Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

# **Supporting Information**

# Visible light-mediated synthesis of quinazolinones from benzyl

## bromides and 2-aminobenzamides without using any

# photocatalyst or additive

Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China

### **Contents** :

| 1. | Experimental section                                                                | 2   |
|----|-------------------------------------------------------------------------------------|-----|
| 2. | Characterization Data of Products                                                   | 5   |
| 3. | <sup>1</sup> H-NMR, <sup>13</sup> C-NMR and <sup>19</sup> F-NMR spectra of products | .10 |
| 4. | Reference                                                                           | 32  |

#### 1. Experimental section

#### 1.1 Instruments and reagents

All major chemicals and solvents were obtained from commercial sources and used without further purification. <sup>1</sup>H NMR <sup>13</sup>C NMR and <sup>19</sup>F spectra were recorded on a Bruker Avance III-500 spectrometer (Bruker, Switzerland).

#### 1.2 General Methods for the Synthesis of quinazolinone derivatives

A mixture of benzyl bromide (0.1 mmol), 2-aminobenzamide (0.2 mmol) and methanol (2 mL) as added to the test tube. The reaction mixture was irradiated with a Blue LED (18 W) for 28 h under air atmosphere and stirred at 300–400 rpm. The reaction was monitored using TLC (PE: EtOAc = 6:1, v/v). The organic phase was concentrated under reduced pressure to give the crude product, which was purified by column chromatography to obtain the pure product.

#### **1.3 Cyclic Voltammetry Experiment**

Cyclic voltammetry (CV) was taken using a CHI6043E potentiostation. CV measurement of A was carried out in 0.1 M of  $^{n}Bu_{4}NBF_{4}/MeOH$  at a scan rate of 100 mV/s with the protection of N<sub>2</sub>. The working electrode is a glassy carbon, the counter electrode is a Pt wire, and the reference electrode is saturated calomel electrode (SCE).



Figure S1. Cyclic voltammograms of A

#### **1.4 UV-Visible Spectroscopy**



Figure S2. UV-Visible absorption spectra

#### 1.5 Determination of electron spin resonance (EPR)



Figure S3. EPR spectra

(a) A and hydrobromic acid in MeOH, under blue LED irritation 10 min;

(b) A and hydrobromic acid in MeOH, dark.

### 1.6 Confirmation of Formation of $H_2O_2$

We conducted the step of template reaction. After 28 hours of reaction , EtOAc (20 mL) was added in the reaction mixture. The organic phase was extracted with H<sub>2</sub>O (3x10 mL). To this aqueous layer, HCl and a solution of KI in  $H_2O$  were added successively and stirred well. Subsequently, a starch solution was added under vigorous stirring. Finally, the blue color appeared in several minutes. This experimental result indicated that the  $H_2O_2$  was formed in the reaction could oxidize the iodide ions in acidic media to produce  $I_2$ , and then  $I_2$  was trapped by the starch to form this deep blue complex (Figure S1).



Figure S4. Confirmation of Formation of H<sub>2</sub>O<sub>2</sub>

### 2. Characterization Data of Products

#### (3a) 2-phenylquinazolin-4(3H)-one<sup>[1]</sup>



White solid, m.p. 235.2-236.4 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.59 (s, 1H), 8.24 – 8.15 (m, 3H), 7.85 (td, *J* = 7.8, 7.2, 1.4 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.64 – 7.50 (m, 4H).<sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 162.74, 152.78, 149.19, 135.08, 133.18, 131.87, 129.08, 128.24, 127.98, 127.06, 126.33, 121.44.

#### (3b) 2-(p-tolyl)quinazolin-4(3H)-one<sup>[1]</sup>



White solid, m.p. 240.3-242.4 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.51 (s, 1H), 8.14 (dd, *J* = 24.1, 7.7 Hz, 3H), 7.88 – 7.81 (m, 1H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 2H), 2.40 (s, 3H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 162.73, 152.65, 149.28, 141.89, 135.01, 130.33, 129.64, 128.13, 127.87, 126.83, 126.30, 121.35, 21.45.

#### (3c) 2-(m-tolyl)quinazolin-4(3H)-one<sup>[2]</sup>

White solid, m.p. 237.3-239.5 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.51 (s, 1H), 8.16 (d, *J* = 7.7 Hz, 1H), 8.04 (s, 1H), 7.98 (d, *J* = 7.4 Hz, 1H), 7.85 (t, *J* = 7.5 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.47 – 7.34 (m, 2H), 2.42 (s, 3H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 162.74, 152.88, 149.16, 138.37, 135.04, 133.10, 132.46, 128.96, 128.75, 126.98, 126.31, 125.34, 121.42, 21.45.

