_3\) [M+H]\(^+\) 369.1485, found 369.1487.
Reference

5. NMR Spectra

(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(126 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(126 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(126 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(126 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(126 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(126 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(126 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with DMSO as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(126 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)
(400 MHz for 1H NMR with CDCl$_3$ as solvent)

(101 MHz for 13C NMR with CDCl$_3$ as solvent)