Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

Titanium-catalyzed Highly Stereoselective Anti-Markovnikov Intermolecular Hydroalkoxylation of Alkynes to Prepare Z-Enol

Ethers

Yang Wang¹, Biao Ma, Yingning Mao, Zhihui Wang, Jinsong Peng, Chunxia Chen* and Zhanyu Li* College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University Harbin Heilongjiang, P. R. China E-mail: <u>lizy567@nefu.edu.cn</u>

Table of contents

1. General Information	
2. Optimization of the reaction condition	
3. Gram-scale Reaction and Derivatizations	
4. Mechanistic Studies	
5. General Procedures	
6. References	S10
7. Product Synthesis and Characterization	S11
8. Spectroscopic Data	

1. General Information

All experiments were performed under a nitrogen atmosphere unless stated otherwise. All solvents are purchased from the highest commercial grades without further purification. Flash column chromatography was carried out on silica gel (200-300 mesh). Thin layer chromatography (TLC) was performed using silica gel 60 F254 plates. ¹H NMR spectra were recorded on a Bruker-500 MHz spectrometer at room temperature. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ (δ =77.00 ppm). Abbreviations for NMR data are s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sxt (sextet). Synthesis of alkenyl ether compounds was carried out in 10 mL Schlenk tubes under nitrogen atmosphere at 120 °C, while gram level synthesis was carried out in 50 mL Schlenk tubes. The reaction is carried out in a heating plate.

2. Optimization of the reaction condition

General procedure for Reaction Optimization: An oven-dried 10 mL Schlenk tube containing 4-bromophenylacetylene **1a** (0.2 mmol, 1.0 equiv.), Ti-catalyst (0.02 mmol, 10 mol%), base (0.4 mmol, 2.0 equiv.), methanol **2a** (0.5 mL). Then the tube is filled with nitrogen and sealed. The reaction was placed on a magnetic stirrer at 120 $^{\circ}$ C for 12 h. Upon completion, the solvent was removed under reduced pressure and the product was separated by column chromatography.

Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mL), Catalyst (10 mol%) and CH₃OK (2.0 equiv.) were stirred with 120 °C under N₂ for 12 h.

Table S2 Evaluation of different base.

Br 1a	- H ₃ C−OH 2a	$\frac{Cp_2TiCl_2 \ 10 \ mol\%}{Base \ 2 \ equiv.}$ 120 °C, N ₂	Br OCH ₃
Entry		Base	Yield/%
1		CH ₃ OK	94
2		CH ₃ OLi	84
3		NaH	66
4		K_2CO_3	25
5		KF	Trace
6		NaOH	84
7		КОН	87

Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mL), Cp_2TiCl_2 (10 mol%) and Base (2.0 equiv.) were stirred with 120 °C under N₂ for 12 h.

Br 1a	+ H ₃ C−OH <u> CP₂TiCl₂ 10 mol%</u> CH ₃ OK X equiv. 120 °C, N ₂ 2a	Br OCH ₃
Entry	X/equiv.	Yield/%
1	0.5	trace
2	1.0	24
3	1.5	67
4	1.8	79
5	2.0	94
б	3.0	93

Table S3 Evaluation of different amount of alkali.

Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mL), Cp_2TiCl_2 (10 mol%) and Base (2.0 equiv.) were stirred with 120 °C under N₂ for 12 h.

Table S4 Evaluation of different solvents.

Br + 1a	Н ₃ С−ОН 2а	<u>Cp₂TiCl₂ 10 mol%</u> CH ₃ OK 2.0 equiv. Solvent 0.5 mL 120 °C, N ₂	Br OCH ₃
Entry		Solvent	Yield/%
1		DMSO	43
2		DMF	36
3		THF	32
4		1,4-dioxane	0
5		CH ₃ CN	88

Reaction conditions: **1a** (0.2 mmol), **2a** (5.0 equiv.), Cp_2TiCl_2 (10 mol%) and CH_3OK (2.0 equiv.) were stirred with 120 °C under N₂ for 12 h.

3. Gram-scale Reaction and Derivatizations

A mixture of phenylacetylene **1h** (1.53 g, 15 mmol, 1.0 equiv.), methanol **2a** (10 mL), Cp_2TiCl_2 (0.375 g, 1.5 mmol, 10 mol%), and CH_3OK (2.1 g, 30 mmol, 2.0

equiv.) was added to a 50 mL Schlenk tube and stirred at 120 °C, N_2 for 24 h. After the reaction was completed, the reaction was concentrated under reduced pressure to give a crude residue which was purified by column chromatography to give 1.85 g of **3h**, 92% yield of a pale yellow oil liquid.

