Supporting Information

Organic Photoredox Catalyzed C(sp $\left.{ }^{3}\right)$-H Functionalization of Saturated Aza-heterocycles via Cross-Dehydrogenative Coupling Reaction

Yi-Fan Zhang, ${ }^{[a]}$ Han-Nan Chen, ${ }^{[a]}$ Yi Xiao, ${ }^{[a]}$ Zhencun Cui, ${ }^{[b]}$ Wei David Wang* ${ }^{[a]}$ and Guo-Qiang $\mathrm{Xu}^{*[a]}$
${ }^{[a]}$ State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000 (P.R. China).
${ }^{[b]}$ Department of Nuclear Medicine, Second Hospital of Lanzhou University, Lanzhou 730030 (P.R. China).
*Corresponding author (s): ww@lzu.edu.cn; gqxu@lzu.edu.cn.
Supporting Information Placeholder

This PDF file includes
Materials and Methods
Figures S1 to S6
Tables S1 to S6
NMR Spectra
References

Table of Contents

Table of Contents 2

1. General information 3
2. Synthesis of substrates 3
3. Screening of reaction conditions 4
4. General procedure for the synthesis of product 3 and analytical data 8
5. Gram-scale reaction 27
6. Mechanistic investigations 27
7. X-Ray crystallographic data of product 3a 33
8. NMR spectra of compounds 34
9. References 67

1. General information

All the glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography (TLC) plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid, followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AM-400 (400 MHz) or Agilent Inova 600 MHz . The spectra were recorded in CDCl_{3} as solvent at room temperature, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm relative to the residual solvent peak. The residual solvent signals were used as references, and the chemical shifts were converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{H}=7.26 \mathrm{ppm}, \delta_{C}=77.00 \mathrm{ppm}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $q=q u a r t e t, m=$ multiplet, $\mathrm{dd}=$ doublet $)$, integration, coupling constant (Hz), and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported as chemical shifts. HRMS was performed on a Bruker Apex II mass instrument (ESI).

2. Synthesis of substrates

2.1 Synthesis of Cyclic Amines

Cyclic amines were synthesized according to reported procedures with some modifications. ${ }^{[1]}$

General procedure: $\mathrm{K}_{2} \mathrm{CO}_{3}(1.52 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv.) was weighed into an ovendried 25 mL round-bottom flask with magnetic stirring, and DMF ($10 \mathrm{~mL}, 1.0 \mathrm{M}$) was added. The appropriate aniline ($10 \mathrm{mmol}, 1.0$ equiv.) was added into the reaction mixture via syringes. The reaction system was degassed (10 min) and backfilled with nitrogen. The corresponding dibromide ($11 \mathrm{mmol}, 1.1$ equiv.) was added, and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 24 h . After completion, the reaction mixture
was cooled to RT and diluted with $\mathrm{EtOAc}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The layers were separated, and the organic layer was extracted with $1 \mathrm{~N} \mathrm{HCl}(3 \times 10 \mathrm{~mL})$. The acid layers were combined and adjusted to $\mathrm{pH}=8$ with 1 N NaOH and then extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layers were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash chromatography.

2.2 Synthesis and Characterization of Photocatalyst

Synthesis and Characterization of Photocatalyst according to reported procedures ${ }^{[2]}$.

2.3 Synthesis and Characterization of 2-phenyl-1,2,3,4-tetrahydroisoquinoline

 Synthesis and Characterization of 2-phenyl-1,2,3,4-tetrahydroisoquinoline according to reported procedures ${ }^{[3]}$.
2.4 Synthesis and Characterization of (furan-2-yloxy)trimethylsilane

Synthesis and Characterization of (furan-2-yloxy)trimethylsilane according to reported procedures ${ }^{[4]}$.

3. Screening of reaction conditions

Table S1. Optimization of the photocatalyst. ${ }^{a}$

9	DMF	34
10	$\mathrm{H}_{2} \mathrm{O}$	Trace
11	MeOH	Trace
12	$\mathrm{CH}_{3} \mathrm{Cl}$	39
13	$0.2 \mathrm{~mL} \mathrm{CHCl} 3+0.8 \mathrm{~mL} \mathrm{DMF}$	65
14	$0.5 \mathrm{~mL} \mathrm{CHCl}_{3}+0.5 \mathrm{~mL} \mathrm{DMF}$	67
15	$0.8 \mathrm{~mL} \mathrm{CHCl}_{3}+0.2 \mathrm{~mL} \mathrm{DMF}$	78
16	$0.2 \mathrm{~mL} \mathrm{DCM}+0.8 \mathrm{~mL} \mathrm{DMF}$	80
17	$0.2 \mathrm{~mL} \mathrm{DCE}+0.8 \mathrm{~mL} \mathrm{DMFTHF}$	62
18	$0.2 \mathrm{~mL} \mathrm{THF}+0.8 \mathrm{~mL} \mathrm{DMF}$	50
19	0.2 mL 2-Methyltetrahydrofuran +0.8 mL DMF	68
20	$0.9 \mathrm{~mL} \mathrm{DCM} \mathrm{+} 0.1 \mathrm{~mL}$ DMF	84
21	$0.8 \mathrm{~mL} \mathrm{DCM}+0.2 \mathrm{~mL} \mathrm{DMF}$	80
22	$0.7 \mathrm{~mL} \mathrm{DCM}+0.3 \mathrm{~mL} \mathrm{DMF}$	79
23	$0.6 \mathrm{~mL} \mathrm{DCM}+0.4 \mathrm{~mL} \mathrm{DMF}$	72

${ }^{a}$ Reaction conditions: 1a (0.1 mmol), 2a (0.13 mmol), PFNB (0.5 equiv.), TsOH ($10 \mathrm{~mol} \%$) and DCQ (1 mol \%) at $25^{\circ} \mathrm{C}$ for 12 h under irradiation with white light. ${ }^{b}$ Isolated yield after chromatography. PFNB = pentafluoronitrobenzene.

