Substituted anilides from chitin-based 3-acetamido-furfural

Cornelis H. M. van der Loo^a, J. P. Kaniraj^a, Ting Wang^d, J.O.P. Broekman^d, Mark L. G. Borst^b, Kees Pouwer^b, André Heeres^c, Peter J. Deuss^d and Adriaan J. Minnaard^{a,*}

a)	Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The	
b)	Netherlands, E-mail, A.J.Minnidahu@KUU.m Symeres B.V. Kadiik 3, 9747 AT Groningen. The Netherlands	
c)	Hanze University of Applied Sciences, Zernikeplein 7, 9747 AS Groningen. The Netherlands.	
d)	Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The	
	Netherlands.	
MATER	IAL AND METHODS	3
S1.	REAGENTS	3
S2.	Equipment	3
SUPPLE	MENTAL RESEARCH DATA	4
S3.	Reaction optimization of ${f 1}$ with ethyl acrylate to 7	4
S4.	STABILITY MONITORING 1 AND 12 UNDER PROCEDURE A AND B	4
S5.	¹ H-NMR comparison of 1 and 12	5
S6.	1,4-ADDITION SIDE PRODUCTS	5
EXPERI	MENTAL PROCEDURES	6
S7.	Synthesis of 3A5F	6
S8.	Synthesis of 1	6
S9.	Synthesis of 2	6
S10.	Synthesis of 7	6
S11.	Synthesis of 12	7
S12.	PROTOCOL A	7
S13.	PROTOCOL B	7
S14.	Synthesis of 13	7
S15.	Synthesis of 14	7
S16.	Synthesis of 15	8
S17.	Synthesis of 16	8
S18.	Synthesis of 17	8
S19.	Synthesis of 18	8
S20.	Synthesis of 19	8
S21.	Synthesis of 20	9
S22.	Synthesis of 21	9
S23.	Synthesis of 22	9
S24.	Synthesis of 25	9
S25.	Synthesis of 26	9
S26.	Synthesis of 27	10
S27.	Synthesis of 32	10
S28.	Synthesis of 33	11
CHARA	CTERIZATION	12

S29.	SPECTRA OF 3A5F	12
S30.	SPECTRA OF 1	14
S31.	SPECTRA OF 2	16
S32.	SPECTRA OF 7	
S33.	SPECTRA OF 12	20
S34.	SPECTRA OF 13	22
S35.	SPECTRA OF 14	24
S36.	SPECTRA OF 15	26
S37.	SPECTRA OF 16	28
S38.	Spectra of 17	30
S39.	SPECTRA OF 18	32
S40.	SPECTRA OF 19	34
S41.	Spectra of 20	36
S42.	SPECTRA OF 21	38
S43.	SPECTRA OF 22	40
S44.	SPECTRA OF 25	42
S45.	SPECTRA OF 26	44
S46.	Spectra of 27	46
S47.	SPECTRA OF 32	48
S48.	Spectra of 33	50

Material and methods

S1. Reagents

(R)-*N*-(5-(1,2-dihydroxyethyl)furan-3-yl)acetamide (**Di-HAF**) and *N*-(5-acetylfuran-3-yl)acetamide (**3A5AF**) were prepared according to reference [1] and pyrrolidin-1-amine according to [2]. All other reagents were acquired from commercial sources and used without further purification. Specifically, 1,1-dimethylhydrazine was purchased from SigmaAldrich. Sodium periodate (99.8+%, ACS reagent), 3-chloroperoxybenzoic acid (70-75%), ethyl acrylate (99.5%, stabilized), *tert*-butyl acrylate (99%, stabilized), acrylonitrile (99+%), dimethyl maleate (96%), dimethyl fumarate (99%), diethyl vinylphosphonate (97%) and methyl vinyl ketone (95%, stabilized) from ThermoFisher Scientific Chemicals. Fumaronitrile and (methylsulfonyl)ethene from Combi-Blocks, Inc., 1-methyl-1H-pyrrole-2,5-dione and 1-benzyl-1H-pyrrole-2,5-dione from Ambeed, Inc. and 1-phenyl-1H-pyrrole-2,5-dione from TCI Europe. Thin-layer chromatography (TLC) was carried out on Merck silica gel 60 F254 aluminum plates. Visualization of compounds by TLC was done by potassium permanganate stain. Automated flash column chromatography cartridges were acquired from Screening Devices (UltraPure Irregular Silica Gel, 40 – 63 um, 60A, 5/1P). As internal standard for quantitative analysis was used ethylene carbonate, standard for quantitative NMR, TraceCERT[®] (SigmaAldrich).

- [1] Org. Biomol. Chem., 2021, **19**, 10105–10111.
- [2] Syn. Com., 2015, **45**, 1367-1373.

S2. Equipment

¹H-NMR and ¹³C-NMR analyses were performed on a Bruker Avance NEO (400 MHz) at 25 °C. High-resolution mass spectrometry (HRMS) was performed on a Thermo Scientific LTQ Orbitrap XL (FTMS). DSC was recorded on a TA instruments DSC Q20 and Infrared spectra (IR) spectra were recorded on a PerkinElmer Spectrum Two FT-IR Spectrometer. Automated flash column chromatography was carried out on a Buchi Sepacore[®] Flash System X10 (Pumps: 601, control unit: 620, detector: 640, fraction collector: 660). Ozonolysis was performed using an ozone generator from Ozone Tech Systems (Model: OT-20, Typ. no: 32000-03).

Supplemental Research data

S3. Reaction optimization of 1 with ethyl acrylate to 7

Scheme 1. Reaction optimization of **1** with ethyl acrylate to **7**.

Table 1. Reaction optimization of **1** and ethyl acrylate. Parameters studied: trapping agent (type/eq.), type of base, concentration, and equivalents of dienophile.

