A Macrocyclic Fluorescent Probe for the Detection of Citrate

Supplementary Information

Stephen M. Butler, ^{a,b} Maria Hountondji,^{a,b} Stuart N. Berry,^a Jian Tan,^{c,d} Laurence Macia,^{c,d,e} and Katrina A. Jolliffe^{a,b,f*}

^{a.}School of Chemistry, The University of Sydney, NSW, 2006, Australia.

^b-Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, 2006, NSW, Australia.

^{d.}School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney NSW 2006, Australia

^{e.}Sydney Cytometry, The University of Sydney NSW 2006, Australia

Table of Contents

Experimental	1
Synthesis	1
Anion Screens	3
Titrations	3
Cell Studies	4
Compound Spectra	5
Additional Figures	21
Figure S1—DFT modelling of receptor 2 with A: adipate; B: terephthalate	21
Figure S2—Variable temperature ¹ H NMR	22
Figure S3—Terephthalate ¹ H NMR titration	23
Figure S4—Propiolate ¹ H NMR titration	24
Figure S5—Malonate ¹ H NMR titration	25
Figure S6—Screening data: all anions	26
Figure S7—Excitation/emission spectrum of receptor 2	27
Figure S8—Fluorescence titration of receptor 2 (25 μ M) with citrate in 9:1 CH ₂ Cl ₂ /MeOH	28
Figure S9—Deprotonation of receptor 2 (25 μ M) in DMSO	29
Figure S10—UV/Vis titration of receptor 2 (25 μ M) with citrate in 9:1 DMSO/H ₂ O	31
Figure S11 – Representative UV-vis titrations of receptor 2 (25 μ M) with carboxylates	33
Figure S12—Spectral Signature of Receptor 2	40

^{c.} The Charles Perkins Centre, The University of Sydney NSW 2006, Australia

^{f.} The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia. <u>*kate.jolliffe@sydney.edu.au</u>

Experimental

Synthesis

General synthesis of tetrabutylammonium carboxylates

Carboxylic acid (1eq, ~100 mg) was dissolved in water (5 mL) at room temperature. A solution of tetrabutylammonium hydroxide (2 or 3 equivalents, 1M in methanol) was added dropwise with stirring. The resulting solution was stirred at room temperature for half an hour. The methanol was removed *in vacuo*, and the remaining aqueous solution lyophilized until a dry solid was obtained. Salts were stored in a vacuum dessicator at room temperature, or under nitrogen atmosphere at -20 °C (oxalate, malonate, succinate) and were lyophilized prior to use.

Tetrabutylammonium oxalate

¹H NMR (300 MHz, DMSO-*d*6) δ 3.22 – 3.09 (m, 16H), 1.65 – 1.48 (m, 16H), 1.38 – 1.23 (m, 16H), 0.93 (t, *J* = 7.3 Hz, 24H).

Tetrabutylammonium malonate

¹H NMR (300 MHz, MeCN-*d*3) δ 3.14 – 3.06 (m, 16H), 2.70 (s, 2H), 1.67 – 1.54 (m, 16H), 1.42 – 1.29 (m, 16H), 0.97 (t, *J* = 7.3 Hz, 24H).

Tetrabutylammonium succinate

¹H NMR (300 MHz, DMSO-*d*6) δ 3.26 – 3.12 (m, 16H), 1.89 (s, 4H), 1.65 – 1.49 (m, 16H), 1.40 – 1.23 (m, 16H), 0.93 (t, *J* = 7.3 Hz).

Tetrabutylammonium terephthalate

¹H NMR (300 MHz, DMSO-*d*6) δ 7.64 (s, 4H), 3.26 – 3.12 (m, 16H), 1.65 – 1.49 (m, 16H), 1.40 – 1.23 (m, 16H), 0.93 (t, *J* = 7.3 Hz).

Tetrabutylammonium citrate

¹H NMR (300 MHz, DMSO-*d*6) δ 3.22 – 3.09 (m, 24H), 2.29 (d, *J* = 14 Hz, 2H), 1.98 (d, *J* = 14 Hz, 2H), 1.65 – 1.48 (m, 24H), 1.38 – 1.23 (m, 24H), 0.93 (t, *J* = 7.3 Hz, 36H).

tert-Butyl (3-(aminomethyl)benzyl)carbamate (4)

