Supporting Information

A Rapid Construction and Biological Evaluation of Densely Substituted Pyrrolo[1,2-a]indoles via $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ Assisted Cascade Approach

Ghanshyam Mali, ${ }^{\text {a }}$ Vinay Kumar Yadav, ${ }^{\text {b }}$ Himani Priya, ${ }^{\text {a }}$ Manjari Shukla, ${ }^{\text {b }}$ Peeyush Pandey, ${ }^{\text {a }}$ Akhilesh Kumar, ${ }^{\text {c }}$ Manikandan Paranjothy, ${ }^{* a}$ Sudipta Bhattacharyya, ${ }^{* b}$ and Rohan D. Erande*a
${ }^{a}$ Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur - 342037, India.
${ }^{b}$ Department of Bioscience \& Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur - 342037, India
${ }^{c}$ Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
*R.D.E.: Tel, (+91)-291-280-1312; Email: rd.erande @iitj.ac.in
*S.B.: Email: sudipta@iitj.ac.in
*M.P.: Email: Pmanikandan@iitj.ac.in

Table of Content

Page
1 General Information SI-2
2 Preparation of Substrates SI-3
3 General procedure for synthesis of pyrrolo[1,2-a]indole (3a-3g, 4a-4f and 5a-5d) SI-9
4 Characterization of compounds $\mathbf{3 a - 3 g}$ SI-11
5 Characterization of compounds 4a-4f SI-15
6 Characterization of compounds 5a-5d SI-21
7 Controlled experiments SI-24
8 Single Crystal X-Ray Analysis SI-29
9 Biological Evaluation SI-35
10 Computational Details SI-38
References SI-40
11 NMR spectra of new compounds $\mathbf{3 a - 3 g}, \mathbf{4 a - 4 f}, 5 \mathrm{5}-\mathbf{5 d}$ and $\mathbf{6 - 9}$ SI-42
12 COMPUTATIONAL DETAILS-SUPPLEMENTARY DATA SI-66

1. General Information

All reactions were carried out under nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise mentioned. All the chemicals were purchased commercially, and used without further purification. All reactions were routinely carried out in oven-dried glassware under a nitrogen or argon atmosphere unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates (60F-254) using UV light as a visualizing agent and an p-anisaldehyde stain, and heat as developing agents. Merck silica gel (particle sizes 100-200 and 230-400 mesh) was used for flash column chromatography. Yields refer to chromatographically pure material, unless otherwise stated.
${ }^{1} \mathrm{H}-$ NMR spectra were recorded at 500 MHz using a Make: Bruker High Perfomance Digital FT-NMR (Model: AVANCE III HD, AscendTM WB, 500 MHz Equipment control: Topspin 3.2 Features Standard operating procedure) whereas ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 126 MHz . Chemical shifts in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported with reference to internal $\mathrm{Me}_{4} \mathrm{Si}(\mathrm{TMS})(\delta 0.00)$ in CDCl_{3} and DMSO- d_{6}; in ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra they are reported with reference to TMS in CDCl_{3}. NMR spectra were processed and analyzed using Mnova software. The HRMS data were collected using a 6545 LC/QTOF HRMS.

The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}, \mathrm{dd}=$ doublet of doublet, $\mathrm{ddd}=$ doublet of a doublet of a doublet, $\mathrm{dt}=$ doublet of a triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

2. Preparation of Substrates

2.1 Ethyl (E)-3-(3-methyl-1H-indol-2-yl)acrylate 1a ${ }^{1}$

2-Bromo-3-methyl indole was synthesized according to the following modifications of literature methods ${ }^{2}$. To a solution of 3-methylindole ($500 \mathrm{mg}, 3.811 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(10 \mathrm{~mL})$, NBS (N-brommosuccinimide; $746 \mathrm{mg}, 4.192 \mathrm{mmol}$) was added in 200 mg portions. The mixture was stirred at room temperature for 30 min , filtered and. the filtrate was concentrated under reduced pressure. The purification of the residue on a silica gel column using EtOAc/hexane (1/9) as eluent gave the 2-bromo-3-methyl indole ($737 \mathrm{mg}, 3.506 \mathrm{mmol}, 92 \%$) as a white solid: $R_{\mathrm{f}}=0.6$ (EtOAc/hexane $1 / 4$).

To 2-bromo-3-methyindole ($737 \mathrm{mg}, 3.506 \mathrm{mmol}$) in a 10 mL round bottom flask were added ethyl acrylate (0.47 mL , $4.382 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.62 \mathrm{~mL}, 4.382 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(28 \mathrm{mg}, 0.106 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}(37 \mathrm{mg}, 0.053 \mathrm{mmol})$, and the resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . The reaction was allowed to room temperature and extracted 3 x with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The purification of the residue on a silica gel column using (EtOAc/hexane 2/23) as eluent gave the ester 1a ($659 \mathrm{mg}, 2.875$ $\mathrm{mmol}, 82 \%)$ as a yellow solid: $R_{\mathrm{f}}=0.6(\mathrm{EtOAc} /$ hexane $1 / 4)$; The obtained NMR data agreement with the reported data. ${ }^{1}$ ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27 (dd, $J=9.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=11.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 167.5,137.5,132.4,130.1,129.2,125.2,120.0(2 \times \mathrm{CH})$, $118.9,113.9,111.1,60.7,14.5,9.1$.

2.2 Ethyl (E)-3-(3-(2-methoxy-2-oxoethyl)-1H-indol-2-yl)acrylate $\mathbf{1 b}^{\mathbf{3}}$

$\mathrm{H}_{2} \mathrm{SO}_{4}(98 \%)(0.2 \mathrm{~mL})$ was added to a stirred solution of Indole-3-acetic acid ($500 \mathrm{mg}, 2.854 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ at room temperature, and the mixture was then stirred for 2 h at $60^{\circ} \mathrm{C}$. TLC was used to monitor the reaction progress until
it was complete. A large amount of iced water was then added to the mixture. A saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was used to neutralize the mixture until a white solid appeared. After filtering the mixed solution, methyl indole-3-acetate (535 mg , $2.827 \mathrm{mmol}, 99 \%$) was obtained as a white solid; $R_{\mathrm{f}}=0.6$ ($\mathrm{EtOAc} /$ hexane $3 / 7$). Spectral data were in agreement with those reported. ${ }^{4}$

Methyl 2-(2-bromo-1H-indol-3-yl)acetate was synthesized according to the following modification of the literature method. ${ }^{5}$ To a solution of methyl indole-3-acetate ($100 \mathrm{mg}, 0.528 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(3 \mathrm{~mL})$, NBS ($104 \mathrm{mg}, 0.584 \mathrm{mmol}$) was added portion wise. The resulting mixture was warmed to $30^{\circ} \mathrm{C}$ and stirred for 2 h , filtered and. the filtrate was concentrated under reduced pressure. The purification of the residue on a silica gel column using EtOAc/hexane (2/8) as eluent gave the methyl 2-(2-bromo-1H-indol-3-yl)acetate ($108 \mathrm{mg}, 0.403 \mathrm{mmol}, 76 \%$) as a light-yellow solid: $R_{\mathrm{f}}=0.7$ (EtOAc/hexane 3/7).

To methyl 2-(2-bromo-1H-indol-3-yl)acetate ($100 \mathrm{mg}, 0.373 \mathrm{mmol}$) in a 10 mL round-bottom flask were added ethyl acrylate $(0.05 \mathrm{~mL}, 0.470 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.07 \mathrm{~mL}, 0.502 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(28 \mathrm{mg}, 0.106 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(1 \mathrm{mg}, 0.004$ mmol) and the mixture was stirred at $110^{\circ} \mathrm{C}$ for 48 h . The reaction was allowed to room temperature and extracted 3 x with EtOAc (5 mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The purification of the residue on a silica gel column using EtOAc/hexane $1 / 4$ as eluent gave the ethyl (E)-3-(3-(2-methoxy-2-oxoethyl)-1H-indol-2-yl)acrylate $\mathbf{1 b}(60 \mathrm{mg}, 0.209 \mathrm{mmol}, 56 \%)$ as a yellow solid: $R_{\mathrm{f}}=0.4(\mathrm{EtOAc} /$ hexane $1 / 4)$. Spectral data were in agreement with those reported. ${ }^{3}$

2.3 ethyl (E)-3-(3-(2-acetoxyethyl)-1H-indol-2-yl)acrylate 1c

Tryptophol was synthesized according to the following modification of the literature method. ${ }^{6}$ To a dried 25 mL roundbottom flask containing solution of Indole-3-acetic acid ($500 \mathrm{mg}, 2.854 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and chilled in an ice bath, was added portion wise $\mathrm{LiAlH}_{4}(239 \mathrm{mg} 6.298 \mathrm{mmol})$. It was allowed to stir at $0^{\circ} \mathrm{C}$ for 10 minutes. The resulting mixture was warmed to rt and stirred for 6 h . After reaction completion was confirmed by TLC, the reaction mixture was quenched by the careful addition of water at $0^{\circ} \mathrm{C}$. The mixture was stirred for 10 minutes until a white precipitate was observed, filtered by washing the precipitate with $\mathrm{Et}_{2} \mathrm{O}$, and the filtrate was evaporated. The residue was purified by silica gel flash
column chromatography to afford the corresponding tryptophol ($455 \mathrm{mg}, 2.823 \mathrm{mmol}, 99 \%$) as a brown solid: $R_{\mathrm{f}}=0.7$ (EtOAc/hexane, 1/1). Spectral data were in agreement with those reported. ${ }^{7}$

To a solution of tryptophol ($455 \mathrm{mg}, 2.823 \mathrm{mmol}$) in pyridine (5 mL) dropwise $\mathrm{Ac}_{2} \mathrm{O}(0.40 \mathrm{~mL}, 4.260 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 24 h . The solution was poured into $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and stirred for 20 min . The heterogeneous mixture was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($4 \times 10 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by column chromatography on silica gel using EtOAc/hexanes (1/4) for elution provided the tryptophol ester ($472 \mathrm{mg}, 2.323 \mathrm{mmol} 82 \%$) as a colorless oil; $R_{\mathrm{f}}=0.5$ (EtOAc/hexanes, 1/4); Spectral data were in agreement with those reported. ${ }^{8}$

To a solution of tryptophol ester ($472 \mathrm{mg}, 2.323 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(5 \mathrm{~mL})$, NBS $(455 \mathrm{mg}, 2.555 \mathrm{mmol})$ portion wise was added. The mixture was reflux for 1 h , filtrated and. the filtrate was concentrated under reduced pressure. The purification of the residue on a silica gel column using EtOAc/hexane (1/9) as eluent gave the 2-bromotryptophol ester ($610 \mathrm{mg}, 2.162$ $\mathrm{mmol}, 93 \%)$ as a white solid: $R_{\mathrm{f}}=0.5(\mathrm{EtOAc} /$ hexane $1 / 4)$.

To 2-bromotryptophol ester ($610 \mathrm{mg}, 2.162 \mathrm{mmol}$) in a 25 mL round-bottom flask, were added ethyl acrylate (0.58 mL , $5.405 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.60 \mathrm{~mL}, 4.324 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(28 \mathrm{mg}, 0.106 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}(46 \mathrm{mg}, 0.065 \mathrm{mmol})$ and resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . The reaction was allowed to room temperature and extracted 3 x with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The purification of the residue on a silica gel column using EtOAc/hexane $1 / 4$ as eluent gave the ethyl (E)-3-(3-(2-acetoxyethyl)- $1 H$-indol-2yl)acrylate $\mathbf{1 c}(420 \mathrm{mg}, 1.401 \mathrm{mmol}, 65 \%)$ as a yellow solid: $R_{\mathrm{f}}=0.4(\mathrm{EtOAc} /$ hexane $1 / 4) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.68(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31-6.21(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{dt}, J=14.0,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.21(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,167.2,137.5,132.1,130.9,128.5,125.2,120.4,119.9,118.4,114.9,111.3$, 64.5, 60.8, 23.9, 21.1, 14.5; HRMS (ESI/Q-TOF) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{4} 302.1387$; Found 302.1391.

2.4 ethyl (E)-3-(3-(2-acetamidoethyl)-1H-indol-2-yl)acrylate 1d

To a solution of tryptamine ($200 \mathrm{mg}, 1.248 \mathrm{mmol}$) in pyridine (5 mL) was added dropwise $\mathrm{Ac}_{2} \mathrm{O}(0.18 \mathrm{~mL}, 1.872 \mathrm{mmol})$. The mixture was stirred at room temperature for 12 h . The solution was poured into $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and stirred for 20 min . The heterogeneous mixture was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined
organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by column chromatography on silica gel using EtOAc/hexanes (4/1) for elution provided the acetamide ($240 \mathrm{mg}, 1.187 \mathrm{mmol} 95 \%$) as a colourless oil; $R_{\mathrm{f}}=0.5$ (EtOAc/hexanes, 4/1); Spectral data were in agreement with those reported. ${ }^{8}$

To a solution of acetamide ($240 \mathrm{mg}, 1.187 \mathrm{mmol}$) in $\mathrm{AcOH}(5 \mathrm{~mL})$ was added portion wise NBS ($233 \mathrm{mg}, 1.309 \mathrm{mmol}$). The mixture was stirred at room temperature for 4 h , filtrated and neutralized by aq. NaHCO_{3} then the filtrate was concentrated under reduced pressure. The purification of the residue on a silica gel column using EtOAc/hexane (4/1) as eluent gave the 2-bromo tryptamine ($217 \mathrm{mg}, 0.772 \mathrm{mmol}, 65 \%$) as a white solid: $R_{\mathrm{f}}=0.4(\mathrm{EtOAc} / \mathrm{hexane} 4 / 1)$.

To 2-bromo tryptamine ($217 \mathrm{mg}, 0.772 \mathrm{mmol}$) in a 10 mL round bottom flask added ethyl acrylate ($0.10 \mathrm{~mL}, 0.965 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 0.965 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(13 \mathrm{mg}, 0.049 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6 \mathrm{mg}, 0.027 \mathrm{mmol})$ and resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . The reaction was allowed to room temperature and extracted 3 x with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The purification of the residue on a silica gel column using (EtOAc/hexane 9/1) as eluent gave the ethyl (E)-3-(3-(2-acetamidoethyl)-1H-indol-2-yl)acrylate 1d (144 $\mathrm{mg}, 0.479 \mathrm{mmol}, 62 \%)$ as a yellow solid: $R_{\mathrm{f}}=0.5(\mathrm{EtOAc} / \mathrm{hexane} 9 / 1) ;{ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 11.41(\mathrm{~s}, J=$ $29.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{dd}, J=21.1$, $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=13.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.26-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29$ $-1.24(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,136.5,127.7,125.0,122.4,120.4,120.1,117.9,112.5,112.1$, 110.9, 109.0, 39.8, 29.8, 24.8, 24.8, 23.2; HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ 301.1547; Found 301.1549.

2.5 Ethyl (E)-3-(3-methyl-1H-indol-2-yl)acrylate 1e

5-methoxy-indole-3-carbaldehyde was synthesized according to the following modification of literature methods ${ }^{9}$. To a dried 25 mL round bottom flask containing solution of 5 -methoxy indole ($200 \mathrm{mg}, 1.359 \mathrm{mmol}$) in DMF (5 mL) and chilled in an ice bath, $\mathrm{POCl}_{3}(0.38 \mathrm{~mL}, 4.077 \mathrm{mmol})$ was added slowly, turning the mixture into a red solution. It was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 min . The resulting mixture was warmed to rt and stirred for 3.5 h , until it turned into a yellow suspension After reaction completion confirmed by TLC, the reaction mixture was quenched by adding crushed ice in a round bottom flask containing the crude, followed by the dropwise addition of $15 \% \mathrm{NaOH}(8 \mathrm{~mL})$, using an ice bath. The crude was mixed with EtOAc and extracted ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with water ($3 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure to afford 5-methoxy-indole-3-carbaldehyde (190
$\mathrm{mg}, 1.085 \mathrm{mmol}, 80 \%$) as a brown solid: $R_{\mathrm{f}}=0.2$ (EtOAc/hexane, $1 / 1$). The obtained product used in next step without further purification
To a dried 25 mL round bottom flask containing solution of 5-methoxy indole-3-carbaldehyde ($190 \mathrm{mg}, 1.085 \mathrm{mmol}$) in THF (5 mL) and chilled in an ice bath, $\mathrm{LiAlH}_{4}(83 \mathrm{mg}, 2.170 \mathrm{mmol})$ was added portion wise. It was allowed to stir at $0^{\circ} \mathrm{C}$ for 15 min . The resulting mixture was warmed to $45^{\circ} \mathrm{C}$ and stirred for 12 h . After reaction completion confirmed by TLC, the reaction mixture was quenched by adding crushed ice in round bottom flask containing the crude, using an ice bath The crude was mixed with EtOAc and extracted ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with water (3 x 10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The crude product purified by silica gel column by using EtOAc/hexane (1/4) as eluent gave 5-methoxy-3-methyl indole ($161 \mathrm{mg}, 0.999 \mathrm{mmol}, 92 \%$) as a white solid: $R_{\mathrm{f}}=0.5$ (EtOAc/hexane, 1/4)

To a solution of 5-methoxy-3-methyl indole ($161 \mathrm{mg}, 0.999 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(4 \mathrm{~mL})$ was added portions wise NBS (196 mg , $1.099 \mathrm{mmol})$. The mixture was stirred at room temperature for 2 h , filtered and. the filtrate was concentrated under reduced pressure. The purification of the residue on a silica gel column using EtOAc/hexane (1/9) as eluent gave the 2-bromo-5-methoxy-3-methyl indole ($197 \mathrm{mg}, 0.820 \mathrm{mmol}, 82 \%$) as a white solid: $R_{\mathrm{f}}=0.6(\mathrm{EtOAc} / \mathrm{hexane} 1 / 4)$.