To a flame dried 10 mL Schlenk tube was added Ni(acac)₂ (5.14 mg, 0.02 mmol, 10 mol%), XantPhos (17.4 mg, 0.03 mmol, 15 mol%) and Zn (2.6 mg, 0.04 mmol, 20 mol%), then B₂Pin₂ (101.6 mg, 0.4 mmol, 2.0 equiv.) and K₃PO₄ (42.4 mg, 0.2 mmol, 1.0 equiv.) were added. The tube was vacuumed and refilled with nitrogen three times followed by the addition of anhydrous toluene (0.5 mL) and cyclohexane (1.5 mL). Substrates **3h** (26.8 mg, 0.2 mmol, 1.0 equiv.) was also added with a syringe under nitrogen atmosphere and the plug is screwed. After that, the reaction was stirred under 120 °C in the heating module for 24 h. Then the mixture was cooled to room temperature, the solvents were removed under reduced pressure and the crude product was purified through flash chromatography with petroleum ether and ethyl actate as the eluent to afford the pure product **4a** as a color less oil in 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.4 Hz, 2H), 7.21 (t, *J* = 7.7 Hz, 3H), 7.06 (t, *J* = 7.4 Hz, 1H), 6.06 (d, *J* = 7.0 Hz, 1H), 5.15 (d, *J* = 7.0 Hz, 1H), 3.70 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.54, 135.11, 131.18, 129.68, 118.93, 88.50, 23.22. Spectroscopic data in agreement with the literature¹.

To a flame dried 10 mL Schlenk tube was added TMSCI (21.7 mg, 0.2 mmol, 1.0 equiv.), NaI (29.9 mg, 0.2 mmol, 1.0 equiv.) **3h** (26.8 mg, 0.2 mmol, 1.0 equiv.). The tube was vacuumed and refilled with nitrogen three times followed by the addition of anhydrous CH₃CN (1.0 mL). After that, the reaction was stirred under 25 °C in the heating module for 10 min. At the end of the reaction, it was extracted three times with ether, the organic phases were combined, the organic phases were washed with saturated sodium chloride and dried with anhydrous Na₂SO₄. Decompression concentration to obtain yellow oily liquid. The target product **5a** was obtained by column chromatography separation as light yellow oil in 95% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.74 (s, 1H), δ 7.29 – 7.15 (m, 5H), 3.69 (d, *J* = 1.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 199.57, 131.84, 129.64, 129.04, 127.45, 77.30, 77.05, 76.79, 50.60. Spectroscopic data in agreement with the literature².

To a flame dried 25 mL round bottom flask was added Cu₂SO₄ (0.008g, 0.05 mmol, 10 mol%), **3h** (26.8 mg, 0.2 mmol, 1.0 equiv.) and benzene (10 mL). Stirring was done at 75 °C and ethyl diazoacetate dissolved in benzene was slowly added to the system. The reaction was continued for 1 h. The reaction was then cooled to room temperature and continued for 16 h. At the end of the reaction, the reaction was quenched by the addition of water, extracted three times with ether, the organic phases were combined, the organic phases were washed with saturated sodium chloride and dried with anhydrous Na₂SO₄. Decompression concentration to obtain bownish yellow oily liquid. The target product **6a** was obtained by column chromatography separation as light yellow oil in 41% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.2 Hz, 2H), 7.21 (d, *J* = 6.9 Hz, 3H), 5.53 (t, *J* = 7.6 Hz, 1H),

4.57 (q, J = 7.9 Hz, 2H), 3.76 (s, 3H), 3.14 (t, J = 7.2 Hz, 1H), 2.42 (t, J = 6.3 Hz, 1H), 1.23 (t, J = 7.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.21, 147.94, 128.19, 128.18, 125.74, 77.30, 77.04, 76.79, 60.67, 53.35, 50.61, 39.69, 29.73, 26.63. Spectroscopic data in agreement with the literature³.