A solution of di-*tert*-butyl dicarbonate (819 mg, 3.75 mmol) in dichloromethane (10 mL) was added dropwise over a period of five minutes to a solution of freshly-distilled *m*-xyleneamine (2.5 mL, 18.9 mmol) in dichloromethane at 0 °C. The resulting mixture was allowed to warm to room temperature overnight (14h). Water was added, and the aqueous phase extracted with dichloromethane. The combined organic phases were washed repeatedly with water until TLC analysis showed no starting

diamine remaining. The organic phase was washed with brine (x1), dried (Na₂SO₄), and the solvent removed *in vacuo* to afford the title compound as a clear oil that solidified upon standing (835 mg, 94%), with all analytical data matching that previously reported in the literature.¹

¹H NMR (300 MHz, CDCl₃) δ 7.30 (t, *J* = 7.3 Hz, 1H), 7.25 – 7.13 (m, 3H), 4.84, (s, 1H), 4.31 (d, *J* = 5.7 Hz, 2H), 3.90 (s, 2H), 1.46 (s, 9H).

tert-Butyl (3-(isothiocyanatomethyl)benzyl)carbamate (6)

Thiophosgene (180 μ L, 2.35 mmol) was added dropwise to a mixture of *tert*-butyl (3-(aminomethyl)benzyl)carbamate (5)(371 mg, 1.57) in dichloromethane (80 mL) and saturated aqueous NaHCO₃ solution (16 mL) at room temperature. The resulting mixture was stirred at room temperature for 1 h. The reaction mixture was extracted with dichloromethane (x3), and the organic extracts combined, washed with brine, and dried (Na₂SO₄). Removal of the solvent *in vacuo* afforded the title compound as an off-white solid (437 mg, *quant*.) that was used in following steps without further purification. All analytical data matched that previously reported in the literature.²

¹H NMR (300 MHz, CDCl₃) δ 7.36 (t, *J* = 7.8 Hz, 1H), 7.29 – 7.19 (m, 3H), 4.88 (s, 1H), 4.81 (s, 2H), 4.33 (d, *J* = 5.7 Hz, 2H), 1.47 (s, 9H).

Di-*tert*-butyl ((((thiocarbonylbis(azanediyl))bis(methylene))bis(3,1-phenylene))bis(methylene))dicarbamate (7)

A solution of amine **4** (370 mg, 1.57 mmol) in dichloromethane (10 mL) was added to a solution of thioisocyanate **6** (437 mg, 1.57 mmol) in dichloromethane (10 mL) at room temperature. The resulting solution was stirred at room temperature for 16 h. The solvent was removed *in vacuo* to afford the title compound as a white foam (807 mg, *quant.*), with all analytical data matching that previously reported in the literature.³

¹H NMR (300 MHz, CDCl₃) δ 7.29 (t, *J* = 7.8 Hz, 2H), 7.23 – 7.10 (m, 6H), 6.13 (s, 2H), 4.96 (s, 2H), 4.63 (d, *J* = 4.5 Hz, 4H), 4.25 (d, *J* = 5.5 Hz, 4H), 1.45 (s, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 182.7, 156.3, 139.5, 138.1, 129.1, 126.8, 126.7, 126.6, 79.9, 48.5, 44.4, 28.5; HRMS (ESI) Calc. for C₂₇H₂₈N₄O₄SNa (MNa⁺) 537.2506 found 537.2503 ; IR (ATIR, neat) 3348, 2979, 1686, 1523, 1249, 1163, 698 cm⁻¹.

3,6-Dichloro-1,8-diisothiocyanato-9H-carbazole (5)

Thiophosgene (250 μ L, 3.26 mmol) was added dropwise to a mixture of carbazole diamine **3** (287 mg, 1.08 mmol) in ethyl acetate (22 mL) and saturated aqueous NaHCO₃ solution (11 mL) at room temperature. The resulting mixture was stirred at room temperature for a further 30 mins. The aqueous phase was extracted with ethyl acetate (x3) and with dichloromethane (x3). The combined organic phases were each washed with brine, dried (Na₂SO₄), and the solvent removed *in vacuo* to afford the title compound as a brown solid (378 mg, *quant.*).

¹H NMR (300 MHz, CDCl₃) δ 8.56 (s, 1H), 7.87 (s, 2H), 7.39 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 135.8, 133.5, 125.5, 124.5, 124.0, 120.7, 115.3; HRMS (ESI) Calc. for $C_{14}H_4Cl_2N_3S_2$ (M⁻) 347.9229 found 347.9221; IR (ATIR, neat) 3330, 2010, 1253, 1227, 850, 578 cm⁻¹.