To 2-bromo-5-methoxy-3-methyindole ($197 \mathrm{mg}, 0.820 \mathrm{mmol}$) in a 5 mL round bottom flask added ethyl acrylate (0.11 $\mathrm{mL}, 1.024 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.024 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(28 \mathrm{mg}, 0.106 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(37 \mathrm{mg}, 0.053 \mathrm{mmol})$ and resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . The reaction was allowed to room temperature and extracted 3 x with EtOAc. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The purification of the residue on a silica gel column using EtOAc/hexane (1/9) as eluent gave the ethyl (E)-3-(5-methoxy-3-methyl-1H-indol-2yl)acrylate $\mathbf{1 e}(98 \mathrm{mg}, 0.378 \mathrm{mmol}, 46 \%)$ as a yellow solid: $R_{\mathrm{f}}=0.6\left(\mathrm{EtOAc} /\right.$ hexane $\left.{ }^{1 / 4}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.06(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,150.7,132.8$, 132.1, 131.1, 129.0, 118.2, 115.7, 114.5, 111.2, 101.5, 60.7, 56.9, 14.5, 9.1; HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3} 260.1281$; Found 260.1289 .

2.6 (E)-3-(3-methyl-1H-indol-2-yl)acrylonitrile 1f

Indole-2-carbaldehyde was synthesized according to the following modification of literature method. ${ }^{1}$

To a magnetically stirred solution of the 3-methyl indole ($500 \mathrm{mg}, 3.811 \mathrm{mmol}$) in THF (15 mL) was added KOH powder ($321 \mathrm{mg}, 5.720 \mathrm{mmol}$) followed by dropwise addition of $\mathrm{PhSO}_{2} \mathrm{Cl}(0.60 \mathrm{~mL}, 4.700 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred magnetically for 12 h at room temperature. Water $(10 \mathrm{~mL})$ was then added to the reaction mixture, which was then extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, washed with brine $(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and
purification of the residue on silica gel column using (EtOAc/hexane 1/4) as eluent furnished 3-methyl-1-(phenylsulfonyl)$1 H$-indole ($742 \mathrm{mg}, 2.735,72 \%$) as a white solid: $R_{\mathrm{f}}=0.5$ (EtOAc/hexane $1 / 4$).

To a magnetically stirred solution of the protected 3-methyl indole ($500 \mathrm{mg}, 1.843 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dichloromethyl methyl ether $(0.60 \mathrm{~mL}, 6.634 \mathrm{mmol})$ followed by dropwise addition of $\mathrm{SnCl}_{4}(0.43 \mathrm{~mL}, 2.765 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$; the mixture was then warmed slowly to $-10^{\circ} \mathrm{C}$ over a period of $2 \mathrm{~h} . \mathrm{HCl}(1.0 \mathrm{~N}, 10 \mathrm{~mL})$ was added to the reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was then washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and recrystallization of the crude product from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ furnished the Indole-2-carbaldehyde ($466 \mathrm{mg}, 1.556 \mathrm{mmol}, 84 \%$) as black solid: $R_{\mathrm{f}}=0.5$ (EtOAc/hexane 3/7);

To a magnetically stirred solution of the protected indole-2-carbaldehyde ($200 \mathrm{mg}, 0.668 \mathrm{mmol}$) in acetonitrile (5 mL) was added KOH powder $(75 \mathrm{mg}, 1.337 \mathrm{mmol})$ at rt , and the mixture was stirred magnetically for 2 h at $80^{\circ} \mathrm{C}$. Water (5 mL) was then added to the reaction mixture, which was then extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, washed with brine $(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column using (EtOAc/hexane $1 / 9$) as eluent furnished (E)-3-(3-methyl-1H-indol-2-yl)acrylonitrile ($59 \mathrm{mg}, 0.322 \mathrm{mmol}, 48 \%$) as a white solid: $R_{\mathrm{f}}=0.5$ (EtOAc/hexane 1/9); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{ddd}, J=8.0,5.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(101 \mathrm{MHz}$, CDCl_{3}) $\delta 137.8,129.4,129.0,126.1,125.8,120.6,120.4,119.0,111.3,100.1,90.9,9.1 ;$ HRMS (ESI/Q-TOF) m/z: [M+H] ${ }^{+}$ Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}$ 183.0917; Found 260.0944.

2.7 Cinnamate

Cinnamate $\mathbf{2 e - 2 g}$ and $\mathbf{8}^{\prime}$ was prepared following a previously reported methodology. ${ }^{10}$ Ethyl (triphenylphosphoranylidene)acetate (1.5 equiv.) was added to a stirring mixture of the corresponding benzaldehyde (1.0 equiv.) in dichloromethane ($5-10 \mathrm{~mL}$) and the resulting solution was stirred at room temperature for $12-16 \mathrm{~h}$. Water (5 mL) was then added to the reaction mixture, which was then extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$ and, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column using EtOAc/hexane (1/4) as eluent furnished cinnamate $\mathbf{2 e - 2 g}$ and $\mathbf{8}$, as a solid.

3. General procedure for synthesis of pyrrolo $[1,2-a]$ indole ($\mathbf{3 a}-3 \mathrm{~g}, \mathbf{4 a}-4 \mathrm{f}$ and 5a-5d)

3.1 General procedure A

Under nitrogen atmosphere, an oven dried 10 mL round bottom flask, equipped with a magnetic stirring bar, was charged with compound ethyl (E)-3-(3-methyl- 1 H -indol-2-yl)acrylate $\mathbf{1 a}$ (1.0 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL}$). To this solution was added dropwise $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($20 \mathrm{~mol} \%$) followed by addition of compound $\mathbf{2 a}$ or $\mathbf{2 b}$ (2.0 equiv.) at room temperature. Then the whole reaction mixture was allowed to stir for 1 h at room temperature. After completion of the reaction (monitored by TLC), water (1 mL) was added to the reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column using EtOAc/hexane (3/7) as eluent furnished compound $\mathbf{3 a}$ and $\mathbf{3 b}$ with 85% and 77% respectively.

3.2 General procedure B

Under nitrogen atmosphere, an oven dried 10 mL round bottom flask, equipped with a magnetic stirring bar, was charged with compound ethyl (E)-3-(3-methyl-1 H -indol-2-yl)acrylate $\mathbf{1 a}$ (1.0 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL}$). To this solution was added dropwise $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($20 \mathrm{~mol} \%$) followed by addition of compound $\mathbf{2 c}$ or $\mathbf{2 d}$ (1.0 equiv.) at room temperature. Then the whole reaction mixture was allowed to stir for 45 minutes to 32 h at room temperature. After completion of the reaction (monitored by TLC), water $(1 \mathrm{~mL})$ was added to the reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column using EtOAc/hexane as eluent furnished compound $\mathbf{3 c - 3 d}(64-73 \%)$ as a solid.

3.3 General procedure C

Under nitrogen atmosphere, an oven dried 10 mL round bottom flask, equipped with a magnetic stirring bar, was charged with compound ethyl (E)-3-(3-methyl-1 H-indol-2-yl)acrylate $\mathbf{1 a}$ (1.0 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}$). To this solution was added dropwise $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ followed by addition of compound cinnamates $\mathbf{2 e}$ or $\mathbf{2 f}$ or $\mathbf{2 g}$ (2.0 equiv.) at room temperature. Then the whole reaction mixture was allowed to stir for $3.5-32 \mathrm{~h}$ at room temperature. After completion of the reaction (monitored by TLC), water (1 mL) was added to the reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 10 \mathrm{~mL})$ and, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column using $\mathrm{EtOAc} /$ hexane as eluent furnished compound $\mathbf{3 e - 3 g}(62-72 \%)$ as a solid.

3.4 General procedure D

Under nitrogen atmosphere, an oven dried 10 mL round bottom flask, equipped with a magnetic stirring bar, was charged with compound (1.0 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.6 \mathrm{~mL}\right.$). To this solution was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($20 \mathrm{~mol} \%$) dropwise at room temperature, then stirring for 30 min to 1.5 h at room temperature. Water (5 mL) was then added to the reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column using EtOAc/hexane (1/4) as eluent furnished self-dimer $\mathbf{4 a - 4 g}(74-89 \%)$ as a yellow solid.

3.5 General procedure \mathbf{E}

Under nitrogen atmosphere, an oven dried 10 mL round bottom flask, equipped with a magnetic stirring bar, was charged with compound 1a-1d (1.0 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$. To this solution was added dropwise $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ followed by addition of 1,4 -benzoqunone $\mathbf{2 h}$ (1.5 equiv.) at room temperature. Then the whole reaction mixture was allowed to stir for $10-45 \mathrm{~min}$. at room temperature. After completion of the reaction (monitored by TLC), water (1 mL) was added to the reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column using EtOAc/hexane as eluent furnished compound $\mathbf{5 a - 5 d}$ (67-82\%) as a solid.

4. Characterization of compounds $\mathbf{3 a - 3 g}$

Synthesis of pyrrolo[1,2-a]indole 3a:

The title compound 3a was prepared from ethyl (E)-3-(3-methyl- $1 H$-indol-2-yl)acrylate $\mathbf{1 a}$ ($10 \mathrm{mg} 0.044 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ and ethyl acrylate $\mathbf{2 a}(9.4 \mu \mathrm{~L}, 0.088 \mathrm{mmol}, 2.0$ equiv.) according to general procedure \mathbf{A} with a reaction time of 1 h . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (3/7) to furnish the title compound $\mathbf{3 a}(11 \mathrm{mg} 0.019 \mathrm{mmol}, 85 \%)$ as a white solid; $R_{\mathrm{f}}=0.4$ (EtOAc/hexane 3/7); m.p. $242^{\circ} \mathrm{C}$; IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3020,2362,1731,(\mathrm{C}=\mathrm{O}), 1215,742,667 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.34$ (s, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=$ $14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.20(\mathrm{~m}, 4 \mathrm{H}), 4.06-$ $4.02(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 2 \mathrm{H})$, $1.96-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.7$, 173.1, 171.9, 156.4, 143.8, 138.1, 136.3, 131.3, 128.4, 128.2, 122.3, 122.2, 119.4, 119.0, 118.9, 111.2, 109.9, 107.5, 95.2, 61.5, 61.4, 61.1, 60.5, 55.81, 44.5, 35.2, 31.0, 30.4, 26.6, 14.4, 14.3, 14.3, 9.1; HRMS (ESI/Q-TOF) m/z: [M-H] ${ }^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6} 527.2652$; Found 527.2680.

Synthesis of pyrrolo[1,2-a]indole 3b

The title compound 3bwas prepared from ethyl (E)-3-(3-methyl-1H-indol-2-yl)acrylate $\mathbf{1 a}$ ($10 \mathrm{mg} 0.044 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ and methyl vinyl ketone $\mathbf{2 b}(7.4 \mu \mathrm{~L}, 0.088 \mathrm{mmol}, 2.0$ equiv.) according to general procedure \mathbf{A} with a reaction time of 1 h . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (1/4) to furnish the title compound $\mathbf{3 b}$ ($9 \mathrm{mg} 0.017 \mathrm{mmol}, 77 \%$) as a white solid; $R_{\mathrm{f}}=0.4$ (EtOAc/hexane $1 / 4)$; m.p. $240^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=37.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.63\left(\mathrm{~d}, J=4.5 \mathrm{~Hz}, \mathrm{CH}^{\mathrm{a}}\right), 4.22(\mathrm{~s}, 4 \mathrm{H}), 4.02\left(\mathrm{~d}, J=4.5 \mathrm{~Hz}, \mathrm{CH}^{\mathrm{b}}\right)$, $3.46\left(\mathrm{~d}, J=17.9 \mathrm{~Hz}, \mathrm{CH}^{\mathrm{c}}\right), 3.33\left(\mathrm{~d}, J=18.0 \mathrm{~Hz}, \mathrm{CH}^{\mathrm{c}}\right), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.03(\mathrm{~d}, 5 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.8,173.2,171.9,156.6,143.8,138.4,136.4$, $131.3,128.4,128.2,122.3,122.2,119.4,119.0,118.9,111.2,109.9,107.5,95.2,61.5,61.4,61.0,55.7,44.4,39.5,33.8$, 31.0, 30.20, 26.8, 14.4, 14.4, 9.0; HRMS (ESI/Q-TOF) m/z: [M-H] ${ }^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5} 527.2446$; Found 527.2552. 1H NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$)

The examination of the chemical shift value and comparison of $\mathbf{4 a}$ and $\mathbf{3 b}$ was used to pinpoint the location of the double bond in a five-member ring. Additionally, determined structure supported by the 2D NMR $\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right.$ COSY and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY).

4a
$H^{a}=5.63 \mathrm{ppm}$
$H^{b}=4.02 \mathrm{ppm}$
$\mathrm{H}^{\mathrm{c}}=3.31-3.48 \mathrm{ppm}$

3b

${ }^{1} \mathbf{H}^{-1} \mathbf{H}$ COSY NMR spectrum of compound $\mathbf{3 b}$

${ }^{\mathbf{1}} \mathbf{H}-{ }^{\mathbf{1}} \mathbf{H}$ NOESY NMR spectrum of compound $\mathbf{3 b}$

Synthesis of pyrrolo [1,2-a]indole 3c

The title compound $\mathbf{3 c}$ was prepared from ethyl (E)-3-(3-methyl-1H-indol-2-yl)acrylate $\mathbf{1 a}$ ($10 \mathrm{mg} 0.044 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ and ${ }^{t} \mathrm{BuOH}(4.2 \mu \mathrm{~L}, 0.044 \mathrm{mmol}, 1.0$ equiv.) according to general procedure \mathbf{B} with a reaction time of 32 h . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (1/4) to furnish the title compound $\mathbf{3 c}(8 \mathrm{mg} 0.014 \mathrm{mmol}, 64 \%)$ as a yellow solid; $R_{\mathrm{f}}=0.3$ (EtOAc/hexane $3 / 7$);); m.p. $260^{\circ} \mathrm{C}$ IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 30320,1731,1527,1215 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.17(\mathrm{~m}, 3 \mathrm{H}), 4.13-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.21(\mathrm{~m}$, $1 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,172.2,141.7,139.6,133.7,133.2,132.7,132.2,131.0,129.1,121.0,119.1$,
$118.2,117.6,112.8,110.4,110.2,101.4,61.6,61.0,58.9,54.7,37.2,35.8,34.9,34.7,32.2,30.2,14.4,14.2,8.8,8.5$; HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{4} 571.3536$; Found 571.3530.

Synthesis of pyrrolo[1,2-a]indole 3d

The title compound 3d was prepared from ethyl (E)-3-(3-methyl-1H-indol-2-yl)acrylate $\mathbf{1 a}$ ($10 \mathrm{mg} 0.044 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ and acetic anhydride $\mathbf{2 d}(4.2 \mu \mathrm{~L}, 0.044 \mathrm{mmol}, 1.0$ equiv.) according to general procedure \mathbf{B} with a reaction time of 45 min . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes ($1 / 4$) to furnish the title compound $\mathbf{3 d}$ ($8 \mathrm{mg} 0.016 \mathrm{mmol}, 73 \%$) as a yellow solid; $R_{\mathrm{f}}=0.3$ (EtOAc/hexane $3 / 7$); m.p. $230^{\circ} \mathrm{C}$; IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3016,2925,2848,1728,1666,1620,1458,1309,1216,1016 ;{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$ $\left.\mathrm{CDCl}_{3}\right) \delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{tdd}, J=15.2,9.6,5.8$ $\mathrm{Hz}, 3 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=17.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=17.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H})$, $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.21(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.5,172.3$, $172.1,139.3,139.1,133.7,133.4,132.2,129.4,128.3,123.0,121.3,121.2,119.4,118.6,112.1,111.2,109.5,101.7,61.8$, 61.2, 58.9, 54.3, 37.1, 35.6, 26.8, 14.4, 14.2, 8.7, 8.5; HRMS (ESI/Q-TOF) m/z: [M+H]+ Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} 501.2389$; Found 501.2387.

Synthesis of pyrrolo[1,2-a]indole 3e

The title compound $\mathbf{3 e}$ was prepared from ethyl (E)-3-(3-methyl- $1 H$-indol-2-yl)acrylate $\mathbf{1 a}$ ($50 \mathrm{mg} 0.218 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($20 \mathrm{~mol} \%$) and ethyl (E)-3-(4-methoxyphenyl)acrylate $\mathbf{2 e}(90 \mathrm{mg}, 0.436 \mathrm{mmol}, 2.0$ equiv.) according to general procedure \mathbf{C} with a reaction time of 3.5 h . The crude residue was purified by column chromatography on silica gel with an
eluent of hexanes to EtOAc/hexanes (1/4) to furnish the title compound $\mathbf{3 e}(52 \mathrm{mg} 0.078 \mathrm{mmol}, 72 \%)$ as a white solid; $R_{\mathrm{f}}=0.3$ (EtOAc/hexane $1 / 4$); m.p. $210^{\circ} \mathrm{C}$ IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3020,2362,1716(\mathrm{C}=\mathrm{O}), 1458,1215,752,667$; ${ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.71-6.64(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-3.97(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{dd}, J=17.0$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.46(\mathrm{~s}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.13(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,172.2,172.0,158.1,139.5,136.8,135.1,134.9$, 133.7, 132.3, 131.9, 128.8, 127.1, 122.7, 121.1, 119.3, 118.5, 117.3, 113.9, 111.4, 110.3, 109.8, 101.6, 61.7, 61.0, 60.4, 59.4, 55.4, 54.7, 46.7, 46.6, 41.8, 37.3, 36.1, 14.4, 14.2, 8.7, 8.5; HRMS (ESI/Q-TOF) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{7}$ 665.3221; Found 665.3266.

