Visible-light driven enantioselective intermolecular photocyclization via bathochromic excitation by chiral phosphoric acid

Tatsuhiro Uchikura, Kazuki Takahashi, Tatsushi Oishi, and Takahiko Akiyama*

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo 171-8588,

Japan

Email: takahiko.akiyama@gakushuin.ac.jp

Со	ntents	Page
1.	General methods	S2
2.	Additional data of condition screening	S3
3.	Synthetic procedures and characterization of new compounds	
	3-1. General procedure of [2+2] cycloaddition	S6
	3-2. Synthesis of 2	S17
4.	Mechanistic studies	
	4-1. UV–Vis spectra	S23
	4-2. ¹ H NMR study	S24
	4-3. Correlation between ee of 1b and ee of 3ab in photocycloaddition	S25
	4-4. Correlation between ee of 1b and ee of 3ag in photocycloaddition	S26
	4-5. DFT calculation	S27
5.	HPLC data	S32
6.	NMR spectra	S52

1. General methods

All operations were performed under nitrogen unless otherwise noted. NMR spectra for products data (¹H and ¹³C) were recorded on a Bruker AVANCE-III (400 MHz for ¹H, 100 MHz for ¹³C, 376 MHz for ¹⁹F) and JEOL ECZ-400 (400 MHz for ¹H, 100 MHz for ¹³C, 376 MHz for ¹³C, 376 MHz for ¹⁹F) spectrometer using CDCl₃ [tetramethylsilane (0 ppm) served as an internal standard in ¹H NMR and CDCl₃ (77.0 ppm) in ¹³C NMR, hexafluorobenzene (–163.9 ppm) or benzotrifluoride (–63.7 ppm) served as an internal or external standard in ¹⁹F NMR]. Chemical shifts are expressed in parts per million (ppm). ESI mass analyses were performed on Bruker micrOTOF mass spectrometer. IR spectra were recorded on a FT/IR-4200 (JASCO Co., Ltd.). UV-Vis spectra were recorded on a V-670 UV–VIS–NIR spectrometer (JASCO Co., Ltd.). Emission spectra were recorded on a FP-6500 (JASCO Co., Ltd.). Visible light irradiation was performed with LED405-100STND (Optcode Co., Ltd.) for 405 nm LED and Twin LED Light (Relyon Co., Ltd.) for 365 nm LED. High performance liquid chromatography (HPLC) was performed on a Chromaster (Hitachi High-Tech Co., Ltd.) with CHIRALPak[®] IF (Daicel Co., Ltd.).

Solvents were distilled according to the usual procedures and stored over molecular sieves unless otherwise noted. All of the substrates were purified by distillation (for liquid) or recrystallization (for solid). Other chemicals were purchased and used as received.

2. Additional data of conditions screening

Table S1. Screening of conditions of [2+2] photocycloaddition

H N Ph 2a	acid (10 mol%) MVK (5 equiv) methylcyclohexane (59 mM) <i>hv</i> (405 nm) rt, 24 h	Ph ^{··} ,Ph Ph ^{··} ,Ph 3aa
entry acid	solvent	yield
1 –	toluene	2.1%

1	-	toluene	2.1%
2	1a	toluene	21%
3	1c	toluene	3.6%
4	1d	toluene	1.5%
5	1e	toluene	7.5%
6	1f	toluene	8.4%
7	-	СуМе	<1%
8	1a	СуМе	57%
9	1b	СуМе	23%
10	1g	СуМе	0%
11	diphenylphosphoric acid	СуМе	23%
12	benzoic acid	СуМе	1.5%
13	TsOH•H ₂ O	СуМе	1.5%
14	TFA	СуМе	33%
15	1a	benzene	3.0%
16	1a	cyclohexane	20%
17	1a	PhCF ₃	1.9%
18	1a	CH ₂ Cl ₂	1.1%
19	1a	<i>m</i> -xylene	1.4%
20 ^{a)}	1a	СуМе	22%

a) 29 mM.

Table S2. Screening of conditions of enantioselective [2+2] photocycloaddition

					3a	b	
entry	CPA	solvent	additive	х	yield	ee	3bb
1	1a	toluene	MVK (5 equiv)	1	17%	68%	11%
2	1b	toluene	MVK (5 equiv)	1	40%	90%	30%
3	1c	toluene	MVK (5 equiv)	1	< 1.0%	0%	6%
4	1d	toluene	MVK (5 equiv)	1	3.8%	_a	6%
5	1b	CyMe	MVK (5 equiv)	1	37%	83%	5.0%
6	1b	DCM	MVK (5 equiv)	1	28%	76%	42%
7	1b	PhCF ₃	MVK (5 equiv)	1	18%	87%	4.0%
8	1b	toluene	none	1	25%	84%	22%
9	1b	toluene	MVK (3 equiv)	1	36%	88%	37%
10	1b	toluene	MVK (10 equiv)	1	44%	87%	38%
11	1b	toluene	MVK (50 equiv)	1	34%	72%	42%
12	1b	toluene	2-butanone (5 equiv)	1	34%	86%	25%
13	1b	toluene	MVK (10 equiv)	1	44%	87%	38%
14	1b	toluene	acetophenone	1	17%	72%	_e)
15	1b	toluene	MS4A (100 wt%)	1	0%	-	0%
16	1b	toluene	MVK (5 equiv)	3	85%	98%	11%
17 ^{a)}	-	toluene	MVK (5 equiv)	3	0%	_	0%
18 ^{b)}	1b	toluene	MVK (5 equiv)	3	0%	-	0%
19 ^{c)}	1b	toluene	MVK (5 equiv)	3	80%	98%	_e)
20 ^{d)}	1b	toluene	MVK (5 equiv)	3	78%	98%	_e)
21	1h	toluene	MVK (5 equiv)	3	23%	89%	_e)
 a) Without CF b) Under dark c) Under air d) Under oxyg e) Not isolated 	PA. c conditions. gen d.		, о R = - х Рон Х	1a : X = ^{<i>i</i>} Pr 1b : X = Cy 1h : X = Me			

1d: R = SiPh₃

1c: R = C₆F₅

Scheme S1. Selectivity of homo- or hetero- coupling products

3. Synthetic procedures and characterization of new compounds

3-1. General procedure of [2+2] cycloaddition (Procedure I)

In a dried test tube, **2a** (17.3 mg, 0.088 mmol), **2b** (9.9 mg, 0.029 mmol), **1b** (1.0 mg, 0.0029 mmol), methyl vinyl ketone (12.3 μ L, 0.145 mmol) and were mixed in toluene (0.5 mL), and degassed three times by the freezepump-thaw. The mixture was irradiated with 405 nm violet LED for 24 h. After the irradiation, the solvent was removed. The crude mixture was purified by preparative TLC on SiO₂ (toluene: ethyl acetate = 7 : 3) to give **3ab** (13.3 mg, 24.9 μ mol) in 85%.

The reactions of other substrates in Figure 2 were performed based on this Procedure I.

Data of products

Заа	White powder
НО	¹ H NMR (400 MHz, CDCl ₃) δ 9.58 (brs, 2H), 7.32 (d, J = 4.0 Hz, 8H), 7.28 – 7.21 (m,
,Ph	2H), 7.00 (ddd, J = 2.7, 2.7, 1.3 Hz, 2H), 6.37 – 6.31 (m, 2H), 6.11 – 6.04 (m, 2H),
Ph	4.24 – 4.14 (m, 2H), 4.04 – 3.97 (m, 2H).
Ő Ĥ	^{13}C NMR (100 MHz, CDCl_3): δ 188.0, 141.6, 131.4, 128.7, 127.3, 127.1, 125.2,
	117.0, 110.7, 52.4, 42.6.
	LRMS (ESI): <i>m/z</i> = 417 [M+Na].
	HRMS (ESI): Calcd for C ₂₆ H ₂₂ N ₂ NaO ₂ : 417.1579. Found 417.1573.
	IR (neat, cm ⁻¹): 3274, 1624, 1403.

3ab	White powder.
H O	^{1}H NMR (400 MHz, CDCl3) δ 9.51 (brs, 1H), 9.44 (brs, 1H), 7.38 – 7.28 (m, 5H), 7.20
	(d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.02 (dd, J = 2.9, 1.3 Hz, 1H), 7.00 (ddd,
	J = 2.7, 2.7, 1.2 Hz, 1H), 6.39 – 6.34 (m, 1H), 6.30 (dd, J = 2.5, 1.4 Hz, 1H), 6.09 (dt,
Me	J = 3.9, 2.5 Hz, 1H), 4.16 (t, J = 9.3 Hz, 1H), 4.07 (t, J = 9.3 Hz, 1H), 3.99 (t, J = 9.3
	Hz, 1H), 3.87 (t, J = 9.3 Hz, 1H), 2.35 (s, 3H).
	^{13}C NMR (100 MHz, CDCl_3): δ 187.9, 187.5, 141.3, 138.1, 136.9, 132.8, 131.4,
	129.8, 129.4, 128.8, 127.2, 127.1, 125.3, 123.5, 117.1, 110.8, 62.0, 52.9, 52.2, 42.7,
	42.3, 21.1.
	LRMS (ESI): <i>m/z</i> = 557 [M+Na].
	HRMS (ESI): Calcd for C ₂₇ H ₂₃ IN ₂ NaO ₂ , 557.0702: Found 557.0696.
	IR (neat, cm ⁻¹): 3293, 1625, 1395.
	[α] _D ²⁴ -14.5 (c 0.3, CHCl ₃).

3ac	White powder.
H O	¹ H NMR (400 MHz, CDCl ₃) δ 9.57 (brs, 1H), 9.49 (brs, 1H), 7.38 – 7.27 (m, 5H), 7.20
	(d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 7.00 (ddd, J = 2.7, 2.7, 1.3 Hz, 1H), 6.97
Br'	(dd, J = 3.0, 1.4 Hz, 1H), 6.38 – 6.33 (m, 1H), 6.25 (dd, J = 2.7, 1.4 Hz, 1H), 6.09 (dt,
Me	J = 3.9, 2.5 Hz, 1H), 4.17 (t, J = 9.4 Hz, 1H), 4.09 (t, J = 9.3 Hz, 1H), 3.99 (t, J = 9.4
	Hz, 1H), 3.87 (t, J = 9.3 Hz, 1H), 2.34 (s, 3H).
	^{13}C NMR (100 MHz, CDCl_3): δ 187.9, 187.8, 141.3, 138.2, 136.9, 131.4, 131.3,
	129.4, 128.8, 127.20, 127.17, 127.1, 125.2, 124.8, 118.3, 117.0, 110.8, 98.0, 52.8,
	52.4, 42.6, 42.2, 21.1.
	LRMS (ESI): <i>m/z</i> = 507, 509 [M+Na].
	HRMS (ESI): Calcd for C ₂₇ H ₂₃ BrN ₂ NaO ₂ , 509.0840: Found 509.0814.
	IR (neat, cm ⁻¹): 3279, 1631, 1395.
	[α] _D ²⁴ +13.0 (c 0.2, CHCl ₃).