#### (3d) 2-(o-tolyl)quinazolin-4(3H)-one<sup>[2]</sup>

White solid, m.p. 212.5-213.8 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.48 (s, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.89 – 7.80 (m, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.60 – 7.48 (m, 2H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.39 –

7.31 (m, 2H), 2.39 (s, 3H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 162.24, 154.83, 149.19, 136.57, 134.93, 134.68, 130.99, 130.36, 129.60, 127.83, 127.10, 126.25, 126.16, 121.44, 20.04.

### (3e) 2-(4-Fluorophenyl)quinazolin-4(3H)-one [3]

White solid, m.p, 283.1-284.9 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.61 (s, 1H), 8.26 (dd, *J* = 8.6, 5.5 Hz, 2H), 8.16 (d, *J* = 7.7 Hz, 1H), 7.85 (t, *J* = 7.5 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 8.8 Hz, 2H).<sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 165.49, 163.50, 162.71, 151.84, 149.08, 135.10, 130.87, 130.80, 129.67, 127.89, 127.07, 126.32, 121.32, 116.19, 116.01. <sup>19</sup>F NMR (471 MHz, DMSO-*d*<sub>6</sub>) δ -109.05.

### (3f) 2-(4-chlorophenyl)quinazolin-4(3H)-one [3]



White solid, m.p. 297.8-299.6 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.64 (s, 1H), 8.19 (dd, *J* = 24.0, 8.1 Hz, 3H), 7.85 (t, *J* = 7.1 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.64 (d, *J* = 8.5 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H).<sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 162.64, 151.79, 149.02, 136.75, 135.13, 131.99, 130.08, 129.15, 127.98, 127.24, 126.34, 121.44.

### (3g) 2-(4-bromophenyl)quinazolin-4(3H)-one [3]



White solid, m.p. 293.1-295.2 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.64 (s, 1H), 8.22 – 8.06 (m, 3H), 7.89 – 7.82 (m, 1H), 7.76 (t, *J* = 9.0 Hz, 3H), 7.55 (t, *J* = 7.4 Hz, 1H).<sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 162.62, 151.90, 149.02, 135.15, 132.35, 132.08, 130.26, 127.99, 127.26, 126.34, 125.71, 121.47.

#### (3h) 2-(2-fluorophenyl)quinazolin-4(3H)-one [1]



White solid, m.p. 240.5-242.6 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.61 (s, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 7.87 (t, *J* = 7.6 Hz, 1H), 7.80 (t, *J* = 7.0 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.64 (q, *J* = 6.3 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.45 – 7.35 (m, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 161.96, 161.02, 159.03, 150.41, 149.13, 135.07, 133.35, 133.28, 131.52, 131.51, 127.96, 127.50, 126.32, 125.09, 125.06, 122.79, 122.68, 121.56, 116.73, 116.56. <sup>19</sup>F NMR (471 MHz, DMSO-*d*<sub>6</sub>) δ -114.68.

#### (3i) 2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one [3]



White solid, m.p. 283.8-295.7 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.78 (s, 1H), 8.38 (d, *J* = 7.2 Hz, 2H), 8.19 (d, *J* = 7.2 Hz, 1H), 8.02 – 7.70 (m, 4H), 7.57 (t, *J* = 6.6 Hz, 1H).<sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 151.60, 148.89, 137.04, 135.18, 131.68, 131.42, 129.17, 128.14, 127.56, 126.35, 125.96, 125.93, 125.49, 123.33, 121.65. <sup>19</sup>F NMR (471 MHz, DMSO-*d*<sub>6</sub>) δ -61.35.

#### (3j) 2-([1,1'-biphenyl]-4-yl)quinazolin-4(3H)-one [4]



White solid, m.p. 288.1-290.5 °C. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  12.63 (s, 1H), 8.32 (d, J = 8.4 Hz, 2H), 8.18 (d, J = 7.8 Hz, 1H), 7.86 (dd, J = 10.5, 7.9 Hz, 3H), 7.78 (t, J = 7.2 Hz, 3H), 7.53 (q, J = 8.0 Hz, 3H), 7.44 (t, J = 7.3 Hz, 1H). <sup>13</sup>C NMR (126 MHz, DMSO- $d_6$ )  $\delta$  162.72, 152.37, 149.24, 143.29, 139.41, 135.10, 132.00, 129.54, 128.84, 128.65, 127.99, 127.32, 127.22, 127.06, 126.34, 121.47.