#	DIENOPHILE	TRAPPING AGENT	BASE	CONCENTRATION	YIELD*
1	Ethyl acrylate (2 eq)	Ac ₂ O (1 eq)	triethylamine (2.5 eq)	0.5M	55%
2	Ethyl acrylate (2 eq)	Ac ₂ O (2 eq)	triethylamine (2.5 eq)	0.5M	49%
3	Ethyl acrylate (2 eq)	Ac ₂ O (4 eq)	triethylamine (2.5 eq)	0.5M	48%
4	Ethyl acrylate (2 eq)	MsCl (2 eq)	triethylamine (2.5 eq)	0.5M	-
5	Ethyl acrylate (2 eq)	Tf ₂ O (4 eq)	triethylamine (2.5 eq)	0.5M	-
6	Ethyl acrylate (2 eq)	Ac ₂ O (2 eq)	DBU (2.5 eq)	0.5M	-
7	Ethyl acrylate (2 eq)	Ac ₂ O (2 eq)	DABCO (2.5 eq)	0.5M	43%
8	Ethyl acrylate (2 eq)	Ac ₂ O (1 eq)	triethylamine (2.5 eq)	1.0M	73%
9	Ethyl acrylate (4 eq)	Ac ₂ O (1 eq)	triethylamine (2.5 eq)	1.0M	72%
10	Ethyl acrylate (6 eq)	Ac ₂ O (1 eq)	triethylamine (2.5 eq)	1.0M	75%

*yield determined by qNMR, IS: ethylene carbonate (4.48 ppm) vs. aromatic protons (7.98 ppm, 7.79 ppm and 7.69 ppm).

S4. Stability monitoring 1 and 12 under procedure A and B

Scheme 2. Hydrazone 1 and 12.

Table 2. The stability of hydrazone **1** and **12** under the reaction conditions was monitored by quantitative ¹H-NMR in the absence of a dienophile. At room temperature a minimal decrease in substrate concentration was observed. At 81 °C both **1** and **12** show a similar degree of decomposition.

#	SUBSTRATE	CONDITIONS	TEMP.	T = 0	T = 2	T = 18
1	1	Protocol A	RT	97%	-	95%
2	1	protocol B	81 °C	97%	82%	41%
3	12	protocol B	81°C	100%	87%	47%

S5. ¹H-NMR comparison of 1 and 12

Figure 1. ¹*H-NMR* comparison **1** and **12**. An upfield shift is observed of protons **B** and **C**, indicating a relative elevated HOMO for **12**.

S6. 1,4-addition side products

Scheme 3. Side products formed via 1,4-addition pathway. **50**: Major product of the reaction between **12** and methyl vinyl ketone. **51**: Major product of the reaction between **28** and N-methylmaleimide. **Note**: In both cases complex product mixtures were obtained consisting of cycloaddition product, 1,4-addition product, a combination of both and other unidentified products. Depicted products were identified by LCMS and ¹H-NMR analysis of the reaction mixtures and were not isolated.

Experimental procedures

S7. Synthesis of 3A5F

N-(5-formylfuran-3-yl)acetamide (3A5F). Sodium periodate (14.4 g, 1.25 eq., 67.5 mmol) was added to a solution of (R)-*N*-(5-(1,2-dihydroxyethyl)furan-3-yl)acetamide (**Di-HAF**) (10.0 g, 1 eq., 54.0 mmol) in water (250 mL) at room temperature. A suspension formed within 5 min and was stirred for 1 h. The mixture was diluted with brine (250 mL) and extracted with ethyl acetate (3 x 300 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated *in vacuo* to afford a brown solid (~8 g). The product was triturated in TBME (50 mL) for 1 h, filtered and dried *in vacuo* (45 °C) to afford *N*-(5-formylfuran-3-yl)acetamide (6.9 g, 45 mmol, 83%) as beige solid (purity by qNMR: 97%, IS: ethylene carbonate). ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.29 (s, 1H), 9.57 (d, 1H), 8.29 (t, 1H), 7.36 (d, 1H), 2.03 (s, 3H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 178.76, 167.75, 150.09, 136.78, 127.35, 115.31, 22.78. HRMS (ESI) calculated for C₇H₇NO₃ (M+H⁺): 154.0499; found (M+H⁺): 154.0498. MP (DSC): 160 °C.

S8. Synthesis of 1

N-(5-((2,2-dimethylhydrazineylidene)methyl)furan-3-yl)acetamide (1). 1,1-Dimethylhydrazine (3.3 g, 4.2 mL, 1.5 eq., 55 mmol) was added to a suspension of *N*-(5-formylfuran-3-yl)acetamide (**3A5F**) (5.6 g, 1 eq., 37 mmol) in ethanol (150 mL). The suspension became a solution and was stirred at room temperature for 16 h. The mixture was concentrated *in vacuo* to afford a brown solid, which was triturated in DCM (100 mL) for 1 h. The solids were filtered, washed with ice-cold DCM and dried *in vacuo* to afford *N*-(5-((2,2-dimethylhydrazineylidene)methyl)furan-3-yl)acetamide (1) (3.5 g, 18 mmol, 49%) (purity by qNMR: 97%, IS: ethylene carbonate). ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 9.99 (s, 1H), 7.84 (s, 1H), 7.10 (s, 1H), 6.34 (s, 1H), 2.86 (s, 6H), 1.99 (s, 3H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 167.14, 150.26, 129.89, 126.44, 122.65, 100.81, 42.36, 22.79. HRMS (ESI) calculated for C₉H₁₃N₃O₂ (M+H⁺): 196.1079 MP (DSC): 130 °C.

S9. Synthesis of 2

N-(7-((2,2-dimethylhydrazineylidene)methyl)-2-methyl-1,3-dioxoisoindolin-5-yl)acetamide (2). 1-Methyl-1Hpyrrole-2,5-dione (213 mg, 1.5 eq., 1.92 mmol) was added to a solution of *N*-(5-((2,2dimethylhydrazineylidene)methyl)furan-3-yl)acetamide (1) (250 mg, 1 eq., 1.28 mmol) and acetic anhydride (261 mg, 0.24 mL, 2 eq., 2.56 mmol) in acetonitrile (2.5 mL). The mixture was stirred for 1 h at room temperature. The suspension was diluted with TBME (10 mL), the solids were filtered and dried *in vacuo* (45 °C) to afford *N*-(7-((2,2dimethylhydrazineylidene)methyl)-2-methyl-1,3-dioxoisoindolin-5-yl)acetamide (2) (284 mg, 0.98 mmol, 77%). ¹H-NMR (400 MHz, DMSO- d_6) δ = 10.46 (s, 1H), 8.08 (d, 1H), 8.05 (d, 1H), 7.91 (s, 1H), 3.06 (s, 6H), 2.98 (s, 3H), 2.09 (s, 3H). ¹³C-NMR (101 MHz, DMSO- d_6) δ = 169.16, 168.22, 167.66, 143.97, 136.16, 133.71, 123.17, 118.86, 115.68, 110.97, 42.20, 24.15, 23.49. HRMS (ESI) calculated for C₁₄H₁₆N₄O₃ (M+H⁺): 289.1295; found (M+H⁺): 289.1292. MP (DSC): 276 °C.