3ad	White powder.
H O	^{1}H NMR (400 MHz, CDCl3) δ 9.69 (brs, 1H), 9.63 (brs, 1H), 7.37 – 7.27 (m, 5H), 7.20
	(d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.01 (ddd, J = 2.7, 2.7, 1.3 Hz, 1H), 6.94
	(dd, J = 3.1, 1.5 Hz, 1H), 6.39 – 6.33 (m, 1H), 6.19 (dd, J = 2.7, 1.5 Hz, 1H), 6.09 (dt,
Ме	J = 3.9, 2.5 Hz, 1H), 4.18 (t, J = 9.4 Hz, 1H), 4.09 (t, J = 9.3 Hz, 1H), 3.99 (t, J = 9.3
	Hz, 1H), 3.88 (t, J = 9.3 Hz, 1H), 2.34 (s, 3H).
	^{13}C NMR (100 MHz, CDCl_3): δ 188.0, 187.9, 141.3, 138.2, 136.9, 131.4, 130.3,
	129.4, 128.8, 127.19, 127.16, 127.1, 125.3, 122.6, 117.1, 115.8, 114.2, 110.8, 52.7,
	52.4, 42.6, 42.2, 21.1.
	LRMS (ESI): <i>m/z</i> = 463, 465 [M+Na].
	HRMS (ESI): Calcd for C ₂₇ H ₂₃ ClN ₂ NaO ₂ , 465.1346: Found 465.1346.
	IR (neat, cm ⁻¹): 3272, 1628, 1396.
	$[\alpha]_D^{24}$ -29.1 (c 0.2, CHCl ₃).

Зае	Colorless oil.
H O	^{1}H NMR (400 MHz, CDCl_3) δ 9.47 (brs, 1H), 9.19 (brs, 1H), 7.37 – 7.30 (m, 5H), 7.25 – 7.21
	(m, 2H), 7.17 – 7.11 (m, 2H), 6.99 (ddd, J = 2.7, 2.7, 1.3 Hz, 1H), 6.78 (dd, J = 2.8, 1.6 Hz,
	1H), 6.41 – 6.36 (m, 1H), 6.08 (dt, J = 3.8, 2.5 Hz, 1H), 5.99 (dd, J = 2.6, 1.6 Hz, 1H), 4.21
Me	– 4.12 (m, 1H), 4.09 – 4.00 (m, 2H), 3.93 – 3.84 (m, 1H), 2.33 (s, 3H), 1.02 (s, 9H).
	¹³ C NMR (100 MHz, CDCl ₃): δ 188.1, 187.5, 141.8, 138.6, 137.5, 136.7, 131.5, 130.7,
	129.3, 128.6, 127.4 (2C), 127.0, 124.9, 120.6, 116.8, 114.7, 110.7, 53.5, 52.1, 42.7, 42.0,
	31.3, 30.2, 21.1.
	LRMS (ESI): $m/z = 487 [M+Na]$.
	HRMS (ESI): Calcd for $C_{31}H_{32}N_2NaO_2$, 487.2361: Found 487.2356.
	IR (neat, cm ⁻¹): 3277, 2957, 1625, 1400.
	[α] _D ²⁴ -1.0 (c 0.2, CHCl ₃).

3af	White powder.
	¹ H NMR (400 MHz, CDCl ₃): δ 9.68 (brs, 1H), 9.41 (brs, 1H), 7.35 – 7.28 (m, 4H),
	7.25 – 7.18 (m, 3H), 7.13 (d, J = 7.9 Hz, 2H), 7.03 – 6.99 (m, 1H), 6.80 – 6.75
	(m, 1H), 6.41 – 6.35 (m, 1H), 6.12 – 6.06 (m, 2H), 4.19 (t, J = 9.4 Hz, 1H), 4.10
Me	(t, J = 9.4 Hz, 1H), 3.99 (t, J = 9.4 Hz, 1H), 3.92 (t, J = 9.4 Hz, 1H), 2.33 (s, 3H),
	2.26 (t, <i>J</i> = 7.6 Hz, 2H), 1.39 – 1.13 (m, 8H), 0.88 (t, <i>J</i> = 6.9 Hz, 3H).
	¹³ C NMR (100 MHz, CDCl ₃): δ 188.2, 187.7, 141.8, 138.6, 136.6, 131.5, 131.0,
	129.3, 128.6, 127.3, 127.2, 126.9, 126.9, 125.2, 123.2, 117.0, 116.9, 110.6,
	52.8, 52.4, 42.6, 42.2, 31.6, 30.6, 28.8, 26.4, 22.6, 21.1, 14.1.
	LRMS (ESI): <i>m/z</i> = 515 [M+Na].
	HRMS (ESI): Calcd for C ₃₃ H ₃₆ N ₂ NaO ₂ , 515.2674: Found 515.2659.
	IR (neat, cm ⁻¹): 3274, 2924,1624, 1402.
	$[\alpha]_{D}^{24}$ +30.3 (c 0.2, CHCl ₃).

3ag	White powder.
H O	^{1}H NMR (400 MHz, CDCl3) δ 9.47 (brs, 1H), 9.41 (brs, 1H), 7.35 – 7.22 (m, 5H), 7.19
	(d, J = 8.1 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 7.08 (dd, J = 3.0, 1.4 Hz, 1H), 7.00 (ddd,
	J = 2.7, 2.7, 1.3 Hz, 1H), 6.40 (dd, J = 2.6, 1.4 Hz, 1H), 6.37 – 6.34 (m, 1H), 6.09 (dt,
Me	J = 3.9, 2.5 Hz, 1H), 4.18 (t, J = 9.4 Hz, 1H), 4.10 (t, J = 9.3 Hz, 1H), 3.95 (t, J = 9.4
	Hz, 1H), 3.92 (t, J = 9.4 Hz, 1H), 2.35 – 2.29 (m, 5H), 1.56 – 1.47 (m, 2H), 1.47 – 1.37
	(m, 2H), 0.93 (t, <i>J</i> = 7.3 Hz, 3H).
	^{13}C NMR (100 MHz, CDCl_3): δ 188.3, 188.0, 141.5, 138.3, 136.8, 131.5, 131.0,
	129.4, 128.7, 128.0, 127.12, 127.07, 125.1, 119.4, 117.0, 110.7, 107.7, 89.2, 73.5,
	52.5, 52.3, 42.7, 42.3, 30.8, 21.9, 21.1, 19.0, 13.6.
	LRMS (ESI): <i>m/z</i> = 511 [M+Na].
	HRMS (ESI): Calcd for $C_{33}H_{32}N_2NaO_2$, 511.2361: Found 511.2356
	IR (neat, cm ⁻¹): 3272, 2927, 1627, 1401.
	$[\alpha]_D^{24}$ +2.9 (c 0.2, CHCl ₃).

3ah	White powder.
H O	^{1}H NMR (400 MHz, CDCl3) δ 9.55 (brs, 1H), 9.52 (brs, 1H), 7.35 – 7.21 (m, 5H), 7.18
	(d, J = 8.1 Hz, 2H), 7.16 – 7.12 (m, 2H), 7.08 (dd, J = 3.0, 1.4 Hz, 1H), 7.01 (ddd, J =
	2.7, 2.7, 1.3 Hz, 1H), 6.40 (dd, J = 2.6, 1.4 Hz, 1H), 6.39 – 6.35 (m, 1H), 6.09 (dt, J =
·ви Me	3.9, 2.5 Hz, 1H), 4.20 (t, J = 9.4 Hz, 1H), 4.09 (t, J = 9.4 Hz, 1H), 3.97 (t, J = 9.4 Hz,
	1H), 3.92 (t, <i>J</i> = 9.4 Hz, 2H), 2.33 (s, 3H), 1.25 (s, 9H).
	¹³ C NMR (100 MHz, CDCl ₃): δ 188.3, 188.0, 141.5, 138.3, 136.7, 131.5, 131.0,
	129.4, 128.7, 128.0, 127.11, 127.10, 127.0, 125.1, 119.7, 117.0, 110.7, 107.6, 97.4,
	71.9, 52.4, 52.4, 42.9, 42.3, 31.0, 27.9, 21.1.
	LRMS (ESI): <i>m/z</i> = 511 [M+Na].
	HRMS (ESI): Calcd for C ₃₃ H ₃₂ N ₂ NaO ₂ , 511.2361: Found 511.2356.
	IR (neat, cm ⁻¹): 3275, 2317, 1627, 1401.
	[α] _D ²⁴ +2.9 (c 0.5, CHCl ₃).

3ai	White powder.
H O	¹ H NMR (400 MHz, CDCl ₃) δ 9.59 (brs, 1H), 9.36 (brs, 1H), 7.55 (dd, J = 3.2, 1.4 Hz, 1H),
	7.38 – 7.23 (m, 5H), 7.23 – 7.19 (m, 2H), 7.15 (d, <i>J</i> = 7.8 Hz, 2H), 6.99 (ddd, <i>J</i> = 2.7, 2.7,
EtO ₂ C	1.3 Hz, 1H), 6.70 (dd, J = 2.6, 1.4 Hz, 1H), 6.37 – 6.31 (m, 1H), 6.09 (dt, J = 3.8, 2.5 Hz,
Me	1H), 4.21 (q, J = 7.2 Hz, 2H), 4.17 (t, J = 9.3 Hz, 1H), 4.12 – 4.06 (m, 1H), 3.99 (t, J = 9.4
	Hz, 1H), 3.98 (t, J = 9.4 Hz, 1H), 2.34 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H).
	¹³ C NMR (100 MHz, CDCl ₃): δ 189.0, 188.0, 163.7, 141.3, 138.1, 136.9, 131.7, 131.4,
	129.4, 128.9, 128.8, 127.2, 127.1, 125.4, 118.4, 117.5, 117.3, 110.7, 60.0, 52.5, 42.6,
	42.4, 21.1, 14.3.
	LRMS (ESI): $m/z = 503$ [M+Na].
	HRMS (ESI): Calcd for $C_{30}H_{28}N_2NaO_4$, 503.1946: Found 503.1936.
	IR (neat, cm ⁻¹): 3285, 1705, 1633, 1209.
	[α] _D ²⁴ -22.3 (c 0.1, CHCl ₃)

3bj	Colorless oil.
OMe	¹ H NMR (400 MHz, CDCl ₃) δ 9.72 (brs, 1H), 9.59 (brs, 1H), 7.23 (d, J = 8.6 Hz, 2H),
	7.19 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 7.03 (dd, J = 3.0, 1.4 Hz, 1H), 7.00
	(ddd, J = 2.7, 2.7, 1.3 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 6.40 – 6.35 (m, 1H), 6.31 (dd,
	J = 2.5, 1.4 Hz, 1H), 6.09 (dt, J = 3.9, 2.5 Hz, 1H), 4.11 (t, J = 9.3 Hz, 1H), 4.03 (t, J =
Me	9.3 Hz, 1H), 3.95 (t, J = 9.3 Hz, 1H), 3.82 (t, J = 9.3 Hz, 1H), 3.81 (s, 3H), 2.34 (s, 3H).
	^{13}C NMR (100 MHz, CDCl_3): δ 188.0, 187.6, 158.7, 138.3, 136.8, 133.4, 132.8,
	131.4, 129.7, 129.4, 128.3, 127.1, 125.2, 123.5, 117.1, 114.1, 110.7, 62.0, 55.3,
	53.3, 52.6, 42.4, 41.9, 21.1.
	LRMS (ESI): <i>m/z</i> = 587 [M+Na].
	HRMS (ESI): Calcd for C ₂₈ H ₂₅ IN ₂ NaO ₃ , 587.0808: Found 587.0802.
	IR (neat, cm ⁻¹): 3273, 1629, 1247.
	[α] _D ²⁴ +4.5 (c 0.2, CHCl ₃).

