Supplementary Material for:

Oudemansin and 9-methoxystrobilurin derivatives with antimalarial activity from cultures of the basidiomycete *Favolaschia minutissima*: assignments of the absolute configurations of the isoprene-derived units

Somporn Palasarn^a, Thapanee Pruksatrakul^a, Wilunda Choowong^a, Natthawut Wiriyathanawudhiwong^b, Thitiya Boonpratuang^b, Panida Surawatanawong^c, Chawanee Thongpanchang^a, Masahiko Isaka^{a,*}

^a National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand

^b National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand

^c Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Fig. S1 Structures of the compounds isolated from cultures of *Favolaschia minutissima* TBRC-BCC 19434.

Fig. S9 HRESIMS of oudemansin E (1) (positive ion mode)

Dept135

Fig. S13 COSY spectrum of oudemansin M (2) (CDCl₃, 400 MHz)

HRESIMS of oudemansin P (3) (positive ion mode)

Fig. S33 HRESIMS of oudemansin Q (4) (positive ion mode)

5.0

4.5

6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

8.5 9.0

8.0 7.5 7.0 7.0 7.5 8.0 8.5 9.0

ppm

DEPT-135 spectrum of 9-methoxystrobilurin I (5) (CDCl₃, 125 MHz)

Fig. S41 HRESIMS of 9-methoxystrobilurin I (5) (positive ion mode

Fig. S50 ¹H NMR spectrum of 12 (CDCl₃, 400 MHz)

Fig. S51

HRESIMS of **12** (positive ion mode)

Fig. S52 ¹H NMR spectrum of 9-methoxystrobilurin P (**13**) (CDCl₃, 500 MHz)

Dept135

CD[mdeg] CD[mdeg] -20 -30 200 -20 Wavelength [nm] Wavelength [nm] Oudemansin E (1) (25 μ g/ml in MeCN) Oudemansin M (2) (50 µg/ml in MeCN) CD[mdeg] CD[mdeg] -20 -20 -40 -30 Wavelength [nm] Wavelength [nm] γ -Lactone 6 (10 µg/ml in MeCN) Oudemansin A (7) (30 μ g/ml in MeCN) CD[mdeg] -20 -30 Wavelength [nm]

Fig. S62 Experimental ECD spectra of oudemansin E (1), oudemansin M (2), γ -lactone 6, oudemansin A (7), and 9-methoxystrobilurin E (9)

9-Methoxystrobilurin E (9) (50 µg/ml in MeCN)

Computational Details for ECD Calculation of 9-Methoxystrobilurin E (9)

The conformational analysis of each enantiomer for compound 9 was perform on Spartan' 18 using MMFF¹ as the molecular mechanics force field. Thirty-seven lowest energy conformers were found contributed to about 90% of the MMFF population. These conformers of 9 were further calculated for geometry optimization in gas phase using B3LYP ²⁻⁴ functional and 6-31G(d) ⁵⁻⁷ basis set in Gaussian 16⁸. All calculations of time-dependent density-functional theory (TDDFT) were performed on the gas-phase optimized structures to obtain ECD using CAM-B3LYP⁹ functional and 6-311++G(2d,2p) ⁵⁻⁷ basis set with conductor-like polarizable continuum model (CPCM)¹⁰⁻¹¹ in acetonitrile. Twelve conformers of (2'S, 6'R)-9 and eleven conformers of (2'R, 6'S)-9 were found with the relative free energies within ~2 kcal/mol from their most stable conformers (Fig. S63 and Fig. S65). The ECD curve of each enantiomer for 9 was demonstrated by summing of ECD spectra of these conformers based on Boltzmann weighting factors at 298.15 K with a half bandwidth of 0.25 eV using SpecDis v.1.71¹². Data visualization of the calculated ECD spectra of each enantiomer and experimental CD spectra for 9-methoxystrobilurin E (9) were performed using python (version 3.8.13) package¹³. Raw data was imported with pandas (version 1.4.3) library and plotted with matplotlib (version 3.5.1) library.

(1) Computational details for (2'S,6'R)-9

Table S1. Estimated thermodynamic parameters at 298.15 K and conformational analysis of (2'S,6'R)-9 at the CAM-B3LYP/6-311++G(2d,2p) level in acetonitrile solvent, assuming Boltzmann statistics at T = 298.15 K.