4. Mechanism Studies

a. Radical inhibition experiment

To a flame dried 10 mL Schlenk tube was added 4-bromophenylacetylene **1a** (0.0362g, 0.2 mmol, 1.0 equiv.), Cp₂TiCl₂ (0.005g, 0.02 mmol, 10 mol%), CH₃OK (0.028g, 0.4 mmol, 2.0 equiv.), Tempo (0.0625g, 0.4 mmol, 2.0 equiv.) and methanol **2a** (0.5 mL). Then the tube is filled with nitrogen and sealed. The reaction was placed on a magnetic stirrer at 120 \degree for 12 h. Upon completion, the solvent was removed under reduced pressure and the product was separated by column chromatography, affording product **3a** (38.8 mg, 91% yield).

b. Deuterium labeled experiment

To a flame dried 10 mL Schlenk tube was added 4-bromophenylacetylene **1a** (0.0362g, 0.2 mmol, 1.0 equiv.), 2a (0.032g, 1.0 mmol, 5.0 equiv.), Cp₂TiCl₂ (0.005g, 0.02 mmol, 10 mol%), CH₃OK (0.028g, 0.4 mmol, 2.0 equiv.) and CD₃CN (0.5 mL). Then the tube is filled with nitrogen and sealed. The reaction was placed on a

magnetic stirrer at 120 $^{\circ}$ C for 12 h. Upon completion, the solvent was removed under reduced pressure and the product was separated by column chromatography, affording product **3a** (39.7 mg, 93% yield).

c. Deuterium labeled experiment

To a flame dried 10 mL Schlenk tube was added 4-bromophenylacetylene **1a** (0.0362g, 0.2 mmol, 1.0 equiv.), Cp_2TiCl_2 (0.005g, 0.02 mmol, 10 mol%), NaH (0.0096g, 0.4 mmol, 2.0 equiv.), CH₃OH (0.25 mL) and CD₃OD (0.25 mL). Then the tube is filled with nitrogen and sealed. The reaction was placed on a magnetic stirrer at 120 °C for 12 h. Upon completion, the solvent was removed under reduced pressure and the product was separated by column chromatography, the value of KH/KD is obtained as 1.5.

5. General Procedures

An oven-dried 10 mL Schlenk tube containing 4-bromophenylacetylene **1a** (0.2 mmol, 1.0 equiv.), Cp₂TiCl₂ (0.02 mmol, 10 mol%), CH₃OK (0.4 mmol, 2.0 equiv.), methanol **2a** (0.5 mL). Then the tube is filled with nitrogen and sealed. The reaction was placed on a magnetic stirrer at 120 °C for 12 h. Upon completion, the solvent was removed under reduced pressure and the product was separated by column chromatography, affording product **3a** (40.1 mg, 94% yield, *Z/E*:100:0) The *Z/E* value was determined by ¹H NMR analysis using the relative of the product.

When re-expanding the substrate of benzyl alcohol and derivatives, we added benzyl alcohol and derivative 2a (5.0 equiv.), with acetonitrile as solvent.

All catalysts related to titanium are obtained through methods obtained from published articles¹². All sources of alkynes are also based on methods obtained from published articles^{5, 11, 13}.

6. References

- 1. X. D. Qiu, Y. Y. Li, L. Zhou, P. S. Chen, F. Li, Y. N. Zhang and Y. Li, Org. Lett., 2020, 22, 6424-6428.
- 2. Z. Kosarych and T. Cohen, Tetrahedron Letters, 1980, 21, 3959-3962.
- 3. M. J. Rawling, J. H. Rowlev, M. Campbell, A. R. Kennedy, J. A. Parkinson and N. C. O. Tomkinson, *Chem. Sci.*, 2014, **5**, 1777-1785.
- 4. J. Cuthbertson and J. D. Wilden, *Tetrahedron*, 2015, **71**, 4385-4392.
- 5. M. Kondo, T. Kochi and F. Kakiuchi. J. Am. Chem. Soc., 2011, 133, 32-34.
- 6. M. F. Zheng, L. B. Huang, W. Q. Wu and H. F. Jiang, Org. Lett., 2013, 15, 1838-1841.
- 7. C. E. Brown, J. Mcnulty, C. Bordón, R. Yolken and L. Jones-Brando, *Org. Biomol. Chem.*, 2016, **00**, 1-3.
- 8. P. Molina, M. Alajarin, A. Vidal and P. Sónchez-Andrada, J. Org. Chem., 1992, 57, 929-939.
- 9. B. M. Trost and G. R. Dake, J. Am. Chem. Soc., 1997, 119, 7595-7596.
- 10. R. H. Lam, D. B. Walker, M. H. Tucker, M. R. D. Gatus, M. Bhadbhade and B. A. Messerle, *Organometallics*, 2015, **34**, 4312 4317.
- 11. M. Patel, R. K. Saunthwal, D. K. Dhaked, P. V. Bharatam and A. K. Verma, *Asian J. Org. Chem.*, 2016, **5**, 213-221.

12. R. B. Richrath, T. Olyschl-ger, S. Hildebrandt, D. G. Enny, G. D. Fianu, R. A. Flowers II and A. Gansauer, Chem. Eur. J., 2018, **24**, 6371-6379.