Table S2. Optimization of the Addition. ${ }^{a}$

[^0]Table S3. Optimization of the loading of DPPA. ${ }^{a}$

${ }^{a}$ Reaction conditions: $1(0.1 \mathrm{mmol}), \mathbf{2 a}(0.13 \mathrm{mmol})$, PFNB (0.5 equiv.), addition ($10 \mathrm{~mol} \%$) and DCQ ($1 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$:DMF $(0.1 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 12 h under irradiation with white light. ${ }^{b}$ Isolated yield after chromatography. $\mathrm{PFNB}=$ pentafluoronitrobenzene. $\mathrm{DPPA}=$ Diphenylphosphinic acid.

Table S4. Optimization of the loading of 2a. ${ }^{a}$

Entry	2a	${\text { Yield }(\%)^{\boldsymbol{b}}}^{2}$
1	1.0 equiv.	71
2	$\mathbf{1 . 3}$ equiv.	$\mathbf{8 9}$
3	1.5 equiv.	88
4	2.0 equiv.	85

${ }^{a}$ Reaction conditions: 1a (0.1 mmol), 2a, PFNB (0.5 equiv.), DPPA ($20 \mathrm{~mol} \%$) and DCQ- ${ }^{-1} \mathrm{Bu}(1$ $\mathrm{mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$: DMF $(0.1 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 12 h under irradiation with white light. ${ }^{b}$ Isolated yield after chromatography. PFNB $=$ pentafluoronitrobenzene. DPPA = Diphenylphosphinic acid.

Table S5. Optimization of reaction time. ${ }^{a}$

 1a	+		$\begin{gathered} \mathrm{DCQ}^{-\mathrm{t}} \mathrm{Bu}(1 \mathrm{~mol} \%) \\ \text { PFNB (0.5 equiv.) } \\ \text { DPPA (0.2 equiv.) } \\ \hline \mathrm{CH}_{2} \mathrm{Cl}_{2}: \text { DMF (9:1) } 0.1 \mathrm{M} \\ 12 \mathrm{~h}, \text { white LEDs, RT } \end{gathered}$	 3a
		2a		
	Entry		Time	Yield (\%) ${ }^{\text {b }}$
	1		3 h	70
	2		6 h	81
	3		12 h	89
	4		18 h	89
	5		24 h	89
	6		30 h	88

${ }^{a}$ Reaction conditions: 1a $(0.1 \mathrm{mmol})$, 2a $(0.13 \mathrm{mmol})$, PFNB (0.5 equiv.), DPPA ($20 \mathrm{~mol} \%$) and DCQ ($1 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$: DMF $(0.1 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for different time under irradiation with white light. ${ }^{b}$ Isolated yield after chromatography. $\mathrm{PFNB}=$ pentafluoronitrobenzene. $\mathrm{DPPA}=$ Diphenylphosphinic acid.

Table S6. Use O_{2} as the oxidant. ${ }^{a}$

		DCQ $^{-t} \mathrm{Bu}(1 \mathrm{~mol} \%)$ O_{2} ball DPPA (0.2 equiv.) toluene (0.1 M) 12 h , white LEDs, RT	
1a	2a		3 a
Entry		Time	Yield (\%) ${ }^{\text {b }}$
1		2 h	25
2		4 h	53
3		6 h	52
4		8 h	53

${ }^{a}$ Reaction conditions: 1a $(0.1 \mathrm{mmol})$, 2a $(0.13 \mathrm{mmol}), \mathrm{O}_{2}$ ball, DPPA ($20 \mathrm{~mol} \%$) and DCQ (1 $\mathrm{mol} \%$) in toluene at $25^{\circ} \mathrm{C}$ for different time under irradiation with white light. ${ }^{b}$ Isolated yield after chromatography. PFNB = pentafluoronitrobenzene. DPPA = Diphenylphosphinic acid.

4. General procedure for the synthesis of product 3 and

analytical data

General catalysis procedure: A dried 10 mL reaction tube was charged with the photocatalyst ($0.001 \mathrm{~mol}, 0.68 \mathrm{mg}$), DPPA $(0.01 \mathrm{mmol}, 6.54 \mathrm{mg})$, PFNB $(0.05 \mathrm{mmol}$, $6.5 \mu \mathrm{~L}$), 1-phenylpyrrolidine $\mathbf{1 a}$ (0.13 mmol , 1.3 equiv., 1 H -indole $\mathbf{2 a}(0.1 \mathrm{mmol}, 1.0$ equiv. and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})+\mathrm{DMF}(0.1 \mathrm{~mL})$. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the vial was placed beside a white LED light. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction as checked by TLC. The reaction mixture was purified by silica gel flash column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to give the corresponding product. An $18-36 \mathrm{~W}$ White LED panel was used as light source. Reaction device is shown below.

Following the general procedure, compound 3a was obtained as a gray solid in 89% yield; m.p. $=92-94{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.41$ (PE:EA $=10: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 1 \mathrm{H})$, 3.26 (td, J = 9.4, $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.23(\mathrm{tt}, \mathrm{J}=11.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.02-$ 1.90 (m, 2H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.4,136.9,128.9,125.5,122.0,121.9,119.3$, $118.9,118.6,115.4,112.3,111.3,56.2,48.3,33.6,23.5$;

HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 263.1543, found: 263.1542.