Synthesis of pyrrolo[1,2-a]indole $3 f$

The title compound $\mathbf{3 f}$ was prepared from ethyl (E)-3-(3-methyl-1H-indol-2-yl)acrylate $\mathbf{1 a}$ ($50 \mathrm{mg} 0.218 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ and ethyl (E)-3-(3,4,5-trimethoxyphenyl)acrylate $\mathbf{2 f}(116 \mathrm{mg}, 0.436 \mathrm{mmol}, 2.0$ equiv.) according to general procedure \mathbf{C} with a reaction time of 9 h . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (1/4) to furnish the title compound $\mathbf{3 f}(51 \mathrm{mg} 0.070 \mathrm{mmol}, 64 \%)$ as a white solid; $R_{\mathrm{f}}=0.3$ (EtOAc/hexane 1/4); m.p. $240^{\circ} \mathrm{C}$; IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3020,2933,2364,1718(\mathrm{C}=\mathrm{O}), 1460,1215,744,667$; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.67$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 4.14-4.04(\mathrm{~m}, 6 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, $6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.13$ $(\mathrm{s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,172.2,172.0,153.2,140.3,139.5,136.6,135.2,133.8$, $132.4,132.1,131.1,128.9,125.2,122.5,121.1,119.3,118.5,117.7,111.4,109.8,105.1,101.7,61.7,61.0,61.0,60.5,59.4$, $56.3,54.7,47.7,41.9,37.3,36.0,19.3,14.4,14.3,14.3,8.7,8.5$; HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{9}$ 725.3438; Found 725.3428.

Synthesis of pyrrolo[1,2-a]indole 3g

62\% yield, 96:4 dr

The title compound $\mathbf{3 g}$ was prepared from ethyl (E)-3-(3-methyl-1H-indol-2-yl)acrylate $\mathbf{1 a}$ ($50 \mathrm{mg} 0.218 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($20 \mathrm{~mol} \%$) and ethyl (E)-3-(4-nitrophenyl)acrylate $\mathbf{2 g}(97 \mathrm{mg}, 0.438 \mathrm{mmol}, 2.0$ equiv.) according to general procedure \mathbf{C} with a reaction time of 30 h . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (1/4) to furnish the title compound $\mathbf{3 g}(46 \mathrm{mg} 0.068 \mathrm{mmol}, 62 \%)$ as a white solid; $R_{\mathrm{f}}=0.4$ (EtOAc/hexane 1/4); m.p. $195^{\circ} \mathrm{C}$; ; IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3020,2362,1731(\mathrm{C}=\mathrm{O}), 1458,1215,744,667 ;{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=25.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.16-6.98(\mathrm{~m}, 5 \mathrm{H})$, $6.89(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=35.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.20$ $(\mathrm{d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,172.1,171.3,139.5,136.4,135.4,132.3,129.6,128.9,122.6,122.3,121.3,121.1,119.3$, $119.1,118.5,117.4,117.2,111.7,110.7,109.7,107.3,101.7,61.7,61.0,60.5,59.4,54.6,40.2,39.0,37.3,36.0,31.7,22.8$, 21.2, 14.3, 8.5; HRMS (ESI/Q-TOF) m/z: [M+MeCN] ${ }^{+}$Calcd for $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{8} 720.3159$; Found 720.3201.

5. Characterization of compounds $\mathbf{4 a}-4 \mathrm{f}$

Synthesis of self-dimer 4a

The title compound $\mathbf{4 a}$ was prepared from ethyl (E)-3-(3-methyl-1H-indol-2-yl)acrylate $\mathbf{1 a}$ (20 mg 0.087 mmol) and catalyst $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ according to general procedure \mathbf{D} with a reaction time of 40 min . The crude residue was purified by column chromatography on silica gel with an eluent of EtOAc/hexanes (1/9) to furnish the title compound $\mathbf{4 a}$ (18 mg $0.039 \mathrm{mmol}, 90 \%$) as a yellow solid; $R_{\mathrm{f}}=0.6$ (EtOAc/hexane $1 / 4$); m.p. $250^{\circ} \mathrm{C}$; IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3392,2918$, 2850, 1726 (C=O), 1458, 1215, 1180, 1029, 738, 667; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.79$ (s, 1H), 7.67 (d, $J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.15(\mathrm{~m}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.29-3.22$ $(\mathrm{m}, 1 \mathrm{H}), 3.18-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$

NMR(126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.2,172.0,139.5,136.4,133.8,132.4,131.5,128.8,122.5,121.2,119.3,119.2,119.01$, $118.5,111.4,110.4,109.8,101.7,61.7,61.0,59.4,54.7,37.3,36.1,14.4,14.3,8.7,8.5$; HRMS (ESI/Q-TOF) m/z: [M+H] ${ }^{+}$ Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} 459.2289$; Found 459.2331.

Synthesis of self-dimer 4b

The title compound $\mathbf{4 b}$ was prepared from ethyl (E)-3-(3-(2-methoxy-2-oxoethyl)- 1 H -indol-2-yl)acrylate $\mathbf{1 b}$ (20 mg 0.070 $\mathrm{mmol})$ and catalyst $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ according to general procedure \mathbf{D} with a reaction time of 45 min . The crude residue was purified by column chromatography on silica gel with an eluent of EtOAc/hexanes (3/7) to furnish the title compound 4b ($15 \mathrm{mg} 0.052 \mathrm{mmol}, 74 \%$) as a yellow solid; $R_{\mathrm{f}}=0.4$ (EtOAc/hexane $3 / 7$);); m.p. $220^{\circ} \mathrm{C}$; $\mathbf{I R}$ (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3012$, 2923, 2846, 1728, 1600, 1514, 1216; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{dt}, J=11.7,3.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{dd}, J=14.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.05(\mathrm{~m}, 6 \mathrm{H}), 4.00(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,172.0,171.4,169.9,142.1,136.1,132.4,132.3,131.6,128.2,123.1,122.1,120.2,120.1$, $119.1,118.9,111.5,110.5,108.5,100.2,61.7,61.0,58.9,54.7,52.2,52.0,35.5,35.5,30.2,29.8,14.2,14.2$; HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{8}$ 575.2393; Found 575.2413.

Synthesis of self-dimer $\mathbf{4 c}$

The title compound $\mathbf{4 c}$ was prepared from ethyl (E)-3-(3-(2-acetoxyethyl)- $1 H$-indol-2-yl)acrylate $\mathbf{1 c}$ (20 mg 0.066 mmol) and catalyst $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ according to general procedure \mathbf{D} with a reaction time of 1.5 h . The crude residue was purified by column chromatography on silica gel with an eluent of EtOAc/hexanes (1/4) to furnish the title compound $\mathbf{4 c}$ ($16 \mathrm{mg} 0.026 \mathrm{mmol}, 79 \%$) as a yellow solid; $R_{\mathrm{f}}=0.6$ (EtOAc/hexane 3/7);); m.p. $205^{\circ} \mathrm{C}$; IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3020,2933$, $2844,1735,1456,1365,1213,1024 ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 4 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 1 \mathrm{H})$, $4.04-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dt}, J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{ddd}, J=21.0,16.0,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=17.6,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(126$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,171.9,171.3,171.3,140.8,136.7,136.4,133.1,132.7,128.0,122.7,121.5,119.8,119.6,119.2$, 118.6, 111.6, 110.7, 110.1, 102.0, 64.9, 64.8, 61.9, 61.2, 59.4, 54.8, 37.5, 35.8, 23.9, 23.8, 21.3, 21.2, 14.4, 14.3; HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{8}$ 603.2706; Found 603.2705.

Synthesis of self-dimer 4d

The title compound $\mathbf{4 d}$ was prepared from ethyl (E)-3-(3-(2-acetamidoethyl)-1H-indol-2-yl)acrylate $\mathbf{1 d}$ (20 mg 0.067 $\mathrm{mmol})$ and catalyst $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ according to general procedure \mathbf{D} with a reaction time of 45 min . The crude residue was purified by column chromatography on silica gel with an eluent of $\mathrm{MeOH} / \mathrm{DCM}(0.2 / 9.8)$ to furnish the title compound $4 d(17 \mathrm{mg} 0.028 \mathrm{mmol}, 81 \%)$ as a yellow solid; $R_{\mathrm{f}}=0.2(\mathrm{MeOH} / \mathrm{DCM} 0.2 / 9.8) ; \mathrm{m} . \mathrm{p} .230^{\circ} \mathrm{C}$ IR (neat): $v_{\mathrm{max}} / \mathrm{cm}^{-1} 3022,2920$, $2856,1731,1222 ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(\mathrm{dt}, J=14.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=11.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{dd}, J=14.2,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J$ $=16.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 6 \mathrm{H})$, $1.30(\mathrm{t}, ~, 3 \mathrm{H}), 1.27-1.19(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz},) \delta 172.4,170.5,140.5,133.2,132.5,132.4,132.30,132.2$, 128.7, 128.6, 122.9, 121.5, 119.9, 119.8, 119.3, 118.6, 112.0, 111.6, 109.9, 103.4, 61.3, 54.5, 40.6, 39.0, 37.3, 35.8, 33.4, 32.1, 26.9, 26.0, 24.3, 23.4, 14.3, 11.0; HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{6} 601.3026$; Found 601.3032 .

Synthesis of self-dimer 4e

The title compound $\mathbf{4 e}$ was prepared from ethyl (E)-3-(5-methoxy-3-methyl-1H-indol-2-yl)acrylate $\mathbf{1 e}$ (20 mg 0.077 mmol) and catalyst $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ according to general procedure \mathbf{D} with a reaction time of 45 min . The crude residue was purified by column chromatography on silica gel with an eluent of EtOAc/hexane (1/9) to furnish the title compound compound $4 \mathbf{e}(15 \mathrm{mg} 0.029 \mathrm{mmol}, 75 \%)$ as a yellow solid; $R_{\mathrm{f}}=0.6$ (EtOAc/hexane $1 / 4$);); m.p. $240^{\circ} \mathrm{C}$; IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ ${ }^{1} 3016,2918,2848,1739,1456,1213$; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.03$ $(\mathrm{m}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=6.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=$ $7.1,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.03(\mathrm{~m}$, 2H), $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.2, 172.0, 154.2, 154.1, 140.4, 134.2, $132.4,131.5,129.2,127.8,112.6,112.1,110.9,110.5,110.1,101.4,101.2,101.1,61.6,61.0,59.6,56.1,56.1,55.0,37.5$, 36.2, 14.4, 14.3, 8.7, 8.6; HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6}$ 519.2495; Found 519.2506.

Synthesis of self-dimer $4 f$

The title compound $\mathbf{4 f}$ was prepared from (E)-3-(3-methyl-1H-indol-2-yl)acrylonitrile $\mathbf{1 f}$ (20 mg 0.110 mmol) and catalyst $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ according to general procedure \mathbf{D} with a reaction time of 30 min . The crude residue was purified by column chromatography on silica gel with an eluent of EtOAc/hexane (1/4) to furnish the title compound $\mathbf{4 f}$ (18 mg 0.049 $\mathrm{mmol}, 89 \%$) as a yellow solid; $R_{\mathrm{f}}=0.4$ (EtOAc/hexane $1 / 4$);); m.p. $190^{\circ} \mathrm{C}$; IR (neat): $v_{\mathrm{max}} / \mathrm{cm}^{-1} 3012,2985,2898,2310$, $1448,1377,1232,1041 ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{dd}, J=11.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=17.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=17.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ $-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.5,136.0,125.5,125.0,123.7,122.9,120.6$, (ESI/Q-TOF) m/z: [M+H-CN] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} 339.1735$; Found 339.1727.

6. Characterization of compounds 5a-5d

Synthesis of substituted pyrrolo[1,2-a]indolyl furo[2,3-b]indole 5a

The title compound $\mathbf{5 a}$ was prepared from ethyl (E)-3-(3-methyl- 1 H -indol-2-yl)acrylate $\mathbf{1 a}$ ($10 \mathrm{mg} 0.044 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ and 1,4-benzoquinone $\mathbf{2 h}(7 \mathrm{mg}, 0.065 \mathrm{mmol}, 1.5$ equiv.) according to general procedure \mathbf{E} with a reaction time of 10 min . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (2/3) to furnish the title compound $\mathbf{5 a}(10 \mathrm{mg}, 0.018 \mathrm{mmol}, 82 \%)$ as a white solid; $R_{\mathrm{f}}=0.4$ (EtOAc/hexane $2 / 3$); m.p. $260^{\circ} \mathrm{C}$; IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3390,2918,2848,1731(\mathrm{C}=\mathrm{O}), 1494,1309,1218,771 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.34-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=9.5,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{td}, J=10.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=17.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=17.8,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2$, $171.3,151.8,150.1,143.3,137.3,136.2,133.7,130.8,129.1,128.5,122.6,122.5,119.9,119.6,118.94,118.88,114.7$, $111.5,111.2,110.4,110.0,109.6,66.0,61.6,61.0,54.7,54.1,41.2,31.9,22.2,14.2,14.2,8.8 ;$ HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}-2 \mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}$ 565.2339; Found 565.2359.

Synthesis of substituted pyrrolo[1,2-a]indolyl furo[2,3-b]indole 5b

The title compound $\mathbf{5 b}$ was prepared from ethyl (E)-3-(3-(2-methoxy-2-oxoethyl)-1H-indol-2-yl)acrylate $\mathbf{1 b}$ (20 mg 0.070 mmol, 1.0 equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ and 1,4-benzoquinone $\mathbf{2 h}(11 \mathrm{mg}, 0.102 \mathrm{mmol}, 1.5$ equiv.) according to general
procedure \mathbf{E} with a reaction time of 40 min . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (3/7) to furnish the title compound $\mathbf{5 b}(20 \mathrm{mg}, 0.029 \mathrm{mmol}, 84 \%)$ as a white solid; $R_{\mathrm{f}}=0.7$ (EtOAc/hexane 1/1);); m.p. $242^{\circ} \mathrm{C}$; IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3018,1741,1556,1203,1006 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{ddd}, J=20.6,11.5,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.93(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.05(\mathrm{~m}, 3 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}$, $3 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}), 1.21-1.17(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}$, CDCl_{3}) $\delta 172.3,172.0,171.2,170.3,151.1,150.6,147.7,135.8,135.2,134.4,131.7,129.0,129.0,122.7,122.5,121.6$, $119.9,119.0,115.6,111.3,111.0,110.9,110.0,105.8,61.6,60.9,59.8,59.1,57.9,52.0,43.6,40.6,34.4,29.9,24.8,22.5$, 14.2, 14.1; HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{10}$ 683.2599; Found 683.2607.

Synthesis of substituted pyrrolo[1,2-a]indolyl furo[2,3-b]indole 5c

The title compound $\mathbf{5 c}$ was prepared from ethyl (E)-3-(3-(2-acetoxyethyl)-1H-indol-2-yl)acrylate $\mathbf{1 c}$ (10 mg 0.033 mmol , 1.0 equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ and 1,4-benzoquinone $\mathbf{2 h}(5 \mathrm{mg}, 0.050 \mathrm{mmol}, 1.5$ equiv.) according to general procedure \mathbf{E} with a reaction time of 20 min . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (3/7) to furnish the title compound $\mathbf{5 c}(8 \mathrm{mg}, 0.011 \mathrm{mmol}, 67 \%)$ as a white solid; $R_{\mathrm{f}}=0.7$ (EtOAc/hexane 1/1);); m.p. $230^{\circ} \mathrm{C}$; IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3018,2854,2929,1731,1460,1232,1006 ;{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.57-8.46(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.14-$ $7.10(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.28-6.22(\mathrm{~m}, 1 \mathrm{H})$, $5.18-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.09(\mathrm{~m}, 4 \mathrm{H}), 4.07-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.47(\mathrm{~m}$, $1 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 0.87-0.81(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4,171.3(2 \times \mathrm{C}), 170.9$, $150.9,150.6,135.9,134.2,133.4,132.5,129.1,129.0,123.3,122.5,121.6,119.7,119.6,119.2,115.6,111.3,111.2,110.4$, $110.2,109.0,64.9,61.8,61.0,60.0,59.3,58.4,43.9,39.0,37.2,34.0,33.3,32.1,27.3,26.9,22.8,14.3$; HRMS (ESI/QTOF) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{10} 710.2839$; Found 710.2817

The title compound 5d was prepared from ethyl (E)-3-(3-(2-acetamidoethyl)-1H-indol-2-yl)acrylate $\mathbf{1 d}$ (20 mg 0.066 mmol, 1.0 equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ and 1,4-benzoquinone $\mathbf{2 h}(11 \mathrm{mg}, 0.099 \mathrm{mmol}, 1.5$ equiv.) according to general procedure \mathbf{E} with a reaction time of 45 min . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to $\mathrm{MeOH} / \mathrm{DCM}(0.5 / 9.5)$ to furnish the title compound $\mathbf{5 d}(19 \mathrm{mg}, 0.026 \mathrm{mmol}, 78 \%)$ as a yellow solid; $R_{\mathrm{f}}=0.3$ (MeOH/DCM 0.5/9.5);); m.p. $210^{\circ} \mathrm{C}$; IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3020,2923,1762,1515,1213,763 ;{ }^{1} \mathbf{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.70-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.6,2.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.11$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=15.4,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.69-6.52(\mathrm{~m}, 3 \mathrm{H}), 6.38(\mathrm{dd}$, $J=15.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.74(\mathrm{~m}, 1 \mathrm{H})(\mathrm{OH}), 4.23(\mathrm{dd}, J=14.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{tt}, J=11.3,5.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.76-$ $3.47(\mathrm{~m}, 3 \mathrm{H}), 3.21-2.86(\mathrm{~m}, 3 \mathrm{H}), 2.69-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{t}, J=$ $11.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.82(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}$, rotamers) $\delta 172.5,171.3,170.6,170.6,135.3,134.0,133.6$, $132.5,132.2,129.0,128.9,128.8,125.3,125.1,124.1,123.6,122.7,122.6,122.1,119.8,119.2,119.2,119.1,115.8,114.2$, $112.3,111.3,111.3,110.6,110.5,110.4,110.0,61.8,61.3,61.1,60.5,58.9,43.4,39.0,37.5,37.2,36.8,36.7,35.2,34.5$, $34.2,33.9,33.7,33.6,33.5,33.3,32.8,32.3,32.0,31.7,31.5,30.4,30.3,30.0,29.0,27.2,26.8,26.5,26.0,23.85,23.79$, 23.5, 23.3, 22.8, 21.1, 14.2, 14.0, 11.5, 11.0; HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{8} 709.3237$; Found 709.3235.