S10. Synthesis of 7

Ethyl 4-acetamido-2-((2,2-dimethylhydrazineylidene)methyl)benzoate (7). Ethyl acrylate (256 mg, 0.27 mL, 2 eq., 2.56 mmol) was added to a solution of *N*-(5-((2,2-dimethylhydrazineylidene)methyl)furan-3-yl)acetamide (1) (250 mg, 1 eq., 1.28 mmol), triethylamine (324 mg, 0.45 mL, 2.5 eq., 3.20 mmol) and acetic anhydride (144 mg, 0.13 mL, 1.1 eq., 1.41 mmol) in acetonitrile (1 mL). The mixture was stirred at 81 °C for 18 h, concentrated *in vacuo* and the crude was purified by automated column chromatography (heptane/ethyl acetate) to afford ethyl 4-acetamido-2-((2,2-dimethylhydrazineylidene)methyl)benzoate (7) (228 mg, 0.82 mmol, 64%) as an off-white solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.21 (s, 1H), 8.02 (d, 1H), 7.98 (s, 1H), 7.79 (d, 1H), 7.69 (dd, 1H), 4.28 (q, 2H), 2.96 (s, 6H), 2.07 (s, 3H), 1.32 (t, 3H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.31, 166.87, 142.93, 138.77, 132.07, 130.19, 121.81,

117.28, 114.86, 60.93, 42.89, 24.58, 14.62. HRMS (ESI) calculated for $C_{14}H_{19}N_3O_3$ (M+H⁺): 278.1499; found (M+H⁺): 278.1495. MP (DSC): 144 °C.

S11. Synthesis of 12

N-(5-((pyrrolidin-1-ylimino)methyl)furan-3-yl)acetamide (12). Pyrrolidin-1-amine (6.0 g, 1.25 eq., 70 mmol) was added to a suspension of *N*-(5-formylfuran-3-yl)acetamide (**3A5F**) (8.6 g, 1 eq., 56 mmol) in ethanol (200 mL) at 10 °C. The mixture was stirred at room temperature for 4 h, during which a solution was obtained. The mixture was concentrated *in vacuo*, and the crude was purified by automated column chromatography (330 g column, solid load (~ 18 g celite), product dissolved in DCM with small amount of MeOH). Concentration of the fractions with product afforded *N*-(5-((pyrrolidin-1-ylimino)methyl)furan-3-yl)acetamide (**12**) (10.16 g, 45.92 mmol, 82%) as a yellow solid (purity by qNMR: 100%, IS: ethylene carbonate). ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 9.97 (s, 1H), 7.81 (s, 1H), 6.97 (s, 1H), 6.28 (s, 1H), 3.28 – 3.12 (m, 4H), 1.99 (s, 3H), 1.93 – 1.79 (m, 4H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 167.10, 150.51, 129.55, 126.45, 121.60, 99.91, 50.36, 23.04, 22.79. HRMS (ESI) calculated for C₁₁H₁₅N₃O₂ (M+H⁺): 222.1237; found (M+H⁺): 222.1236. MP (DSC): 151 °C.

S12. Protocol A

Protocol A (maleimides and fumaronitrile): To a mixture of *N*-(5-((pyrrolidin-1-ylimino)methyl)furan-3-yl)acetamide (**12**) (250 mg, 1 eq., 1.13 mmol) in acetonitrile (2 mL) was added triethylamine (286 mg, 0.39 mL, 2.5 eq., 2.82 mmol), acetic anhydride (127 mg, 0.12 mL, 1.1 eq., 1.24 mmol.) and the appropriate dienophile (2.26 mmol, 2 eq.). The suspension was stirred for 18 h at room temperature. The product was filtered off, washed with ethyl acetate (5 mL) and dried *in vacuo* to afford the target compound.

S13. Protocol B

Protocol B (maleates and mono-activated alkenes): To a mixture of *N*-(5-((pyrrolidin-1-ylimino)methyl)furan-3-yl)acetamide (**12**) (250 mg, 1 eq., 1.13 mmol) in acetonitrile (1 mL) was added triethylamine (286 mg, 0.39 mL, 2.5 eq., 2.82 mmol), acetic anhydride (127 mg, 0.12 mL, 1.1 eq., 1.24 mmol.) and the appropriate dienophile (2.26 mmol, 2 eq.). The suspension was stirred for 18 h at 81 °C. The volatiles were removed *in vacuo* and the crude was purified by automated column chromatography (heptane/ethyl acetate) to afford the target compound.

S14. Synthesis of 13

Ethyl 4-acetamido-2-((pyrrolidin-1-ylimino)methyl)benzoate (13). Prepared according to protocol **B** with ethyl acrylate (226 mg, 0.24 mL, 2 eq., 2.26 mmol) as dienophile. Ethyl 4-acetamido-2-((pyrrolidin-1-ylimino)methyl)benzoate (**13**) (244 mg, 0.80 mmol, 71%) was obtained as yellow solid. ¹H-NMR (400 MHz, DMSO- d_6) δ = 10.19 (s, 1H), 7.99 (d, 1H), 7.87 (s, 1H), 7.76 (d, 1H), 7.66 (dd, 1H), 4.26 (q, 2H), 3.38 – 3.26 (m, 4H), 2.05 (s, 2H), 1.95 – 1.86 (m, 3H), 1.30 (t, 3H). ¹³C-NMR (101 MHz, DMSO- d_6) δ = 168.79, 142.41, 138.72, 131.61, 128.72, 120.82, 116.33, 113.76, 60.36, 50.40, 24.08, 23.15, 14.15. HRMS (ESI) calculated for C₁₆H₂₁N₃O₃ (M+H⁺): 304.1656; found (M+H⁺): 304.1655. MP (DSC): 153 °C.