3bk	White powder.
~ / ^{Br}	¹ H NMR (400 MHz, CDCl ₃) δ 9.47 (brs, 1H), 9.41 (brs, 1H), 7.45 (d, J = 8.4 Hz, 1H),
	7.20 – 7.13 (m, 6H), 7.04 (dd, J = 2.9, 1.3 Hz, 1H), 7.01 (ddd, J = 2.7, 2.7, 1.3 Hz,
	1H), 6.38 – 6.34 (m, 1H), 6.31 (dd, J = 2.5, 1.4 Hz, 1H), 6.11 (dt, J = 3.9, 2.5 Hz, 1H),
	4.18 (t, J = 9.3 Hz, 1H), 4.00 (t, J = 9.2 Hz, 1H), 3.93 (t, J = 9.3 Hz, 1H), 3.81 (t, J =
Me	9.3 Hz, 1H), 2.35 (s, 3H).
	^{13}C NMR (100 MHz, CDCl_3): δ 187.5, 187.1, 140.4, 137.8, 137.2, 132.7, 131.8,
	131.3, 129.7, 129.5, 128.8, 127.1, 125.3, 123.4, 120.9, 117.0, 110.9, 62.1, 52.8,
	52.2, 43.3, 41.0, 21.1.
	LRMS (ESI): <i>m/z</i> = 635 [M+Na].
	HRMS (ESI): Calcd for C ₂₇ H ₂₂ BrIN ₂ NaO ₂ , 634.9807: Found 634.9802.
	IR (neat, cm ⁻¹): 3280, 1630, 1392.
	[α] _D ²⁴ +34.4 (c 0.4, CHCl ₃).

3bl	Colorless oil.
~CI	¹ H NMR (400 MHz, CDCl ₃) δ 9.70 (brs, 1H), 9.58 (brs, 1H), 7.30 (d, J = 8.4 Hz, 2H),
	7.22 (d, J = 8.4 Hz, 2H), 7.19 – 7.13 (m, 4H), 7.05 (dd, J = 2.9, 1.3 Hz, 1H), 7.02 (ddd,
	J = 2.7, 2.7, 1.2 Hz, 1H), 6.40 – 6.34 (m, 1H), 6.32 (dd, J = 2.5, 1.3 Hz, 1H), 6.11 (dt,
	J = 4.0, 2.5 Hz, 1H), 4.19 (t, J = 9.4 Hz, 1H), 4.01 (t, J = 9.2 Hz, 1H), 3.94 (t, J = 9.3
Me	Hz, 1H), 3.82 (t, <i>J</i> = 9.3 Hz, 2H), 2.35 (s, 3H).
	^{13}C NMR (100 MHz, CDCl_3): δ 187.6, 187.2, 139.9, 137.8, 137.1, 132.9, 132.7,
	131.3, 129.9, 129.5, 128.9, 128.5, 127.1, 125.4, 123.5, 117.1, 110.9, 62.1, 52.9,
	52.2, 43.2, 41.1, 21.1.
	LRMS (ESI): <i>m/z</i> = 589, 591 [M+Na].
	HRMS (ESI): Calcd for C ₂₇ H ₂₂ ClIN ₂ NaO ₂ , 591.0312: Found 591.0307.
	IR (neat, cm ⁻¹): 3274, 2924, 1634, 1394.
	[α] _D ²⁴ -31.3 (c 0.2, CHCl ₃).

3bm	Colorless oil.
~ Ph	^{1}H NMR (400 MHz, CDCl_3) δ 9.70 (brs, 1H), 9.59 (brs, 1H), 7.63 – 7.53 (m, 4H), 7.44
	(t, J = 7.6 Hz, 2H), 7.40 – 7.31 (m, 3H), 7.21 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 7.9 Hz,
	2H), 7.07 – 6.96 (m, 2H), 6.45 – 6.39 (m, 1H), 6.38 – 6.31 (m, 1H), 6.14 – 6.06 (m,
O H	1H), 4.22 (t, J = 9.2 Hz, 1H), 4.12 – 4.00 (m, 2H), 3.90 (t, J = 9.1 Hz, 1H), 2.35 (s, 3H).
Me	^{13}C NMR (100 MHz, CDCl_3): δ 187.9, 187.5, 140.7, 140.4, 140.1, 138.1, 137.0,
	132.8, 131.4, 129.8, 129.5, 128.8, 127.6, 127.5, 127.3, 127.2, 127.1, 125.3, 123.6,
	117.2, 110.8, 62.0, 53.0, 52.2, 42.8, 41.9, 21.1.
	LRMS (ESI): $m/z = 633$ [M+Na].
	HRMS (ESI): Calcd for C ₃₃ H ₂₇ IN ₂ NaO ₂ , 633.1015: Found 633.1009.
	IR (neat, cm ⁻¹): 3273, 2924, 1628, 1395.
	[α] _D ²⁴ +7.8 (c 0.5, CHCl ₃).

3bn	White powder.
~ CN	¹ H NMR (400 MHz, CDCl ₃) δ 9.56 (brs, 1H), 9.48 (brs, 1H), 7.62 (d, J = 8.4 Hz, 2H),
H C	7.41 – 7.35 (m, 2H), 7.18 (s, 4H), 7.06 (dd, <i>J</i> = 2.9, 1.4 Hz, 1H), 7.03 (dd, <i>J</i> = 2.7, 2.7,
	1.2 Hz, 1H), 6.36 – 6.32 (m, 1H), 6.27 (dd, J = 2.5, 1.3 Hz, 1H), 6.11 (dt, J = 3.9, 2.6
	Hz, 1H), 4.41 (t, J = 9.3 Hz, 1H), 3.97 (t, J = 9.1 Hz, 1H), 3.90 (t, J = 8.9 Hz, 1H), 3.84
Me	(t, J = 9.1 Hz, 1H), 2.37 (s, 3H).
	^{13}C NMR (100 MHz, CDCl_3): δ 187.1, 186.7, 147.0, 137.5, 137.3, 132.6, 132.5,
	131.1, 130.0, 129.6, 127.8, 127.2, 125.6, 123.6, 118.7, 117.1, 111.0, 110.8, 62.2,
	52.6, 51.9, 44.6, 40.2, 21.1.
	LRMS (ESI): <i>m/z</i> = 246 [M+Na].
	HRMS (ESI): Calcd for C ₂₈ H ₂₂ IN ₃ NaO ₂ , 582.0654: Found 582.0649.
	IR (neat, cm ⁻¹): 3275, 2227, 1633, 1395, 1371.
	[α] _D ²⁴ -29.3 (c 0.4, CHCl ₃).

Зbo	White powder.
~ CO ₂ Et	¹ H NMR (400 MHz, CDCl ₃) δ 9.57 (brs, 1H), 9.49 (brs, 1H), 8.01 (d, J = 8.3 Hz, 2H),
H C	7.38 – 7.32 (m, 2H), 7.21 – 7.14 (m, 4H), 7.07 – 7.03 (m, 1H), 7.03 – 7.00 (m, 1H),
	6.37 – 6.34 (m, 1H), 6.33 (dd, J = 2.6, 1.3 Hz, 1H), 6.10 (ddd, J = 3.8, 2.5, 2.5 Hz,
	1H), 4.37 (q, J = 7.1 Hz, 2H), 4.30 (t, J = 9.0 Hz, 1H), 4.06 – 3.94 (m, 2H), 3.88 (t, J =
Me	9.3 Hz, 1H), 2.36 (s, 3H), 1.39 (t, <i>J</i> = 7.1 Hz, 3H).
	^{13}C NMR (100 MHz, CDCl_3): δ 187.4, 187.1, 166.3, 146.5, 137.8, 137.2, 132.6,
	131.2, 130.0, 129.8, 129.5, 129.3, 127.2, 127.1, 125.3, 123.4, 117.1, 110.9, 62.1,
	61.0, 52.6, 52.1, 43.5, 41.3, 21.1, 14.3.
	LRMS (ESI): $m/z = 629$ [M+Na].
	HRMS (ESI): Calcd for C ₃₀ H ₂₇ IN ₂ NaO ₄ , 629.0913: Found 629.0908.
	IR (neat, cm ⁻¹): 3278, 1632, 1278, 1108.
	[α] _D ²⁴ +7.7 (c 0.5, CHCl ₃).