7. Controlled experiments

Synthesis of compound 6

Under nitrogen atmosphere, an oven dried 10 mL round bottom flask, equipped with a magnetic stirring bar, was charged with ethyl (E)-3-(3-methyl-1H-indol-2-yl)acrylate $\mathbf{1 a}$ ($10 \mathrm{mg} 0.044 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$. To this solution was added dropwise $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ followed by addition of methyl vinyl ketone $\mathbf{2 b}$ ($5.9 \mu \mathrm{~L}, 0.066 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$. Then the whole reaction mixture was allowed to stir for 2.5 h at $0^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), water (1 mL) was added to the reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and, dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column using EtOAc/hexane (1/9) as eluent furnished compound $6(9 \mathrm{mg}, 0.030 \mathrm{mmol}, 68 \%)$ as a solid. $R f=0.4$ ($\mathrm{EtOAc} /$ hexane $2 / 8$); m.p. $180^{\circ} \mathrm{C}$ IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3020$, 2933, 2362, 1716 (C=O), 1460, 1369, 1215, 744, 667; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=26.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.37-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR(126 MHz, CDCl3) $\delta 207.5,180.0,166.1,154.3,144.5,134.8,128.6,127.5,127.0,122.1,121.8,61.3,56.6,38.1$, 30.8, 29.8, 23.1, 14.4; HRMS (ESI/Q-TOF) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$ 299.1521; Found 299.1549.

Synthesis of compound 7

The title compound 7 was prepared from 2,3-dimethyl indole 7^{\prime} ($50 \mathrm{mg} 0.344 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($20 \mathrm{~mol} \%$) and ${ }^{t}$ - $\mathrm{BuOH} 2 \mathbf{c}(3.2 \mu \mathrm{~L}, 0.344 \mathrm{mmol}, 1.0$ equiv.) according to general procedure \mathbf{A} with a reaction time of 2 h . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (1/19) to furnish the title compound $7(48 \mathrm{mg}, 0.238 \mathrm{mmol}, 69 \%)$ as a white solid; $R_{\mathrm{f}}=0.4$ (EtOAc/hexane $\left.1 / 9\right)$; m.p. $160^{\circ} \mathrm{C}$; $\mathbf{I R}$ (neat): $v_{\max } / \mathrm{cm}^{-}$ ${ }^{1} 3028,1764,1679,1514,1020 ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}$, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}$, CDCl_{3}) $\delta 187.3,154.6,144.2,127.6,124.4,124.3,119.7,64.1,34.9,26.8,20.1,17.3$; HRMS (ESI/Q-TOF) m/z: [M$\left.\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}$ 130.0657; Found 130.0652.

Synthesis of compound 8

The title compound $\mathbf{8}$ was prepared from 2,3-dimethyl indole $7^{\prime}\left(50 \mathrm{mg} 0.344 \mathrm{mmol}, 1.0\right.$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ and ethyl (E)-3-(3,4-dimethoxyphenyl)acrylate $\mathbf{8}^{\prime}(81 \mathrm{mg}, 0.344 \mathrm{mmol}, 1.0$ equiv.) according to general procedure \mathbf{A} with a reaction time of 7 h . The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (1/19) to furnish the title compound $\mathbf{8}(87 \mathrm{mg}, 0.228 \mathrm{mmol}, 66 \%)$ as a yellow solid; $R_{\mathrm{f}}=0.4$ (EtOAc/hexane 1/9); m.p. $230^{\circ} \mathrm{C}$ IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3014,2912,2852,1724,1514,1452,1211,1143,1035 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=22.4,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.59(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,149.1,147.7,137.2,137.0,135.5,130.8,128.3,119.6,119.3$, for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{4} 382.2018$; Found 382.2011.

Synthesis of compound 4g: cross-dimerization

Under nitrogen atmosphere, an oven dried 10 mL round bottom flask, equipped with a magnetic stirring bar, was charged with ethyl (E)-3-(3-(2-acetoxyethyl)-1 H-indol-2-yl)acrylate $1 \mathbf{1 a}(10 \mathrm{mg} 0.044 \mathrm{mmol}, 1.0$ equiv.) and ethyl (E)-3-(3-methyl$1 H$-indol-2-yl)acrylate $\mathbf{1 c}$ ($13 \mathrm{mg} 0.044 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. To this solution was added dropwise $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20 \mathrm{~mol} \%)$ at rt . Then the whole reaction mixture was allowed to stir for 1.5 h at rt . After completion of the reaction (monitored by TLC), water (1 mL) was added to the reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 10 \mathrm{~mL})$ and, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column using EtOAc/hexane (1/9) as eluent furnished compound $\mathbf{4 a}(8 \mathrm{mg}, 0.017 \mathrm{mmol}, 39 \%)$, compound $\mathbf{4 c}(8 \mathrm{mg}, 0.013 \mathrm{mmol}, 30 \%)$ and compound $\mathbf{4 g}(4 \mathrm{mg}, 0.008 \mathrm{mmol}, 18 \%) ; R f=0.4$ (EtOAc/hexane $2 / 8) ;$ m.p. $225^{\circ}{ }^{\circ} \mathbf{C}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.84(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=6.6,4.4 \mathrm{~Hz}$, 2H), 4.24 (qd, $J=7.1,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{dtd}, J=10.3,7.4,2.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.29-3.19$ $(\mathrm{m}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=17.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 172.1,172.0,171.4,139.5,136.4,135.4,132.9,125.2,122.6,122.0,121.2,119.6,119.4,119.2,119.1,118.5,111.6$, 110.6, 109.9, 101.7, 64.9, 61.8, 59.6, 54.6, 41.8, 37.4, 32.3, 26.5, 23.8, 22.8, 14.4; HRMS-ESI: m/z [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} 531.2490$; Found: 531.2494.

The substitute alkyl chain on pyrrolo[1,2-a]indole core and methyl group (3 and 3^{\prime}) on indole ring of hetero dimer determined by the comparison of the following ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{3 a}, \mathbf{4 a}$ and $\mathbf{4 g}$ and ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY and NOESY NMR of $\mathbf{4 g}$.
${ }^{1} \mathrm{HNMR}$ comparison of $\mathbf{3 a}, \mathbf{4 a}$ and $\mathbf{4 g}$:

${ }^{1} \mathbf{H}^{-1} \mathbf{H}$ COSY NMR spectrum of compound $\mathbf{4 g}$

${ }^{1} \mathbf{H}^{-1} \mathbf{H}$ NOESY NMR spectrum of compound $\mathbf{4 g}$

Synthesis of compound $\mathbf{9}^{11}$

The title compound 9 was prepared from 2,3-dimethyl indole 7^{\prime} ($50 \mathrm{mg} 0.344 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($20 \mathrm{~mol} \%$) and 1,4-benzoquinone $\mathbf{2 h}$ ($56 \mathrm{mg}, 0.516 \mathrm{mmol}, 1.5$ equiv.) according to general procedure \mathbf{E} with a reaction time of 15 minutes. The crude residue was purified by column chromatography on silica gel with an eluent of hexanes to EtOAc/hexanes (1/4) to furnish the title compound $9(81 \mathrm{mg}, 0.320 \mathrm{mmol}, 93 \%)$ as a white solid; $R_{\mathrm{f}}=0.2$ (EtOAc/hexane $2 / 3$); Spectral data were in agreement with those reported ${ }^{11} ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{~d}, J=125.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.6,150.1,146.5,134.7$, 133.7, 128.2, 123.0, 119.9, 116.3, 114.6, 110.7, 109.8, 109.2, 57.1, 21.2, 21.0.

8. Single Crystal X-Ray Analysis

8.1 X-ray crystallographic data of compound 3c

Figure S1 Crystal data and structure refinement for compound 3c

Table S1. Data Collection and Structure Refinement Parameters for Compound 3c

Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4}$
Formula weight	570.75
Temperature/K	100
Crystal system	triclinic
Space group	$8.3075(3)$
a / \AA	$10.5823(3)$
b / \AA	$19.6489(7)$
c / \AA	$98.1600(10)$
$\alpha /$ deg	

$\beta /$ deg	91.3010(10)
γ / deg	111.1680(10)
Volume/ \AA^{3}	1589.39(9)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.193
μ / mm^{-1}	0.077
$\mathrm{F}(000)$	616.0
Crystal size/mm ${ }^{3}$	$0.5 \times 0.2 \times 0.1$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073$
2Θ range for data collection/ ${ }^{\circ}$	4.182 to 56.922
Index ranges	$-10 \leq \mathrm{h} \leq 11,-14 \leq \mathrm{k} \leq 14,-26 \leq 1 \leq 26$
Reflections collected	27606
Independent reflections	$7957\left[\mathrm{R}_{\text {int }}=0.0402, \mathrm{R}_{\text {sigma }}=0.0455\right]$
Data/restraints/parameters	7957/0/389
Goodness-of-fit on F^{2}	1.032
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0507, \mathrm{wR}_{2}=0.1179$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0745, \mathrm{wR}_{2}=0.1312$
Largest diff. peak/hole / e \AA^{-3}	0.38/-0.27

${ }^{a} R_{1}=\Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) / \Sigma\left|F_{\mathrm{o}}\right| \cdot{ }^{b} w R_{2}=\left\{\Sigma\left[w\left(\left|F_{\mathrm{o}}\right|^{2}-\left|F_{\mathrm{c}}\right|^{2}\right)^{2}\right] / \Sigma\left[w\left(\left|F_{\mathrm{o}}\right|^{2}\right)^{2}\right]\right\}^{1 / 2}$

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 6decc_o_0m
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 6decc_o_0m

Bond precision:	$C-C=0.0021 \mathrm{~A}$	Wavel	th=0.71073
Cell:	$\mathrm{a}=8.3075$ (3)	$\mathrm{b}=10.5823$ (3)	$\mathrm{c}=19.6489$ (7)
	alpha=98.160(1)	beta=91.301(1)	gamma=111.168(1)
Temperature:	100 K		
	Calculated	Repo	
Volume	1589.39(9)	1589	(9)
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C36 H46 N2 O4	C36	N2 04
Sum formula	C36 H46 N2 O4	C36	N2 O4
Mr	570.75	570.	
Dx,g cm-3	1.193	1.19	
Z	2	2	
Mu (mm-1)	0.077	0.07	
F000	616.0	616.	
F000'	616.26		
h, k, lmax	11,14,26	11,1	
Nref	8017	7957	
Tmin, Tmax	0.982,0.992	0.68	. 746
Tmin'	0.962		
Correction method= \# Reported T Limits: Tmin=0.686 Tmax=0.746 AbsCorr = EMPIRICAL			
Data completeness= 0.993		Theta $(\max)=28.461$	
R (reflections) $=0.0507(5953)$			$\begin{aligned} & \text { wR2 (reflections) }= \\ & 0.1312(7957) \end{aligned}$
$\mathrm{S}=1.032$	Npar= 389		

8.2 X-ray crystallographic data of compound 4a

4a
X-ray crystal structure of $\mathbf{4 a}$

Figure S2. Crystal data and structure refinement for compound 4a

Table S2. Data Collection and Structure Refinement Parameters for Compound 4a

Emperical formula	$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$
Formula weight	458.54
Crystal color, habit	colorless, block
T / K	100(2)
Crystal system	Triclinic
Space group	$P-1$ (no. 14)
a / \AA	8.3294(19)
b/A	9.907(2)
c/Å	16.337(4)
$\alpha{ }^{\circ}$	75.760(3)
$\beta /{ }^{\circ}$	78.824(3)
$\gamma /{ }^{\circ}$	69.309(3)
V / \AA^{3}	1213.9(5)
Z	2
$D_{\text {c }} / \mathrm{g} \mathrm{cm}^{-3}$	1.255
μ / mm^{-1}	0.084
Reflections measured	30389
Unique reflections/ $R_{\text {int }}$	5317/ 0.1345
$R(F)[I>2 \sigma(I)]$	3728
$R_{1}{ }^{a}, w R_{2}{ }^{b}[I>2 \sigma(I)]$	$\begin{gathered} R_{1}=0.0486^{a} \\ w R_{2}=0.1193^{b} \end{gathered}$
$R_{1}{ }^{a}, w R_{2}{ }^{\text {b }}$ (all data)	$\begin{gathered} R_{1}=0.0743^{a} \\ w R_{2}=0.1345^{b} \end{gathered}$
GOF on F^{2}	1.032

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) rde_gm_23_om
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: rde_gm_23_om

Bond precision:	$C-C=0.0030 \mathrm{~A}$	Wavelength=0.71073	
Cell:	$a=8.3294$ (19)	$\mathrm{b}=9.907$ (2)	$\mathrm{C}=16.337$ (4)
	alpha=75.760 (3)	beta=78.824 (3)	gamma=69.309 (3)
Temperature:	100 K		
	Calculated	Reported	
Volume	1213.9(5)	1213.9(5)	
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C28 H30 N2 O4	C28 H30 N2 O4	
Sum formula	C28 H30 N2 O4	C28 H30 N2 O4	
Mr	458.54	458.54	
Dx,g cm-3	1.255	1.254	
Z	2	2	
Mu (mm-1)	0.084	0.084	
F000	488.0	488.0	
F000'	488.22		
h, k, lmax	10,12,20	10,12,20	
Nref	5337	5317	
Tmin, Tmax	$0.995,0.997$	0.660,0.746	
Tmin'	0.992		

Correction method= \# Reported T Limits: Tmin=0.660 Tmax=0.746
AbsCorr = MULTI-SCAN

Data completeness $=0.996$ Theta(max) $=27.055$
$R($ reflections $)=0.0486(3728) \quad$ wR2 (reflections $)=0.1345(5317)$
$S=1.032 \quad$ Npar $=319$

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

9. Biological Evaluation

Table S3. In silico MptpB binding affinity prediction of synthesized of Pyrrolo[1,2-a]indole derivatives. MptpB binding affinity prediction of one previously reported MptpB inhibitor (OMTS) was also considered as the positive control.

Name of Ligands	Binding Free Energy (Kcal/Mol)	$\mathbf{p K} \mathbf{K}_{\mathbf{d}}\left(-\log \mathrm{K}_{\mathrm{d}}\right)$	MM/PB(GB)SA Free Energy (Kcal/Mol)
3 a	-8.6	7.62	-43.32
3 b	-9.2	6.71	-42.59
3 c	-8.7	7.74	-44.59
3d	-8.9	7.19	-43.28
3 e	-9.6	8.93	-59.12
3 f	-9.0	9.96	-58.44
3 g	-9.9	9.09	-59.61
4a	-8.4	6.85	-35.15
4b	-8.4	7.17	-45.76
4 c	-8.6	7.09	-50.68
4d	-9.0	7.92	-54.79
4 e	-8.6	7.59	-41.57
4f	-9.5	5.53	-23.13
4 g	-9.5	7.54	-50.41
5a	-10.3	7.85	-38.86
5b	-9.4	8.24	-52.77
5c	-8.6	8.91	-48.1
5d	-9.8	8.54	-51.86
6	-6.3	4.81	-20.76
7	-6.7	3.47	-22.22
8	-7.6	6.06	-31.71
9	-8.0	4.67	-18.45
OMTS (Positive Control)	-9.2	5.99	-44.45

A) Co-crystal MptpB and OMTS

C) Docked MptpB and 5d

D) Docked MptpB and 3e

Figure S3. Fidelity of the docking experiment and comparative MptpB binding profiles of synthesized Pyrrolo[1,2a]indole derivatives ($5 \mathrm{~d}, 3 \mathrm{e}$) along with prior reported MptpB substrate competitive inhibitor, OMTS. The central figure represents the structural glimpse of MptpB with bound ligands ($\mathbf{5 d}, \mathbf{3 e}$ and OMTS). The boxed figures (A,B,C,D) represent 2D interaction profile of MptpB bound (co-crystallized or docked) ligands with the active site amino acids residues. The encircled amino acid residues in Figure S3.B, Figure S3.C and Figure S3.D represent the engagement of identical active site amino acid residues of MptpB which arepreviously found to interact with co-crystallized ligand OMTS Figure A The engagement of identical sets of amino acids in FigA and Fig S3.B for the same ligand OMTS which is either co-crystallized (Figure S3 A) or blind docked (Figure S3.B) justifies the fidelity of docking experiment. Likewise, the engagement of similar sets of amino acids in Figure S3 C and Figure.S3 D as compared with Figure.S3 A suggests that the synthesized Pyrrolo[1,2-a]indole derivatives 5d, and 3e may also act as substrate competitive inhibitor of MptpB. Spiked arches represent the hydrophobic interactions while the green dotted line represent the formation of hydrogen bonds.

Methodology:

2D structure of the all molecules in the library from pyrrolo indole derivatives were drawn using a freely available online tool named ChemDraw from PerkinElmer Informatics (https://chemdrawdirect.perkinelmer.cloud/js/sample/index.html) followed by the conversion into 3D SDF format using open babel software. ${ }^{12}$ Further these ligands were converted into PDB followed by conversion into PDBQT format by using PyMol (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC) and AutoDock Tools 1.5.6. ${ }^{13}$ Mycobacterial protein tyrosine phosphatase B (MptpB) 3D structure (PDB ID: 2OZ5) ${ }^{14}$ was downloaded from protein data bank RCSB website ${ }^{15}$ and associated ligands and water molecules were removed using PyMol. The AutodockVina was used for molecular docking and AutoDock Tools 1.5.6 for protein and ligand preparation for docking. The Kollman charges and polar hydrogen were added followed by converting to PDBQT format. In order to perform blind docking grid box was prepared to cover up whole protein, box size of $1 \AA$ with spacing $54 \times 66 \times 56$. Post docking, the binding affinity of the best pose of the ligands out of nine possible binding sites was calculated using online server KDEEP. ${ }^{16}$ The interaction profile of ligand with protein and binding poses were analyzed by using PyMol and Ligplot. ${ }^{17}$ To study the stability of the bound ligand with the MptpB protein we have performed the
molecular dynamic simulation (MD simulation) study. Alone MptpB and MptpB docked with ligands (5d and 3e) were simulated to understand the stability behavior of the protein in physiologically simulated conditions in presence of ligands. All the MD simulation was perform using NAMD 2.14 software. ${ }^{18}$ VMD (visual Molecular Dynamics was used to protein and ligand preparation and results analysis. ${ }^{19}$ Best pose of the ligand, post docking study by autodokvina and protein PDBQT format was used as a complex for simulation file preparation. modeler tools ${ }^{20}$ was used to generate force field and topology files of ligands such as ligandrm.psf and ligandrm.pdb. The ligand and protein structure complex were solvated with a boundary of $5 \AA$ Acubic cell and langevin dynamics were applied to generate isothermal-isobaric ensemble environment for simulation. The simulation was performed for 30 ns with a 2 femto second time step per cycles. The energy minimization of the system was done for 1000 steps and the steps for dcd, xst, and restart frequency was set to 5000 steps and output energy to 50 steps. To study the change in conformation of the alone protein and protein with ligands RMSD profile was analyzed using VMD tools. Since Molecular Mechanics/Poison Boltzmann Surface area and Molecular Mechanics/Generalized Born surface area are the two well evaluated methods for ranking docked poses hence to be double sure and increase the probability of the prediction and scoring function we have done the free energy calculation based on $\mathrm{MM} / \mathrm{PB}(\mathrm{GB}) \mathrm{SA}$ method. Here we have applied fastDRH, a web server to re-score the docked poses that apply AmberTools17 for free energy calculation. Here, we have chosen ff19SB force field for receptor and GAFF2 for ligand and we consider the score of GB8 method due to higher success rate. ${ }^{21}$ All the data are plotted using origin software (Origin, Version 2022. OriginLab Corporation, Northampton, MA, USA.).