13. S. Zhao, X. Y. Wang, P. F. Wang, G. W. Wang, W. T. Zhao, X. Y. Tang and M. J. Guo, Org. Lett., 2019, **21**, 3990-3993.

7. Product Synthesis and Characterization

(Z)-1-bromo-4-(2-methoxyvinyl)benzene. (3a)

Following the general procedure described above, the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), methanol (0.5 mL) afforded compound **3a** (40.1 mg, 94% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.42 (m, 2H), 7.40 – 7.37 (m, 2H), 6.16 (d, *J* = 7.0 Hz, 1H), 5.16 (d, *J* = 7.0 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 148.55, 134.83, 131.20, 129.76, 119.14, 104.58, 60.81. Spectroscopic data in agreement with the literature⁴.

(Z)-1-fluoro-4-(2-methoxyvinyl)benzene. (3b)

Following the general procedure described above, the reaction of 1-ethynyl-4-fluorobenzene (0.2 mmol, 24.6 mg), methanol (0.5 mL) afforded compound **3b** (25.4 mg, 84% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 6.99 – 6.94 (m, 2H), 6.11 (d, *J* = 7.0 Hz, 1H), 5.19 (d, *J* = 7.0 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.75, 147.43, 147.41, 130.94, 128.85, 115.03, 114.86, 104.60, 65.59. Spectroscopic data in agreement with the literature⁵.

(Z)-1-chloro-4-(2-methoxyvinyl)benzene. (3c)

Following the general procedure described above, the reaction of 1-chloro-4-ethynylbenzene (0.2 mmol, 27.3 mg), methanol (0.5 mL) afforded compound **3c** (32.3 mg, 96% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 8.5 Hz, 2H), 7.25 (t, J = 7.2 Hz, 2H), 6.15 (d, J = 7.0 Hz, 1H), 5.18 (d, J = 7.0 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 148.37, 134.40, 131.03, 129.41, 128.25, 104.56, 60.78. Spectroscopic data in agreement with the literature⁶.

(Z)-1-(2-methoxyvinyl)-4-nitrobenzene. (3d)

Following the general procedure described above, the reaction of 1-ethynyl-4-nitrobenzene (0.2 mmol, 29.4 mg), methanol (0.5 mL) afforded compound **3d** (30.8 mg, 86% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.5 Hz, 2H), 7.41 (t, J = 7.2 Hz, 2H), 6.21 (d, J = 7.0 Hz, 1H), 5.23 (d, J = 7.0 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 143.96, 130.25, 126.61, 125.17, 114.55, 99.99, 56.22. Spectroscopic data in agreement with the literature⁵.

(Z)-1-(2-methoxyvinyl)-4-(trifluoromethyl)benzene. (3e)

Following the general procedure described above, the reaction of 1-ethynyl-4-(trifluoromethyl)benzene (0.2 mmol, 34.0 mg), methanol (0.5 mL) afforded compound **3e** (37.2 mg, 92% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 2H), 6.24 (d, *J* = 7.0 Hz, 1H), 5.25 (d, *J* = 7.0 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 149.86, 129.92, 128.13, 126.14, 126.11, 126.05, 125.04, 125.01, 104.45, 60.97. Spectroscopic data in agreement with the literature⁴.

(*Z*)-1-(2-methoxyvinyl)-4-(trifluoromethoxy)benzene. (**3f**)

Following the general procedure described above, the reaction of 1-ethynyl-4-(trifluoromethoxy)benzene (0.2 mmol, 37.2 mg), methanol (0.5 mL) afforded compound **3f** (35.8 mg, 82% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.8 Hz, 2H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.16 (d, *J* = 7.0 Hz, 1H), 5.21 (d, *J* = 7.0 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.42, 144.22, 127.26, 124.06, 112.00, 111.50, 103.11, 58.37. Spectroscopic data in agreement with the literature⁵.