Зbp	White powder.
H O ^{Me}	¹ H NMR (400 MHz, CDCl ₃) δ 9.40 (brs, 1H), 9.36 (brs, 1H), 7.66 – 7.58 (m, 1H), 7.37
	– 7.30 (m, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.20 – 7.13 (m, 3H), 7.09 (d, J = 7.5 Hz, 1H),
	7.00 (dd, J = 2.9, 1.4 Hz, 1H), 6.98 (ddd, J = 2.7, 2.7, 1.3 Hz, 1H), 6.35 - 6.30 (m,
Me	1H), 6.28 (dd, J = 2.5, 1.4 Hz, 1H), 6.07 (dt, J = 3.9, 2.5 Hz, 1H), 4.33 (t, J = 9.4 Hz,
	1H), 4.12 (t, J = 9.4 Hz, 1H), 4.01 (t, J = 9.4 Hz, 1H), 3.89 (t, J = 9.4 Hz, 1H), 2.35 (s,
	3H), 2.11 (s, 3H).
	^{13}C NMR (100 MHz, CDCl_3): δ 188.0, 187.5, 139.3, 138.4, 137.0, 136.8, 132.7,
	131.4, 130.5, 129.42, 129.41, 127.12 (2C), 127.07, 126.6, 126.0, 124.9, 123.1,
	116.7, 110.8, 62.0, 53.3, 52.7, 41.8, 38.8, 21.1, 19.9.
	LRMS (ESI): <i>m/z</i> = 571 [M+Na].
	HRMS (ESI): Calcd for $C_{28}H_{25}N_2NaO_2$, 571.0858: Found 571.0853.
	IR (neat, cm ⁻¹): 3274, 2922, 2852, 1626, 1394.
	[α] _D ²⁴ -25.2 (c 0.2, CHCl ₃).

3aq	White powder.
H O	1 H NMR (400 MHz, CDCl ₃). δ 9.90 (s, 1H), 9.72 (s, 1H), 7.45 – 7.16 (m, 9H), 7.12 –
	6.97 (m, 2H), 6.40 – 6.35 (m, 1H), 6.35 – 6.30 (m, 1H), 6.13 – 6.07 (m, 1H), 4.18 (t,
	J = 9.4 Hz, 1H), 4.09 (t, J = 8.6 Hz, 1H), 3.97 (t, J = 9.4 Hz, 1H), 3.86 (t, J = 9.4 Hz,
	1H).
	^{13}C NMR (100 MHz, CDCl_3): δ 187.6, 187.2, 140.9, 139.8, 133.0, 132.7, 131.3,
	130.3, 129.0, 128.9, 128.5, 127.5, 127.2, 125.7, 123.7, 117.3, 110.9, 62.1, 52.7,
	52.2, 43.2, 41.5.
	LRMS (ESI): <i>m/z</i> = 575, 577 [M+Na].
	HRMS (ESI): Calcd for C ₂₆ H ₂₀ ClIN ₂ NaO ₂ , 577.0156: Found 577.0123.
	IR (neat, cm ⁻¹): 3279, 2918, 1633, 1135.
	[α] _D ²⁴ -25.2 (c 0.2, CHCl ₃).

3jr	White powder.
OMe	¹ H NMR (400 MHz, CDCl ₃) δ 7.33 – 7.21 (m, 6H), 7.22 – 7.13 (m, 5H), 7.01 – 6.95
, H O	(m, 2H), 6.90 (d, J = 8.6 Hz, 2H), 6.43 – 6.38 (m, 1H), 6.38 – 6.32 (m, 1H), 6.13 –
	6.05 (m, 1H), 4.13 (t, J = 9.3 Hz, 1H), 4.08 (t, J = 9.3 Hz, 1H), 4.01 (t, J = 9.2 Hz, 1H),
	3.91 (t, J = 9.3 Hz, 1H), 3.80 (s, 3H), 2.36 (s, 3H).
Me	¹³ C NMR (100 MHz, CDCl ₃): δ 188.13, 188.08, 158.7, 138.7, 136.8, 134.1, 133.8,
	131.8, 131.5, 129.4, 128.64, 128.55, 127.3, 126.7, 126.2, 125.0(2C), 121.5, 117.0,
	114.2, 114.1, 110.7, 55.3, 53.9, 52.5, 42.2, 42.0, 21.1.
	LRMS (ESI): <i>m/z</i> = 537 [M+Na].
	HRMS (ESI): Calcd for $C_{34}H_{30}N_2NaO_3$, 537.2154: Found 537.2125.
	IR (neat, cm ⁻¹): 3274, 1625, 1513, 1399.
	$[\alpha]_D^{24}$ +4.5 (c 0.1, CHCl ₃).

3cl	White powder.
	¹ H NMR (400 MHz, CDCl ₃). δ 9.63 (s, 1H), 9.54 (s, 1H), 7.30 (d, <i>J</i> = 8.5 Hz, 2H), 7.22
H C	(d, J = 8.5 Hz, 2H), 7.20 – 7.13 (m, 4H), 7.03 – 7.00 (m, 1H), 7.00 – 6.97 (m, 1H),
	6.38 – 6.33 (m, 1H), 6.28 – 6.24 (m, 1H), 6.13 – 6.07 (m, 1H), 4.19 (t, J = 9.4 Hz,
	1H), 4.02 (t, J = 9.3 Hz, 1H), 3.93 (t, J = 9.3 Hz, 1H), 3.82 (t, J = 9.4 Hz, 1H), 2.35 (s,
Me	ЗН).
	¹³ C NMR (100 MHz, CDCl ₃) δ 187.53, 187.48, 139.9, 137.8, 137.2, 132.9, 131.3,
	131.2, 129.5, 128.9, 128.5, 127.1, 125.4, 125.0, 118.3, 117.1, 110.9, 98.1, 52.7,
	52.4, 43.2, 41.1, 21.1.
	LRMS (ESI): <i>m/z</i> = 539, 541, 543 [M+Na].
	HRMS (ESI): Calcd for C ₂₇ H ₂₂ BrClN ₂ NaO ₂ , 543.0451: Found 543.0445.
	IR (neat, cm ⁻¹): 3271, 1629, 1385.
	[α] _D ²⁴ -10.3 (c 0.5, CHCl ₃).

3cm	White powder.
Ph	¹ H NMR (400 MHz, CDCl ₃) δ 9.37 (brs, 2H), 7.63 – 7.54 (m, 4H), 7.48 – 7.41 (m, 2H),
N N	7.41 – 7.31 (m, 3H), 7.22 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 7.9 Hz, 2H), 7.00 (ddd, J =
Br L	2.8, 2.8, 1.2 Hz, 1H), 6.97 (dd, J = 3.0, 1.4 Hz, 1H), 6.42 – 6.37 (m, 1H), 6.28 (dd, J
O H	= 2.6, 1.4 Hz, 1H), 6.10 (dt, J = 3.9, 2.5 Hz, 1H), 4.23 (t, J = 9.3 Hz, 1H), 4.09 (t, J =
Me	9.3 Hz, 1H), 4.02 (t, J = 9.3 Hz, 1H), 3.90 (t, J = 9.3 Hz, 1H), 2.35 (s, 3H).
	¹³ C NMR (100 MHz, CDCl ₃): δ 187.93, 187.85, 140.7, 140.4, 140.1, 138.1, 137.0,
	131.4, 131.3, 129.5, 128.8, 127.6, 127.5, 127.3, 127.1, 127.0, 125.4, 125.1, 118.5,
	117.2, 110.8, 98.1, 52.8, 52.3, 42.9, 41.9, 21.1.
	LRMS (ESI): <i>m/z</i> = 583, 585 [M+Na].
	HRMS (ESI): Calcd for C ₃₃ H ₂₇ BrN ₂ NaO ₂ , 585.1154: Found 585.1148.
	IR (neat, cm ⁻¹): 3275, 1627, 1395.
	[α] _D ²⁴ -1.3 (c 0.2, CHCl ₃).

3-2. Synthesis of 2

In round bottom flask, 2-acetylpyrrole (500 mg, 4.58 mmol) and aldehyde (9.16 mmol) were mixed in methanol (20 mL). 5% NaOH aq. was added to the solution and the mixture was stirred overnight at room temperature. Then, the precipitate was filtered and washed with water. The solid was recrystallized from ethanol to give **2**. Data of new products.

2b	Pale yellow powder.
H Me	¹ H NMR (400 MHz, CDCl ₃) δ 9.45 (brs, 1H), 7.81 (d, J = 15.6 Hz, 1H), 7.53 (d, J = 8.3
	Hz, 2H), 7.25 – 7.18 (m, 3H), 7.15 – 7.13 (m, 1H), 7.13 – 7.11 (m, 1H), 2.40 (s, 3H).
	^{13}C NMR (101 MHz, CDCl_3) δ 178.2, 143.4, 141.1, 134.5, 131.9, 129.7, 129.5, 128.5,
	122.2, 120.1, 62.3, 21.5.
	LRMS (ESI): <i>m/z</i> = 360 [M+Na].
	HRMS (ESI): Calcd for C ₁₄ H ₁₂ INNaO, 359.9861; Found 359.9856.
	IR (neat, cm ⁻¹): 3216, 1649, 1579.

2c	Pale yellow powder.
	¹ H NMR (400 MHz, CDCl ₃) δ 9.43 (brs, 1H), 7.82 (d, J = 15.7 Hz, 1H), 7.53 (d, J = 8.1
	Hz, 2H), 7.25 – 7.18 (m, 4H), 7.08 – 7.06 (m, 1H), 7.05 – 7.03 (m, 1H), 2.40 (s, 3H).
Br	^{13}C NMR (101 MHz, CDCl_3) δ 178.5, 143.5, 141.2, 133.0, 131.9, 129.7, 128.5, 124.6,
Me	120.1, 117.3, 98.3, 21.5.
	LRMS (ESI): <i>m/z</i> = 312, 314 [M+Na].
	HRMS (ESI): Calcd for C ₁₄ H ₁₂ BrNNaO, 312.0000; Found 311.9994.
	IR (neat, cm ⁻¹): 3224, 1649, 1579.

2d	Pale yellow powder.
CI Me	¹ H NMR (400 MHz, CDCl ₃) δ 9.59 (brs, 1H), 7.82 (d, J = 15.7 Hz, 1H), 7.53 (d, J = 8.2
	Hz, 2H), 7.25 – 7.17 (m, 3H), 7.06 – 7.01 (m, 1H), 6.99 – 6.95 (m, 1H), 2.40 (s, 3H).
	¹³ C NMR (101 MHz, CDCl ₃) δ 178.6, 143.5, 141.1, 132.1, 131.9, 129.7, 128.5, 122.1,
	120.0, 114.7, 114.5, 21.5.
	LRMS (ESI): <i>m/z</i> = 268, 270 [M+Na].
	HRMS (ESI): Calcd for $C_{14}H_{12}CINNaO$, 268.0505; Found 268.0500.
	IR (neat, cm ⁻¹): 3244, 1649, 1574.