Figure S4. Pictorial view of similarity in pharmacophore of control ligand (OMTS) and pyrroloindole derivatives
OMTS is potentially binding at the active site of MptpB and considered as a potential inhibitor of this mycobacterial drug target protein. Our synthesized pyrroloindole derivatives have the similar pharmacophore as OMTS so it gives a hunch that these molecules may also bind and inhibit MptpB. Taking pharmacophoric similarity in consideration, using in silico approaches we have extended our study to screen these derivatives as potential lead molecules against MptpB.

10. Computational Details

In order to gain an understanding of the mechanism behind the novel $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ catalyzed cascade reaction, we propose a reaction as depicted in Scheme 2. Initially, the formation of product 3a' was expected over the reaction between the indole ester 1a and ethyl acrylate 2a. However, the experiment resulted in the formation of a self-dimerized intermediate 4a, eventually producing the product 3a. To understand the reaction mechanism and to know the reason behind the formation of $\mathbf{3 a}$ instead of anticipated product 3a', density functional theory (DFT) electronic structure calculations were carried out. Geometry optimization was performed at the B3LYP/def2-SVP level of theory followed by single point calculations for the optimized structures at B3LYP/def2-TZVP were completed using ORCA package. ${ }^{22-26}$ Solvation effects were also considered throughout the calculations using the CPCM (Conductor-like Polarizable Continuum Model) implicit model. ${ }^{27}$ As seen in Figure S5, the barrier height for TS 1 is $43.8 \mathrm{kcal} / \mathrm{mol}$ and the energy of $\mathbf{3 a}^{\prime}$ ' is $5.6 \mathrm{kcal} / \mathrm{mol}$ below the reactants. This shows that the formation of $\mathbf{3 a}{ }^{\prime}$ is neither kinetically nor thermodynamically favoured. Hence, the potential energy profile presenting the detailed mechanism for the formation of self-dimerization adduct $\mathbf{4 a}$ and its reaction with ethyl acrylate $\mathbf{2 a}$ to give substituted pyrrolo[1,2-a]indoles $\mathbf{3 a}$ was computed and provided in Figures 2 and SI-3, respectively. The transition state (1a-TS 1) for the formation of self-dimer 4a has a barrier height of $33.4 \mathrm{kcal} / \mathrm{mol}$ leading to the formation of a stable intermediate $1 \mathrm{a}-\mathrm{IM} 1$ followed by the keto-enol tautomerism.

It was anticipated that the indole ester $\mathbf{1 a}$ under $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ conditions generates an unstable intermediate \mathbf{A}, which subsequently undergoes [3+2] cycloaddition with another molecule of indole ester 1a to generate self-dimerized adduct 4a . Notably, the self-dimerization adduct $4 \mathbf{a}$ was found to be highly stable, which lies at $36.9 \mathrm{kcal} / \mathrm{mol}$ below the reactants. Further reaction of self-dimer $\mathbf{4 a}$ with ethyl acrylate $\mathbf{2 a}$ led to the formation of $\mathbf{3 a}$ with $12.6 \mathrm{kcal} / \mathrm{mol}$ of energy above the reactants. In addition, cross dimerization product $\mathbf{4 g}$ (Figure S6) has also been observed in the experiments where an unstable 1c' intermediate on reaction with 1a undergoes [3+2] cycloaddition similar tso the self-dimerization reaction process. Both the reactions follow a similar reaction mechanism approach, where there is a formation of five-membered ring. The energies for each transition state as well as the intermediates follows almost identical trend.

Figure S5. Potential energy profile for the expected product (3A). Energies are in $\mathrm{kcal} / \mathrm{mol}$.

B3LYP/def2-TZVP

Figure S6. Potential energy profile for cross-dimerization (4g). Energies are in $\mathrm{kcal} / \mathrm{mol}$.

Figure S7. TS-Scan graph from addition of ethyl acrylate 2a on dimer $\mathbf{4 a}$ to the formation of molecule 3a.

References

1 D. H. Dethe, R. D. Erande and A. Ranjan, J. Org. Chem., 2013, 78, 10106-10120.
2 C. B. de Koning, J. P. Michael, R. Pathak and W. A. L. van Otterlo, Tetrahedron Lett., 2004, 45, 1117-1119.
3 B. Harish, S. Yadav and S. Suresh, Chem. Commun., 2021, 57, 231-234.
4 Y. Ye, Y. Suo, F. Yang, Y. Yang and L. Han, J. Chem. Res., 2015, 39, 296-299.
5 D. P. Zarezin, O. I. Shmatova, A. M. Kabylda and V. G. Nenajdenko, Eur. J. Org. Chem., 2018, 2018, 4716-4722.
6 D. H. Dethe, V. K. Boda and A. Mandal, Eur. J. Org. Chem., 2018, 2018, 5417-5421.
7 Y. Du, H.-Y. Huang, H. Liu, Y.-P. Ruan and P.-Q. Huang, Synlett, 2011, 2011, 565-568.
8 B. Bajtos and B. L. Pagenkopf, Org. Lett., 2009, 11, 2780-2783.
9 K. Sharma, A. Iyer, K. Sengupta and H. Chakrapani, Org. Lett., 2013, 15, 2636-2639.
10 G. Obi and F. R. Van Heerden, Synth. Commun., 2018, 48, 1482-1486.
11 L. Zhang, J. Hu, R. Xu, S. Pan, X. Zeng and G. Zhong, Adv. Synth. Catal., 2019, 361, 5449-5457.
12 N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, J. Cheminformatics, 2011, 3, 33 .
13 O. Trott and A. J. Olson, J. Comput. Chem., 2009, NA-NA.
14 C. Grundner, D. Perrin, R. Hooft van Huijsduijnen, D. Swinnen, J. Gonzalez, C. L. Gee, T. N. Wells and T. Alber, Structure, 2007, 15, 499-509.
15 H. M. Berman, Nucleic Acids Res., 2000, 28, 235-242.
16 J. Jiménez, M. Škalič, G. Martínez-Rosell and G. De Fabritiis, J. Chem. Inf. Model., 2018, 58, 287-296.
17 R. A. Laskowski and M. B. Swindells, J. Chem. Inf. Model., 2011, 51, 2778-2786.
18 J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L. V. Kalé, K. Schulten, C. Chipot and E. Tajkhorshid, J. Chem. Phys., 2020, 153, 044130.
19 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38.
20 S. Kim, J. Lee, S. Jo, C. L. Brooks, H. S. Lee and W. Im, J. Comput. Chem., 2017, 38, 1879-1886.
21 Z. Wang, H. Pan, H. Sun, Y. Kang, H. Liu, D. Cao and T. Hou, Brief. Bioinform., 2022, 23, bbac201.
22 F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73-78.
23 F. Neese, WIREs Comput. Mol. Sci., 2018, 8, e1327.
24 M. Orio, D. A. Pantazis and F. Neese, Photosynth. Res., 2009, 102, 443-453.
25 F. Neese and E. F. Valeev, J. Chem. Theory Comput., 2011, 7, 33-43.
26 G. L. Stoychev, A. A. Auer and F. Neese, J. Chem. Theory Comput., 2017, 13, 554-562.
27 M. Garcia-Ratés and F. Neese, J. Comput. Chem., 2019, 40, 1816-1828.
11. NMR spectra of new compounds $3 \mathrm{a}-3 \mathrm{~g}, 4 \mathrm{a}-4 \mathrm{f}, 5 \mathrm{a}-5 \mathrm{~d}$ and 6-9
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a}$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3a

DEPT of 3a

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3b

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3b

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3c

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 d}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 d

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 e}$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 e

DEPT of 3e

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 f}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 f

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 g}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 g}$
(
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 a}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 4 a

DEPT of 4a

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 b}$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 b}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 c}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 d}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 4 e

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 e}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 4 f

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $4 f$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 g}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 g}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 a

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 a}$

DEPT of 5a

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 b}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 b}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 5 c

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 c}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 d}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 6

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 6

DRPT of 6

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 7

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR($\left.\mathbf{1 2 6} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$ of 7

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 8

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 8

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 9

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 9

Computational Studies at B3LYP/def2-SVP level of theory.
All the equilibrium points were optimized using B3LYP/def2-SVP level of DFT theory. The transition states were identified by normal mode frequency analysis. Intrinsic reaction coordinates (IRC) calculations also confirmed the transition states reported in the present work.

S.No.	Structure notation	Structures in 3D
1.	1a	
2.	2a	
3.	TS1	

5.
6.
7. $1 \mathrm{a}-\mathrm{TS} 2$
8. 14
9. $1 \mathrm{c}-\mathrm{IM} 1$

Cartesian coordinates of all the stationary points. Energy is in hartree and frequency corresponding to transition state in $\mathbf{~ c m}^{-1}$:

1. 1 a			
CARTESIAN COORDINATES (ANGSTR			
C	-0.749874	2.670948	-0.003148
C	0.678601	2.703785	-0.003585
C	1.339346	3.952356	-0.006149
C	0.578651	5.116514	-0.008211
C	-0.837251	5.061861	-0.007805
C	-1.518463	3.847475	-0.005306
H	2.431837	4.001474	-0.006496
H	1.075282	6.090495	-0.010195
H	-1.407823	5.994792	-0.009494
H	-2.610663	3.808223	-0.004995
C	1.136641	1.343123	-0.001086
C	-0.009580	0.539064	0.000882
N	-1.134628	1.357395	-0.000424
H	-2.094303	1.033315	0.000277
C	2.568703	0.905255	-0.000530
H	2.671398	-0.189039	0.001665
H	3.102535	1.290482	-0.886632
H	3.102927	1.294035	0.883785
C	-0.076290	-0.898565	0.003953
C	-1.196081	-1.665172	0.007583
C	-1.187018	-3.137035	0.010548
O	-2.198389	-3.817577	0.014710
O	0.050248	-3.671481	0.007847
C	0.151486	-5.107667	0.010111
C	1.620958	-5.474983	0.006234
H	1.729899	-6.570921	0.007794
H	2.124832	-5.079438	-0.889973
H	2.130339	-5.076347	0.897947
H	-0.371929	-5.504040	-0.875446
H	-0.366511	-5.500898	0.900242
H	-2.202049	-1.237015	0.008914
H	0.889356	-1.409756	0.003354

2. 2 a

Energy $=-345.341202$

CARTESIAN COORDINATES (ANGSTROMS)

$\begin{array}{lllll}\text { C } & -0.278541 & 3.036240 & -0.000128\end{array}$

C	-0.676906	1.758838	0.000106
C	0.305327	0.640718	0.000332
O	1.514147	0.763066	0.000035
O	-0.318421	-0.547321	0.000208
C	0.504594	-1.731943	0.000044
C	-0.410337	-2.938511	-0.000069
H	-0.998763	3.858881	-0.000269
H	0.786850	3.286875	-0.000172
H	-1.734479	1.480655	0.000156
H	0.192375	-3.860216	-0.000194
H	-1.053744	-2.946558	0.893951
H	-1.053799	-2.946350	-0.894052
H	1.156591	-1.709394	-0.888347
H	1.156645	-1.709600	0.888401

3. TS1

Energy =-1092.048103.
Imaginary Frequency $=-324.33$

CARTESIAN COORDINATES (ANGSTROMS)
C $\quad-1.419664 \quad 2.237288 \quad 0.039266$
$\begin{array}{lllll}\text { C } & -2.645814 & 1.559458 & -0.353149\end{array}$
C $\quad-2.295796 \quad 0.294453-0.872317$
$\begin{array}{lllll}\mathrm{N} & -0.880907 & 0.126133 & -0.756328\end{array}$
$\begin{array}{lllll}\text { C } & -0.372861 & 1.386250 & -0.239773\end{array}$
C $\quad-3.993042 \quad 1.950512-0.324467$
$\begin{array}{llll}\text { C } & -4.954724 & 1.065073 & -0.818141\end{array}$
C $\quad-4.584585-0.187812-1.338019$
C $\quad-3.243402-0.592800-1.376916$
C $\quad 1.059375 \quad 1.550233-0.159178$
C $\quad 1.740537 \quad 2.542541 \quad 0.464188$
C $\quad 3.213972 \quad 2.647448 \quad 0.465240$
$\begin{array}{llll}\text { O } & 3.823351 & 1.675427 & -0.237387\end{array}$
$\begin{array}{lllll}\text { C } & 5.265768 & 1.667164 & -0.284708\end{array}$
$\begin{array}{lllll}\text { C } & 5.859952 & 0.910957 & 0.891736\end{array}$
$\begin{array}{lllll}\text { C } & -1.345380 & 3.624340 & 0.590614\end{array}$
$\begin{array}{llll}\text { O } & 3.812785 & 3.533198 & 1.048034\end{array}$
C $\quad-0.423030 \quad-1.249804 \quad 0.166579$
C $\quad-0.579194-2.446735-0.634746$
C $-0.008565-2.395746-1.911867$
$\begin{array}{lllll}\text { O } & -0.046227 & -3.428964 & -2.797603\end{array}$
C $\quad-0.498410-4.729491 \quad-2.404650$
C $\quad 0.553251-5.512038 \quad-1.631473$
$\begin{array}{lllll}\text { O } & 0.519344 & -1.332725 & -2.368067\end{array}$
H $\quad-6.009410 \quad 1.351957-0.807654$

H	-5.355062	-0.858087	-1.727639
H	-2.955236	-1.557931	-1.792806
H	-4.285123	2.926743	0.069936
H	-1.050208	3.617824	1.654081
H	-0.595921	4.228592	0.053385
H	-2.315736	4.134393	0.514844
H	1.648957	0.787671	-0.677047
H	1.248777	3.333175	1.030651
H	0.610274	-0.938150	0.367649
H	-1.033006	-1.191060	1.076131
H	6.955113	0.857117	0.781142
H	5.635885	1.418510	1.842528
H	5.467009	-0.117199	0.937693
H	5.509948	1.176240	-1.237666
H	5.626616	2.705595	-0.315326
H	1.483199	-5.593313	-2.216926
H	0.786386	-5.029594	-0.670165
H	0.185324	-6.530532	-1.425645
H	-1.440351	-4.652574	-1.836081
H	-0.732712	-5.239354	-3.351921
H	-1.276823	-3.223931	-0.326124
H	-0.335419	-0.253615	-1.630154

4. IM1

Energy $=-1092.088756$.