#### (3k) 2-(naphthalen-1-yl)quinazolin-4(3H)-one [3]



White solid, m.p. 289.8-291.9 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.71 (s, 1H), 8.24 (d, *J* = 7.6 Hz, 1H), 8.19 (d, *J* = 7.6 Hz, 1H), 8.13 (d, *J* = 8.2 Hz, 1H), 8.09 – 8.04 (m, 1H), 7.88 (t, *J* = 7.5 Hz, 1H), 7.81 (d, *J* = 6.9 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.69 – 7.56 (m, 4H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ

162.37, 154.13, 149.19, 135.01, 133.58, 132.18, 130.85, 130.71, 128.81, 128.16, 127.94, 127.55, 127.27, 126.84, 126.32, 125.69, 125.55, 121.70.

#### (3l) 3-methyl-2-phenylquinazolin-4(3H)-one<sup>[1]</sup>



White solid, m.p. 127.9-129.8 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.19 (d, *J* = 7.9 Hz, 1H), 7.84 (t, *J* = 7.5 Hz, 1H), 7.74 – 7.65 (m, 3H), 7.56 (s, 4H), 3.37 (s, 3H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 162.11, 156.60, 147.52, 135.86, 134.81, 130.26, 128.87, 128.73, 127.64, 127.34, 126.55, 120.61, 34.36.

#### (3m) 3-butyl-2-phenylquinazolin-4(3H)-one [5]



White solid, m.p. 112.4-114.1 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.20 (d, *J* = 7.9 Hz, 1H), 7.85 (t, *J* = 7.5 Hz, 1H), 7.71 – 7.61 (m, 3H), 7.56 (d, *J* = 6.0 Hz, 4H), 3.97 – 3.81 (m, 2H), 1.48 (p, *J* = 7.4 Hz, 2H), 1.07 (h, *J* = 7.3 Hz, 2H), 0.66 (t, *J* = 7.3 Hz, 3H).<sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 161.59, 156.51, 147.34, 135.87, 134.91, 130.04, 128.83, 128.44, 127.63, 127.43, 126.64, 120.89, 45.28, 30.31, 19.76, 13.64.

#### (3n) 3-benzyl-2-phenylquinazolin-4(3H)-one<sup>[1]</sup>



White solid, m.p. 138.4-140.6 °C.<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.25 – 8.19 (m, 1H), 7.93 – 7.86 (m, 1H), 7.72 (d, *J* = 8.1 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.54 – 7.40 (m, 5H), 7.21 (t, *J* = 7.7 Hz, 3H), 6.92 (d, *J* = 6.6 Hz, 2H), 5.19 (s, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 161.85, 156.61, 147.42, 137.18, 135.59, 135.22, 130.17, 128.88, 128.69, 128.44, 127.82, 127.70, 127.55, 126.88, 126.72, 120.84, 48.68.

#### (30) 6-methoxy-2-phenylquinazolin-4(3H)-one<sup>[1]</sup>



White solid, m.p. >300°C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.53 (s, 1H), 8.17 (d, *J* = 7.0 Hz, 2H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.55 (d, *J* = 7.4 Hz, 4H), 7.49 – 7.40 (m, 1H), 3.90 (s, 3H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 162.49, 158.20, 150.54, 143.67, 133.25, 129.69, 129.04, 127.95, 124.58, 122.25, 56.11.

#### (3p) 6-fluoro-2-phenylquinazolin-4(3H)-one [4]



White solid; m.p: 274.2-276.6 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.70 (s, 1H), 8.18 (d, *J* = 7.2 Hz, 2H), 7.84 (dd, *J* = 8.6, 3.2 Hz, 2H), 7.74 (td, *J* = 8.7, 2.9 Hz, 1H), 7.58 (dt, *J* = 14.5, 7.0 Hz, 3H).<sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 162.16, 161.41, 159.46, 152.31, 146.08, 133.00, 131.89, 130.81, 130.75, 129.08, 128.21, 123.63, 123.43, 122.67, 122.61, 111.07, 110.89. <sup>19</sup>F NMR (471 MHz, DMSO-*d*<sub>6</sub>) δ - 113.50.

#### (3q) 6-chloro-2-phenylquinazolin-4(3H)-one<sup>[1]</sup>



White solid, m.p. 276.9-279.0 °C.1H NMR (500 MHz, DMSO-d6) δ 12.74 (s, 1H), 8.18 (d, J = 7.4 Hz, 2H), 8.08 (d, J = 2.2 Hz, 1H), 7.86 (dd, J = 8.7, 2.3 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.59 (dt, J = 25.5, 7.1 Hz, 3H).13C NMR (126 MHz, DMSO-d6) δ 161.76, 153.25, 147.93, 135.15, 132.89, 132.06, 131.21, 130.20, 129.10, 128.30, 125.33.