6³,6⁶-dichloro-6⁹*H*-3,5,7,9,13,15-hexaaza-6(1,8)-carbazola-1,11(1,3)dibenzenacyclohexadecaphane-4,8,14-trithione (2)

TFA (2 mL) was added dropwise to a solution of di-Boc-protected diamine **7** (179 mg, 0.348 mmol) in dichloromethane (5 mL) at room temperature. The resulting solution was stirred at room temperature for a further 2 h, at which point the solvent was removed under a flow of nitrogen. The free base of the amine was obtained by passing the compound through Amberlyst A-26(OH) resin, eluting with methanol. Due to limited stability of this compound it was carried through directly to the following step.

The intermediate diamine (0.348 mmol) was dissolved in a mixture of dichloromethane (14 mL) and acetonitrile (5 mL), and added dropwise over 20 mins to a solution of diisothiocyanate **5** (125 mg, 0.357 mmol) and DIPEA (300 μ L, 1.72 mmol) in dichloromethane (140 mL) at room temperature. The resulting mixture was stirred at room temperature for 24 h. The solvent was removed *in vacuo*. Flash column chromatography, eluting with 10% THF/90% dichloromethane, afforded the title compound as an off-white solid (84 mg, 38%).

¹H NMR (300 MHz, DMSO-*d*6) δ 10.93 (s, 1H), 9.65 (s, 2H), 8.22 – 8.02 (m, 4H), 7.93 (s, 2H), 7.63 (s, 2H), 7.37 – 7.10 (m, 8H), 4.83 – 4.53 (m, 8H); HRMS (ESI) Calc. for $C_{31}H_{28}Cl_2N_3S_3$ (M + H)⁺ 644.0940 found 644.0935; IR (ATIR, neat) 3257, 2923, 2854, 1532, 1294, 1225, 694 cm⁻¹. Attempts to obtain full NMR characterization of MThuA were hindered by limited solubility of the compound, and broadening of NMR peaks due to conformational flexibility. Hence, the ¹³C NMR spectrum was obtained in the presence of an excess of (TBA)₂HPO₄. ¹H NMR (phosphate-bound)(300 MHz, DMSO-*d*6) δ 9.08 (s, 2H), 7.81 (s, 4H), 7.30 – 7.15 (m, 8H), 4.72 (s, 4H), 4.67 (s, 4H); ¹³C NMR (phosphate-bound)(125 MHz, DMSO-*d*6) δ 183.3 (very broad, observed in HMBC spectrum), 180.7, 139.5, 138.6, 130.7, 128.4, 128.1, 127.3, 127.1, 127.0, 123.4, 122.7, 115.9, 113.7, 48.7, 48.3.

Anion Screens

Anion screens were performed as follows. A 25 μ M stock solution of receptor **2** in the specified solvent mixture (40 – 50 mL) was prepared. A "blank" spectrum with no added anion was recorded using this solution. All anions used were anhydrous tetrabutylammonium salts, with the exceptions of tetraethylammonium bicarbonateand tetrabutylammonium fluoride trihydrate. Anions used were obtained from commercial sources or prepared according to literature methods. Hygroscopic salts were lyophilized prior to use. Anions were weighed into separate vials, and diluted with 1 – 3 mL of the receptor **2** stock solution, such that the solution contained 100 equivalents of anion relative to receptor **2**. Spectra of each mixture were recorded using the same cuvette, which was thoroughly cleaned and dried between each use. Spectra were recorded on a Horiba Duetta spectrophotometer with temperature control enabled (25 °C) using 10 mm quartz cuvettes.

Titrations

Anion titrations were performed as follows. A 25 μ M stock solution of receptor **2** in the specified solvent mixture (40 – 50 mL) was prepared. A "blank" spectrum with no added anion was recorded using this solution. All anions used were anhydrous tetrabutylammonium salts, with the exceptions of tetraethylammonium bicarbonate and tetrabutylammonium fluoride trihydrate. Anions used were obtained from commercial sources or prepared according to literature methods. Hygroscopic salts were lyophilized prior to use. Anions were weighed into separate vials, and diluted with 0.5 – 1.5 mL of the receptor **2** stock solution, such that the solution contained 5 – 10 mM anion. Small measured aliquots were added to the receptor **2** stock solution, and the solution stirred for at least 30 seconds before the acquisition of a spectrum. Fluorescence spectra were recorded on a Horiba Duetta spectrophotometer with temperature control enabled (25 °C) using 10 mm quartz cuvettes.