2f	Pale yellow powder.	
н Ш	¹ H NMR (400 MHz, CDCl ₃) δ 9.34 (brs, 1H), 7.78 (d, J = 15.7 Hz, 1H), 7.54 (d, J =	
	8.2 Hz, 2H), 7.29 (d, J = 15.7 Hz, 1H), 7.22 (d, J = 7.9 Hz, 2H), 6.93 – 6.85 (m, 2H),	
	2.50 (t, J = 7.7 Hz, 2H), 2.39 (s, 3H), 1.67 – 1.53 (m, 2H), 1.42 – 1.22 (m, 6H), 0.95	
— — — — — — — — — — — — — — — — — — —		
	^{13}C NMR (101 MHz, CDCl_3) δ 178.6, 141.9, 140.5, 132.9, 132.4, 129.6, 128.3,	
	127.4, 123.1, 121.0, 115.8, 31.7, 31.0, 29.0, 26.7, 22.6, 21.5, 14.1.	
	LRMS (ESI): <i>m/z</i> = 318 [M+Na].	
	HRMS (ESI): Calcd for $C_{20}H_{25}NNaO$, 318.1834; Found 318.1828.	
	IR (neat, cm ⁻¹): 3242, 1649, 1580.	

2g	Pale yellow powder.
U U	¹ H NMR (400 MHz, CDCl ₃) δ 9.47 (brs, 1H), 7.80 (d, <i>J</i> = 15.7 Hz, 1H), 7.52 (d, <i>J</i> = 8.2
	Hz, 2H), 7.27 – 7.20 (m, 3H), 7.19 – 7.14 (m, 1H), 7.10 – 7.04 (m, 1H), 2.44 – 2.35
	(m, 5H), 1.64 – 1.53 (m, 2H), 1.53 – 1.41 (m, 2H), 0.95 (t, <i>J</i> = 7.2 Hz, 3H).
ⁿ Bu	¹³ C NMR (101 MHz, CDCl ₃) δ 178.8, 142.9, 140.9, 132.5, 132.1, 129.7, 128.4, 127.6,
120.5, 118.3, 108.0, 89.5, 73.6, 30.9, 22.0, 21.5, 19.1, 13.7. LRMS (ESI): <i>m/z</i> = 314 [M+Na].	120.5, 118.3, 108.0, 89.5, 73.6, 30.9, 22.0, 21.5, 19.1, 13.7.
	LRMS (ESI): <i>m/z</i> = 314 [M+Na].
	HRMS (ESI): Calcd for C ₂₀ H ₂₁ NNaO, 314.1521; Found 314.1515.
	IR (neat, cm ⁻¹): 3250, 2344, 1647, 1577.

2i	Pale yellow powder.
, Q	¹ H NMR (400 MHz, CDCl ₃) δ 9.88 (s, 1H), 7.84 (d, J = 15.6 Hz, 1H), 7.69 – 7.63 (m,
	1H), 7.55 (d, J = 8.2 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.32 (d, J = 15.7 Hz, 1H), 7.24 (d,
EtO ₂ C	J = 7.9 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 2.40 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H).
Me	^{13}C NMR (101 MHz, CDCl_3) δ 179.4, 163.9, 143.6, 141.2, 133.5, 131.9, 129.7, 128.5,
	128.4, 120.0, 118.7, 116.1, 60.3, 21.6, 14.4.
	LRMS (ESI): $m/z = 306 [M+Na]$.
	HRMS (ESI): Calcd for C ₁₇ H ₁₇ NNaO ₃ , 306.1106; Found 306.1101.
	IR (neat, cm ⁻¹): 3237, 1709, 1648, 1207.

2m	Pale yellow powder.
, Q	¹ H NMR (400 MHz, CDCl ₃) δ 9.72 (brs, 1H), 7.87 (d, J = 15.7 Hz, 1H), 7.75 – 7.68 (m,
	2H), 7.68 – 7.60 (m, 4H), 7.50 – 7.43 (m, 2H), 7.43 – 7.35 (m, 2H), 7.16 – 7.07 (m,
	2H), 6.37 (dt, <i>J</i> = 3.8, 2.5 Hz, 1H).
Ph	^{13}C NMR (101 MHz, CDCl_3) δ 178.8, 143.0, 141.8, 140.2, 134.0, 133.2, 128.9, 128.8,
	127.8, 127.5, 127.0, 125.2, 121.7, 116.2, 111.0.
	LRMS (ESI): <i>m/z</i> = 296 [M+Na].
	HRMS (ESI): Calcd for C ₁₉ H ₁₅ NNaO, 296.1051; Found 296.1046.
	IR (neat, cm ⁻¹): 3260, 1649, 1585.

2n	Pale yellow powder.
, Q	¹ H NMR (400 MHz, CDCl ₃) δ 9.81 (brs, 1H), 7.79 (d, J = 15.7 Hz, 1H), 7.75 – 7.67 (m,
	4H), 7.41 (d, J = 15.7 Hz, 1H), 7.17 (td, J = 2.7, 1.3 Hz, 1H), 7.14 – 7.07 (m, 1H), 6.39
	(dt, <i>J</i> = 4.0, 2.5 Hz, 1H).
CN	^{13}C NMR (101 MHz, CDCl_3) δ 177.8, 139.7, 139.3, 132.9, 132.6, 128.6, 126.1, 125.1,
	118.5, 116.9, 113.1, 111.3.
	LRMS (ESI): $m/z = 245$ [M+Na].
	HRMS (ESI): Calcd for $C_{14}H_{10}N_2NaO$, 245.0691; Found 245.0685.
	IR (neat, cm ⁻¹): 3244, 2223, 1645, 1590.

20	Pale yellow powder.
L Q	¹ H NMR (400 MHz, CDCl ₃) δ 9.86 (brs, 1H), 8.08 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 15.7
	Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 15.7 Hz, 1H), 7.15 (td, J = 2.7, 1.3 Hz,
	1H), 7.14 – 7.08 (m, 1H), 6.38 (dt, J = 3.9, 2.5 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 1.42
CO ₂ Et	(t, J = 7.1 Hz, 3H).
	^{13}C NMR (101 MHz, CDCl_3) δ 178.3, 166.0, 140.8, 139.1, 133.0, 131.6, 130.0, 128.1,
125.8, 124.0, 116.7, 111.2, 61.2, 14.3.	
	LRMS (ESI): <i>m/z</i> = 292 [M+Na].
	HRMS (ESI): Calcd for C ₁₆ H ₁₅ NNaO, 292.0950; Found 292.0944.
	IR (neat, cm ⁻¹): 3253, 1707, 1645, 1587, 1284.

2р	Pale yellow powder.
0	¹ H NMR (400 MHz, CDCl ₃) δ 9.56 (brs, 1H), 8.11 (d, J = 15.6 Hz, 1H), 7.73 – 7.66 (m,
N Me	1H), 7.33 – 7.20 (m, 4H), 7.13 – 7.09 (m, 1H), 7.09 – 7.04 (m, 1H), 6.39 – 6.32 (m,
	1H), 2.49 (s, 3H).
	^{13}C NMR (101 MHz, CDCl_3) δ 178.9, 139.9, 138.2, 134.0, 133.2, 130.8, 130.0, 126.3,
	126.3, 125.0, 123.0, 116.1, 111.0, 19.9.
	LRMS (ESI): $m/z = 234$ [M+Na].
	HRMS (ESI): Calcd for C ₁₄ H ₁₃ NNaO, 234.0895; Found 234.0889.
	IR (neat, cm ⁻¹): 3410, 1643, 1586, 1403.

2q	Pale yellow powder.
	¹ H NMR (400 MHz, CDCl ₃) δ 9.53 (s, 1H), 7.77 (d, J = 15.7 Hz, 1H), 7.56 (d, J = 8.5 Hz,
	2H), 7.40 (d, <i>J</i> = 8.5 Hz, 2H), 7.23 (d, <i>J</i> = 15.7 Hz, 1H), 7.17 – 7.11 (m, 2H).
	^{13}C NMR (101 MHz, CDCl_3) δ 177.7, 141.9, 136.5, 134.4, 133.2, 129.6, 129.6, 129.3,
CI	122.4, 121.6, 62.4.
	LRMS (ESI): <i>m/z</i> = 354, 356 [M+Na].
	HRMS (ESI): Calcd for $C_{13}H_9$ ClINNaO, 379.9315; Found 379.9310.
	IR (neat, cm ⁻¹): 3224, 1649, 1581.

4. Mechanistic study

4-1. UV-Vis spectra

Figure S1. UV–Vis spectra

Solution (A) was prepared by dissolving **2b** (1.0 mg, 2.9 µmol) in toluene (12 mL).

Solution (B) was prepared by dissolving **1b** (2.9 mg, 2.9 µmol) in 4 mL of solution (A).

In quartz cell (*I* = 1 cm), 2.0 mL of solution (A) and various volume (0, 0.1, 0.3, 0.5, 1.0 mL) of solution (B) were mixed. Then UV–Vis spectra were measured by V-670 UV–VIS–NIR spectrometer (JASCO Co., Ltd.).

Addition of MVK

To a toluene solution of 1:1 ratio **2b** and **1b**, various amount of MVK was added and UV–Vis spectra were measured. However, no change was observed.

4-2.¹H NMR study

Figure S3. ¹H NMR spectra of 2b and 1b in benzene-*d*₆.

In a NMR tube, several ratio of **2b** and **1b** was mixed in benzene- d_6 . Interaction of **2b** and **1b** was observed in ¹H NMR.

Addition of MVK

Figure S4. ¹H NMR spectra of 2b and 1b with MVK in benzene-*d*₆.

To the benzene- d_6 solution of 1:1 ratio **2b** and **1b**, various amount of MVK was added and ¹H NMR were measured. However, remarkable change was not observed.

4-3. Correlation between ee of 1b and ee of 3ab in photocycloaddition

Figure S5. Correlation of ee of 1b and 3ab in photocycloaddition.

In a dried test tube, **2a** (17.3 mg, 0.088 mmol), **2b** (9.9 mg, 0.029 mmol), methyl vinyl ketone (12.3 μ L, 0.145 mmol) and various ratio (shown in Table S3) of (*R*)-**1b** and (*S*)-**1b** were mixed in toluene (0.5 mL), and degassed three times by the freeze-pump-thaw. The mixture was irradiated with 405 nm violet LED for 24 h. After the irradiation, the solvent was removed. The crude mixture was purified by preparative TLC on SiO₂ (toluene: ethyl acetate = 7 : 3 / v:v) to give **3ab**.

ee of 1b	ee of 3ab
13% ee	27% ee
13% ee	35% ee
33% ee	61% ee
33% ee	63% ee
50% ee	72% ee
50% ee	74% ee
80% ee	86% ee
80% ee	86% ee
100% ee	97% ee

Table S3. Results of the correlation of e

4-4. Correlation between ee of 1b and ee of 3ag in photocycloaddition

ee of 1b	ee of 3ab
33% ee	44% ee
33% ee	51% ee
50% ee	69% ee
50% ee	69% ee
100% ee	87% ee

Table S4. Results of the correlation of ee

4-5. DFT calculation

All calculations were performed with Gaussian 16 program by using M06-2X method with basis set of 6-31G (d,p) for other atoms.⁵¹ In order to elucidate the origin of the non-linear effect, we calculated and compared the monomer complex and dimer complex of **1f** as CPA and **2a** as substrate.