3-(1-(p-tolyl)pyrrolidin-2-yl)-1H-indole (3b)

Following the general procedure, compound 3b was obtained as a gray solid in 76% yield; m.p. $=86-88{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.41$ (PE:EA $=10: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.75$ ($\mathrm{s}, 1 \mathrm{H}$), $7.65(\mathrm{dd}, \mathrm{J}=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30$ $(\mathrm{m}, 1 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dd}, \mathrm{J}=2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-$ 6.48 (m, 2H), $5.00(\mathrm{dt}, \mathrm{J}=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{ddd}, \mathrm{J}=9.4,7.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ (td, J = 9.0, 6.7 Hz, 1H), 2.36-2.25 (m, 1H), 2.20 (s, 3H), 2.16-1.94 (m, 3H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.5,136.9,129.5,125.7,124.5,122.1,122.0,119.3$, 119.1, 119.0, 112.3, 111.3, 56.4, 48.6, 33.8, 23.7, 20.3;

HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 277.1699, found: 277.1701.

3-(1-(4-methoxyphenyl)pyrrolidin-2-yl)-1H-indole (3c)

Following the general procedure, compound $\mathbf{3 c}$ was obtained as a brown solid in 82% yield; m.p. $=116-118{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.40(\mathrm{PE}: \mathrm{EA}=5: 1$);
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dt}, \mathrm{J}=8.2$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{td}, \mathrm{J}=7.5,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.77-$ $6.71(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{dt}, \mathrm{J}=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.62$ $(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{td}, \mathrm{J}=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.93(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 150.7,142.6,137.0,125.7,122.1,122.0,119.3,119.2$, $119.0,114.9,113.0,111.3,56.8,56.0,49.1,33.9,23.8 ;$

HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 293.1648, found: 293.1649.

3-(1-(4-(tert-butyl)phenyl)pyrrolidin-2-yl)-1H-indole (3d)

Following the general procedure, compound 3af was obtained as a brown solid in 57\% yield; m.p. $=146-148{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.43(\mathrm{PE}: \mathrm{EA}=10: 1)$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.57-6.52(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{q}, J=8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.94(\mathrm{~m}$, $3 \mathrm{H}), 1.24$ (s, 9H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.5,138.1,137.0,125.7,125.7,122.1,122.0,119.3$,
$119.3,119.0,111.9,111.3,56.6,48.6,33.8,33.7,31.6,23.7$;
HRMS (ESI) for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 319.2169, found: 319.2173.

3-(1-(4-fluorophenyl)pyrrolidin-2-yl)-1H-indole (3e)

Following the general procedure, compound $\mathbf{3 e}$ was obtained as a gray solid in 73% yield; m.p. $=115-117^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30(\mathrm{PE}: \mathrm{EA}=10: 1)$;
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, \mathrm{J}=9.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.47$ $(\mathrm{dd}, \mathrm{J}=9.2,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.34(\mathrm{tt}, \mathrm{J}=11.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-1.99(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.6,154.0,144.2,137.0,125.6,122.1,121.9,119.4$, $118.9,118.8,115.3,115.2,112.7,112.6,111.3,56.7,48.9,33.9,23.7 ;$
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-130.85$;
HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 281.1449, found: 281.1449.

3-(1-(4-chlorophenyl)pyrrolidin-2-yl)-1H-indole (3f)

Following the general procedure, compound 3ac was obtained as a brown solid in 66\% yield; m.p. $=92-94{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.42(\mathrm{PE}: \mathrm{EA}=10: 1)$;
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}$,
$1 \mathrm{H}), 6.47$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{q}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.98(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.9,136.9,128.6,125.4,122.1,121.9,120.1,119.4$, $118.8,118.1,113.3,111.3,56.4,48.5,33.8,23.6$;

HRMS (ESI) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 297.1153, found: 297.1149.

3-(1-(4-bromophenyl)pyrrolidin-2-yl)-1H-indole (3g)

Following the general procedure, compound $\mathbf{3 g}$ was obtained as a brown solid in 59% yield; m.p. $=152-154{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.42(\mathrm{PE}: \mathrm{EA}=10: 1)$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l} 3$): $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.24$ (m, 1H), 2.17-1.99 (m, 3H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 146.3,137.0,131.6,125.5,122.2,122.0,119.5,118.9$, 118.1, 114.0, 111.4, 107.4, 56.4, 48.5, 33.8, 23.6.

HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 341.0648, found: 341.0646.

3-(1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-yl)-1H-indole (3h)

Following the general procedure, compound $\mathbf{3 h}$ was obtained as a brown solid in 93% yield; m.p. $=112-114{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.28(\mathrm{PE}: \mathrm{EA}=10: 1)$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=$ $15.3,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $5.11(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{td}, \mathrm{J}=9.4,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.34$ (tt, J = 11.7, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.15$ (m, 1H), 2.11-2.02 (m, 2H).;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 149.4,137.0,126.2,126.2,125.5,122.3,121.9,121.9$, 119.6, 118.9, 117.6, 111.7, 111.4, 56.3, 48.4, 33.7, 23.5;
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-60.58$;
HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 331.1417, found: 331.1418 .