Absorption spectra were obtained in the specified solvent on a Varian Cary 400 UV-Vis spectrophotometer using 10 mm quartz cuvettes.

Cell Studies

Cell staining was achieved by prior fixation and permeabilization of splenocytes using the eBioscience[™] Foxp3 / Transcription Factor Staining Buffer Set, followed by incubation of receptor 2 for 20 minutes at room temperature. Evaluation of metabolic activity and associated changes to intracellular citrate level was determined using murine macrophages. Splenocyte-derived macrophages were first activated for 1 hour with lipopolysaccharides (LPS), LPS and oligomycin, or with PBS only. The macrophages were harvested, then permeabilized and incubated with receptor 2. Analysis of different immune cell subsets isolated from murine spleens was achieved using receptor 2, including plasmacytoid dendritic cell (MHCII⁺B220⁺CD11c⁺), conventional dendritic cells (MHCII⁺CD11c⁺), macrophages (CD11b⁺F4/80⁺), monocytes (Ly6C^{int}/^{high}), gamma delta T cell (CD3⁺gdTCR⁺), neutrophil (CD11b⁺Ly6G⁺), conventional (CD3⁺ and CD4⁺/CD8⁺) and regulatory T cells (CD3⁺CD4⁺CD25⁺FoxP3⁺) as well as B cells (B220⁺). Splenocytes were obtained by mechanical disruption followed by filtration through a 100um cell strainer to obtain a single-cell suspension. Red blood cells were then removed using RBC lysis buffer (BioLegend). Samples were resuspended in FACS buffer (2% FBS containing 1mM EDTA) for antibody staining. Briefly, cells were first stained with TruStain FcX anti-CD16/32 (93) for non-specific antibody blocking and LIVE/DEAD Fixable Blue Dead Cell Stain (Invitrogen) for dead cell exclusion. The following anti-mouse antibodies were used for the identification of various immune subsets: CD45-BV785 (30-F11), MHCII-BV510 (M5/114.15.2), B220-BUV737 (RA3-6B2), CD3-PE-CF594 (145-2C11), TCRgd-PE/Cy5 (GL3), CD4-PerCP (RM4-5), CD8-BV785 (53-6.7), CD25-BV605 (PC61), FoxP3-APC (REA788), CD11c-FITC (N418), Ly6C-BV605 (HK1.4), Ly6C-BV421 (AL-21), Ly6G-BV650 (1A8), F4/80-BV711 (BM8), CD11b-APC/Cy7 (M1/70). For detection of intracellular targets, cells were fixed and permeabilized using the eBioscience™ Foxp3 / Transcription Factor Staining Buffer Set according to the manufacturer's instructions. All samples were acquired using the LSRII 5L (BD Bioscience) flow cytometer and analysed using the FlowJo v10 software.

Compound Spectra

tert-Butyl (3-(aminomethyl)benzyl)carbamate (4) – 300 MHz, CDCl₃

tert-Butyl (3-(isothiocyanatomethyl)benzyl)carbamate (6) – 300 MHz, CDCl₃

Di-tert-butyl ((((thiocarbonylbis(azanediyl))bis(methylene))bis(3,1-phenylene))bis(methylene))dicarbamate (7) – 300 MHz, CDCl₃

Di-tert-butyl ((((thiocarbonylbis(azanediyl))bis(methylene))bis(3,1-phenylene))bis(methylene))dicarbamate (7) – 125 MHz, CDCl₃

 ·····															·····				
1 100 - 1 10	erine din pinda palasa Asiyona ang pagangka	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	t plant de la segat	1.1.1.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1	an dala dala dala dala Arabitettari angli	alandar barbar Kalifer Produce	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	a la	le david för för som	5411-64 <mark>15-61619-616-616-616-616-616-616-616-616-6</mark>	1994 Luppon du 1947 July 2018	d	1 dal ₁₀ 14 d <mark>a</mark> 21 da bi 14 da 1114 da 1	2 4 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	122- 1204 41 1204 1424- 1404 41 1204 41 1204 41 1204 41 1204 41 1204 41 1204 41 1204 41 1204 41 1204 41 1204 41 1204	la filea na linea Interpreter interpreter interpreter interpreter interpreter interpreter interpreter interpreter interpreter inte	hand the start lift of the start of the star	la la la contra de la calcante La casima (a canacita de la calcante	kan ka
	sc	S N	NH	NCS															
	cı	2	Į.	CI				\/ [CDCl₃	
							135.82 133.53 125.54	124.51 124.03 120.67	115.35										