CARTESIAN COORDINATES (ANGSTROMS)

$\begin{array}{llll}\text { C } & -5.712515 & 1.223484 & -0.890399\end{array}$
C $-5.531981-0.120526-0.477338$
C $\quad-4.296728-0.586615-0.039164$
C $\quad-3.222379 \quad 0.324144-0.014869$
$\begin{array}{llll}\text { C } & -3.384497 & 1.681249 & -0.432549\end{array}$
$\begin{array}{llll}\text { C } & -4.654036 & 2.122488 & -0.872311\end{array}$
$\begin{array}{llll}\mathrm{N} & -1.917095 & 0.146712 & 0.369080\end{array}$
$\begin{array}{llll}\text { C } & -1.224913 & 1.355859 & 0.195102\end{array}$
C $\quad-2.114034 \quad 2.324793-0.294811$
$\begin{array}{lllll}\text { C } & -1.823742 & 3.755699 & -0.631449\end{array}$
$\begin{array}{llll}\text { C } & 0.182126 & 1.448761 & 0.504553\end{array}$
$\begin{array}{lllll}\text { C } & 0.954665 & 2.566620 & 0.507494\end{array}$
C $\quad-1.352634-1.129066 \quad 0.822737$
C $\quad-0.699379-1.928409 \quad-0.270456$
$\begin{array}{lllll}\text { C } & 0.601264 & -2.269981 & -0.274500\end{array}$

O	1.178564	-2.874160	-1.338070
O	1.417502	-2.018032	0.783732
C	1.808038	-4.154719	-1.111334
C	2.343799	-4.656718	-2.435271
C	2.389485	2.578346	0.835423
O	3.053004	3.599795	0.892158
O	2.914878	1.358754	1.071519
C	4.701987	-0.149625	1.587509
C	4.309621	1.304149	1.426212
H	-6.699372	1.551364	-1.228126
H	-6.382323	-0.807586	-0.506279
H	-4.171667	-1.626789	0.268521
H	-4.800898	3.157469	-1.192986
H	-1.558672	4.348925	0.261285
H	-0.981816	3.849486	-1.338317
H	-2.700538	4.232427	-1.093307
H	0.684125	0.513991	0.766904
H	0.560254	3.557068	0.286070
H	-0.639895	-0.935599	1.635257
H	-2.184761	-1.693057	1.271806
H	-1.304516	-2.250515	-1.120808
H	2.319920	-1.849455	0.464876
H	2.618820	-4.049234	-0.370730
H	1.054677	-4.846679	-0.693764
H	2.826985	-5.636422	-2.295629
H	1.531046	-4.770418	-3.169889
H	3.089839	-3.957582	-2.845438
H	5.761589	-0.218536	1.879648
H	4.096850	-0.639595	2.366740
H	4.572117	-0.700962	0.641971
H	4.898686	1.801363	0.638759
H	4.461997	1.873366	2.358118

5. TS2

Energy $=-1092.054107$.
Imaginary Frequency $=-669.89$
CARTESIAN COORDINATES (ANGSTROMS)
C $\quad 0.221703-1.048855 \quad 0.480693$
$\begin{array}{lllll}\text { C } & 0.760736 & 0.935296 & -0.078369\end{array}$
C $\quad-0.665825 \quad 1.360853-0.045004$
N $\quad-1.6057820 .352666-0.135011$

C	-1.131010	-1.019381	-0.202464
C	-1.287459	2.594930	0.017397
C	-2.705318	2.317782	-0.040015
C	-2.867296	0.898583	-0.139386
C	-3.855508	3.132364	-0.011086
C	-5.113244	2.534901	-0.082035
C	-5.249687	1.131180	-0.182095
C	-4.132835	0.295708	-0.213218
C	-0.643705	3.945371	0.121251
C	1.458943	0.977590	-1.315996
C	2.905390	1.211569	-1.402224
O	3.537161	1.046381	-0.214670
C	4.963268	1.234871	-0.189624
C	5.413892	1.238819	1.256828
C	1.310924	-1.730942	-0.091635
O	2.285798	-2.324141	0.584405
C	2.153597	-2.611014	1.994321
C	3.236704	-3.598914	2.373696
O	3.503870	1.500493	-2.424821
O	1.533622	-1.639843	-1.363389
H	-6.011048	3.159095	-0.062239
H	-6.249330	0.691238	-0.238441
H	-4.242074	-0.788601	-0.294424
H	-3.762277	4.219746	0.064333
H	-0.847636	4.565637	-0.769695
H	-1.022476	4.508817	0.991856
H	0.448849	3.864306	0.224685
H	1.353755	1.127818	0.820610
H	0.907744	1.243490	-2.223563
H	-1.843869	-1.675789	0.322226
H	-1.059843	-1.365985	-1.247465
H	0.171256	-1.019413	1.571918
H	5.440306	0.421595	-0.762478
H	5.210049	2.181075	-0.696414
H	6.507710	1.358656	1.305962
H	5.148481	0.293944	1.757320
H	4.950946	2.070910	1.811434
H	1.149022	-3.022995	2.183573
H	2.254400	-1.667594	2.555632
H	4.237581	-3.187774	2.170419
H	3.122909	-4.540319	1.813945
H	3.166646	-3.823480	3.449360
H	1.475347	-0.575029	-1.592847

6. 3A

Energy $=-1092.133290$.
CARTESIAN COORDINATES (ANGSTROMS)
$\begin{array}{llll}\text { C } & -5.706444 & 0.776096 & 0.346357\end{array}$
$\begin{array}{llll}\text { C } & -5.625136 & -0.531739 & 0.877879\end{array}$
C $\quad-4.394114-1.157696 \quad 1.074598$
C $\quad-3.238168 \quad-0.441123 \quad 0.727965$
$\begin{array}{llll}\text { C } & -3.295451 & 0.887065 & 0.188725\end{array}$
C $\quad-4.5573771 .4867410 .000892$
$\begin{array}{lllll}\mathrm{N} & -1.909939 & -0.778543 & 0.795593\end{array}$
C $\quad-1.139331 \quad 0.2708460 .337357$
C $\quad-1.937525 \quad 1.326630 \quad-0.056612$
C $\quad-1.514585 \quad 2.648445-0.626550$
C $\quad-1.149587-1.925997 \quad 1.261175$
$\begin{array}{lllll}\text { C } & 0.272580 & -1.626826 & 0.733664\end{array}$
$\begin{array}{lllll}\text { C } & 0.320439 & -0.078902 & 0.451223\end{array}$
$\begin{array}{llll}\text { C } & 1.029447 & 0.721259 & 1.580659\end{array}$
C $2.504357 \quad 0.371436 \quad 1.680964$
$\begin{array}{lllll}\text { O } & 2.898488 & -0.590224 & 2.306912\end{array}$
$\begin{array}{llll}\text { O } & 3.408132 & 1.114274 & 1.021741\end{array}$
$\begin{array}{llll}\text { C } & 4.346045 & 2.817902 & -0.366353\end{array}$
C $\quad 3.076141 \quad 2.313337 \quad 0.287771$
$\begin{array}{lllll}\text { C } & 0.614627 & -2.445524 & -0.507534\end{array}$
O $-0.088444-3.293715-1.010800$
O $\quad 1.829654-2.124794 \quad-0.965418$
C $\quad 3.730136-2.345155-2.403616$
$\begin{array}{lllll}\text { C } & 2.327937 & -2.839514 & -2.119919\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.689120 & 1.235243 & 0.206019\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.544580 & -1.062793 & 1.140010\end{array}$
H $\quad-4.331529-2.1687771 .484736$
$\begin{array}{llll}\text { H } & -4.634429 & 2.498033 & -0.409253\end{array}$
H $\quad-0.425519 \quad 2.690604 \quad-0.781618$
H $\quad-1.996558$ 2.843575 -1.600548
H $\quad-1.7883563 .489671 \quad 0.034849$
H $\quad-1.165967-1.991721 \quad 2.362281$
H $\quad-1.543255-2.8653670 .847292$
$\begin{array}{lllll}\mathrm{H} & 1.036657 & -1.886955 & 1.481768\end{array}$
H $\quad 0.848016 \quad 0.119373-0.493592$
$\begin{array}{llll}\mathrm{H} & 0.871124 & 1.793826 & 1.411727\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.574941 & 0.461899 & 2.548208\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.131175 & 3.740427 & -0.928061\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.114336 & 3.042262 & 0.389982\end{array}$
H $\quad 4.750907$ 2.070653 -1.066716
$\begin{array}{llll}\text { H } & 2.308858 & 2.086560 & -0.469400\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.667215 & 3.062345 & 0.985386\end{array}$
H 4.139105 -2.875792
H $\quad 3.733113-1.265648$-2.622592
H 4.394267 -2.529709 -1.544637
H $\quad 2.307179$-3.918515 -1.899261

H $\quad 1.646112$-2.658506 -2.966232
7. A

Energy $=-746.712482$.
CARTESIAN COORDINATES (ANGSTROMS)
C $\quad-0.772330 \quad 2.534171 \quad-0.039792$
C $\quad 0.682299 \quad 2.670898 \quad-0.007211$
$\begin{array}{lllll}\text { C } & 1.279956 & 3.965361 & 0.009063\end{array}$
C $\quad 0.463499 \quad 5.076988 \quad-0.005686$
$\begin{array}{lllll}\text { C } & -0.965759 & 4.944270 & -0.037098\end{array}$
C $\quad-1.582595 \quad 3.710796-0.053927$
$\begin{array}{llll}\text { H } & 2.368921 & 4.073919 & 0.032838\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.900334 & 6.079596 & 0.006408\end{array}$
$\begin{array}{lllll}\mathrm{H} & -1.575181 & 5.853240 & -0.047833\end{array}$
H $\quad-2.672438$ 3.619319 -0.077819
C $\quad 1.1882931 .363905 \quad 0.000397$
$\begin{array}{lllll}\text { C } & 0.010141 & 0.523115 & -0.028138\end{array}$
$\begin{array}{lllll}\mathrm{N} & -1.165371 & 1.255808 & -0.052529\end{array}$
$\begin{array}{llll}\text { C } & 2.626621 & 0.946042 & 0.029754\end{array}$
$\begin{array}{llll}\text { H } & 2.745386 & -0.147558 & 0.028337\end{array}$
$\begin{array}{lllll}\text { H } & 3.179607 & 1.339362 & -0.841837\end{array}$
$\begin{array}{lllll}\mathrm{H} & 3.142051 & 1.333161 & 0.926765\end{array}$
C $\quad 0.014747-0.878180 \quad-0.032798$
C $\quad-1.134903-1.673278 \quad-0.066117$
C $-1.098321-3.066508$-0.071437
O $-2.180627-3.824611-0.108036$
$\begin{array}{lllll}\text { O } & 0.037938 & -3.720150 & -0.039888\end{array}$
C $\quad 0.063661-5.174625-0.045401$
C $\quad 1.512413-5.604440-0.001121$
H $\quad 1.563391 \quad-6.704287 \quad-0.004110$
H $\quad 2.063115-5.229627-0.877759$
H $\quad 2.006150 \quad-5.237001 \quad 0.911811$
H $\quad-0.444778$-5.526539 -0.955992
$\begin{array}{llll}\mathrm{H} & -0.501324 & -5.534051 & 0.828149\end{array}$
H $\quad-2.113809-1.189773-0.092333$
H $\quad 0.984443-1.383761 \quad-0.009660$
H $\quad-2.988452-3.282610-0.132631$

```
8. 1a-TS1
Energy = -1493.440604.
Imaginary Frequency =-291.66
CARTESIAN COORDINATES (ANGSTROMS)
\(\begin{array}{llll}\mathrm{N} & -0.993036 & 0.553288 & 0.109184\end{array}\)
C \(\quad-0.297029 \quad 1.761675 \quad 0.042575\)
\(\begin{array}{lllll}\text { C } & 1.063335 & 1.793205 & -0.332138\end{array}\)
\(\begin{array}{llll}\text { C } & -1.175460 & 2.855858 & 0.326939\end{array}\)
\(\begin{array}{lllll}\text { C } & -2.437378 & 2.274884 & 0.572675\end{array}\)
C \(\begin{array}{llll}-2.269921 & 0.844088 & 0.445197\end{array}\)
C \(\quad-3.709337 \quad 2.818106 \quad 0.901117\)
C -4.7668391 .9573051 .119664
C \(-4.590000 \quad 0.545022 \quad 1.015089\)
C \(-3.371052-0.021511 \quad 0.685722\)
\(\begin{array}{lllll}\text { C } & -0.866552 & 4.320255 & 0.311253\end{array}\)
\(\begin{array}{llll}\text { C } & 1.944922 & 2.868304 & -0.330768\end{array}\)
C \(3.293099 \quad 2.681434-0.689864\)
\(\begin{array}{llll}\text { O } & 3.714036 & 1.527727 & -1.120275\end{array}\)
C \(\quad 5.134890 \quad 1.220343-1.277675\)
C \(\quad 5.752358 \quad 0.835548 \quad 0.053035\)
\(\begin{array}{lllll}\text { O } & 4.197199 & 3.632968 & -0.611532\end{array}\)
H \(-5.753304 \quad 2.353015 \quad 1.375352\)
H \(-5.448895-0.1080601 .195116\)
\(\begin{array}{llll}\mathrm{H} & -3.269950 & -1.103271 & 0.598165\end{array}\)
\(\begin{array}{llll}\mathrm{H} & -3.845294 & 3.900313 & 0.981038\end{array}\)
\(\begin{array}{llll}\mathrm{H} & 1.665422 & 3.869174 & -0.003152\end{array}\)
\(\begin{array}{llll}\text { H } & 6.771638 & 0.456226 & -0.122401\end{array}\)
\(\begin{array}{lllll}\mathrm{H} & 5.820600 & 1.700956 & 0.730066\end{array}\)
\(\begin{array}{llll}\text { H } & 5.157447 & 0.048007 & 0.540586\end{array}\)
\(\begin{array}{llll}\mathrm{H} & 5.131031 & 0.379128 & -1.982240\end{array}\)
\(\begin{array}{lllll}\text { H } & 5.632554 & 2.079734 & -1.746880\end{array}\)
\(\begin{array}{llll}\mathrm{H} & 3.815179 & 4.466863 & -0.285196\end{array}\)
\(\begin{array}{lllll}\mathrm{H} & 1.483205 & 0.836695 & -0.641181\end{array}\)
\(\begin{array}{llll}\text { H } & 1.740133 & -1.471884 & -0.346087\end{array}\)
\(\begin{array}{lllll}\text { C } & 1.128200 & -1.202321 & 0.516918\end{array}\)
C \(1.842698 \quad-0.889133 \quad 1.706950\)
\(\begin{array}{lllll}\text { O } & 1.028752 & -0.497725 & 2.752425\end{array}\)
C \(1.659462-0.227390 \quad 4.003838\)
\(\begin{array}{lllll}\text { C } & 0.602274 & 0.272365 & 4.970484\end{array}\)
\(\begin{array}{lllll}\mathrm{H} & 1.057786 & 0.491141 & 5.949552\end{array}\)
H \(-0.187237-0.482128 \quad 5.119060\)
```

H	0.130618	1.194999	4.595202
H	2.144592	-1.144141	4.384082
H	2.459939	0.519120	3.864512
O	3.068335	-0.941597	1.869371
C	-0.287722	-1.141787	0.394433
H	-0.812927	-1.246223	1.349049
C	-0.909020	-1.979648	-0.670983
N	-1.748967	-3.019450	-0.287885
H	-1.950741	-3.269749	0.673517
C	-2.164086	-3.719371	-1.394990
C	-2.992776	-4.845501	-1.510147
H	-3.425161	-5.321440	-0.625910
C	-3.246017	-5.334033	-2.792268
H	-3.888669	-6.210369	-2.915521
C	-2.686829	-4.715983	-3.934602
C	-1.861352	-3.598809	-3.816385
H	-1.432495	-3.130473	-4.707146
H	-2.906581	-5.124733	-4.925032
C	-1.583202	-3.084136	-2.532956
C	-0.786672	-1.980615	-2.052448
C	-0.011156	-1.037504	-2.922808
H	0.778820	-1.563567	-3.488014
H	0.471330	-0.244011	-2.338602
H	-0.662804	-0.551778	-3.670620
H	-0.409570	4.634049	-0.642720
H	-1.780512	4.914914	0.453324
H	-0.161310	4.601628	1.112933

9. 1a-IM1

Energy $=-1493.509746$.
CARTESIAN COORDINATES (ANGSTROMS)
$\begin{array}{llll}\text { C } & -4.337247 & 2.512642 & -0.940371\end{array}$
C $\quad-4.656759 \quad 1.148449-0.773503$
$\begin{array}{lllll}\text { C } & -3.603155 & 0.216580 & -0.533317\end{array}$
C $\quad-2.258718 \quad 0.613871 \quad-0.454271$
C $\quad-1.975251 \quad 1.968208 \quad-0.621806$
C $\quad-3.004230 \quad 2.909229 \quad-0.863321$
N $\quad-4.179454-1.023611 \quad-0.415186$
C $\quad-5.554667-0.917323-0.563160$
C $\quad-5.895214 \quad 0.407550 \quad-0.787191$
C $-6.398169-2.159276-0.442182$
N $-7.336022-2.373248-1.542396$

C $\quad-8.566930$-2.872854 -1.158993
C $\quad-8.631372-3.008793 \quad 0.342831$
C $\quad-7.361090 \quad-2.173087 \quad 0.784949$
$\begin{array}{lllll}\text { C } & -9.336517 & -3.167597 & -2.265561\end{array}$
C $\quad-8.506086-2.840479-3.406666$
C $\quad-7.247026-2.361790-2.915967$
C $\quad-8.705955-2.918327-4.799573$
C $\quad-7.674029 \quad-2.539684-5.657959$
C $\quad-6.436382-2.082239 \quad-5.152178$
C $\quad-6.205900-1.986369 \quad-3.779032$
C $\quad-9.907083-2.551826 \quad 0.987125$
C $-10.545427-3.2208551 .965512$
$\begin{array}{llll}\text { O } & -10.176269 & -4.461720 & 2.363984\end{array}$
$\begin{array}{llll}\text { C } & -9.892000 & -4.648548 & 3.770528\end{array}$
C $\quad-9.420505-6.072891 \quad 3.970820$
C $\quad-6.784850-2.703458 \quad 2.080444$
$\begin{array}{lllll}\text { O } & -5.905262 & -3.695092 & 1.893955\end{array}$
C $\quad-5.333573-4.318332 \quad 3.067639$
C $\quad-4.284159 \quad-5.308725 \quad 2.610290$
C $-7.255439 \quad 1.002097-1.010467$
$\begin{array}{lllll}\text { O } & -11.610620 & -2.680750 & 2.608808\end{array}$
$\begin{array}{lllll}\text { O } & -7.126439 & -2.309719 & 3.175937\end{array}$
H $\quad-7.820179-2.600153-6.740178$
H $\quad-5.642615-1.798233-5.848842$
H $\quad-5.247635-1.635325-3.391054$
H $\quad-9.657497-3.277401 \quad-5.202657$
H $\quad-5.716312$-3.023732 -0.376045
H $\quad-7.692455-1.147042 \quad 0.993002$
H $\quad-8.461057-4.0659390 .609934$
H $-10.337784-1.5994540 .667888$
H $\quad-3.683153-1.889480 \quad-0.236762$
H $-1.464592-0.114036-0.267990$
H $\quad-0.937986 \quad 2.310231-0.565785$
H $\quad-2.744241 \quad 3.963900-0.990137$
H $\quad-5.124978$ 3.248319 -1.126620
H $\quad-3.836995-5.801968 \quad 3.487553$
H $\quad-4.724779-6.0856991 .965868$
H $\quad-3.479945-4.804101 \quad 2.051820$
H $\quad-4.908441$-3.531801 3.710292
H $\quad-6.143803-4.8088673 .630674$
H $\quad-9.216049$-6.250209 5.038384
H $\quad-10.189495 \quad-6.789854 \quad 3.641806$
H $\quad-8.496112$-6.267076 3.403932
H \quad-9.118307 $-3.920697 \quad 4.069575$

H	-10.799616	-4.448466	4.364477
H	-8.042901	0.237600	-1.056687
H	-7.523036	1.710577	-0.206728
H	-7.290573	1.569763	-1.956486
H	-12.212663	-3.389142	2.891170
C	-10.726014	-3.731608	-2.311663
H	-11.139046	-3.857547	-1.300251
H	-11.413697	-3.077443	-2.876192
H	-10.748829	-4.717208	-2.809773