S15. Synthesis of 14

N-(2-methyl-1,3-dioxo-7-((pyrrolidin-1-ylimino)methyl)isoindolin-5-yl)acetamide (14). Prepared according to protocol **A** with 1-methyl-1H-pyrrole-2,5-dione (126 mg, 1 eq., 1.13 mmol) as dienophile. *N*-(2-methyl-1,3-dioxo-7-((pyrrolidin-1-ylimino)methyl)isoindolin-5-yl)acetamide (14) (315 mg, 1.00 mmol, 89%) was obtained as yellow solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.41 (s, 1H), 8.01 (d, 1H), 7.98 (d, 1H), 7.72 (s, 1H), 3.41 – 3.34 (m, 4H), 2.95 (s, 3H), 2.08 (s, 3H), 1.99 – 1.92 (m, 4H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.13, 168.20, 167.69, 143.92, 136.58, 133.72, 122.65, 118.32, 115.25, 110.57, 50.20, 24.14, 23.38 (d). HRMS (ESI) calculated for C₁₆H₁₈N₄O₃ (M+H⁺): 315.1452; found (M+H⁺): 315.1450. MP (DSC): 299 °C.

S16. Synthesis of 15

N-(2-benzyl-1,3-dioxo-7-((pyrrolidin-1-ylimino)methyl)isoindolin-5-yl)acetamide (15). Prepared according to protocol **A** with 1-benzyl-1H-pyrrole-2,5-dione (423 mg, 2 eq., 2.26 mmol) as dienophile. The product was triturated in DCM for 1 h to afford *N*-(2-benzyl-1,3-dioxo-7-((pyrrolidin-1-ylimino)methyl)isoindolin-5-yl)acetamide (15) (399 mg, 1.02 mmol, 90%) as yellow solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.49 (s, 1H), 8.11 (d, 1H), 8.06 (d, 1H), 7.80 (s, 1H), 7.37 – 7.21 (m, 5H), 4.71 (s, 2H), 3.43 – 3.36 (m, 4H), 2.09 (s, 3H), 1.99 – 1.90 (m, 4H).¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.23, 144.21, 137.06, 136.89, 133.57, 128.57, 127.39 (d), 122.42, 117.94, 115.64, 110.90, 50.27, 40.70, 24.16, 23.32. HRMS (ESI) calculated for C₂₂H₂₂N₄O₃ (M+H⁺): 391.1765; found (M+H⁺): 391.1760. MP (DSC): 300 °C.

S17. Synthesis of 16

N-(1,3-dioxo-2-phenyl-7-((pyrrolidin-1-ylimino)methyl)isoindolin-5-yl)acetamide (16). Prepared according to protocol **A** with 1-phenyl-1H-pyrrole-2,5-dione (391 mg, 2 eq., 2.26 mmol) as dienophile. *N*-(1,3-dioxo-2-phenyl-7-((pyrrolidin-1-ylimino)methyl)isoindolin-5-yl)acetamide (16) (380 mg, 1.01 mmol, 89%) was obtained as yellow solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.52 (s, 1H), 8.16 (d, 1H), 8.13 (d, 1H), 7.85 (s, 1H), 7.55 – 7.46 (m, 2H), 7.42 (dt, 3H), 3.46 – 3.35 (m, 4H), 2.11 (s, 3H), 2.01 – 1.94 (m, 4H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.28, 167.20, 166.69, 144.32, 137.26, 133.57, 131.99, 128.73, 127.85, 127.34, 122.50, 117.90, 115.82, 110.94, 50.28, 24.19, 23.32. HRMS (ESI) calculated for C₂₁H₂₀N₄O₃ (M+H⁺): 377.1608; found (M+H⁺): 377.1610. MP (DSC): 314 °C.

S18. Synthesis of 17

Dimethyl 5-acetamido-3-((pyrrolidin-1-ylimino)methyl)phthalate (17). Prepared according to protocol **B** with dimethyl maleate (326 mg, 0.28 mL, 2 eq., 2.26 mmol) or dimethyl fumarate (326 mg, 2 eq., 2.26 mmol) as dienophile. Dimethyl 5-acetamido-3-((pyrrolidin-1-ylimino)methyl)phthalate (17) (244 mg, 0.70 mmol, 62%) was obtained as yellow solid. ¹H-NMR (400 MHz, DMSO- d_6) δ = 10.27 (s, 1H), 8.08 (s, 2H), 6.92 (s, 1H), 3.81 (s, 3H), 3.78 (s, 3H), 3.32 – 3.26 (m, 4H), 2.06 (s, 3H), 1.94 – 1.86 (m, 4H).¹³C-NMR (101 MHz, DMSO- d_6) δ = 168.87, 168.19, 165.95, 140.12, 135.70, 129.31, 124.75, 117.40, 117.07, 52.61, 52.26, 50.21, 24.03, 23.16. HRMS (ESI) calculated for C₁₇H₂₁N₃O₅ (M+H⁺): 348.1554; found (M+H⁺): 348.1549. MP (DSC): 186 °C.

S19. Synthesis of 18

N-(3,4-dicyano-5-((pyrrolidin-1-ylimino)methyl)phenyl)acetamide (18). Prepared according to protocol **A** with fumaronitrile (176 mg, 2 eq., 2.26 mmol) as dienophile. *N*-(3,4-dicyano-5-((pyrrolidin-1-ylimino)methyl)phenyl)acetamide (18) (260 mg, 0.92 mmol, 82%) was obtained as off-white solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.57 (s, 1H), 8.06 (d, 1H), 8.03 (d, 1H), 6.97 (s, 1H), 3.51 – 3.37 (m, 4H), 2.08 (s, 3H), 2.01 – 1.88 (m, 4H).¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.63, 143.04, 142.81, 121.26, 120.27, 116.29, 115.90, 115.67, 115.34, 102.56, 50.33, 24.23, 23.40. HRMS (ESI) calculated for C₁₅H₁₅N₅O (M+H⁺): 282.1349; found (M+H⁺): 282.1348. MP (DSC): 284 °C.