(-17.4 kcal/mol)

(–22.8 kcal/mol)

Table S4. Sum of thermal free energies

	G(hartree)	G(kcal/mol)
1f	-2109.068224	-1323461.401
2a	-631.540993	-396298.289
А	-2740.623118	-1719768.413
В	-5481.254729	-3439542.155

Cartesian Coordinates

1f

Charge = 0 Multiplicity = 1

Center	Atomic	Atomic	Coordi	nates (Angstro	oms)
Number	Number	Туре	х	Y	Z
1	6	0	2.256462	4.548883	-2.593184
2	6	0	3.069304	3.526038	-2.182882
3	6	0	2.548433	2.441583	-1.427763
4	6	0	1.170885	2.434717	-1.070696
5	6	0	0.349676	3.501040	-1.528227
6	6	0	0.878916	4.525677	-2.270235
7	1	0	4.433743	1.389470	-1.281863
8	1	0	2.660569	5.370160	-3.175654
9	1	0	4.125558	3.518695	-2.437031
10	6	0	3.374279	1.359151	-1.038360
11	6	0	0.662746	1.343747	-0.290149

1	0	-0.709546	3.490520	-1.296558
1	0	0.232834	5.324510	-2.619315
6	0	1.496880	0.271391	-0.049923
6	0	2.872854	0.259714	-0.387964
6	0	-0.722868	1.353547	0.250094
6	0	-1.204740	2.441624	1.054152
6	0	-1.581483	0.307504	-0.005240
6	0	-0.357616	3.480992	1.526263
6	0	-2.578185	2.468884	1.422758
6	0	-2.958603	0.313389	0.342816
6	0	-0.860027	4.503950	2.289311
1	0	0.700232	3.449449	1.289430
6	0	-3.070893	3.550252	2.199345
6	0	-3.430001	1.404643	1.027991
6	0	-2.234530	4.550087	2.620240
1	0	-0.195271	5.282680	2.648475
1	0	-4.124747	3.559344	2.463062
1	0	-4.483576	1.448664	1.291935
1	0	-2.618452	5.369577	3.218715
8	0	1.006727	-0.821839	0.644321
15	0	-0.105331	-1.787786	-0.007156

33	8	0	0.520200	-2.487115	-1.262469
34	1	0	0.988355	-3.311190	-0.968656
35	8	0	-0.650220	-2.652630	1.058385
36	8	0	-1.115744	-0.778807	-0.738757
37	6	0	-3.849777	-0.823968	-0.044243
38	6	0	-4.040095	-1.882784	0.869401
39	6	0	-4.497685	-0.833937	-1.292462
40	6	0	-4.880662	-2.935708	0.513237
41	6	0	-5.324714	-1.919394	-1.599181
42	6	0	-5.529282	-2.976016	-0.719963
43	1	0	-5.028867	-3.751055	1.216184
44	1	0	-5.827622	-1.933556	-2.564605
45	6	0	3.770984	-0.862968	0.019626
46	6	0	4.272899	-1.792814	-0.913108
47	6	0	4.206084	-0.896622	1.373841
48	6	0	5.238521	-2.715601	-0.465607
49	6	0	5.116210	-1.875822	1.753547
50	6	0	5.670994	-2.781390	0.847345
51	1	0	5.680766	-3.386154	-1.195462
52	1	0	5.442095	-1.913017	2.791545
53	6	0	-4.454446	0.290798	-2.325357
54	1	0	-4.813299	-0.169218	-3.254018
55	6	0	-3.411008	-1.859977	2.256095
56	1	0	-2.476507	-1.293918	2.194051
57	6	0	-6.427184	-4.140354	-1.091650
58	1	0	-6.823681	-3.939286	-2.094924
59	6	0	3.970845	-1.904185	-2.424507
60	1	0	4.940849	-1.731931	-2.913298
61	6	0	3.867482	0.139031	2.457639
62	1	0	4.500194	-0.166907	3.298232
63	6	0	6.764623	-3.722591	1.322100
64	1	0	6.394704	-4.205943	2.237281
65	1	0	-7.256077	-4.224458	-0.420261
66	1	0	-5.876225	-5.056744	-1.131339
67	1	0	-5.155474	1.056815	-2.067138
68	1	0	-3.502074	0.721412	-2.554395
69	1	0	-4.061182	-1.364552	2.946549
70	1	0	-3.165229	-2.833328	2.626338
71	1	0	4.168272	1.138235	2.220957
72	1	0	2.869195	0.138067	2.842765
73	1	0	7.640339	-3.166128	1.583580
74	1	0	7.015388	-4.489228	0.619047
75	1	0	3.272145	-1.237421	-2.885098
76	1	0	3.673167	-2.898735	-2.683655

2a

Charge = 0 Multiplicity = 1

Center	Atomic	Atomic	Coord	inates (Angstr	oms)
Number	Number	Туре	Х	Y	Z
1	6	0	4.506204	-0.899751	0.092387
2	6	0	3.631896	-1.826785	-0.458085
3	6	0	2.367380	-1.203577	-0.556383
4	6	0	2.496115	0.092612	-0.056115
5	7	0	3.811647	0.245104	0.323956
6	1	0	4.151095	1.128755	0.677137
7	1	0	5.557152	-0.980004	0.328569

8	1	0	3.885068	-2.833417	-0.758815
9	1	0	1.470992	-1.632281	-0.978476
10	6	0	1.626229	1.265943	0.074897
11	6	0	0.161213	1.162163	-0.100499
12	1	0	-0.301378	2.111116	-0.358579
13	6	0	-0.580981	0.068386	0.161248
14	1	0	-0.067409	-0.827926	0.501106
15	6	0	-2.039851	-0.052778	0.079100
16	6	0	-2.641060	-1.253607	0.497496
17	6	0	-2.873823	0.973575	-0.404806
18	6	0	-4.022542	-1.425478	0.442379
19	1	0	-2.011804	-2.056875	0.872125
20	6	0	-4.252665	0.802265	-0.460365
21	1	0	-2.439712	1.908761	-0.743552
22	6	0	-4.834131	-0.396988	-0.036691
23	1	0	-4.464248	-2.360983	0.772590
24	1	0	-4.878993	1.605423	-0.837363
25	1	0	-5.911291	-0.526605	-0.082395
26	8	0	2.133136	2.364054	0.336573

Α

Charge = 0 Multiplicity = 1

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	х	Y	Z	
1	6	0	5.414174	-1.069157	4.292416	
2	6	0	5.425690	0.075650	3.541515	
3	6	0	4.639289	0.181202	2.363376	
4	6	0	3.853907	-0.928762	1.944127	
5	6	0	3.841783	-2.092923	2.760929	
6	6	0	4.600991	-2.159093	3.900737	
7	1	0	5.199969	2.229422	1.952510	
8	1	0	6.013968	-1.139554	5.193753	
9	1	0	6.027774	0.929597	3.838976	
10	6	0	4.599123	1.386359	1.620037	
11	6	0	3.082133	-0.815770	0.741712	
12	1	0	3.214595	-2.930852	2.478852	
13	1	0	4.573252	-3.054576	4.512916	
14	6	0	3.054803	0.401871	0.092755	
15	6	0	3.802613	1.531920	0.510000	
16	6	0	2.262873	-1.944147	0.221092	
17	6	0	2.823491	-3.224322	-0.097416	
18	6	0	0.915329	-1.753564	0.003144	
19	6	0	4.219701	-3.485400	-0.040834	
20	6	0	1.955311	-4.268882	-0.522628	
21	6	0	0.029947	-2.773032	-0.431924	
22	6	0	4.715169	-4.725305	-0.353095	
23	1	0	4.894888	-2.686215	0.244134	
24	6	0	2.498907	-5.545578	-0.825222	
25	6	0	0.566789	-4.015828	-0.660816	
26	6	0	3.846511	-5.773618	-0.738655	
27	1	0	5.784660	-4.903366	-0.309590	
28	1	0	1.820931	-6.334935	-1.137369	
29	1	0	-0.087448	-4.824869	-0.976355	
30	1	0	4.252855	-6.751098	-0.976568	
31	8	0	2.281463	0.538094	-1.051115	
32	15	0	0.673622	0.600705	-0.898349	

33	8	0	0.313394	1.902690	-0.090610	93
34	1	0	-0.706021	2.378774	-0.314697	94
35	8	0	0.057117	0.368019	-2.218184	9
36	8	0	0.373054	-0.492674	0.241352	9
37	6	0	-1.424044	-2.495886	-0.615034	9'
38	6	0	-1.970374	-2.441884	-1.906999	98
39	6	0	-2.239750	-2.310936	0.513000	9
40	6	0	-3 338706	-2 209847	-2 045468	10
41	6	0	-3 602370	-2 085623	0 329854	10
42	6	0	-4 169611	-2 028399	-0 942211	10
12	1	0	2 764512	2.020333	2 0/5220	10.
43	1	0	4 226565	1 051250	1 202502	
44	1 6	0	-4.230303	2 042272	0.203362	В
45	0	0	3.740230	2.843273	-0.201273	
40	6	0	3.146443	3.942052	1 459562	Cha
47	o C	0	4.349149	5.001112	-1.458503	
48	o C	0	3.221580	5.199084	-0.162343	
49	6	0	4.419592	4.276834	-2.015/12	Center
50	6	0	3.880915	5.392152	-1.3/36/0	Numbe
51	1	0	2.767027	6.050959	0.339427	
52	1	0	4.906637	4.400188	-2.981081	:
53	6	0	-1.656595	-2.357458	1.902487	:
54	1	0	-2.447763	-2.351092	2.655066	:
55	6	0	-1.103790	-2.603688	-3.130896	
56	1	0	-0.296216	-1.866277	-3.119623	!
57	6	0	-5.639274	-1.744627	-1.119087	(
58	1	0	-6.223390	-2.146857	-0.287578	
59	6	0	2.444805	3.791940	1.770512	:
60	1	0	3.156706	3.665113	2.592214	9
61	6	0	4.914517	1.822263	-2.205917	10
62	1	0	5.513158	2.152899	-3.057120	1
63	6	0	4.022074	6.766336	-1.976740	12
64	1	0	3.808952	6.754781	-3.050300	1
65	6	0	-3.276827	0.000935	-3.754127	14
66	6	0	-4.640936	-0.079002	-3.515079	1
67	6	0	-4.872882	0.522410	-2.263616	1
68	6	0	-3.641255	0.957623	-1.779901	1
69	7	0	-2.692070	0.634693	-2.714272	1
70	1	0	-1.691142	0.826743	-2.606294	19
71	1	0	-2.689840	-0.352605	-4.588575	20
72	1	0	-5.375324	-0.517789	-4.173531	2
73	-	0	-5 826225	0.672106	-1 777275	2
74	-	0	-3 259388	1 729359	-0 602847	2:
75	6	0	-4 117310	1 737753	0.502047	2.
76	1	0	2 561679	1.757755	1 524007	2.
70	6	0	5.301078	1.007010	0 592750	2:
77	1	0	-5.450545	1.495005	0.362739	21
70	1	0	-5.915785	1.311/12	-0.577091	2
79	0	0	-0.320133	1.432885	1.749614	20
80	o C	0	-7.683864	1.159859	1.542726	29
81	0	0	-5.878028	1.641904	3.062268	31
82	6	0	-8.5/221/	1.09/928	2.610761	3:
83	1	0	-8.040890	0.994593	0.529799	3
84	6	0	-6.763811	1.580471	4.128854	3
85	1	0	-4.829642	1.851344	3.249213	34
86	6	0	-8.114095	1.308997	3.907534	3
87	1	0	-9.620594	0.884432	2.430215	3
88	1	0	-6.401754	1.743556	5.138712	3
89	1	0	-8.803434	1.261380	4.744149	3
90	8	0	-2.207352	2.371187	-0.594109	3
91	1	0	-6.018223	-2.180121	-2.046797	40
92	1	0	-5.824214	-0.666159	-1.160765	4