3-(1-(4-nitrophenyl)pyrrolidin-2-yl)-1H-indole (3i)

Following the general procedure, compound $\mathbf{3 i}$ was obtained as a white solid in 56% yield; m.p. $=123-125^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.31$ (PE:EA $=1: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.67(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 2.9 \mathrm{~Hz}$, $3 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{td}, J=7.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.6 \mathrm{~Hz}, 0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(d, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.71 (ddd, J = 8.2 Hz, 7.5 Hz,2.8 Hz, 1H), 3.47 (td, J = 9.5 Hz, 7.5 Hz, 1H), 2.42-2.33 (m, 1H), 2.27-2.19 (m, 1H), 2.16-2.06 (m, 2H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 190.3,151.7,136.9,131.9,125.3,125.0,122.3,121.8$, 119.6, 118.7, 116.8, 112.1, 111.5, 56.4, 48.3, 33.5, 23.3;

HRMS (ESI): for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 291.1492, found: 291.1495 .

4-(2-(1H-indol-3-yl)pyrrolidin-1-yl)benzonitrile (3j)

Following the general procedure, compound $\mathbf{3 j}$ was obtained as a white solid in 92% yield; m.p. $=180-182{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.2(\mathrm{PE}: \mathrm{EA}=4: 1)$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}$, $\mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H})$, 3.46-3.39 (m, 1H), 2.36 (tt, J = 11.5, 7.7 Hz, 1H), 2.24-2.17 (m, 1H), 2.15-2.06 (m, 2H);
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl3): $\delta 149.7,136.9,133.2,125.2,122.3,121.7,120.9$, $119.7,118.7,116.8,112.3,111.4,96.9,56.3,48.2,33.6,23.3$;

HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 288.1595, found: 288.1596.

methyl 4-(2-(1H-indol-3-yl)pyrrolidin-1-yl)benzoate (3k)

Following the general procedure, compound $\mathbf{3 k}$ was obtained as a brown solid in 84% yield; m.p. $=162-164{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.2(\mathrm{PE}: \mathrm{EA}=5: 1)$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz, CDCl3): $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ $(\mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.62-$ $3.57(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{tt}, \mathrm{J}=11.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 1 \mathrm{H})$, 2.02-1.94 (m, 2H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 167.6,150.4,136.9,131.1,125.3,122.1,121.9$, $119.4,118.7,117.1,116.4,111.5,111.4,56.23,51.38,48.21,33.52,23.31$;

HRMS (ESI) for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 321.1598, found: 321.1597.

3-(1-([1,1'-biphenyl]-4-yl)pyrrolidin-2-yl)-1H-indole (3l)

Following the general procedure, compound 31 was obtained as a gray solid in 72% yield; m.p. $=153-155^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.43(\mathrm{PE}: \mathrm{EA}=10: 1)$;
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32$ (m, 3H), 7.23-7.19 (m, 2H), 7.16 (t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.66$ (m, 1H), 3.43-3.36 (m, 1H), $2.34(\mathrm{tt}, \mathrm{J}=11.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.13-$ 2.00 (m, 2H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 146.8,141.3,136.9,128.5,128.2,127.5,126.1$, $125.7,125.5,122.0,122.0,119.4,118.9,118.5,112.6,111.3,56.3,48.4,33.6,23.5$;

HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 339.1856, found: 339.1859.

3-(1-(3-chlorophenyl)pyrrolidin-2-yl)-1H-indole (3m)

Following the general procedure, compound $\mathbf{3 m}$ was obtained as a white solid in 82% yield; m.p. $=135-137^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.27$ ($\mathrm{PE}: \mathrm{EA}=4: 1$);
${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1$ Hz, 1H), 7.23-7.18 (m, 1H), 7.14 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}$,
$J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{tt}, J=11.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-$ 2.10 (m, 1H), 2.08-1.96 (m, 2H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 148.4,136.9,134.7,129.7,125.4,122.0,121.9$, $119.4,118.8,117.9,115.3,111.9,111.3,110.7,56.3,48.4,33.6,23.4 ;$

HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 297.1153, found: 297.1156.

3-(1-(3-methoxyphenyl)pyrrolidin-2-yl)-1H-indole (3n)

Following the general procedure, compound $\mathbf{3 n}$ was obtained as a white solid in 76% yield; m.p. $=110-112^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (PE:EA $=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~s}, 1 \mathrm{H}), 6.23$ (ddd, $J=7.8,5.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.62(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{td}, J=9.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{tt}$, $J=11.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=11.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 2 \mathrm{H}) ;$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 160.5,148.8,136.9,129.5,125.5,122.0,121.9$, $119.2,118.8,118.5,111.2,105.7,100.3,98.6,56.3,55.0,48.4,33.7,23.5$;

HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 293.1648, found: 293.1649.

3-(1-(naphthalen-2-yl)pyrrolidin-2-yl)-1H-indole (3o)

Following the general procedure, compound $\mathbf{3 o}$ was obtained as white solid in 63% yield; m.p. $=112-114{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.39$ (PE:EA $=10: 1$);
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.86$ ($\mathrm{s}, 1 \mathrm{H}$), 7.71 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (d, J = 8.1 $\mathrm{Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{ddd}, \mathrm{J}=8.2,6.7,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25(\mathrm{td}, \mathrm{J}=8.1,7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{dd}$, $\mathrm{J}=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.72(\mathrm{~m}, 1 \mathrm{H})$, 3.54-3.45 (m, 1H), $2.39(\mathrm{tt}, \mathrm{J}=11.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{ddt}, \mathrm{J}=11.2,4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.18-2.07 (m, 2H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.3,136.9,135.1,128.5,127.5,126.2,126.0,125.8$, 125.6, 122.2, 122.0, 121.2, 119.4, 119.0, 118.6, 116.4, 111.3, 105.1, 56.3, 48.5, 33.7, 23.6;

HRMS (ESI) for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 313.1699, found: 313.1701.