S20. Synthesis of 19

N-(4-cyano-3-((pyrrolidin-1-ylimino)methyl)phenyl)acetamide (19). Prepared according to protocol **B** with acrylonitrile (120 mg, 0.15 mL, 2 eq., 2.26 mmol) as dienophile. *N*-(4-cyano-3-((pyrrolidin-1-ylimino)methyl)phenyl)acetamide (19) (242 mg, 0.94 mmol, 84%) was obtained as yellow solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.28 (s, 1H), 7.99 (d, 1H), 7.63 (dd, 1H), 7.59 (dd, 1H), 7.10 (s, 1H), 3.42 – 3.34 (m, 4H), 2.06 (s, 3H), 1.98 – 1.85 (m, 4H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.04, 143.17, 140.87, 133.87, 123.65, 118.11, 116.66, 112.51, 101.23, 50.22, 24.15, 23.28. HRMS (ESI) calculated for C₁₄H₁₆N₄O (M+H⁺): 257.1397; found (M+H⁺): 257.1394. MP (DSC): 198 °C.

S21. Synthesis of 20

tert-Butyl 4-acetamido-2-((pyrrolidin-1-ylimino)methyl)benzoate (20). Prepared according to protocol **B** with *N*-(5-((pyrrolidin-1-ylimino)methyl)furan-3-yl)acetamide (12) (1.0 g, 1 eq., 4.5 mmol) and *tert*-butyl acrylate (1.2 g, 1.3 mL, 2 eq., 9.0 mmol) as dienophile. *tert*-Butyl 4-acetamido-2-((pyrrolidin-1-ylimino)methyl)benzoate (20) (1.1 g, 3.3 mmol, 73%) was obtained as yellow solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.16 (s, 1H), 7.97 (d, 1H), 7.81 (s, 1H), 7.69 (d, 1H), 7.63 (dd, 1H), 3.32 – 3.29 (m, 4H), 2.04 (s, 3H), 1.95 – 1.88 (m, 4H), 1.53 (s, 8H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 168.73, 166.03, 142.03, 138.10, 131.57, 128.73, 122.72, 116.36, 113.70, 80.64, 50.45, 27.92, 24.07, 23.15. HRMS (ESI) calculated for C₁₈H₂₅N₃O₃ (M+H⁺): 332.1969; found (M+H⁺): 332.1967. MP (DSC): 151 °C.

S22. Synthesis of 21

N-(4-(methylsulfonyl)-3-((pyrrolidin-1-ylimino)methyl)phenyl)acetamide (21). Prepared according to protocol **B** with (methylsulfonyl)ethene (240 mg, 0.2 mL, 2 eq., 2.26 mmol) as dienophile. After column chromatography the product was triturated in TBME (5 mL) to afford *N*-(4-(methylsulfonyl)-3-((pyrrolidin-1-ylimino)methyl)phenyl)acetamide (21) (261 mg, 0.84 mmol, 75%) as light yellow solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.32 (s, 1H), 8.08 (d, 1H), 7.77 (d, 1H), 7.73 (dd, 1H), 7.66 (s, 1H), 3.46 – 3.37 (m, 4H), 3.16 (s, 3H), 2.07 (s, 3H), 2.00 – 1.91 (m, 4H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.01, 143.46, 136.82, 129.98, 129.50, 124.40, 116.04, 113.79, 50.32, 44.18, 24.11, 23.24. HRMS (ESI) calculated for C₁₄H₁₉N₃O₃S (M+H⁺): 310.1220; found (M+H⁺): 310.1214. MP (DSC): 196 °C.

S23. Synthesis of 22

<u>Diethyl 4-acetamido-2-((pyrrolidin-1-ylimino)methyl)phenyl)phosphonate (22)</u>. Prepared according to protocol **B** with diethyl vinylphosphonate (927 mg, 0.87 mL, 5 eq., 5.65 mmol) as dienophile. Diethyl 4-acetamido-2-((pyrrolidin-1-ylimino)methyl)phenyl)phosphonate (22) (278 mg, 0.76 mmol, 67%) was obtained as light orange solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.18 (s, 1H), 8.03 – 7.98 (m, 1H), 7.68 – 7.66 (m, 1H), 7.67 – 7.61 (m, 1H), 7.57 (s, 1H), 4.10 – 3.88 (m, 4H), 3.32 – 3.28 (m, 4H), 2.05 (s, 3H), 1.96 – 1.87 (m, 4H), 1.21 (t, 6H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 168.82, 142.78, 140.60 (d), 134.46 (d), 128.35 (d), 117.73 (d), 116.09 (d), 113.12 (d), 61.41 (d), 50.33, 24.07, 23.15, 16.16 (d). HRMS (ESI) calculated for C₁₇H₂₆N₃O₄P (M+H⁺): 368.1734; found (M+H⁺): 368.1728. MP (DSC): 197 °C.

S24. Synthesis of 25

tert-Butyl 4-acetamido-2-formylbenzoate (25). A solution of *tert*-butyl 4-acetamido-2-((pyrrolidin-1ylimino)methyl)benzoate (20) (350 mg, 1 eq., 1.06 mmol) in DCM (5.0 mL) was cooled to -78 °C. The mixture was subjected to ozonolysis for 3 min, during which a color change was observed: yellow \rightarrow dark orange \rightarrow brown \rightarrow dark yellow \rightarrow greenish-blue. The mixture was purged with N₂ for 5 min to afford a yellow solution, concentrated *in vacuo* and was purified by automated column chromatography (heptane/ethyl acetate) to furnish *tert*-butyl 4acetamido-2-formylbenzoate (25) (186 mg, 0.71 mmol, 67%) as a white solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.43 (s, 2H), 8.01 (d, 1H), 7.89 (dd, 1H), 7.85 (d, 1H), 2.09 (s, 3H), 1.55 (s, 9H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 192.54, 169.13, 164.69, 142.76, 138.06, 131.35, 127.13, 121.94, 117.21, 82.06, 27.74, 24.13. HRMS (ESI) calculated for C₁₄H₁₇NO₄ (M+Na⁺): 286.1050; found (M+Na⁺): 286.1046. MP (DSC): 129 °C.