10. 1a-TS2

Energy $=-1493.440850$.
Imaginary Frequency $=-2041.00$
CARTESIAN COORDINATES (ANGSTROMS)
C $\quad-6.184165-2.014077-3.747223$
C $\quad-7.233412-2.375440-2.875775$
C $\quad-8.486761-2.771637-3.431160$
C $\quad-8.708770-2.816123-4.816967$
C $\quad-7.653131 \quad-2.453604-5.651506$
C $-6.402255-2.055690 \quad-5.122386$
N $\quad-9.321421-3.060689 \quad-2.380655$
C $\quad-8.649969-2.868393-1.181844$
C $\quad-7.355286-2.445408-1.439416$
C $\quad-9.373728$-3.139555 0.110234
$\begin{array}{lllll}\mathrm{N} & -9.322748 & -2.050904 & 1.080959\end{array}$
C $\quad-9.206856-2.460052 \quad 2.398027$
C $\quad-9.103964-3.966788 \quad 2.463168$
C $\quad-8.796993-4.322749 \quad 0.955459$
C $\quad-9.303421-1.375958 \quad 3.247616$
C $\quad-9.512108 \quad-0.229781 \quad 2.386031$
C $\quad-9.539082-0.6926931 .030372$
$\begin{array}{llll}\text { C } & -9.691497 & 1.145470 & 2.637161\end{array}$
$\begin{array}{llll}\text { C } & -9.901200 & 2.011831 & 1.564390\end{array}$
$\begin{array}{llll}\text { C } & -9.936638 & 1.531225 & 0.236116\end{array}$
C $\quad-9.7555830 .177098 \quad-0.049651$
C $\quad-9.245750-1.345511 \quad 4.746469$
$\begin{array}{llll}\text { C } & -8.110883 & -4.500111 & 3.471367\end{array}$
C $\quad-8.217596-5.797146 \quad 4.072788$
$\begin{array}{lllll}\text { O } & -8.874978 & -6.825607 & 3.616505\end{array}$
$\begin{array}{lllll}\text { C } & -9.051817 & -7.989261 & 4.482224\end{array}$
$\begin{array}{lllll}\text { C } & -9.895953 & -8.999578 & 3.740410\end{array}$

C	-9.311229	-5.681600	0.524521
O	-10.650812	-5.732453	0.511687
C	-11.272969	-6.977967	0.123158
C	-12.772330	-6.770175	0.109746
C	-6.268087	-2.105754	-0.461849
O	-7.640905	-5.799961	5.226795
O	-8.604059	-6.620337	0.229774
H	-10.044996	3.079888	1.750978
H	-10.110709	2.232341	-0.585022
H	-9.787754	-0.191096	-1.076918
H	-9.673155	1.527377	3.662119
H	-10.428184	-3.357965	-0.133924
H	-7.707265	-4.351851	0.825988
H	-10.105608	-4.366260	2.706367
H	-7.057200	-4.273528	3.243824
H	-10.285491	-3.363869	-2.461640
H	-9.675560	-3.123211	-5.224536
H	-7.794169	-2.476319	-6.735783
H	-5.596585	-1.777658	-5.807634
H	-5.213324	-1.705725	-3.348763
H	-13.271573	-7.706863	-0.184057
H	-13.141864	-6.480313	1.106057
H	-13.057184	-5.987422	-0.610999
H	-10.887224	-7.270095	-0.866339
H	-10.972228	-7.756775	0.841483
H	-10.043462	-9.885162	4.377956
H	-10.884605	-8.584791	3.489571
H	-9.398923	-9.321169	2.812090
H	-8.054559	-8.384285	4.724442
H	-9.524393	-7.644978	5.415095
H	-6.607042	-2.177112	0.580578
H	-5.397775	-2.775303	-0.578922
H	-5.898820	-1.077417	-0.619395
H	-7.699713	-4.580209	4.940946
H	-9.029080	-2.341761	5.156758
H	-8.464232	-0.654466	5.108978
H	-10.199608	-0.998527	5.182709
	$-10 y$		

11. 4 a

Energy $=-1493.560792$.
CARTESIAN COORDINATES (ANGSTROMS)
$\begin{array}{llll}\text { C } & -0.156825 & -2.461602 & 3.394360\end{array}$
$\begin{array}{llll}\text { C } & -0.029705 & -2.309835 & 2.004117\end{array}$
C $\quad 0.208652$-3.422898 1.142064
$\begin{array}{lllll}\text { C } & 0.321343 & -4.712277 & 1.701816\end{array}$
$\begin{array}{lllll}\text { C } & 0.195589 & -4.864340 & 3.081366\end{array}$
C $\quad-0.042399-3.748651 \quad 3.918171$
$\mathrm{N} \quad-0.095419-1.186441 \quad 1.218887$
C $\quad 0.087727-1.542991 \quad-0.107446$
$\begin{array}{lllll}\text { C } & 0.281045 & -2.911180 & -0.206724\end{array}$
C $\quad 0.517161$-3.734859 -1.437578
C $\quad 0.053393-0.493634-1.180961$
N $\quad 1.073209 \quad 0.541539-1.014679$
$\begin{array}{lllll}\text { C } & 0.624016 & 1.844443 & -1.094678\end{array}$
C $\quad-0.867642 \quad 1.867328 \quad-1.296410$
C $\quad-1.271552 \quad 0.366224-1.207497$
$\begin{array}{llll}\text { C } & 1.682183 & 2.727641 & -1.021776\end{array}$
C $\quad 2.863332 \quad 1.899107-0.892909$
$\begin{array}{lllll}\text { C } & 2.445790 & 0.528611 & -0.904003\end{array}$
C $3.362644-0.530191 \quad-0.819552$
$\begin{array}{llll}\text { C } & 4.716620 & -0.207287 & -0.716329\end{array}$
$\begin{array}{lllll}\text { C } & 5.150549 & 1.137163 & -0.697318\end{array}$
C $\quad 4.238274 \quad 2.188575-0.784302$
C $\quad-2.212789-0.069552-2.320426$
O -2.545928 -1.356650 -2.185805
C $\quad-3.434702 \quad-1.928612 \quad-3.174490$
C $\quad-3.688048$-3.372431 -2.797190
C $\quad-1.656730 \quad 2.792685-0.356268$
$\begin{array}{llll}\text { C } & -1.427909 & 2.584157 & 1.127218\end{array}$
$\begin{array}{llll}\text { O } & -0.904964 & 1.612137 & 1.640141\end{array}$
C $\quad 1.662614 \begin{array}{llll} & 4.227271 & -1.079064\end{array}$
$\begin{array}{llll}\text { O } & -1.898549 & 3.608063 & 1.837641\end{array}$
$\begin{array}{lllll}\text { C } & -1.800505 & 3.532105 & 3.280684\end{array}$
$\begin{array}{lllll}\text { C } & -2.411193 & 4.791050 & 3.857148\end{array}$
$\begin{array}{lllll}\text { O } & -2.624395 & 0.641709 & -3.210673\end{array}$
H $\quad-0.281503-0.233918 \quad 1.534369$
$\begin{array}{llll}\mathrm{H} & 0.281290 & -5.859114 & 3.527537\end{array}$
H 0.504996 -5.581152 1.063015
H $\quad 0.200074-0.996671-2.150080$
H $\quad-1.809903 \quad 0.179494 \quad-0.267831$
H $\quad-1.090906$ 2.212958 -2.319058
H $\quad-1.445069$ 3.848819 -0.581764
$\begin{array}{lllll}\text { H } & -2.739367 & 2.668563 & -0.537418\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.738716 & 3.424898 & 3.553240\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.325907 & 2.625021 & 3.619421\end{array}$

H	-1.875700	5.687174	3.506268
H	-2.348866	4.759783	4.956189
H	-3.471580	4.882308	3.573756
H	3.029398	-1.569839	-0.833244
H	5.454629	-1.011574	-0.648909
H	6.219463	1.353410	-0.614708
H	4.586027	3.225724	-0.772071
H	2.351130	4.607879	-1.853496
H	1.981115	4.681489	-0.123599
H	0.659976	4.615491	-1.311739
H	-0.137833	-3.898873	4.997330
H	-0.340480	-1.599270	4.040558
H	0.571245	-3.118273	-2.346718
H	-0.287693	-4.475867	-1.588390
H	1.460754	-4.303339	-1.365499
H	-2.960944	-1.837739	-4.165070
H	-2.749157	-3.947948	-2.780331
H	-4.362190	-3.832925	-3.536296
H	-4.161304	-3.444541	-1.805374
H	-4.363775	-1.337183	-3.192962

12. 3a

Energy $=-1838.886960$.
CARTESIAN COORDINATES (ANGSTROMS)
$\begin{array}{llll}\text { C } & 0.116534 & -5.752868 & 0.857795\end{array}$
$\begin{array}{lllll}\text { C } & -0.305012 & -4.480657 & 0.429145\end{array}$
$\begin{array}{lllll}\text { C } & 0.307677 & -3.310595 & 0.991254\end{array}$
C $\quad 1.266107$-3.414285 $\quad 2.014803$
$\begin{array}{lllll}\text { C } & 1.657811 & -4.691789 & 2.420398\end{array}$
$\begin{array}{lllll}\text { C } & 1.100581 & -5.851039 & 1.841174\end{array}$
$\mathrm{N} \quad-0.298951 \quad-2.220246 \quad 0.389046$
C $\quad-1.309672-2.679540 \quad-0.451514$
C $-1.345174-4.052108 \quad-0.481940$
C $\quad-2.086693-1.516414-1.000773$
C $-1.652394-0.357785-0.017684$
C $\quad-0.290390 \quad-0.798213 \quad 0.494418$
$\begin{array}{llll}\text { C } & 0.782418 & -0.026369 & 0.800448\end{array}$
$\begin{array}{llll}\mathrm{N} & 2.074890 & -0.512088 & 0.999606\end{array}$
C $\quad 2.902053 \quad 0.432672 \quad 1.587030$
C $\quad 2.205265 \quad 1.650766 \quad 1.703308$
$\begin{array}{llll}\text { C } & 0.827422 & 1.509477 & 1.040477\end{array}$

C	2.817566	2.732612	2.327766
C	4.135814	2.602706	2.806671
C	4.823023	1.393486	2.654398
C	4.214172	0.285567	2.044908
C	0.820128	2.236858	-0.343472
C	0.973158	3.757297	-0.294159
C	0.901575	4.394186	-1.669038
O	1.096846	5.724697	-1.757538
C	1.390136	6.557603	-0.618610
C	1.525838	7.983707	-1.113165
C	-0.306764	2.005891	1.956353
C	-1.848929	-1.210040	-2.503965
C	-0.410463	-0.914349	-2.872914
O	0.293784	-2.032435	-3.089274
C	1.699787	-1.890495	-3.393281
C	2.267265	-3.272552	-3.638075
C	-2.696677	-0.251032	1.092355
O	-2.681846	-0.870249	2.132573
C	-2.272837	-4.936070	-1.259771
O	-3.669610	0.602370	0.748362
C	-4.775951	0.759914	1.667182
C	-5.753045	1.744231	1.060673
O	0.063701	0.198915	-2.956434
O	0.673149	3.782063	-2.688216
H	4.619522	3.449094	3.300728
H	2.285431	3.678255	2.459701
H	-1.623071	0.599888	-0.548863
H	-3.167819	-1.702876	-0.908443
H	-2.194623	-2.077830	-3.085250
H	-2.451674	-0.335151	-2.787320
H	2.192217	-1.388740	-2.544624
H	1.806120	-1.237631	-4.274076
H	2.147937	-3.911772	-2.749155
H	3.341868	-3.195895	-3.866759
H	1.767253	-3.760315	-4.489777
H	1.678709	-2.533257	2.506411
H	2.403355	-4.790730	3.214244
H	1.431730	-6.835815	2.182134
H	-0.334973	-6.654152	0.433263
H	-2.743749	-5.695540	-0.612427
H	-1.742868	-5.484026	-2.059169
H	-3.077126	-4.354282	-1.735537
H	5.847432	1.300825	3.026384
H	4.742172	-0.666014	1.945957

H	-5.235489	-0.227228	1.834632
H	-5.279277	2.725472	0.899758
H	-6.607956	1.881526	1.741234
H	-6.136074	1.377588	0.095190
H	1.754842	8.650372	-0.267077
H	0.590900	8.326887	-1.583322
H	2.339361	8.066620	-1.850872
H	2.324088	6.215367	-0.143452
H	0.577419	6.472626	0.121328
H	-0.112283	1.994085	-0.872744
H	1.626665	1.816591	-0.963952
H	0.189367	4.224193	0.326878
H	-1.274700	2.023057	1.432974
H	-0.106995	3.031822	2.301394
H	-0.401677	1.364277	2.844728
H	-4.380355	1.111870	2.633254
H	2.358163	-1.465424	0.814388
H	1.929315	4.047911	0.169078

13. 1c

Energy $=-1013.621493$.
CARTESIAN COORDINATES (ANGSTROMS)
C $\quad-4.656484-1.489571 \quad-0.000040$
C $\quad-4.350139-2.873247-0.000122$
C $\quad-3.032984-3.312369 \quad-0.000165$
C $\quad-2.019424-2.337030 \quad-0.000127$
C $\quad-2.295431-0.929945-0.000044$
C $\quad-3.656741-0.526021-0.000002$
$\mathrm{N} \quad-0.666370-2.494809-0.000157$
C $\quad-0.040043-1.255037-0.000096$
C $\quad-1.023637-0.252202-0.000026$
$\begin{array}{llll}\text { C } & -0.711407 & 1.222890 & 0.000045\end{array}$
C $\quad 1.402284-1.218866-0.000116$
C $\quad 2.233896-0.146348-0.000048$
$\begin{array}{lllll}\text { C } & -1.901819 & 2.168260 & 0.000089\end{array}$
$\begin{array}{llll}\text { C } & 3.704086 & -0.256205 & -0.000079\end{array}$
$\begin{array}{llll}\text { O } & 4.447645 & 0.709257 & 0.000004\end{array}$
O $4.157799-1.524161-0.000206$
C $\quad 5.859125-3.205741-0.000380$
$\begin{array}{lllll}\text { C } & 5.585168 & -1.716200 & -0.000240\end{array}$
$\begin{array}{llll}\text { O } & -1.365918 & 3.504004 & 0.000146\end{array}$

O	-3.448222	4.347798	0.000133
C	-2.248880	4.518182	0.000173
C	-1.552835	5.854849	0.000212
H	-5.703519	-1.174974	-0.000007
H	-5.163411	-3.604144	-0.000150
H	-2.784285	-4.376623	-0.000228
H	-3.938052	0.526905	0.000061
H	-0.180804	-3.385217	-0.000216
H	-0.088747	1.468777	0.879168
H	-0.088748	1.468859	-0.879055
H	1.879304	-2.204980	-0.000194
H	1.878399	0.882939	0.000039
H	-2.535568	2.038927	-0.890505
H	-2.535563	2.038851	0.890676
H	6.946151	-3.382709	-0.000407
H	5.431533	-3.686753	0.893684
H	5.431515	-3.686588	-0.894523
H	6.011717	-1.220917	-0.887932
H	6.011739	-1.221079	0.887532
H	-2.296089	6.661433	0.000179
H	-0.905506	5.938930	0.887319
H	-0.905412	5.938939	-0.886825

14. 1c'

Energy $=-1013.557853$.