Conformers	B3LYP/6- 31G(d)	CAM-B3LYP/6-311++G(2d, 2p)							
	E (a.u.)	E* (a.u.)	E _{ZPE} *(a.u.)	H _{298K} *(a.u.)	G _{298K} *(a.u.)	ΔG _{298K} * (kcal/mol)	$\mathbf{P_G}^*$		
(2'S,6'R)-9_conf 1	-1651.053460	-1650.798558	-1650.226372	-1649.933117	-1650.301598	0.00	17.58		
(2'S,6'R)-9_conf 2	-1651.053402	-1650.798531	-1650.226337	-1649.933121	-1650.301375	0.14	13.87		
(2'S,6'R)-9_conf 3	-1651.053309	-1650.798432	-1650.226248	-1649.933010	-1650.301350	0.16	13.51		
(2'S,6'R)-9_conf 4	-1651.053296	-1650.798436	-1650.226246	-1649.933025	-1650.301292	0.19	12.71		
(2'S,6'R)-9_conf 5	-1651.053797	-1650.798497	-1650.226264	-1649.932634	-1650.301231	0.23	11.92		
(2'S,6'R)-9_conf 6	-1651.053986	-1650.798501	-1650.226267	-1649.932450	-1650.301161	0.27	11.06		
(2'S,6'R)-9_conf 7	-1651.053871	-1650.798391	-1650.226147	-1649.932330	-1650.300942	0.41	8.77		
(2'S,6'R)-9_conf 8	-1651.053812	-1650.798395	-1650.226153	-1649.932400	-1650.300870	0.46	8.13		
(2'S,6'R)-9_conf 9	-1651.052668	-1650.795962	-1650.223574	-1649.928596	-1650.298511	1.94	0.67		
(2'S,6'R)-9_conf 10	-1651.052677	-1650.795935	-1650.223555	-1649.928545	-1650.298454	1.97	0.63		
(2'S,6'R)-9_conf 11	-1651.052932	-1650.796067	-1650.223639	-1649.928541	-1650.298375	2.02	0.58		
(2'S,6'R)-9 conf 12	-1651.052850	-1650.796075	-1650.223656	-1649.928639	-1650.298350	2.04	0.56		

 $E = gas phase electronic energy; ZPE = gas phase zero-point energy; E_{ZPE} = E+ZPE; H_{298K} = enthalpy; G_{298K} = gas phase Gibbs free energy at the B3LYP/6-31G(d) level in gas phase$

 E^* = electronic energy in acetonitrile; $E_{ZPE}^* = E^* + ZPE$; $H_{298K}^* =$ estimated enthalpy in acetonitrile, $H_{298K}^* = E^* + (H_{298K}-E)$; $G_{298K}^* =$ estimated Gibbs free energy in acetonitrile, $G_{298K}^* = E^* + (G_{298K}-E)$; $\Delta G_{298K}^* =$ estimated relative Gibbs free energy at the CAM-B3LYP/6-311++G(2d,2p) level in acetonitrile solvent; $P_G^* =$ conformational distribution calculated from relative Gibbs free energy.

Fig. S63. Optimized conformers of (2'S,6'R)-9 at the B3LYP/6-31G(d) level in gas phase with the populations calculated from their estimated Gibbs free energies in acetonitrile solvent at the CAM-B3LYP/6-311++G(2d,2p) level

(2′*S*,6′*R*)**-9**_Conf 2 (13.87%)

(2′*S*,6′*R*)**-9**_Conf 4 (12.71%)

(2'S,6'R)-9_Conf 6 (11.06%)

(2'*S*,6'*R*)**-9**_Conf 8 (8.13%)

(2'S,6'R)-9_Conf 10 (0.63%)

(2'S,6'R)-9_Conf 12 (0.56%)

Fig. S64. Comparison of experimental CD spectrum of 9-methoxystrobilurin E (black) and calculated ECD spectrum of (2'S, 6'R)-9 (blue)

(2) Computational details for (2'R,6'S)-9

Table S2. Estimated thermodynamic parameters at 298.15 K and conformational analysis of (2'R,6'S)-9 at the CAM-B3LYP/6-311++G(2d,2p) level in acetonitrile solvent, assuming Boltzmann statistics at T = 298.15 K

Conformers	B3LYP/6-31G(d)	CAM-B3LYP/6-311++G(2d, 2p)							
	E (a.u.)	E* (a.u.)	E _{ZPE} *(a.u.)	H _{298K} *(a.u.)	G _{298K} *(a.u.)	∆G _{298K} * (kcal/mol)	$\mathbf{P_{G}}^{*}$		
(2'R,6'S)-9_conf 1	-1651.053460	-1650.798558	-1650.226371	-1649.933115	-1650.301599	0.00	19.28		
(2' <i>R</i> ,6' <i>S</i>)-9_conf 2	-1651.053402	-1650.798531	-1650.226337	-1649.933121	-1650.301375	0.14	15.21		
(2' <i>R</i> ,6' <i>S</i>)-9_conf 3	-1651.053309	-1650.798432	-1650.226248	-1649.933010	-1650.301350	0.16	14.81		
(2'R,6'S)-9_conf 4	-1651.053296	-1650.798436	-1650.226246	-1649.933025	-1650.301292	0.19	13.92		
(2'R,6'S)-9_conf 5	-1651.053797	-1650.798497	-1650.226264	-1649.932634	-1650.301231	0.23	13.07		
(2'R,6'S)-9_conf 6	-1651.053986	-1650.798501	-1650.226267	-1649.932450	-1650.301161	0.27	12.13		
(2'R,6'S)-9_conf 7	-1651.053812	-1650.798395	-1650.226153	-1649.932400	-1650.300869	0.46	8.91		
(2' <i>R</i> ,6' <i>S</i>)- 9 _conf 8	-1651.052668	-1650.795960	-1650.223571	-1649.928593	-1650.298511	1.94	0.73		
(2' <i>R</i> ,6' <i>S</i>)- 9 _conf 9	-1651.052677	-1650.795937	-1650.223557	-1649.928549	-1650.298456	1.97	0.69		
(2'R,6'S)-9_conf 10	-1651.052932	-1650.796070	-1650.223642	-1649.928546	-1650.298375	2.02	0.63		
(2' <i>R</i> ,6' <i>S</i>)- 9 _conf 11	-1651.052850	-1650.796074	-1650.223655	-1649.928637	-1650.298354	2.04	0.62		