S25. Synthesis of 26

tert-Butyl 4-acetamido-2-cyanobenzoate (26). A solution of *tert*-butyl 4-acetamido-2-((pyrrolidin-1-ylimino)methyl)benzoate (20) (350 mg, 1 eq., 1.06 mmol) in DCM (5.0 mL) was cooled to 0 °C. *m*CPBA (325 mg, 70% Wt, 1.25 eq., 1.32 mmol) was added portionwise while maintaining a temperature < 10 °C. The cooling was removed, and the mixture was stirred for 1 h at room temperature. The mixture was diluted with ethyl acetate (50 mL) and washed with NaHCO₃ (aq., sat.) + Na₂S₂O₃ (aq., 10%) (1:1) (5 x 50 mL) (thoroughly) and brine (1 x 25 mL). The organic phase was dried over Na₂SO₄, concentrated *in vacuo* and the crude product was purified by automated column

chromatography (heptane/ethyl acetate). *tert*-Butyl 4-acetamido-2-cyanobenzoate (**26**) (218 mg, 0.84 mmol, 79%) was isolated as a light yellow solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.55 (s, 1H), 8.18 (d, 1H), 8.00 (d, 1H), 7.84 (dd, 1H), 2.10 (s, 3H), 1.56 (s, 9H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.45, 162.43, 143.13, 132.17, 126.76, 123.61, 122.09, 117.55, 112.29, 82.49, 27.65, 24.16. HRMS (ESI) calculated for C₁₄H₁₆N₂O₃ (M+Na⁺): 283.1053; found (M+H⁺): 283.1053. MP (DSC): 188 °C.

S26. Synthesis of 27

N-(5-(1-(2,2-dimethylhydrazineylidene)ethyl)furan-3-yl)acetamide (27). A mixture of N-(5-acetylfuran-3yl)acetamide (3A5AF) (1.30 g, 1 eq., 7.78 mmol), 1,1-dimethylhydrazine (701 mg, 0.88 mL, 1.5 eq., 11.7 mmol) and acetic acid (467 mg, 0.45 mL, 1 eq., 7.78 mmol) in ethanol (25 mL) was stirred at reflux temperature for 6 h. The mixture was diluted with ethyl acetate (200 mL) and washed with NaHCO₃ (aq., sat., 2 x 200 mL) and brine (50 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo to afford a black oil (1.46 g). The crude was purified by automated column chromatography (DCM/MeOH) to afford N-(5-(1-(2,2dimethylhydrazineylidene)ethyl)furan-3-yl)acetamide (27) (1.18 g, 5.64 mmol, 73%) as a light brown oil that solidified upon standing. ¹H-NMR (400 MHz, DMSO- d_6) δ = 10.04 (s, 1H), 7.95 (s, 1H), 6.66 (s, 1H), 2.49 (s, 6H), 2.15 (s, 3H), 2.00 (s, 3H). ¹³C-NMR (101 MHz, DMSO- d_6) δ = 167.30, 151.89, 150.16, 131.80, 126.48, 104.01, 47.01, 22.82, 14.18. HRMS (ESI) calculated for C₁₀H₁₅N₃O₂ (M+H⁺): 210.1237; found (M+H⁺): 210.1235. MP (DSC): 85 °C.

S27. Synthesis of 32

N-(7-(1-(2,2-Dimethylhydrazineylidene)ethyl)-2-methyl-1,3-dioxoisoindolin-5-yl)acetamide (32). A solution of N-(5-(1-(2,2-dimethylhydrazineylidene)ethyl)furan-3-yl)acetamide (27) (1.25 g, 1 eq., 5.97 mmol), acetic anhydride (671 mg, 0.62 mL, 1.1 eq., 6.57 mmol) and 1-methyl-1H-pyrrole-2,5-dione (1.33 g, 2.0 eq., 11.9 mmol) in acetonitrile (6 mL) was stirred at reflux temperature for 20 h. The mixture was concentrated in vacuo and the crude was purified by automated column chromatography (DCM/MeOH, see chromatogram below). Fraction 1: N-(7-acetyl-2-methyl-1,3-dioxoisoindolin-5-yl)acetamide (**33**) (657 mg, 2.52 mmol, 42%), Faction 2: N-(7-(1-(2,2dimethylhydrazineylidene)ethyl)-2-methyl-1,3-dioxoisoindolin-5-yl)acetamide (32) as cis/trans mixture (2:8) (830 mg, 2.75 mmol, 46%). ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.56 (s, 1H), 8.20 (s, 1H), 8.14 (s, 1H), 7.62 (s, 1H), 7.53 (s, 1H), 2.99 (s, 3H), 2.81 (s, 3H), 2.55 (s, 6H), 2.30 (s, 2H), 2.22 (s, 3H), 2.15 (s, 3H), 2.10 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 169.36, 167.40, 167.02, 160.42, 144.22, 139.01, 137.46, 134.06, 122.20, 121.79, 120.68, 112.30, 46.66, 24.21, 23.72, 18.93. HRMS (ESI) calculated for C₁₅H₁₈N₄O₃ (M+H⁺): 303.1452; found (M+H⁺): 303.1451. MP (DSC): 172 °C.

Figure 2. Chromatogram of purification of 32. F1 (blue): ketone 33, F2 (orange): 32

S28. Synthesis of 33

N-(7-acetyl-2-methyl-1,3-dioxoisoindolin-5-yl)acetamide (33). A solution of *N*-(7-(1-(2,2-dimethylhydrazineylidene)ethyl)-2-methyl-1,3-dioxoisoindolin-5-yl)acetamide (32) (250 mg, 1 eq., 0.83 mmol) in DCM (5.0 mL) was cooled to -78 °C. The mixture was subjected to ozonolysis for 5 min, during which a color change was observed: dark green/brown → dark greenish-blue. The mixture was purged with N₂ for 5 min to afford a yellow solution. The mixture was concentrated *in vacuo* and was purified by automated column chromatography (heptane/ethyl acetate) to furnish *N*-(7-acetyl-2-methyl-1,3-dioxoisoindolin-5-yl)acetamide (33) (131 mg, 0.50 mmol, 61%) as a white solid. ¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.65 (s, 1H), 8.21 (d, 1H), 7.79 (d, 1H), 3.01 (s, 3H), 2.67 (s, 3H), 2.12 (s, 3H). ¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 200.74, 169.50, 167.02, 166.80, 144.58, 138.68, 134.07, 121.35, 120.49, 113.88, 30.71, 24.21, 23.88. HRMS (ESI) calculated for C₁₃H₁₂N₂O₄ (M+H⁺): 261.0870; found (M+H⁺): 261.0868. MP (DSC): 196 °C.