3,6-Dichloro-1,8-diisothiocyanato-9H-carbazole (5) – 125 MHz, CDCl₃

6³,6⁶-dichloro-6⁹H-3,5,7,9,13,15-hexaaza-6(1,8)-carbazola-1,11(1,3)-dibenzenacyclohexadecaphane-4,8,14-trithione (2) –400 MHz, DMSO-d6

6³,6⁶-dichloro-6⁹H-3,5,7,9,13,15-hexaaza-6(1,8)-carbazola-1,11(1,3)-dibenzenacyclohexadecaphane-4,8,14-trithione (2)(bound to TBA₂HPO₄) –400 MHz, DMSO-*d6*

6³,6⁶-dichloro-6⁹H-3,5,7,9,13,15-hexaaza-6(1,8)-carbazola-1,11(1,3)-dibenzenacyclohexadecaphane-4,8,14-trithione (2)(bound to TBA₂HPO₄) –400 MHz, DMSO-*d6*

S19

-

-

Additional Figures

Figure S1—DFT modelling of receptor 2 with A: adipate; B: terephthalate

Figure S2—Variable temperature ¹H NMR

Figure S3—Terephthalate ¹H NMR titration

Figure S4—Propiolate ¹H NMR titration

Figure S5—Malonate ¹H NMR titration

Figure S6—Screening data: all anions

Changes in fluorescence intensity at 385 nm of receptor **2** (25 μ M) in 9:1 CH₂Cl₂:methanol relative to intensity of blank with: 100 equivalents of anion (λ_{Ex} = 300 nm).

Excitation (λ_{em} = 385 nm) and emission (λ_{ex} = 300 nm) spectra of receptor **2** (25 μ M in DMSO).

Representative data and fit of 1:2 binding model between receptor **2** and citrate. Coloured dots represent data collected at 380 nm (orange) and 420 nm (yellow), and dotted lines the expected fit.

http://app.supramolecular.org/bindfit/view/532ac009-1054-4c00-856b-1e0603d80eec

Figure S9—Deprotonation of receptor 2 (25 μ M) in DMSO

Receptor **2** undergoes excited state deprotonation in the presence of carboxylates in aqueous DMSO, leading to a new emission maximum at 465 nm. This matches the spectrum of receptor **2** deprotonated with TBAOH.

Receptor **2** + TBAOH

Addition of dicarboxylate species as weakly basic as tetrabutylammonium terephthalate (pKa 2.95, 5.41 in H_2O) leads to excited state deprotonation of the receptor in DMSO solutions (data for 1% H_2O shown below).

Representative data and fits to binding models of receptor **2** and citrate. Coloured dots represent data collected at 300 nm (orange) and 325 nm (yellow), and dotted lines the expected fit.

http://app.supramolecular.org/bindfit/view/2965461d-7a8d-4bcd-8092-8d82d4e2d154

http://app.supramolecular.org/bindfit/view/41044422-4eeb-4275-9467-ca24ee3c58b5

Figure S11 – Representative UV-vis titrations of receptor 2 (25 μ M) with carboxylates Terephthalate (DMSO + 1% H2O): $K_{1:1}$ = 2.83 x 10⁴ M⁻¹

Representative data and fits to binding models of receptor **2** and terephthalate. Coloured dots represent data collected at 325 nm (orange) and 400 nm (yellow), and dotted lines the expected fit.

http://app.supramolecular.org/bindfit/view/ffc1a891-c456-48cf-98e0-0c79875fb74a

Representative data and fits to binding models of receptor **2** and oxalate. Coloured dots represent data collected at 300 nm (orange), 325 nm (yellow), and 380 nm (green) and dotted lines the expected fit.

http://app.supramolecular.org/bindfit/view/be55d244-916e-4ae8-a5eb-02eec6b7a243

Malonate (DMSO + 1% H2O): Receptor displayed slow equilibration, with possible deprotonation of receptor. Plausible fits to 1:2 and 2:1 binding models ($K_{1:1} = 4.5 \times 10^5 \text{ M}^{-1}$; $K_{1:2} = 2.4 \times 10^4 \text{ M}^{-1}$ or $K_{1:1} = 4.3 \times 10^4$; $K_{2:1} = 3.4 \times 10^3$).