3-(5-methyl-1-phenylpyrrolidin-2-yl)-1H-indole (3p)

Following the general procedure, compound $\mathbf{3 p}$ was obtained as white solid in 84% yield; m.p. $=102-104{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.73$ (PE:EA $=2: 1$);
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15-7.12$ (m, 1H), 7.09-7.06 (m, 2H), 7.03-6.99 (m, 1H), 6.87 (d, J = 1.3 Hz , $1 \mathrm{H}), 6.59-6.54(\mathrm{~m}, 3 \mathrm{H}), 4.91(\mathrm{dd}, \mathrm{J}=7.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~h}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-$ 2.23 (m, 1H), 2.09-1.98 (m, 2H), 1.66 (ddt, J = 10.9, 7.3, 5.8 Hz, 1H), 1.35 (d, J = 6.0 Hz, 3H);
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.8,137.0,128.8,125.5,122.1,121.9,119.3,119.0$, $115.9,113.5,112.9,111.3,59.7,55.2,32.8,32.7,21.1 ;$

HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 277.1699, found: 277.1698.

3-(1-phenylpiperidin-2-yl)-1H-indole (3q)

Following the general procedure, compound $\mathbf{3 q}$ was obtained as a white oil in 48% yield; $\mathrm{R}_{\mathrm{f}}=0.31$ (PE:EA = 10:1);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.88$ (s, 1H), 7.71 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (d, J = 8.1 Hz, 1H), 7.19-7.12 (m, 3H), 7.10 (d, J = 7.1 Hz, 1H), 6.96 (d, J = 7.7 Hz, 2H), 6.91 (d, $\mathrm{J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dt}, \mathrm{J}=12.8,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.38(\mathrm{dt}, \mathrm{J}=12.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dh}, \mathrm{J}=15.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddt}, \mathrm{J}=$ $13.6,8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.64(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13}$ C NMR (101 MHz, CDCl ${ }_{3}$): $\delta 151.29,136.28,128.83,126.51,122.52,121.83$, 119.66, 119.22, 118.58, 117.20, 117.07, 111.01, 53.77, 48.08, 31.23, 25.47, 21.26;

HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 177.1699, found: 177.1700.

1-(1H-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3r)

Following the general procedure, compound $\mathbf{3 r}$ was obtained as white solid in 89% yield; m.p. $=146-148{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.6(\mathrm{PE}: \mathrm{EA}=2: 1)$;
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}$, $2 H), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.64-$ 6.56 (m, 1H), 6.17 (s, 1H), 3.62 (dd, J = 7.7, 4.5 Hz, 2H), 3.06 (dt, J = 15.7, 7.7 Hz, 1 H), 2.80 (dt, J = 16.3, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 149.8,137.4,136.6,135.6,129.2,128.9,128.1,126.7$, $126.5,125.7,124.2,122.1,120.1,119.7,119.3,118.1,115.9,111.1,56.7,42.3,26.7$;

HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 325.1699, found: 325.1703.

di(1H-indol-3-yl)methane (4a)

4a
Following the general procedure, compound $\mathbf{4 a}$ was obtained as a white solid in 45% yield; m.p. $=126-128^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.48$ (PE:EA $=2: 1$);
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$): $\delta 7.87(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.22-7.15$ (m, 2H), 7.12-7.05 (m, 2H), 6.95-6.88 (m, 2H), 4.24 (s, 2H);
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta 136.5,127.6,122.2,121.9,119.3,119.2,115.7,111.1$, 21.2;

HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 247.1300, found: 247.1299.

N -(4,4-di(1H-indol-3-yl)butyl)-2-methoxyaniline (4b)

Following the general procedure, compound $\mathbf{4 b}$ was obtained as a white solid in 40% yield; m.p. $=76-78{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.38$ ($\mathrm{PE}: \mathrm{EA}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.88(\mathrm{~s}, 2 \mathrm{H}), 7.61(\mathrm{dd}, \mathrm{J}=7.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{ddd}, \mathrm{J}=8.2,7.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{ddd}, \mathrm{J}=8.0,7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.98(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{td}, \mathrm{J}=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, \mathrm{J}=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.66 (td, J = 7.6, 1.5 Hz, 1H), 6.57 (dd, J = 7.8, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.53(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{p}, \mathrm{J}=7.2$ Hz, 2H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 146.7,138.4,136.6,127.0,121.8,121.5,121.3,120.0$, $119.6,119.0,116.1,111.1,109.8,109.3,55.3,43.8,33.8,33.2,28.1$;

HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 410.2227, found:410.2228.

3-(1-(2-bromophenyl)pyrrolidin-2-yl)-1H-indole (4c)

Following the general procedure, compound $\mathbf{4 c}$ was obtained as a white solid in 43% yield; m.p. $=45-47{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ ($\mathrm{PE}: \mathrm{EA}=5: 1$);
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.85(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ $(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.57-6.50(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{p}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.1,136.6,132.3,128.4,127.0,121.9,121.5$, $119.9,119.6,119.1,117.4,111.2,111.1,109.6,43.8,33.9,33.0,27.9$;

HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{BrN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 458.1226, found: 458.1229.