Characterization

S29. Spectra of 3A5F

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 10.29 (s, 1H), 9.57 (d, 1H), 8.29 (t, 1H), 7.36 (d, 1H), 2.03 (s, 3H)

¹³C-NMR (DMSO- d_6)

 $^{13}\text{C-NMR}$ (101 MHz, DMSO- $d_6)$ δ = 178.76, 167.75, 150.09, 136.78, 127.35, 115.31, 22.78

S30. Spectra of 1

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 9.99 (s, 1H), 7.84 (s, 1H), 7.10 (s, 1H), 6.34 (s, 1H), 2.86 (s, 6H), 1.99 (s, 3H)

¹³C-NMR (DMSO- d_6)

¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 167.14, 150.26, 129.89, 126.44, 122.65, 100.81, 42.36, 22.79

S31. Spectra of 2

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 10.46 (s, 1H), 8.08 (d, 1H), 8.05 (d, 1H), 7.91 (s, 1H), 3.06 (s, 6H), 2.98 (s, 3H), 2.09 (s, 3H)

¹³C-NMR (DMSO-*d*₆)

 $^{13}\text{C-NMR} (101 \text{ MHz}, \text{DMSO-}d_6) \delta = 169.16, 168.22, 167.66, 143.97, 136.16, 133.71, 123.17, 118.86, 115.68, 110.97, 42.20, 24.15, 23.49, 110.97, 11$

S32. Spectra of 7

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.21 (s, 1H), 8.02 (d, 1H), 7.98 (s, 1H), 7.79 (d, 1H), 7.69 (dd, 1H), 4.28 (q, 2H), 2.96 (s, 6H), 2.07 (s, 3H), 1.32 (t, 3H)

¹³C-NMR (DMSO- d_6)

 $^{13}\text{C-NMR} (101 \text{ MHz}, \text{DMSO-}d_6) \\ \delta = 169.31, 166.87, 142.93, 138.77, 132.07, 130.19, 121.81, 117.28, 114.86, 60.93, 42.89, 24.58, 14.62, 142.93, 1$

S33. Spectra of 12

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO-*d*₆) δ = 9.97 (s, 1H), 7.81 (s, 1H), 6.97 (s, 1H), 6.28 (s, 1H), 3.28 – 3.12 (m, 4H), 1.99 (s, 3H), 1.93 – 1.79 (m, 4H)

¹³C-NMR (DMSO- d_6)

 $^{13}\text{C-NMR}$ (101 MHz, DMSO- $d_6)$ δ = 167.10, 150.51, 129.55, 126.45, 121.60, 99.91, 50.36, 23.04, 22.79

S34. Spectra of 13

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 10.19 (s, 1H), 7.99 (d, 1H), 7.87 (s, 1H), 7.76 (d, 1H), 7.66 (dd, 1H), 4.26 (q, 2H), 3.38 – 3.26 (m, 4H), 2.05 (s, 2H), 1.95 – 1.86 (m, 3H), 1.30 (t, 3H)

¹³C-NMR (DMSO- d_6)

¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 168.79, 142.41, 138.72, 131.61, 128.72, 120.82, 116.33, 113.76, 60.36, 50.40, 24.08, 23.15, 14.15

S35. Spectra of 14

¹H-NMR (DMSO- d_6)

¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.41 (s, 1H), 8.01 (d, 1H), 7.98 (d, 1H), 7.72 (s, 1H), 3.41 – 3.34 (m, 4H), 2.95 (s, 3H), 2.08 (s, 3H), 1.99 – 1.92 (m, 4H)

¹³C-NMR (DMSO- d_6)

 13 C-NMR (101 MHz, DMSO-*d*₆) δ = 169.13, 168.20, 167.69, 143.92, 136.58, 133.72, 122.65, 118.32, 115.25, 110.57, 50.20, 24.14, 23.38

S36. Spectra of 15

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.49 (s, 1H), 8.11 (d, 1H), 8.06 (d, 1H), 7.80 (s, 1H), 7.37 – 7.21 (m, 5H), 4.71 (s, 2H), 3.43 – 3.36 (m, 4H), 2.09 (s, 3H), 1.99 – 1.90 (m, 4H)

¹³C-NMR (DMSO- d_6)

¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.23, 144.21, 137.06, 136.89, 133.57, 128.57, 127.39 (d), 122.42, 117.94, 115.64, 110.90, 50.27, 40.70, 24.16, 23.32

S37. Spectra of 16

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 10.52 (s, 1H), 8.16 (d, 1H), 8.13 (d, 1H), 7.85 (s, 1H), 7.55 – 7.46 (m, 2H), 7.42 (dt, 3H), 3.46 – 3.35 (m, 4H), 2.11 (s, 3H), 2.01 – 1.94 (m, 4H)

¹³C-NMR (DMSO- d_6)

¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.28, 167.20, 166.69, 144.32, 137.26, 133.57, 131.99, 128.73, 127.85, 127.34, 122.50, 117.90, 115.82, 110.94, 50.28, 24.19, 23.32

S38. Spectra of 17

¹H-NMR (DMSO- d_6)

¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.27 (s, 1H), 8.08 (s, 2H), 6.92 (s, 1H), 3.81 (s, 3H), 3.78 (s, 3H), 3.32 – 3.26 (m, 4H), 2.06 (s, 3H), 1.94 – 1.86 (m, 4H)

¹³C-NMR (DMSO- d_6)

 $^{13}\text{C-NMR} (101 \text{ MHz}, \text{DMSO-}d_6) \delta = 168.87, 168.19, 165.95, 140.12, 135.70, 129.31, 124.75, 117.40, 117.07, 52.61, 52.26, 50.21, 24.03, 23.16, 124.14, 124.$