93	1	0	-1.048299	-3.255034	2.049385
94	1	0	-1.011345	-1.491140	2.080877
95	1	0	-0.651900	-3.598707	-3.181934
96	1	0	-1.693962	-2.452796	-4.037234
97	1	0	5.537980	1.198456	-1.558076
98	1	0	4.103092	1.195505	-2.592117
99	1	0	5.040923	7.145444	-1.846549
100	1	0	3.342678	7.479551	-1.501372
101	1	0	1.786719	2.919004	1.772503
102	1	0	1.843894	4.678584	1.984780

Charge = 0 Multiplicity = 1

Center	Atomic	Atomic	Coord	inates (Angstr	oms)
Number	Number	Туре	х	Y	Z
1	6	0	-7.081342	-6.024785	-3.799154
2	6	0	-6.229423	-5.106527	-4.352904
3	6	0	-5.906644	-3.904836	-3.669389
4	6	0	-6.504715	-3.641555	-2.404088
5	6	0	-7.360146	-4.627980	-1.842071
6	6	0	-7.640672	-5.785419	-2.522106
7	1	0	-4.485901	-3.233623	-5.157947
8	1	0	-7.316815	-6.942010	-4.328629
9	1	0	-5.773317	-5.287132	-5.322187
10	6	0	-4.958530	-2.996325	-4.208096
11	6	0	-6.189459	-2.414187	-1.734273
12	1	0	-7.785984	-4.459125	-0.859329
13	1	0	-8.292868	-6.527939	-2.073948
14	6	0	-5.251149	-1.587223	-2.312050
15	6	0	-4.587883	-1.857728	-3.538269
16	6	0	-6.773100	-2.027514	-0.419594
17	6	0	-8.187354	-1.924955	-0.205452
18	6	0	-5.935580	-1.692261	0.625181
19	6	0	-9.133416	-2.104228	-1.251271
20	6	0	-8.669894	-1.590836	1.091203
21	6	0	-6.393418	-1.329681	1.920307
22	6	0	-10.478835	-2.002544	-1.007882
23	1	0	-8.778152	-2.313794	-2.253867
24	6	0	-10.069884	-1.506970	1.313890
25	6	0	-7.748613	-1.312015	2.133054
26	6	0	-10.957695	-1.714033	0.291807
27	1	0	-11.183477	-2.137933	-1.821837
28	1	0	-10.420100	-1.262611	2.312855
29	1	0	-8.128920	-1.051991	3.117811
30	1	0	-12.025469	-1.642987	0.470555
31	8	0	-4.916954	-0.415212	-1.649761
32	15	0	-3.850794	-0.590283	-0.449089
33	8	0	-4.557377	-1.734339	0.443679
34	6	0	-5.412757	-0.966574	2.986061
35	6	0	-5.233674	0.383072	3.333917
36	6	0	-4.666991	-1.970739	3.624153
37	6	0	-4.280414	0.703588	4.300234
38	6	0	-3.736416	-1.607973	4.598820
39	6	0	-3.513840	-0.273442	4.933385
40	1	0	-4.123705	1.750520	4.555551
41	1	0	-3.151714	-2.385050	5.087147

42	6	0	-3.475934	-0.964981	-3.978126	102	1	0	-3.295340	1.445323	0.147534
43	6	0	-2.153864	-1.433695	-3.876249	103	6	0	7.925299	-6.610230	-0.363631
44	6	0	-3.731341	0.355571	-4.378324	104	6	0	7.011349	-6.362730	0.626105
45	6	0	-1 110665	-0 559218	-4 157581	105	6	0	6 535874	-5 046352	0 867136
16	6	0	2 65 2 50	1 202509	1 646064	105	6	0	7 042976	2 069106	0.096027
40	6	0	1 225405	0.767220	4.524221	100	6	0	7.042570	4 262202	0.0500027
47	0	0	-1.555405	0.707520	-4.524251	107	0	0	7.900792	-4.202502	-0.952404
48	1	0	-0.085773	-0.911270	-4.057522	108	Ь	0	8.395678	-5.546612	-1.169140
49	1	0	-2.850843	2.231072	-4.942747	109	1	0	5.127940	-5.644524	2.398674
50	6	0	-4.846026	-3.417265	3.240846	110	1	0	8.278606	-7.620269	-0.542906
51	1	0	-4.292420	-4.070800	3.918160	111	1	0	6.622791	-7.172258	1.237688
52	6	0	-6.045998	1.473671	2.681736	112	6	0	5.527630	-4.804410	1.836003
53	1	0	-6.034868	1.374065	1.594096	113	6	0	6.575010	-2.640159	0.356948
54	6	0	-2.422036	0.118279	5.893130	114	1	0	8.326628	-3.456545	-1.582311
55	1	0	-2.156908	-0.706959	6.559081	115	1	0	9.098059	-5.750449	-1.970740
56	6	0	-1.848504	-2.830948	-3.398800	116	6	0	5.583872	-2.483571	1.301514
57	1	0	-2 219785	-3 592977	-4 090049	117	6	0	5 011167	-3 549955	2 044259
59	-	0	E 1/2920	0.970246	4.050045	110	6	0	7.061251	1 440444	0 200110
50	0	0	-3.143833	1.808021	-4.490940	110	0	0	7.001331	1.070524	-0.380118
59	1	0	-5.168094	1.808921	-5.054773	119	0	U	8.448501	-1.079534	-0.432184
60	6	0	-0.156483	1.676891	-4.768018	120	6	0	6.150500	-0.603573	-0.992991
61	1	0	-0.473465	2.718543	-4.867634	121	6	0	9.451586	-1.786878	0.285583
62	6	0	0.756547	0.297032	-1.357241	122	6	0	8.840583	0.055112	-1.197041
63	6	0	1.742355	1.281759	-1.417706	123	6	0	6.515541	0.546001	-1.741062
64	6	0	1.104858	2.502463	-1.166478	124	6	0	10.768332	-1.412444	0.207813
65	6	0	-0.259064	2.235742	-0.963743	125	1	0	9.162646	-2.625291	0.909085
66	7	0	-0.424726	0.876068	-1.089034	126	6	0	10.214504	0.408134	-1.268831
67	1	0	-1.295826	0.349257	-0.975939	127	6	0	7.853283	0.835488	-1.849452
68	1	0	0 838440	-0 775717	-1 456665	128	6	0	11 160616	-0 310604	-0 588425
60	1	0	2 796002	1 122002	1 602200	120	1	0	11 516025	1 06 25 01	0.769407
70	1	0	2.790002	2.464050	-1.002200	123	1	0	10.405721	1 270140	1.0070407
70	I	0	1.589282	3.464050	-1.073822	130	1	0	10.495721	1.270149	-1.86/24/
/1	6	0	-1.344315	3.079754	-0.529507	131	1	0	8.164297	1.699730	-2.431398
72	6	0	-1.181588	4.550417	-0.495095	132	1	0	12.207284	-0.030552	-0.644826
73	1	0	-1.772528	5.034777	0.279366	133	8	0	5.109169	-1.202539	1.548200
74	6	0	-0.471608	5.249001	-1.388239	134	15	0	4.033037	-0.634677	0.486738
75	1	0	0.061142	4.704227	-2.165492	135	8	0	4.793396	-0.893037	-0.914980
76	6	0	-0.324850	6.711797	-1.432481	136	6	0	5.475770	1.402972	-2.381461
77	6	0	0.667557	7.262205	-2.253366	137	6	0	5.208192	2.682410	-1.862443
78	6	0	-1.131655	7.578898	-0.681426	138	6	0	4.790381	0.936239	-3.514133
79	6	0	0.865848	8.637586	-2.311076	139	6	0	4.254287	3.474976	-2.499081
80	1	0	1.291053	6.596797	-2.845577	140	6	0	3.848339	1.764060	-4.123815
81	6	0	-0 936033	8 95 294 2	-0 742695	141	6	0	3 566631	3 033872	-3 628887
02	1	0	1 924006	7 179024	0.056502	1/2	1	0	4 041096	4 465472	2 000162
02	1 6	0	-1.924000	0.497201	1 552008	142	1	0	2 216457	4.403472	-2.033102 E 001900
05	0	0	0.004650	9.467501	-1.555908	145	1	0	3.310437	1.405424	-5.001800
84	1	0	1.642952	9.045449	-2.949020	144	6	0	3.841257	-3.288326	2.932571
85	1	0	-1.575560	9.611976	-0.163460	145	6	0	2.569454	-3.738296	2.532231
86	1	0	0.212121	10.561284	-1.600790	146	6	0	3.990981	-2.542584	4.110314
87	8	0	-2.434198	2.634134	-0.131493	147	6	0	1.469430	-3.424858	3.325682
88	1	0	-2.715133	0.975883	6.504929	148	6	0	2.856867	-2.229194	4.862932
89	1	0	-1.520232	0.396808	5.333370	149	6	0	1.586306	-2.650437	4.480343
90	1	0	-5.900448	-3.707915	3.263685	150	1	0	0.485005	-3.776732	3.023581
91	1	0	-4.481072	-3.592329	2.223150	151	1	0	2.972728	-1.633739	5.765858
92	1	0	-7.090022	1.440617	3.009661	152	6	0	5.060720	-0.440628	-4.063250
93	1	0	-5 642866	2 455552	2 939518	153	1	0	4 562301	-0 579647	-5 024632
04	1	0	E 707070	0 140126	5 009110	154	-	0	5 025097	2 100905	0 641090
54 05	1	0	-3./0/0/0	1 05 315 4	2 506014	154	1	0	5.923967	3.133002	0 162200
32	1 C	U	-5.5/4193	1.052154	-5.500914	155	1	0	5.906500	2.400/50	0.103308
96	1	U	0.3//494	1.399806	-5.684310	156	6	0	2.514580	3.894528	-4.265510
97	1	0	0.559041	1.613826	-3.934720	157	1	0	2.262706	3.543349	-5.268278
98	1	0	-2.310982	-3.005942	-2.423497	158	6	0	2.367954	-4.478803	1.233610
99	1	0	-0.769907	-2.968001	-3.293542	159	1	0	2.899630	-5.433751	1.211555
100	8	0	-2.496967	-1.007974	-0.866562	160	6	0	5.349997	-2.063110	4.552978
101	8	0	-4.011218	0.742879	0.333904	161	1	0	5.319892	-1.714190	5.587344