Representative data and fits to binding models of receptor **2** and malonate. Coloured dots represent data collected at 300 nm (orange), 325 nm (yellow), and 375 nm (green) and dotted lines the expected fit.

http://app.supramolecular.org/bindfit/view/d1aa1297-59fd-4cfd-aa8d-101c3c911bfe

Succinate (DMSO + 1% H2O): $K_{1:1} = 4.38 \times 10^4 \text{ M}^{-1}$; $K_{1:2} = 2.92 \times 10^4 \text{ M}^{-1}$

Representative data and fits to binding models of receptor **2** and succinate. Coloured dots represent data collected at 325 nm (orange) and 400 nm (yellow) and dotted lines the expected fit.

Glutarate (DMSO + 1% H₂O): $K_{1:1} = 1.4 \times 10^5 \text{ M}^{-1}$; $K_{1:2} = 3.3 \times 10^3 \text{ M}^{-1}$

Representative data and fits to binding models of receptor **2** and glutarate. Coloured dots represent data collected at 325 nm (orange) and 400 nm (yellow) and dotted lines the expected fit.

http://app.supramolecular.org/bindfit/view/b9a5a7ce-dfa8-4428-8fbe-1fea490031b2

Representative data and fits to binding models of receptor **2** and adipate. Coloured dots represent data collected at 300 nm (orange) and 325 nm (yellow) and dotted lines the expected fit.

Benzoate (DMSO + 1% H₂O):

Negligible changes in absorbance—data could not be fit to any binding model.

Benzoate

Laser	Channel	Center Wavelength (nm)	Bandwidth (nm)	Wavelength Start (nm)	Wavelength End (nm)	Laser	Channel	Center Wavelength (nm)	Bandwidth (nm)	Wavelength Start (nm)	Wavelength End (nm)
	UV1	372	15	365	380		B1	508	20	498	518
	UV2	387	15	380	395		B2	525	17	516	533
	UV3	427	15	420	435		B3	542	17	533	550
	UV4	443	15	435	450		B4	581	19	571	590
	UV5	458	15	450	480		B5	598	20	588	608
	UV6	473	15	465	480		B6	615	20	605	625
	UV7	514	28	500	528	Blue	B7	660	17	652	669
	UV8	542	28	528	556		B8	678	18	669	687
Ultraviolet	UV9	581	31	566	597		B9	697	19	688	707
	UV10	612	31	597	628		B10	717	20	707	727
	UV11	664	27	650	677		B11	738	21	728	749
	UV12	691	28	677	705		B12	760	23	749	772
	UV13	720	29	705	734		B13	783	23	772	795
	UV14	750	30	735	765		B14	812	34	795	829
	UV15	780	30	765	795			677			
	UV16	812	34	795	829		YG1	5//	20	567	587
							YGZ	598	20	880	608
	V1	428	15	420	435		YG3	615	20	605	625
	V2	443	15	436	451		YG4	679	1/	652	697
	V3	458	15	451	466	Green	VG6	607	10	699	207
	V4	473	15	466	481		VG7	720	20	706	707
	V5	508	20	498	518		VG8	750	20	725	765
	V6	525	17	516	533		YG9	780	30	765	795
	V7	542	17	533	550		YG10	812	34	795	829
	V8	581	19	571	590		1010				017
Violet	V9	598	20	588	608		R1	660	17	652	669
	V10	615	20	605	625		R2	678	18	669	687
	V11	664	27	651	678		R3	697	19	688	707
	V12	692	28	678	706		R4	717	20	707	727
	V13	720	29	706	735	Red	R5	738	21	728	749
	V14	750	30	735	765		R6	760	23	749	772
	V15	780	30	765	795		R7	783	23	772	795
	V16	812	812 34 795 829			R8	812	34	795	829	

Spectral signature of fixed cells in the absence and presence of receptor **2** (50 μ M). An increase in fluorescence intensity was observed for the UV1-UV3 channels (372 – 435 nm) when receptor **2** was present.

1. Berry, S. N.; Qin, L.; Lewis, W.; Jolliffe, K. A., Conformationally adaptable macrocyclic receptors for ditopic anions: analysis of chelate cooperativity in aqueous containing media. *Chemical Science* **2020**, *11*, 7015 - 7022.

 Smith, J.; Liras, J. L.; Schneider, S. E.; Anslyn, E. V., Solid and Solution Phase Organic Syntheses of Oligomeric Thioureas. *The Journal of Organic Chemistry* **1996**, *61* (25), 8811-8818.
Gross, R.; Dürner, G.; Göbel, M. W., Beschleunigung von Substitutionsreaktionen eines Phosphorsäurediesters durch Bis(guanidinium)-Verbindungen. *Liebigs Ann. Chem.* **1994**, *1994* (1), 49-58.