#### (3r) 6-bromo-2-phenylquinazolin-4(3H)-one<sup>[1]</sup>



White solid; m.p: 283.8-286.3 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.74 (s, 1H), 8.31 – 8.11 (m, 3H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.66 – 7.50 (m, 3H).<sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 161.62, 153.36, 148.18, 137.86, 132.90, 132.08, 130.34, 129.10, 128.45, 128.31, 123.05, 119.39. (3s) 7-chloro-2-phenylquinazolin-4(*3H*)-one <sup>[3]</sup>



White solid; m.p: 284.1-286.3 °C. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 12.74 (s, 1H), 8.20 (dd, *J* = 24.5, 4.4 Hz, 3H), 8.03 – 7.93 (m, 1H), 7.69 (d, *J* = 8.7 Hz, 1H), 7.59 (dt, *J* = 26.2, 7.1 Hz, 3H).<sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 161.67, 153.40, 148.17, 137.87, 132.91, 132.08, 130.31, 129.10, 128.45, 128.31, 123.05, 119.39.

### 3. <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and <sup>19</sup>F-NMR spectra of products

<sup>1</sup>H NMR spectra of compound **3a** 



# <sup>13</sup>C NMR spectra of compound **3a**



<sup>1</sup>H NMR spectra of compound **3b** 



<sup>13</sup>C NMR spectra of compound **3b** 



100 90 f1 (ppm) 

<sup>1</sup>H NMR spectra of compound **3c** 



## $^{13}\mathrm{C}$ NMR spectra of compound 3c



<sup>1</sup>H NMR spectra of compound **3d** 



## $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3d}$



<sup>1</sup>H NMR spectra of compound **3e** 



# $^{13}$ C NMR spectra of compound **3**e



100 90 f1 (ppm) 

 $^{19}\mathrm{F}$  NMR spectra of compound 3e



 $^1\mathrm{H}$  NMR spectra of compound  $\mathbf{3f}$ 







## $^{1}\text{H}$ NMR spectra of compound **3g**



<sup>13</sup>C NMR spectra of compound **3g** 



## $^{1}\text{H}$ NMR spectra of compound **3h**







 $^{19}\mathrm{F}\ \mathrm{NMR}$  spectra of compound  $\mathbf{3h}$ 





<sup>13</sup>C NMR spectra of compound **3i** 



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (pm)

<sup>19</sup>F NMR spectra of compound **3i** 

<sup>1</sup>H NMR spectra of compound 3j

NH N Ph





<sup>13</sup>C NMR spectra of compound **3**j

<sup>1</sup>H NMR spectra of compound 3k



 $^{13}\text{C}$  NMR spectra of compound 3k



 $^1\mathrm{H}$  NMR spectra of compound 3l













<sup>13</sup>C NMR spectra of compound **3m** 

<sup>1</sup>H NMR spectra of compound **3n** 







<sup>1</sup>H NMR spectra of compound 30







<sup>1</sup>H NMR spectra of compound **3p** 





<sup>19</sup>F NMR spectra of compound **3p** 

NH

--113.50

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

<sup>1</sup>H NMR spectra of compound **3**q



## <sup>13</sup>C NMR spectra of compound **3**q



<sup>1</sup>H NMR spectra of compound 3r



# $^{13}\text{C}$ NMR spectra of compound 3r



<sup>1</sup>H NMR spectra of compound **3s** 



<sup>13</sup>C NMR spectra of compound **3s** 





<sup>1</sup>H NMR spectra of compound A





### 4. Reference

- [1] L. Jin, Z. G. Le, Q. Fan, J. Yang and Z. Xie, Photochem. Photobiol. Sci.2022, 22, 525-534.
- [2] W. Sun, X. Ma, Y. Pang, L. Zhao and Q. Fan, RSC Adv. 2022, 12, 1494-1498.
- [3] Y. Hu, L. Chen and B. Li, RSC Adv. 2016, 6, 65196-65204.
- [4] X. Li., H. Yang, Z. Hu, X. Jin., W. Zhang and X. Guo. Chinese J. Org. Chem. 2021, 41(8), 3083.
- [5] X. Yu, L. Gao, L. Jia, Y. Yamamoto, and M. Bao, J. Org. Chem.. 2018, 83 (17), 10352-10358.