CARTESIAN COORDINATES (ANGSTROMS)

C $\quad-4.619314-1.496313-0.000009$
C $-4.283323-2.892463-0.000122$
C $\quad-2.972859 \quad-3.310301 \quad-0.000183$
C $-1.932506-2.329308-0.000132$
C $\quad-2.266200-0.901187-0.000013$
C $\quad-3.648229-0.519576 \quad 0.000044$
N $-0.618777-2.547150-0.000180$
C $\quad-0.039457-1.284497-0.000086$
C $-1.033496-0.226396 \quad 0.000014$
$\begin{array}{llll}\text { C } & -0.717606 & 1.246320 & 0.000103\end{array}$
C $\quad 1.361831-1.221262 \quad-0.000094$
$\begin{array}{llll}\text { C } & 2.225454 & -0.121293 & 0.000047\end{array}$
$\begin{array}{llll}\text { C } & -1.907762 & 2.191356 & 0.000114\end{array}$
$\begin{array}{llll}\text { C } & 3.613233 & -0.277141 & 0.000024\end{array}$
$\begin{array}{llll}\text { O } & 4.365264 & 0.809106 & 0.000227\end{array}$

O	4.156283	-1.474528	-0.000198
C	5.841342	-3.174480	-0.000553
C	5.592612	-1.682578	-0.000215
O	-1.376001	3.530752	0.000156
O	-3.459750	4.371861	0.000052
C	-2.260283	4.542606	0.000151
C	-1.566535	5.880972	0.000088
H	-5.674575	-1.208585	0.000036
H	-5.092315	-3.629201	-0.000160
H	-2.708823	-4.371746	-0.000269
H	-3.950386	0.528736	0.000131
H	-0.094967	1.495598	0.879118
H	-0.094920	1.495685	-0.878855
H	1.833368	-2.209474	-0.000215
H	1.876259	0.908953	0.000215
H	-2.541645	2.060708	-0.890148
H	-2.541666	2.060664	0.890354
H	6.926469	-3.359073	-0.000566
H	5.407293	-3.644056	0.895188
H	5.407342	-3.643642	-0.896534
H	6.017267	-1.206253	-0.900211
H	6.017224	-1.206666	0.900020
H	-2.311020	6.686460	0.000016
H	-0.919525	5.966441	0.887307
H	-0.919471	5.966334	-0.887104
H	5.320871	0.630775	0.000235

15. 1c-TS1

Energy $=-1760.297510$.
Imaginary Frequency $=-294.92$.
CARTESIAN COORDINATES (ANGSTROMS)
N $-0.976536-0.296452-0.150932$
C $-0.269952 \quad 0.897133-0.289265$
C $\quad 1.104574 \quad 0.878831-0.630446$
C $-1.152514 \quad 2.011448 \quad-0.135583$
C $-2.427627 \quad 1.4575510 .110779$
$\begin{array}{llll}\text { C } & -2.265288 & 0.022546 & 0.112389\end{array}$
$\begin{array}{llll}\text { C } & -3.706829 & 2.033690 & 0.335910\end{array}$
$\begin{array}{lllll}\text { C } & -4.778567 & 1.198816 & 0.586368\end{array}$
C $-4.607599 \quad-0.217051 \quad 0.613255$
$\begin{array}{llll}\text { C } & -3.380366 & -0.814839 & 0.383108\end{array}$
C $-0.862105 \quad 3.479460-0.263214$
C $-0.501522 \quad 4.123844 \quad 1.075121$
$\begin{array}{lllll}\text { O } & -0.268773 & 5.522790 & 0.833572\end{array}$
$\begin{array}{llll}\text { C } & 0.041538 & 6.288061 & 1.895572\end{array}$
$\begin{array}{lllll}\text { C } & 0.230220 & 7.730061 & 1.500694\end{array}$
$\begin{array}{lllll}\text { C } & 2.026371 & 1.915609 & -0.620255\end{array}$
C $3.3714541 .676434-0.970473$
$\begin{array}{llll}\text { O } & 3.749288 & 0.509337 & -1.398269\end{array}$
C 5.159458 0.153588 -1.564562
C $5.784339-0.215627-0.232996$
O $4.308524 \quad 2.592201-0.882284$
$\begin{array}{lllll}\text { O } & 0.142559 & 5.845791 & 3.018485\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.771641 & 1.619027 & 0.766023\end{array}$
H $-5.477426-0.848951 \quad 0.814667$
H $\quad-3.284445-1.9002280 .391923$
H -3.8369543 .1193780 .314387
H $-1.753281 \quad 3.994111 \quad-0.657892$
H -0.050417 3.665773 -0.983554
$\begin{array}{lllll}\mathrm{H} & 1.791585 & 2.925209 & -0.283513\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.318651 & 4.009446 & 1.804616\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.402331 & 3.676453 & 1.519108\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.785469 & -0.637910 & -0.414451\end{array}$
$\begin{array}{llll}\text { H } & 5.896666 & 0.665538 & 0.416962\end{array}$
$\begin{array}{lllll}\mathrm{H} & 5.169379 & -0.965460 & 0.287832\end{array}$
$\begin{array}{lllll}\mathrm{H} & 5.118202 & -0.704038 & -2.247797\end{array}$
$\begin{array}{lllll}\mathrm{H} & 5.674819 & 0.986084 & -2.062505\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.560493 & 8.313379 & 2.368908\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.967449 & 7.807609 & 0.686828\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.721350 & 8.135325 & 1.120641\end{array}$
$\begin{array}{lllll}\mathrm{H} & 3.957555 & 3.439221 & -0.554336\end{array}$
H $1.494174-0.098551-0.913675$
$\begin{array}{lllll}\mathrm{H} & 1.724975 & -2.376583 & -0.499368\end{array}$
C $\quad 1.122674-2.054227 \quad 0.352247$
C $1.849637-1.714565 \quad 1.528110$
$\begin{array}{lllll}\text { O } & 1.051302 & -1.271678 & 2.564021\end{array}$
$\begin{array}{lllll}\text { C } & 1.697082 & -0.981759 & 3.803794\end{array}$
C $\quad 0.653628 \quad-0.455541 \quad 4.771120$
H $1.121294-0.218528 \quad 5.740126$
H $-0.137994 \quad-1.202476 \quad 4.944410$
$\begin{array}{llll}\mathrm{H} & 0.182785 & 0.461561 & 4.381660\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.179552 & -1.894558 & 4.196233\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.501798 & -0.244448 & 3.641034\end{array}$
O 3.074509 -1.788236 1.685973

C $\quad-0.293914-1.979734 \quad 0.234768$
H -0.813209 -2.020828 1.197375
C $-0.935065-2.870697-0.774251$
N $-1.802711 \quad-3.860423-0.326066$
H -2.008147 -4.045938 0.649224
C $-2.242103-4.614410-1.387303$
С -3.107824 -5.717418 -1.431175
H -3.552380 -6.122985 -0.518378
C $-3.382432-6.274800-2.680277$
H $-4.054645-7.134828$-2.748342
C -2.807800 -5.746739 -3.859561
С -1.945098 -4.652800 -3.811992
H -1.504142 -4.255161 -4.730768
H -3.045068 -6.207911 -4.822547
С $-1.645974-4.068842-2.563264$
C $-0.815930-2.961701-2.152972$
C $-0.009245-2.100835-3.078358$
H $\quad 0.434697-1.243384-2.556923$
H -0.629568 -1.706229 -3.902042
H $\quad 0.814718$-2.667930 -3.547654
16. 1c-IM1

Energy $=-1760.368897$.
CARTESIAN COORDINATES (ANGSTROMS)
C $\quad-4.370153 \quad 2.520241 \quad-0.917281$
C $\quad-4.671326$ 1.150090 -0.765666
C $\quad-3.601072 \quad 0.222756-0.590785$
C $\quad-2.257620 \quad 0.630197 \quad-0.561320$
C $\quad-1.992414 \quad 1.990072 \quad-0.712327$
C $\quad-3.038332 \quad 2.926918 \quad-0.889192$
C $\quad-5.903407 \quad 0.398848-0.741982$
C $\quad-5.543056-0.927266-0.560251$
N $-4.161830-1.024587-0.473996$
C $-6.369726-2.179199 \quad-0.432041$
N $\quad-7.339983-2.387605-1.507102$
C $\quad-8.551602-2.900170 \quad-1.092795$
$\begin{array}{lllll}\text { C } & -8.556876 & -3.084127 & 0.404738\end{array}$
C $\quad-7.295028$-2.225210 $\quad 0.822627$
C $\quad-9.366530-3.151955-2.178929$
C -8.581068 -2.787971 -3.341420
C $\quad-7.305259 \quad-2.323651 \quad-2.882360$

C $\quad-8.834939-2.809528$-4.727960
C $\quad-7.838541-2.391875-5.609148$
C $-6.582946-1.950038-5.134390$
C $\quad-6.299372-1.908889 \quad-3.769020$
C $-10.758102-3.721606-2.179510$
C $-10.776971-5.238708-2.346140$
O $-12.155998 \quad-5.656425-2.367771$
C $-12.409086 \quad-6.972690-2.449511$
C $\quad-13.891508 \quad-7.247504-2.467683$
$\begin{array}{lllll}\text { C } & -6.671125 & -2.756086 & 2.095629\end{array}$
$\begin{array}{llll}\text { O } & -5.761030 & -3.711644 & 1.873091\end{array}$
$\begin{array}{lllll}\text { C } & -5.138242 & -4.331094 & 3.022776\end{array}$
C $\quad-4.045504 \quad-5.253206 \quad 2.525882$
C $\quad-9.823368$-2.694875 $\quad 1.107459$
C -10.407196 -3.427804 $\quad 2.074525$
$\begin{array}{llll}\text { O } & -9.978437 & -4.667721 & 2.409896\end{array}$
$\begin{array}{lllll}\text { C } & -9.632752 & -4.894740 & 3.797359\end{array}$
C $\quad-9.081630-6.298951 \quad 3.921091$
C $\quad-7.276071 \quad 0.986613-0.896554$
$\begin{array}{lllll}\text { O } & -7.003180 & -2.392933 & 3.204386\end{array}$
$\begin{array}{lllll}\text { O } & -11.471777 & -2.956803 & 2.769700\end{array}$
O $-11.537508-7.812855-2.502321$
H $\quad-8.027179-2.409138-6.686263$
H $\quad-5.818060-1.634880 \quad-5.849600$
H $\quad-5.328172$-1.569252 -3.404002
H $\quad-9.800068$-3.155817 -5.109085
H $\quad-11.271939$-3.471068 -1.238027
H $\quad-11.348908 \quad-3.276013-2.997755$
H $\quad-5.678303$-3.037618 -0.401220
H $\quad-7.643192$-1.208849 1.050477
$\begin{array}{llll}\text { H } & -8.341491 & -4.143318 & 0.627886\end{array}$
H $-10.295494 \quad-1.7456290 .842360$
H
H $\quad-10.258491 \quad-5.741326-1.514114$
H $\quad-3.651643-1.889630-0.335004$
H $\quad-1.450471 \quad-0.094447-0.425024$
H $\quad-0.956427 \quad 2.339953-0.694043$
$\begin{array}{llll}\text { H } & -2.792344 & 3.986219 & -1.004700\end{array}$
H $\quad-5.171027 \quad 3.252632-1.053717$
$\begin{array}{llll}\text { H } & -3.558979 & -5.742601 & 3.384137\end{array}$
H $\quad-4.455097-6.036960 \quad 1.869341$
H $\quad-3.278270$-4.693246 1.968149
H $\quad-4.745565-3.538476 \quad 3.678220$
H $\quad-5.912293-4.878045 \quad 3.584839$

H	-8.828892	-6.508096	4.972416
H	-9.824165	-7.041889	3.589114
H	-8.170325	-6.419670	3.314271
H	-8.886280	-4.139563	4.097847
H	-10.526500	-4.765014	4.430260
H	-14.070200	-8.328880	-2.510658
H	-14.363164	-6.821859	-1.568152
H	-14.349941	-6.756710	-3.340811
H	-8.060227	0.217738	-0.923633
H	-7.514010	1.678378	-0.069321
H	-7.354902	1.570951	-1.829657
H	-12.030660	-3.700212	3.050635

17. 1c-TS2

Energy $=-1760.300090$.
Imaginary Frequency $=-2047.64$
CARTESIAN COORDINATES (ANGSTROMS)
C $\quad-6.330905-1.802690 \quad-3.833126$
C $\quad-7.316651 \quad-2.247336-2.938330$
C $\quad-8.593976-2.717731 \quad-3.384784$
C $\quad-8.871238-2.715300-4.767011$
C $\quad-7.894854-2.268831 \quad-5.656526$
C $-6.636849-1.820916-5.194187$
N $-7.327825-2.339826-1.564568$
C $\quad-8.526033-2.877689 \quad-1.137980$
C $\quad-9.355582-3.115808$-2.217317
$\begin{array}{lllll}\text { C } & -8.485149 & -3.106072 & 0.355265\end{array}$
C $\quad-7.244867-2.220647 \quad 0.763395$
C $\quad-6.338137-2.150096 \quad-0.505434$
C $\quad-5.513318-0.896589 \quad-0.622760$
$\begin{array}{lllll}\text { C } & -5.874760 & 0.431725 & -0.784807\end{array}$
$\begin{array}{llll}\text { C } & -4.643236 & 1.184153 & -0.798307\end{array}$
C $\quad-3.572265 \quad 0.255294-0.636462$
N $\quad-4.131955-0.994044-0.537323$
C $\quad-2.229144 \quad 0.663177 \quad-0.601043$
C $\quad-1.964927 \quad 2.025316-0.732085$
$\begin{array}{lllll}\text { C } & -3.011535 & 2.963832 & -0.895364\end{array}$
C $\quad-4.343061 \quad 2.556603-0.929688$
$\begin{array}{lllll}\text { C } & -7.248195 & 1.020460 & -0.927523\end{array}$
$\begin{array}{lllll}\text { C } & -9.764004 & -2.814969 & 1.105609\end{array}$
C $\quad-10.175184 \quad-3.549425 \quad 2.265404$

O	-11.458	-3.509647	2.384745
C	-6.548766	-2.713618	2.014594
O	-6.652704	-2.190088	3.102393
	-10.738631	-3.705996	-2
	-10.733798	-5.	-2.393084
	-12.106230	-5.661190	-2.4
	-12.339413	-6.980083	-2.524
	-11.455512	-7.807620	-2.573242
	-13.817389	-7.275772	-2.5654
	-5.826922	-3.820103	9
	-5.156560	-4.422043	2.922990
	-4.396729	-5.633926	2.428267
	-9.419437	-4.262674	3.051686
	-10.057051	-5.139435	4.031742
	-8.977581	-5.956409	4.702843
	-8.101341	-2.268009	-6.730509
	-5.887793	-1.482966	-5.915727
	-5.357763	-1.458534	-3.477766
	-9.838289	-3.066231	-5.138884
	-11.256369	-3.465024	-1.280387
	-11.332385	-3.267819	-3.041674
	-5.646355	-3.009937	-0.499772
	-7.611140	-1.211154	0.992979
	-8.212896	-4.164511	0.524217
	-9.998917	-1.745888	1.226144
	-10.233388	-5.526226	-3.326785
	-10.214884	-5.720686	-1.558485
	-3.620698	-1.860633	-0.412407
	-1.421525	-0.062790	-0.474920
	-0.929222	2.375688	-0.708378
	-2.766366	4.024920	-0.995076
	-5.144485	3.290328	-1.055325
	-3.877384	-6.113363	3.272814
	-5.078854	-6.372681	1.978563
	-3.643247	-5.349328	1.676946
	-4.489028	-3.671722	3.375511
	-5.916070	-4.689501	3.674368
	-9.442643	-6.640463	5.429727
H	-8.421088	-6.559004	3.968215
H	-8.270090	-5.308921	5.243745
H	-10.599857	-4.505153	4.747738
H	-10.789177	-5.763633	3.496878
H	-13.980324	-8.359987	-2.598520
	-14.312430	-6.844804	-1.68127

H	-14.265238	-6.803188	-3.454098
H	-8.031765	0.251220	-0.957517
H	-7.481942	1.704435	-0.092663
H	-7.332021	1.613422	-1.854756
H	-11.261773	-3.072544	1.220044

18. 4 g

Energy $=-1760.411631$.
CARTESIAN COORDINATES (ANGSTROMS)
$\begin{array}{llll}\text { C } & -4.630114 & 2.596615 & -0.669676\end{array}$
C $\quad-4.872802 \quad 1.205713-0.605421$
C $\quad-3.824541 \quad 0.292980-0.490342$
$\begin{array}{llll}\text { C } & -2.519230 & 0.806494 & -0.438141\end{array}$
$\begin{array}{lllll}\text { C } & -2.250269 & 2.211762 & -0.485416\end{array}$
$\begin{array}{lllll}\text { C } & -3.333737 & 3.105246 & -0.610512\end{array}$
N $\quad-1.296890 \quad 0.179184 \quad-0.341904$
$\begin{array}{llll}\text { C } & -0.289412 & 1.120629 & -0.284419\end{array}$
$\begin{array}{lllll}\text { C } & -0.815866 & 2.394844 & -0.383447\end{array}$
C $\quad-0.100368$ 3.717335 -0.335125
C $\quad-0.870491-1.189868$-0.069006
C $\quad 0.682384-1.075589-0.243357$
$\begin{array}{lllll}\text { C } & 1.041077 & 0.443574 & -0.071959\end{array}$
C $\quad 2.148359 \quad 0.914998 \quad-1.034513$
$\begin{array}{llll}\text { C } & -0.046626 & 4.303107 & 1.074090\end{array}$
C $-1.521240-2.241415-0.927847$
N $-2.103765-3.340858$-0.314555
C $\quad-2.608765-4.189071 \quad-1.268031$
C $\quad-2.341059-3.599865-2.539657$
C $\quad-1.644790-2.357979-2.303411$
C $\quad-3.277745-5.416992-1.139606$
C $\quad-3.682375-6.056040-2.309934$
C $\quad-3.428369-5.489257-3.581703$
C $\quad-2.763937-4.271599-3.706330$
C $\quad 1.467260-1.986231 \quad 0.687105$
$\begin{array}{lllll}\text { O } & 2.351211 & -2.730804 & 0.321624\end{array}$
$\begin{array}{llll}\text { O } & 1.083956 & -1.858885 & 1.961461\end{array}$
$\begin{array}{lllll}\text { C } & 1.098728 & -2.419027 & 4.292245\end{array}$
$\begin{array}{lllll}\text { C } & 1.767627 & -2.658772 & 2.956070\end{array}$
C $\quad 3.461861 \quad 0.172087 \quad-0.891361$
O $\quad 4.057252-0.354038-1.805114$

O	3.901717	0.177115	0.374881
C	5.500943	-0.268793	2.102730
C	5.136433	-0.521828	0.655558
O	0.633429	5.570221	0.994005
O	0.434655	5.851433	3.214452
C	0.814416	6.253647	2.136672
C	1.536455	7.554117	1.891835
C	-1.172384	-1.413988	-3.370698
H	-5.476224	3.283037	-0.763860
H	-5.901361	0.836810	-0.647277
H	-4.013414	-0.781089	-0.440560
H	-3.160852	4.184374	-0.654568
H	0.930895	3.622685	-0.709307
H	-0.607212	4.443163	-0.993101
H	-1.094429	-1.428875	0.984589
H	0.944537	-1.387114	-1.263276
H	1.377616	0.625198	0.962484
H	2.357999	1.980796	-0.845954
H	1.824077	0.813995	-2.079568
H	-1.056001	4.458527	1.487612
H	0.498905	3.640768	1.765262
H	-2.143249	-3.490551	0.687455
H	-3.473055	-5.853690	-0.156689
H	-4.206094	-7.013873	-2.244503
H	-3.759870	-6.020059	-4.478533
H	-2.571256	-3.843329	-4.694168
H	1.607364	-3.011266	5.068984
H	1.152905	-1.356744	4.577981
H	0.040237	-2.722430	4.265918
H	1.716048	-3.715203	2.650026
H	2.829154	-2.364479	2.967628
H	6.443881	-0.785323	2.341511
H	5.638538	0.807240	2.293466
H	4.720220	-0.647577	2.781112
H	4.977484	-1.592474	0.450546
H	5.912346	-0.156628	-0.034988
H	1.682252	8.084285	2.840934
H	2.510028	7.358097	1.415831
H	0.953030	8.179562	1.197851
H	-0.755397	-0.487032	-2.953880
H	-0.394316	-1.876557	-4.003251
H	-1.999787	-1.131048	-4.044099