N -(6,6-di(1H-indol-3-yl)hexyl)aniline (4d)

Following the general procedure, compound $\mathbf{4 d}$ was obtained as brown solid in 42% yield; m.p. $=60-62{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.50$ ($\mathrm{PE}: \mathrm{EA}=2: 1$);
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.85(\mathrm{~s}, 2 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{td}, \mathrm{J}=7.1,4.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.68$
(t, J = 7.3 Hz, 1H), $6.57(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, 2H), 2.23 (d, J = 7.3 Hz, 2H), $1.56(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{p}, \mathrm{J}=3.4 \mathrm{~Hz}, 4 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 148.3, 136.6, 129.2, 127.1, 121.7, 121.4, 120.3, 119.6, $119.0,117.2,112.8,111.1,44.0,35.7,34.0,29.4,28.0,27.2$;

HRMS (ESI) for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 408.2434, found:408.2436.

N -(8,8-di(1H-indol-3-yl)octyl)aniline (4e)

Following the general procedure, compound $\mathbf{4 e}$ was obtained as brown oil in 40% yield; $\mathrm{R}_{\mathrm{f}}=0.51(\mathrm{PE}: \mathrm{EA}=2: 1)$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.88(\mathrm{~s}, 2 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.03$ (ddd, J = 8.0, 7.0, $1.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.99(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}$, 2H), $6.68(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, \mathrm{J}=8.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.05 (t, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.21 (q, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.60-1.29 (m, 10H);
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.5,136.6,129.2,127.1,121.7,121.4,120.5,119.7$, $119.0,117.0,112.7,111.0,43.9,35.8,34.0,29.6,29.5,29.3,28.2,27.1$;

HRMS (ESI) for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 436.2747, found:436.2751.

6-bromo-3-(1-phenylpyrrolidin-2-yl)-1H-indole (5a)

Following the general procedure, compound 5a was obtained as a brown solid in 82% yield; m.p. $=152-154{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.26(\mathrm{PE}: \mathrm{EA}=10: 1)$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, \mathrm{J}=$ $8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, \mathrm{J}=8.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{q}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.98(\mathrm{~m}$, 3H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.4,135.6,129.0,127.3,124.9,123.3,121.5$, 118.6, 115.7, 112.8, 112.7, 112.3, 56.0, 48.4, 33.8, 23.6;

HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 341.0648, found: 341.0649.

5-chloro-3-(1-phenylpyrrolidin-2-yl)-1H-indole (5b)

5b
Following the general procedure, compound $\mathbf{5 b}$ was obtained as a brown solid in 85% yield; m.p. $=142-144{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.31(\mathrm{PE}: \mathrm{EA}=10: 1)$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{ddd}, \mathrm{J}=9.6,6.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.29$ (m, 1H), 2.36-2.24 (m, 1H), 2.12-1.97 (m, 3H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.3,137.2,129.0,128.0,124.1,122.6,120.1$, 119.7, 119.0, 115.6, 112.2, 111.2, 56.1, 48.4, 33.8, 23.6;

HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 297.1153, found: 297.1153.

5-methyl-3-(1-phenylpyrrolidin-2-yl)-1H-indole (5c)

Following the general procedure, compound $\mathbf{5 c}$ was obtained as a brown solid in 72% yield; m.p. $=94-96^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.35$ (PE:EA $=10: 1$);
${ }^{1} H$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.17-7.10 (m, 2H), $7.03(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.38-3.28 (m, 1H), 2.49 ($\mathrm{s}, 3 \mathrm{H}$), 2.35-2.23 (m, 1H), 2.16-1.95 (m, 3H);
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 147.5,135.2,128.9,128.6,125.8,123.5,122.2,118.5$, 118.1, 115.4, 112.3, 111.0, 56.2, 48.3, 33.6, 23.5, 21.62;

HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 277.1699, found: 277.1700.

7-methyl-3-(1-phenylpyrrolidin-2-yl)-1H-indole (5d)

Following the general procedure, compound 5d was obtained as a brown solid in 84% yield; m.p. $=102-104{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (PE:EA $=10: 1$);
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=8.7$, $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.61(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.54(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H})$, 3.33 (td, J = 9.1, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.95(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.5,136.5,128.9,125.1,122.6,121.8,120.6$, $119.6,119.2,116.6,115.5,112.3,56.4,48.4,33.7,23.6,16.6 ;$

HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 279.1699, found: 277.1701.

2-methyl-3-(1-phenylpyrrolidin-2-yl)-1H-indole (5e)

5e

Following the general procedure, compound $\mathbf{5 e}$ was obtained as a brown solid in 54\% yield; m.p. $=118-120^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.35$ ($\mathrm{PE}: \mathrm{EA}=10: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.59$ ($\mathrm{s}, 1 \mathrm{H}$), $7.50(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.63-6.50(\mathrm{~m}, 3 \mathrm{H}), 5.02(\mathrm{dd}, \mathrm{J}=7.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (ddd, J = 9.5, 6.5, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45-3.35 (m, 1H), 2.41-2.29 (m, 1H), 2.22 (s, 3H), 2.131.97 (m, 3H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.4,135.1,130.4,128.9,127.4,120.9,119.2,118.2$ $115.3,113.2,111.9,110.1,56.2,48.9,35.1,24.5,12.0$;

HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 277.1699, found: 277.1699.

