Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information for Publication

Synthesis of 1,2,3-triazole-fused N-heterocycles from N-alkynyl hydroxyisoindolinones and sodium azide via Huisgen reaction

Pallav Jyoti Arandhara, Bipin Kumar Behera, Subhamoy Biswas and Anil K. Saikia*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India, e-mail: asaikia@iitg.ac.in

Table of Content

1. Control Experiment	S2-S4
2. ¹ H and ¹³ C NMR spectra of all new compounds, COSY and nOe spectra of	
compounds $2s$ and $2t$ and ¹⁹ F spectra of compound $2g$	S5-S47
3. X-Ray crystallographic data of compound 2a	S48-S51
4. HRMS spectra of all new compounds	S52-S92

Control Experiment:

Synthesis of Intermediate B:

Experimental Procedure for the Synthesis of Intermediate B

To a stirred solution of 2-(but-3-yn-1-yl)-3-hydroxyisoindolinone (0.25 mmol, 1 equiv) and sodium azide (0.5 mmol, 2 equiv) in DMF (2 ml) was added BF₃·OEt₂ (0.5 mmol, 2 equiv) dropwise at 0 °C under nitrogen atmosphere. The reaction mixture was then allowed to stir at room temperature and the reaction time was monitored by TLC. After completion of the reaction, the reaction mixture was diluted with ethyl acetate, sodium bicarbonate and saturated brine solution. The organic phase was extracted with ice water (3×10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in rotary evaporator. The crude was subjected to column chromatography over silica gel to give the corresponding intermediate **B** in 71% yield which was confirmed by ¹H, ¹³C and HRMS analysis.

3-Azido-2-(but-3-yn-1-yl)isoindolin-1-one (B):

Yellow gummy; R_f (Hexane/EtOAc, 3:1) 0.50. Yield 40 mg, 71%; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.5 Hz, 1 H), 7.66 (t, J = 7.5 Hz, 1 H), 7.61–7.56 (m, 2 H), 5.76 (s, 1 H), 4.04–3.99 (m, 1 H), 3.63–3.57 (m, 1 H), 2.71–2.56 (m, 2 H), 2.01 (t, J = 2.5 Hz, 1 H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 167.5, 140.4, 132.9, 131.9, 130.7, 124.2, 123.4, 81.5, 74.8, 70.7, 39.4, 18.7; IR (KBr, neat) 3299, 2923, 2101, 1705, 1404, 1209, 1134, 1026, 744, 642 cm⁻¹; HRMS (ESI) calcd. for C₁₂H₁₁N₄O (M + H)⁺ 227.0927, found 227.0936.

¹H spectrum of intermediate **B** (500 MHz, CDCl₃)

HRMS spectrum of intermediate **B**

Control Reaction for the Synthesis of 2a:

Experimental Procedure for the Synthesis of 2a from Intermediate B.

The compound **B** (0.18 mmol, 1.0 equiv) was dissolved in DMF (2.0 ml) and the reaction mixture was allowed to stir at 130 °C under nitrogen atmosphere. The progress of the reaction was monitored by TLC and after completion of the reaction, the reaction mixture was allowed to room temperature and diluted with ethyl acetate. The organic phase was extracted with ice water (3×10 mL). The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in rotary evaporator. The crude was subjected to column chromatography over silica gel to give the corresponding product **2a** in 80% yield.

¹H spectrum of compound **1c** (500 MHz, CDCl₃)

¹³C{¹H} spectrum of compound **1c** (125 MHz, CDCl₃)

¹H spectrum of compound **1e** (500 MHz, CDCl₃)

¹³C{¹H} spectrum of compound **1e** (125 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ spectrum of compound 1h (500 MHz, CDCl_3/DMSO–d_6)

¹H spectrum of compound **1i** (500 MHz, CDCl₃)

¹³C{¹H} spectrum of compound **11** (125 MHz, CDCl₃)

¹H spectrum of compound **1o** (500 MHz, CDCl₃)

¹H spectrum of compound **1p** (500MHz, CDCl₃)