162	6	0	0.355496	-2.276487	5.265296
163	1	0	0.590206	-1.558437	6.054684
164	6	0	-0.542672	-1.091659	1.830324
165	6	0	-1.709942	-0.392775	2.123775
166	6	0	-1.349933	0.951713	2.268296
167	6	0	0.038545	1.038860	2.090924
168	7	0	0.492111	-0.234267	1.831273
169	1	0	1.436411	-0.497630	1.540687
170	1	0	-0.390924	-2.133415	1.590711
171	1	0	-2.706345	-0.805065	2.194393
172	1	0	-2.031163	1.773798	2.429122
173	6	0	0.933056	2.165464	2.039228
174	6	0	0.424640	3.539034	2.259603
175	1	0	0.966468	4.284933	1.683049
176	6	0	-0.517173	3.892742	3.144813
177	1	0	-0.962399	3.122783	3.771917
178	6	0	-0.998531	5.260262	3.384286
179	6	0	-1.855632	5.492910	4.466873
180	6	0	-0.646918	6.343156	2.563948
181	6	0	-2.337345	6.769355	4.736824
182	1	0	-2.140640	4.659037	5.103333
183	6	0	-1.128031	7.617773	2.832953
184	1	0	-0.002203	6.190192	1.702328
185	6	0	-1.972591	7.836598	3.921301

186	1	0	-2.997848	6.930055	5.582579
187	1	0	-0.842489	8.441227	2.185270
188	1	0	-2.346659	8.833892	4.128709
189	8	0	2.139930	2.060930	1.768325
190	1	0	2.839201	4.938018	-4.338077
191	1	0	1.592329	3.867289	-3.672152
192	1	0	6.132775	-0.608926	-4.201598
193	1	0	4.694959	-1.208593	-3.373843
194	1	0	6.973893	3.428259	-0.859190
195	1	0	5.450734	4.114142	-0.279464
196	1	0	6.094365	-2.861238	4.480050
197	1	0	5.692489	-1.235514	3.923976
198	1	0	-0.099688	-3.156276	5.732757
199	1	0	-0.397062	-1.827155	4.606170
200	1	0	2.731609	-3.871734	0.398797
201	1	0	1.306355	-4.679586	1.071434
202	8	0	2.716884	-1.307313	0.495936
203	8	0	4.083851	0.894027	0.750615
204	1	0	3.231633	1.308617	1.141821

5. HPLC data

3ab

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 36.70 min, t_{minor} = 41.70 min.

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 31.89 min, t_{minor} = 34.76 min.

3ac

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 35.32 min, t_{minor} = 38.16 min.

3ad

No.	Compounds	RT	Area	Area%
1	Peak 1	34.487	17478901	48.478
2	Peak 2	37.240	18576281	51.522
			36055182	100.000

S33

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 45.94 min, t_{minor} = 59.10 min.

Racemate

3ae

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 51.50 min, t_{minor} = 57.02 min.

5430 Diode Array Detector SampleID:1 kt-385-rac (Extract, 300nm) Repeat:1

No.	Compounds	RT	Area	Area%
1	Peak 1	53.093	54981235	49.457
2	Peak 2	58.793	56188199	50.543
			111169434	100.000

3af

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 35.78 min, t_{minor} = 41.22 min.

3ag

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 26.65 min, t_{minor} = 33.35 min.

3ah

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 46.81 min, t_{minor} = 50.88 min.

3ai

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 51.28 min, t_{minor} = 57.66 min.

3bj

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 35.06 min, t_{minor} = 41.86 min.

3bk

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 33.94 min, t_{minor} = 41.16 min.

3bl

4225466

8179783

CHIRALPAK[®] IA-3 column, *n*-hexane/*i*-PrOH = 85/15, flow rate = 0.5 mL/min, t_{major} = 96.10 min, t_{minor} = 88.00 min.

3bm

2 Peak 2

100.520

51.657

100.000

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 44.12 min, t_{minor} = 59.86 min.

 5430 Diode Array Detector SampleID:1 UNK001 (Extract, 300nm) Repeat:1

 No. Compounds
 RT
 Area

 1
 Peak 1
 44,120
 167025788
 96,796

 2
 Peak 2
 59,860
 5528738
 3,204

 172554526
 100.000

Racemate

No	. Compounds	RT	Area	Area%
1	Peak 1	44.960	26106229	47.597
2	Peak 2	59.760	28742303	52.403
			54848532	100.000

3bn

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 44.12 min, t_{minor} = 59.86 min.

Racemate

54	430 Diode Array Detector SampleID:1 kt-604 rac (Extract, 300nm) Repeat:1				
Ν	o. Compounds	RT	Area	Area%	
1	Peak 1	45.847	9022375	52.688	
2	Peak 2	54.287	8101921	47.312	
			17124295	100.000	

3bo

CHIRALPAK[®] IA-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 30.78 min, t_{minor} = 26.03 min.

 5430 Diode Array Detector SampleID:1 kt-tu-l-o-Me (Extract, 300nm) Repeat:1

 No. Compounds
 RT
 Area
 Area%

 1
 Peak 1
 26.033
 3902409
 7.416

 2
 Peak 2
 30.787
 48722086
 92.584

 52624495
 100.000

Racemate

3bp

5430 Diode Array Detector SampleID:1 kt-603 rac (Extract, 300nm) Repeat:1

No	. Compounds	RT	Area	Area%
1	Peak 1	27.587	8394856	51.298
2	Peak 2	32.200	7969869	48.702
			16364725	100.000

3aq

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 80.74 min, t_{minor} = 87.88 min.

Racemate

3jr

S47

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 50.62 min, t_{minor} = 54.48 min.

3cj

CHIRALPAK[®] IF-3 column, *n*-hexane/*i*-PrOH = 7/3, flow rate = 0.5 mL/min, t_{major} = 33.04 min, t_{minor} = 38.38 min.

Racemate

3cl

CHIRALPAK[®] IA-3 column, *n*-hexane/*i*-PrOH = 85/15, flow rate = 0.5 mL/min, t_{major} = 88.33 min, t_{minor} = 82.20 min.

Racemate

3cm

281908290

100.000

543	5450 Diode Array Detector SampleiD: 1 kt-566-rac-2 (Extract, 500nm) Repeat: I				
No	. Compounds	RT	Area	Area%	
1	Peak 1	82.527	16434737	53.006	
2	Peak 2	89.193	14570542	46.994	
			31005280	100.000	

6. NMR spectra

3aa

3ab

S53

3ad

S54

3ae

¹H NMR (400 MHz, CDCl₃)

3af

¹H NMR (400 MHz, CDCl₃)

3ag

¹H NMR (400 MHz, CDCl₃)

3ah

¹H NMR (400 MHz, CDCl₃)

0

3ai

3bj

3bk

3bl

3bm

3bn

3bo

180

3jr

OMe

3cj

S71

S72

S73

2d ¹H NMR (400 MHz, CDCl₃)

2f ¹H NMR (400 MHz, CDCl₃) 7.780 7,547 121 6.807 6.897 6.885 6.885 О 2f 7.4 7.0 7.3 ppm 7.2 7.1 2.5 부 부가 부가 부가 응 등 등을 열 8.5 8.0 7.5 7.0 6.5 6.0 1.5 0.92 2.0 1.0 9.5 9.0 5.0 4.5 ppm 1.0 0.0 5.5 3.5 3.0 0.5 4.0

Me

2g ¹H NMR (400 MHz, CDCl₃) Ο 22468 (1617) (16 7.779 7.534 7214 EtO₂C Me 2g 7.6 7.4 ppm 7.3 2.5 부 부 가지 을 을 통정증 8.5 8.0 7.5 7.0 6.5 334 304 1.5 -1.0).0 2.0 9.5 9.0 6.0 5.0 opm 5.5 4.5 3.5 3.0 0.5 0.0 ¹³C NMR (101 MHz, CDCl₃) - 30.913 - 22.019 - 19.100 - 13.666 -178.818 00 100 ppm 170 150 140 130 120 40 30 20

2h ¹H NMR (400 MHz, CDCl₃) 0 II 9.450 -2394 7.775 7,200 7,722 7,722 7,720 7,720 7,720 7,720 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7.631 Me ⁿBu 2h 7.6 7.4 ppm 7.3 7.5 부 부 가방부 용 5 홍홍중 8.5 8.0 7.5 7.0 6.5 6.0 2.80 I F888 1.24 0.0 2.5 9.5 9.0 5.0 4.5 ppm 2.0 5.5 4.0 3.5 3.0 1.5 1.0 0.5 0.0 ¹³C NMR (101 MHz, CDCl₃) -178.812 72074 ю 140 130 100 ppm 30 180 170 150 120 70 50 40 20

2i ¹H NMR (400 MHz, CDCl₃) 0 6/8/8 4364 4346 4330 4330 £1382 1382 7.861 -7.565 ---7.564 -7.474 7.467 -7.467 -7.339 -7.300 -7.249 -7.228 7.671 7.668 7.668 Me ^tBu 2i 1.0 0.5 0.0 -0. 10.0 ¹³C NMR (101 MHz, CDCl₃) 179.416 -60.276 129 128 12

S79

100 ppm

90 80 70 60 50 40 30 20 10

110

120

140 130

00

180 170 160 150

2m ¹H NMR (400 MHz, CDCl₃)

00

180

150 140 130 120

100 ppm

H O Ph

40

20 10

2n

¹H NMR (400 MHz, CDCl₃)

CN

20

2р

S85