2-(1-phenylpyrrolidin-2-yl)naphthalen-1-ol (5f)

Following the general procedure, compound $\mathbf{5 f}$ was obtained as a brown oil in 72% yield; $\mathrm{R}_{\mathrm{f}}=0.52(\mathrm{PE}: \mathrm{EA}=10: 1)$;
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}$, $1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{dd}, \mathrm{J}=$ 16.8, 8.1 Hz, 3H), 4.60 (dd, J = 8.3, 5.8 Hz, 1H), 3.90-3.84 (m, 1H), 3.28-3.21 (m, $1 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.5,148.6,133.4,129.0,127.2,126.0,125.5$, $125.3,125.0,121.9,120.4,119.3,116.1,77.2,77.0,76.7,66.6,52.3,35.6,24.3 ;$ HRMS (ESI) for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 290.1539, found: 290.1540.

Following the general procedure, compound $\mathbf{5 g}$ was obtained as a white solid in 78% yield; m.p. $=94-96^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.42(\mathrm{PE}: \mathrm{EA}=10: 1)$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 10.32(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.82(\mathrm{~m}$, 3H), 6.06 (d, J = 2.4 Hz, 1H), 5.96 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.91 (dd, J = 8.2, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87-3.78 (m, 4H), 3.73 (s, 3H), 3.19 (dd, J = 16.3, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43-2.31 (m, 1H), 2.18-2.06 (m, 1H), 2.04-1.92 (m, 2H);
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta 160.1,158.4,157.5,149.0,129.0,120.5,116.2$, 107.0, 93.9, 90.6, 60.0, 55.6, 55.2, 52.2, 34.2, 24.4;

HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 300.1594, found:300.1594.

5-(1-phenylpyrrolidin-2-yl)furan-2(5H)-one (5h)

5h
Following the general procedure, compound $\mathbf{5 h}$ was obtained as a colorless liquid in 76% yield; $\mathrm{R}_{\mathrm{f}}=0.35(\mathrm{PE}: E A=4: 1) ;$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.21(\mathrm{dd}, \mathrm{J}=8.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{q}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.83-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{dt}, \mathrm{J}=8.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.88(\mathrm{~m}$, 4H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 173.0,146.4,146.2,135.4,129.2,116.5,112.2,70.3$, 55.5, 48.4, 31.2, 23.2;

HRMS (ESI) for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 230.1176, found: 230.1178.

2-(1-phenylpyrrolidin-2-yl)-1H-pyrrole (5i)

Following the general procedure, compound $\mathbf{5 i}$ was obtained as a colorless liquid in 47% yield, 1.3:1 d.r.; $\mathrm{R}_{\mathrm{f}}=0.62($ PE:EA $=10: 1)$;
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.68(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.69-4.66(\mathrm{~m}, 2 \mathrm{H}), 3.56-$ $3.49(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 4 \mathrm{H}) ; 1.94-1.91(\mathrm{~m}$, 2H);
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3): $\delta 147.9,147.8,133.2,133.1,128.9(7), 128.9(6), 116.4$, $116.3,112.6,112.4,104.2,104.1(9), 57.6,57.5,48.7,48.6(8), 35.2,34.7,23.8,23.7$;

HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 358.2278, found: 358.2278.

1-phenylpyrrolidine-2-carbonitrile (5j)

Following the general procedure, compound $\mathbf{5 j}$ was obtained as a brown oil in 80% yield; $\mathrm{R}_{\mathrm{f}}=0.34(\mathrm{PE}: E A=10: 1)$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.30(\mathrm{dd}, \mathrm{J}=8.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{td}, \mathrm{J}=8.2,7.6,2.9 \mathrm{~Hz}$, $1 \mathrm{H})$, 3.42-3.33 (m, 1H), 2.47-2.37 (m, 1H), 2.35-2.15 (m, 3H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.2,129.5,119.3,118.2,112.7,49.1,47.4,31.5$, 23.9;

HRMS (ESI) for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.173.1073, found: 173.1074.

2-(nitromethyl)-1-phenylpyrrolidine (5k)

Following the general procedure, compound $\mathbf{5 k}$ was obtained as a yellow oil in 84% yield; $\mathrm{R}_{\mathrm{f}}=0.54(\mathrm{PE}: E A=10: 1)$;
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{dd}, J=11.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{ddd}, J=11.2$, $9.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{td}, J=9.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.03(\mathrm{~m}$, 4H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.7,129.6,117.3,112.0,75.8,55.7,47.3,29.2$, 22.7;

HRMS (ESI) for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 207.1128, found: 207.1129.

5. Gram-scale reaction

General procedure: A dried 10 mL reaction tube was charged with the photocatalyst ($34.2 \mathrm{mg}, 0.05 \mathrm{mmol}, 1 \mathrm{~mol} \%$), Diphenylphosphinic acid ($0.3 \mathrm{mmol}, 650 \mathrm{mg}$), PFNB ($2.5 \mathrm{mmol}, 0.33 \mathrm{~mL}$), 1-phenylpyrrolidine 1a (6.5 mmol , 1.3 equiv., 0.95 mL), $1 \mathrm{H}-$ indole 2a (5.0 mmol , 1.0 equiv., 585.9 mg) and $45 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}+5 \mathrm{~mL}$ DMF. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the reaction was under the irradiation of the white LEDs for 48 h . After completion of the reaction as checked by TLC. The reaction mixture was purified by silica gel flash column chromatography (petroleum $\mathrm{PE} / \mathrm{EA}=10: 1$) to give the product 3a ($943.0 \mathrm{mg}, 72 \%$ yield).