 $E = gas phase electronic energy; ZPE = gas phase zero-point energy; E_{ZPE} = E+ZPE; H_{298K} = enthalpy; G_{298K} = gas phase Gibbs free energy at the B3LYP/6-31G(d) level in gas phase$

 E^* = electronic energy in acetonitrile; $E_{ZPE}^* = E^* + ZPE$; $H_{298K}^* =$ estimated enthalpy in acetonitrile, $H_{298K}^* = E^* + (H_{298K-E})$; $G_{298K}^* =$ estimated Gibbs free energy in acetonitrile, $G_{298K}^* = E^* + (G_{298K-E})$; $\Delta G_{298K}^* =$ estimated relative Gibbs free energy at the CAM-B3LYP/6-311++G(2d,2p) level in acetonitrile solvent; $P_G^* =$ conformational distribution calculated from relative Gibbs free energy.

Fig. S65. Optimized conformers of (2'R,6'S)-9 at the B3LYP/6-31G(d) level in gas phase with the populations calculated from their estimated Gibbs free energies in acetonitrile solvent at the CAM-B3LYP/6-311++G(2d,2p)

(2'*R*,6'*S*)**-9**_Conf 2 (15.21%)

(2'*R*,6'*S*)**-9**_Conf 4 (13.92%)

(2'*R*,6'*S*)**-9**_Conf 6 (12.13%)

(2'*R*,6'*S*)**-9**_Conf 8 (0.73%)

(2'R, 6'S)-9_Conf 10 (0.63%)

(2'*R*,6'*S*)**-9**_Conf 11 (0.62%)

Fig. S66. Comparison of experimental CD spectrum of 9-methoxystrobilurin E (black) and calculated ECD spectra for (2'R, 6'S)-9 (red)

(3) Conclusion

9-Metoxystrobilurin E (9) was identified to be the (2'R, 6'S)-isomer.

Fig. 4. (main text). Calculated ECD spectra of (2'S,6'R)-9 (blue) and (2'R,6'S)-9 (red) and experimental CD spectrum of 9-methoxystrobilurin E (black)

References

- Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. *Journal of Computational Chemistry* 17, 490-519, doi:https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P (1996).
- Becke, A. Density-functional thermochemistry. III. The role of exact exchange (1993)
 J. *Chem. Phys* 98, 5648.
- 3 Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical review B* **37**, 785 (1988).
- 4 Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *The Journal of Physical Chemistry* **98**, 11623-11627, doi:10.1021/j100096a001 (1994).
- 5 Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. *Theoretica Chimica Acta* **28**, 213-222, doi:10.1007/BF00533485 (1973).
- 6 Petersson, a. *et al.* A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. *The Journal of chemical physics* **89**, 2193-2218 (1988).
- 7 Petersson, G. A. & Al-Laham, M. A. A complete basis set model chemistry. II. Openshell systems and the total energies of the first-row atoms. *The Journal of Chemical Physics* **94**, 6081-6090, doi:10.1063/1.460447 (1991).
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01; Gaussian. *Inc.*:Wallingford CT (2016).
- Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). *Chemical Physics Letters* 393, 51-57, doi:https://doi.org/10.1016/j.cplett.2004.06.011 (2004).
- 10 Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. *The Journal of Physical Chemistry A* **102**, 1995-2001 (1998).
- 11 Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *Journal of computational chemistry* **24**, 669-681 (2003).
- 12 Bruhn, T., Schaumlöffel, A., Hemberger, Y. & Bringmann, G. SpecDis: Quantifying the Comparison of Calculated and Experimental Electronic Circular Dichroism Spectra. *Chirality* **25**, 243-249, doi:https://doi.org/10.1002/chir.22138 (2013).
- 13 Rossum, G. V. & Drake, F. L. Python 3 Reference Manual. (CreateSpace, 2009).