S39. Spectra of 18

¹H-NMR (DMSO-d₆)

¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.57 (s, 1H), 8.06 (d, 1H), 8.03 (d, 1H), 6.97 (s, 1H), 3.51 – 3.37 (m, 4H), 2.08 (s, 3H), 2.01 – 1.88 (m, 4H)

¹³C-NMR (DMSO-*d*₆)

 13 C-NMR (101 MHz, DMSO- d_6) δ = 169.63, 143.04, 142.81, 121.26, 120.27, 116.29, 115.90, 115.67, 115.34, 102.56, 50.33, 24.23, 23.40

S40. Spectra of 19

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 10.28 (s, 1H), 7.99 (d, 1H), 7.63 (dd, 1H), 7.59 (dd, 1H), 7.10 (s, 1H), 3.42 - 3.34 (m, 4H), 2.06 (s, 3H), 1.98 - 1.85 (m, 4H)

¹³C-NMR (DMSO- d_6)

 $^{13}\text{C-NMR} \text{ (101 MHz, DMSO-}\textit{d}_6\text{) } \delta = 169.04, 143.17, 140.87, 133.87, 123.65, 118.11, 116.66, 112.51, 101.23, 50.22, 24.15, 23.28, 123.65, 118.11, 116.66, 112.51, 101.23$

S41. Spectra of 20

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 10.16 (s, 1H), 7.97 (d, 1H), 7.81 (s, 1H), 7.69 (d, 1H), 7.63 (dd, 1H), 3.32 – 3.29 (m, 4H), 2.04 (s, 3H), 1.95 – 1.88 (m, 4H), 1.53 (s, 8H)

¹³C-NMR (DMSO-*d*₆)

¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 168.73, 166.03, 142.03, 138.10, 131.57, 128.73, 122.72, 116.36, 113.70, 80.64, 50.45, 27.92, 24.07, 23.15

S42. Spectra of 21

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.32 (s, 1H), 8.08 (d, 1H), 7.77 (d, 1H), 7.73 (dd, 1H), 7.66 (s, 1H), 3.46 – 3.37 (m, 4H), 3.16 (s, 3H), 2.07 (s, 3H), 2.00 – 1.91 (m, 4H)

¹³C-NMR (DMSO- d_6)

¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 169.01, 143.46, 136.82, 129.98, 129.50, 124.40, 116.04, 113.79, 50.32, 44.18, 24.11, 23.24

S43. Spectra of 22

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 10.18 (s, 1H), 8.03 – 7.98 (m, 1H), 7.68 – 7.66 (m, 1H), 7.67 – 7.61 (m, 1H), 7.57 (s, 1H), 4.10 – 3.88 (m, 4H), 3.32 – 3.28 (m, 4H), 2.05 (s, 3H), 1.96 – 1.87 (m, 4H), 1.21 (t, 6H)

¹³C-NMR (DMSO- d_6)

¹³C-NMR (101 MHz, DMSO- d_6) δ = 168.82, 142.78, 140.60 (d), 134.46 (d), 128.35 (d), 117.73 (d), 116.09 (d), 113.12 (d), 61.41 (d), 50.33, 24.07, 23.15, 16.16 (d).

S44. Spectra of 25

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.43 (s, 2H), 8.01 (d, 1H), 7.89 (dd, 1H), 7.85 (d, 1H), 2.09 (s, 3H), 1.55 (s, 9H).

¹³C-NMR (DMSO-*d*₆)

 $^{13}\text{C-NMR} \text{ (101 MHz, DMSO-}\textit{d}_6\text{) } \delta = 192.54, 169.13, 164.69, 142.76, 138.06, 131.35, 127.13, 121.94, 117.21, 82.06, 27.74, 24.13, 122.94, 117.21$

S45. Spectra of 26

¹H-NMR (DMSO- d_6)

¹H-NMR (400 MHz, DMSO-*d*₆) δ = 10.55 (s, 1H), 8.18 (d, 1H), 8.00 (d, 1H), 7.84 (dd, 1H), 2.10 (s, 3H), 1.56 (s, 9H)

¹³C-NMR (DMSO- d_6)

 $^{13}\text{C-NMR} \text{ (101 MHz, DMSO-}\textit{d}_6\text{) } \delta = 169.45, 162.43, 143.13, 132.17, 126.76, 123.61, 122.09, 117.55, 112.29, 82.49, 27.65, 24.16, 123.61, 122.09, 117.55, 112.29, 117.55$

S46. Spectra of 27

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 10.04 (s, 1H), 7.95 (s, 1H), 6.66 (s, 1H), 2.49 (s, 6H), 2.15 (s, 3H), 2.00 (s, 3H)

¹³C-NMR (DMSO- d_6)

 $^{13}\text{C-NMR}$ (101 MHz, DMSO- $d_6)$ δ = 167.30, 151.89, 150.16, 131.80, 126.48, 104.01, 47.01, 22.82, 14.18

S47. Spectra of 32

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 10.56 (s, 1H), 8.20 (s, 1H), 8.14 (s, 1H), 7.62 (s, 1H), 7.53 (s, 1H), 2.99 (s, 3H), 2.81 (s, 3H), 2.55 (s, 6H), 2.30 (s, 2H), 2.22 (s, 3H), 2.15 (s, 3H), 2.10 (s, 3H)

¹³C-NMR (DMSO- d_6)

¹³C NMR (101 MHz, DMSO-*d*₆) δ = 169.36, 167.40, 167.02, 160.42, 144.22, 139.01, 137.46, 134.06, 122.20, 121.79, 120.68, 112.30, 46.66, 24.21, 23.72, 18.93

S48. Spectra of 33

¹H-NMR (DMSO-*d*₆)

¹H-NMR (400 MHz, DMSO- d_6) δ = 10.65 (s, 1H), 8.21 (d, 1H), 7.79 (d, 1H), 3.01 (s, 3H), 2.67 (s, 3H), 2.12 (s, 3H)

¹³C-NMR (DMSO- d_6)

¹³C-NMR (101 MHz, DMSO-*d*₆) δ = 200.74, 169.50, 167.02, 166.80, 144.58, 138.68, 134.07, 121.35, 120.49, 113.88, 30.71, 24.21, 23.88