6. Mechanistic investigations

6.1 Luminescence quenching experiments

Stern-Volmer experiments were conducted on an Agilent Technologies Cary Eclipse Fluorescence Spectrophotometer using the Cary Eclipse Scan Application. Rigorously purged (with nitrogen) solutions of each component were prepared prior to each set of experiments. Luminescence quenching experiments were run with toluene as the solvent. The solutions were irradiated at 410 nm and the luminescence was measured from 440 nm to 700 nm (emission maximum is at 530 nm). The concentration of DCQ${ }^{\text {t }} \mathrm{Bu}$ stock solution was 0.15 mM in toluene, the concentration of N -Ph-pyrrolidine stock solution was 3.00 mM in toluene, the concentration of $1 H$-Indole stock solution was 3.00 mM in toluene and the concentration of PFNB stock solution was 3 mM in toluene. All of the gradient concentration of mixed solutions was used at once for experiments after prepared by methods as follows: 2 mL of stock solution was added 8 mL toluene in 10 mL volumetric flask to form 0.6 mM solution. $1.2 \mathrm{mM}(4 \mathrm{~mL}+6 \mathrm{~mL}), 1.8 \mathrm{mM}(6$ $\mathrm{mL}+4 \mathrm{~mL})$ and $2.4 \mathrm{mM}(8 \mathrm{~mL}+2 \mathrm{~mL})$ was prepared by the same operation, finally each of the solution was diluted to $2 / 3$ of original concentration when used for experiments. After being stirred with a thin glass rod, the emission spectrum was collected. Linear regression of I0/I against concentration is done in Origin.

Figure S1. Fluorescence quenching data with DCQ- ${ }^{\text {t }} \mathrm{Bu}$ and variable $\mathrm{N}-\mathrm{Ph}$ pyrrolidine.

Figure S2. Fluorescence quenching data with DCQ-tBu and variable PFNB.

Figure S3. Fluorescence quenching data with DCQ-'Bu and variable $1 H$-Indole

Figure S4. Stern-Volmer plot of DCQ with 1a, 2a, and PFNB.

6.2 Kinetic isotope effect

A dried 10 mL reaction tube was charged with the photocatalyst ($0.001 \mathrm{~mol}, 0.68$ mg), DPPA ($0.03 \mathrm{mmol}, 6.4 \mathrm{mg}$), PFNB ($0.05 \mathrm{mmol}, 6.5 \mu \mathrm{~L}$), tertiary arylamine $\mathbf{1}$ ($0.065 \mathrm{mmol}, 0.65$ equiv.) and $\mathbf{1}-d_{8}(0.065 \mathrm{mmol}, 0.65$ equiv.), $1 H$-indole 2a (0.1 mmol , 1.0 equiv.) and 1.0 mL toluene. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the vial was placed
beside a white LED light. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 10 min and 20 min . The yields and $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ ratios were determined by the ${ }^{1} \mathrm{H}$ NMR spectrum.

Figure S5. ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after reacting 10 min .

Figure S6. ${ }^{1} \mathrm{H}$ NMR of the reaction mixture after reacting 20 min .

7. X-Ray crystallographic data of product 3a

The crystal structure 3a has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: CCDC 2270021.

8. NMR spectra of compounds

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of 3a($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 c}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \end{array}$
${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

${ }^{19} \mathrm{~F}$ NMR of $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, 565 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 i}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 j}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 k}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 1}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $31\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 n}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 n}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 o}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 p}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

3p

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 p}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 r}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

rrarragnatrartrooor

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 r}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{4 b}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 c}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 d}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{4 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}$ of $\mathbf{4 e}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 a}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{5 b}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

	 Tiviventil			
F				

5b
${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 c}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 d}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 f}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 f}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 g}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{5 h}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 i}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 j}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 k}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{5 k}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

9. References

[1] a) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Discovery of an α-Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science 2011, 334, 1114-1117. b) Takasu, N.; Oisaki, K.; Kanai, M. Iron-Catalyzed Oxidative C(sp $\left.{ }^{3}\right)-\mathrm{H}$ Functionalization of Amines. Org. Lett. 2013, 15, 1918-1921.
[2] Xiao, T.-F.; Zhang, Y.-F.; Hou, W.-T.; Yan, P.-J.; Hai, J.; Xu, P.-F.; Xu, G.-Q.. Dehydrogenation/(3+2) Cycloaddition of Saturated Aza-Heterocycles via Merging Organic Photoredox and Lewis Acid Catalysis, Org. Lett. 2021, 23, 8942-8946.
[3] Mudithanapelli, C.; Dhorma, L. P.; Kim, M.-h. PIFA-Promoted, Solvent-Controlled Selective Functionalization of $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ or $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H: Nitration via $\mathrm{C}-\mathrm{N}$ Bond Cleavage of $\mathrm{CH}_{3} \mathrm{NO}_{2}$, Cyanation, or Oxygenation in Water. Org. Lett. 2019, 21, 3098-3102,
[4] Li, L.; El Khoury, A.; Clement, B. O.; Harran, P. G. Re-visiting the Diastereoselectivity of Organocatalytic Conjugate Addition of 2-trimethylsiloxyfuran to trans-crotonaldehyde. Tetrahedron Lett. 2021, 72, 153056.

[^0]: ${ }^{a}$ Reaction conditions: 1a (0.1 mmol), 2a (0.13 mmol), PFNB (0.5 equiv.), addition ($10 \mathrm{~mol} \%$) and DCQ ($1 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL}):$ DMF $(0.1 \mathrm{mLmL})$ at $25^{\circ} \mathrm{C}$ for 12 h under irradiation with white light. ${ }^{b}$ Isolated yield after chromatography. PFNB $=$ pentafluoronitrobenzene. DPPA $=$ Diphenylphosphinic acid