¹H spectrum of compound **1q** (500 MHz, CDCl₃)

 $^{13}C\{^1H\}$ spectrum of compound 1q (125 MHz, CDCl_3)

¹H spectrum of compound **1r** (500 MHz, CDCl₃)

¹H spectrum of compound **1s** (500 MHz, CDCl₃)

¹H spectrum of compound **1t** (500 MHz, CDCl₃)

¹H spectrum of compound **1u** (500 MHz, CDCl₃/DMSO-d₆)

 ^1H spectrum of compound 1v~(500 MHz, CDCl_3)

¹H spectrum of compound **1w** (500 MHz, CDCl₃/DMSO–d₆)

 $^{13}C\{^1H\}$ spectrum of compound 1w (500 MHz, CDCl₃/DMSO–d₆)

¹H spectrum of compound **1y** (500 MHz, CDCl₃)

 $^{13}C\{^1H\}$ spectrum of compound $1y~(500~MHz,~CDCl_3)$

¹H spectrum of compound **2a** (500 MHz, CDCl₃)

¹H spectrum of compound **2b** (400 MHz, CDCl₃)

 ^{13}C {¹H} spectrum of compound **2b** (125 MHz, CDCl₃)

 1 H spectrum of compound **2c** (500MHz, CDCl₃)

 ^{13}C {¹H} spectrum of compound **2c** (125MHz, CDCl₃)

¹H spectrum of compound **2d** (400 MHz, CDCl₃)

¹H spectrum of compound **2e** (500MHz, CDCl₃)

1 H spectrum of compound **2f** (500 MHz, CDCl₃)

S26

90

80

70

60

50

40

30

20

10 0

100 f1 (ppm)

200 190

180

170

160

150

140

130

120

110

- 500000 - 400000 - 300000 - 200000 - 100000 - 0 - - 100000

¹H spectrum of compound **2g** (500MHz, CDCl₃)

 ^{13}C {¹H} spectrum of compound **2g** (125 MHz, CDCl₃)

^{19}F spectrum of compound $\mathbf{2g}~(470~MHz,\,C_6F_6/CDCl_3)$

¹H spectrum of compound **2h** (500 MHz, CDCl₃/DMSO-d₆)

 ^{13}C {¹H} spectrum of compound **2h** (125 MHz, CDCl₃/DMSO-d₆)

¹H spectrum of compound **2i** (500 MHz, CDCl₃)

¹H spectrum of compound **2j** (500 MHz, CDCl₃)

 ^{13}C {¹H} spectrum of compound **2k** (125 MHz, CDCl₃)

¹H spectrum of compound **2l** (500 MHz, CDCl₃)

¹H spectrum of compound **2m** (500 MHz, CDCl₃)

¹H spectrum of compound **2n** (500 MHz, CDCl₃)

 ^{13}C {¹H} spectrum of compound **20** (125 MHz, CDCl₃)

¹H spectrum of compound **2p** (500MHz, CDCl₃)

 ^{13}C {¹H} spectrum of compound $\mathbf{2p}$ (125 MHz, CDCl₃)

 ^{13}C {¹H} spectrum of compound 2q (125 MHz, CDCl₃)

 ^{13}C {¹H} spectrum of compound **2r** (125MHz, CDCl₃)

¹H spectrum of compound **2s** (400 MHz, CDCl₃)

COSY spectrum of compound 2s (400 MHz, CDCl₃)

NOESY spectrum of compound 2s (400 MHz, CDCl₃)

COSY spectrum of compound 2t (400 MHz, CDCl₃)

NOESY spectrum of compound 2t (400 MHz, CDCl₃)

¹H spectrum of compound **2v** (500 MHz, CDCl₃)

 ^{13}C {¹H} spectrum of compound 2w (125 MHz, CDCl₃)

S45

¹H spectrum of compound **3j** (500 MHz, CDCl₃)

¹³C {¹H} spectrum of compound **3j** (125 MHz, CDCl₃)

Single crystal X-ray diffraction:

1. Single crystal of compound 2a (m.p. 188-190 °C) was obtained by slow evaporation of hexane and ethyl acetate solution (9:1). The Bruker SMART APEX-II CCD diffractometer was used to collect the intensity data. The instrument is equipped with a fine focus 1.75 kW sealed tube Mo Kα radiation (λ = 0.71073 Å) at 298(2) K, with increasing ω (width of 0.3° per frame) at a scan speed of 3 s/frame. The data acquisition was done with the SMART software. The SAINT and XPREP software were implemented for data integration and reduction.¹ Multiscan empirical absorption corrections were employed to the data using the program SADABS.² Structure was solved by direct methods using SHELXS- 2016 and refined with full-matrix least-squares on F2 using SHELXL- 2016/6.³ Structural illustrations have been drawn with ORTEP-3 for Windows.⁴ The detailed data collection and structure refinement are summarized in Table S49, CCDC 2269135 2a contained supplementary crystallographic data for this note.

Reference:

1) SMART; SAINT; XPREP; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1995.

2) Sheldrick, G. M. SADABS: Software for Empirical Absorption Correction University of Gottingen, Institut fur Anorganiche Chemieder Universitat: Gottingen, Germany, 1999.

3) Sheldrick, G. M. SHELXS-2014, Program for the crystal structure solution; University of Göttingen: Göttingen, Germany, 2014.

4) Farrugia, L. J. XRDIFF: simulation of X-ray diffraction patterns, J. Appl. Crystallogr. 1997, 30, 565.

Table S49:	: The crystal	parameters of	compound 2a
------------	---------------	---------------	-------------

	CCDC 2269135	
Formula	$C_{12}H_{12}N_4O_2$	
Formula weight	244.26	
T/\mathbf{K}	298(2)	
Crystal system	monoclinic	
Space group	P 21	
a/Å	10.0470(8)	
$b/{ m \AA}$	4.9832(4)	
$c/{ m \AA}$	11.8477(10)	
α/ ^o	90	
eta/°	104.242(2)	
$\gamma/^{o}$	90	
$V/Å^3$	574.98(8)	
Z	2	
Abs. Coeff./mm ⁻¹	0.100	
Abs. Correction	multi-scan	
GOF on F^2	0.715	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0357	
	wR2 = 0.1020	
R indices [all data]	R1 = 0.0405	
	wR2 = 0.1103	

Figure S50: ORTEP diagram of compound 2a using thermal ellipsoids of 30% probability

HRMS spectrum of 1c

HRMS spectrum of 1e

355.8 355.9 356.0 356.1 356.2 356.3 356.4 356.5 356.6 356.7 356.8 356.9 357.0 357.1 357.2 357.3 357.4 357.5 357.6 357.7 357.8 357.9 358.0 358.1 358.2 m/z (Da)

HRMS spectrum of 1h

HRMS spectrum of 11

HRMS spectrum of 10

HRMS spectrum of 1q

HRMS spectrum of 1r

HRMS spectrum of 1s

HRMS spectrum of 1t

HRMS spectrum of 1u

307.89 307.90 307.91 307.92 307.93 307.94 307.95 307.96 307.97 307.98 307.99 308.00 308.01 308.02 308.03 308.04 308.05 308.06 308.07 308.08 308.09 m/z (Da)

HRMS spectrum of 1w

HRMS spectrum of 1x

HRMS spectrum of 1y

HRMS spectrum of 2b

HRMS spectrum of 2d

HRMS spectrum of 2e

HRMS spectrum of 2f

HRMS spectrum of 2h

HRMS spectrum of 2i

HRMS spectrum of 2j

HRMS spectrum of 2k

HRMS spectrum of 2l

HRMS spectrum of 2m

HRMS spectrum of 2n

HRMS spectrum of 20

HRMS spectrum of 2p

S83

HRMS spectrum of 2q

HRMS spectrum of 2r

HRMS spectrum of 2s

HRMS spectrum of 2t

HRMS spectrum of 2w

HRMS spectrum of 2x

HRMS spectrum of 2y

HRMS spectrum of 3j