(*Z*)-(2-methoxyvinyl)benzene. (**3**g)

Following the general procedure described above, the reaction of ethynyl benzene (0.2 mmol, 20.4 mg), methanol (0.5 mL) afforded compound **3g** (26.5 mg, 99% yield) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.4 Hz, 2H), 7.21 (t, *J* = 7.7 Hz, 2H), 7.06 (s, 1H), 6.06 (d, *J* = 7.0 Hz, 1H), 5.15 (d, *J* = 7.0 Hz, 1H), 3.70 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.94, 129.64, 129.44, 129.03, 128.18, 125.74, 105.69, 60.67. Spectroscopic data in agreement with the literature⁴.

methyl (Z)-4-(2-methoxyvinyl)benzoate. (3h)

Following the general procedure described above, the reaction of methyl 4-ethynylbenzoate (0.2 mmol, 32.0 mg), methanol (0.5 mL) afforded compound **3h** (13.8 mg, 36% yield) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 8.8

Hz, 2H), 6.76 (d, J = 8.9 Hz, 2H), 5.98 (d, J = 7.0 Hz, 1H), 5.10 (d, J = 7.0 Hz, 1H), 3.72 (s, 3H), 3.68 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.55, 147.28, 146.08, 129.12, 125.92, 113.86, 113.36, 104.97, 104.35, 55.04, 54.97. Spectroscopic data in agreement with the literature⁵.

(Z)-1-methoxy-4-(2-methoxyvinyl)benzene. (3i)

Following the general procedure described above, the reaction of 1-ethynyl-4-methoxybenzene (0.2 mmol, 26.4 mg), methanol (0.5 mL) afforded compound **3i** (22.0 mg, 67% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.49 (m, 2H), 6.88 – 6.81 (m, 2H), 6.06 (d, *J* = 7.0 Hz, 1H), 5.18 (d, *J* = 7.0 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.82, 145.30, 128.34, 125.14, 112.58, 104.19, 59.45, 55.43. Spectroscopic data in agreement with the literature⁴.

(Z)-1-(2-methoxyvinyl)-4-methylbenzene. (3j)

Following the general procedure described above, the reaction of 1-ethynyl-4-methylbenzene (0.2 mmol, 23.2 mg), methanol (0.5 mL) afforded compound **3j** (24.3 mg, 82% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.10 (d, *J* = 7.0 Hz, 1H), 5.20 (d, *J* = 7.0 Hz, 1H), 3.77 (s, 3H), 2.32 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.25, 135.36, 133.02, 128.88, 128.11, 105.63, 60.58, 21.20. Spectroscopic data in agreement with the literature⁴.

(Z)-4-(2-methoxyvinyl)-1,1'-biphenyl. (3k)

Following procedure described the general above, the reaction of 4-ethynyl-1,1'-biphenyl (0.2 mmol, 35.6 mg), methanol (0.5 mL) afforded compound **3k** (26.5 mg, 63% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.67 – 7.64 (m, 2H), 7.61 (dd, J = 8.2, 1.1 Hz, 2H), 7.56 – 7.53 (m, 2H), 7.46 – 7.41 (m, 2H), 7.33 (ddd, J = 7.4, 4.0, 1.2 Hz, 1H), 6.18 (d, J = 7.0 Hz, 1H), 5.28 (d, J = 7.0 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 148.20, 141.12, 138.36, 135.07, 128.73, 128.59, 126.91, 126.87, 105.31, 60.76. Spectroscopic data in agreement with the literature⁶.

(Z)-4-(2-methoxyvinyl)phenol. (3l)

Following the general procedure described above, the reaction of 4-ethynylphenol (0.2 mmol, 23.6 mg), methanol (0.5 mL) afforded compound **3l** (11.7 mg, 39% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 2H), 6.95 (d, *J* = 8.3 Hz, 2H), 6.23 (d, *J* = 7.0 Hz, 1H), 5.24 (d, *J* = 7.0 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 153.05, 141.15, 138.82, 134.67, 133.90, 111.42, 66.37. Spectroscopic data in agreement with the literature⁷.

(*Z*)-1-ethyl-4-(2-methoxyvinyl)benzene. (**3m**)

Following the general procedure described above, the reaction of 1-ethyl-4-ethynylbenzene (0.2 mmol, 23.6 mg), methanol (0.5 mL) afforded compound **3m** (28.9 mg, 89% yield) as pale yellow oil.¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 6.10 (d, *J* = 7.0 Hz, 1H), 5.21 (d, *J* = 7.0 Hz, 1H), 3.77 (s, 3H), 2.62 (q, *J* = 7.6 Hz, 2H), 1.22 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.28, 141.82, 133.29, 128.17, 127.68, 105.63, 60.57, 28.62, 15.65. Spectroscopic data in agreement with the literature⁶.

(Z)-1-(2-methoxyvinyl)-3-nitrobenzene. (3n)

Following the general procedure described above, the reaction of 1-ethynyl-3-nitrobenzene (0.2 mmol, 29.4 mg), methanol (0.5 mL) afforded compound 3n (31.9 mg, 89% yield) as yellow oil. 1H NMR (500 MHz, CDCl₃) δ 8.44 (t, J = 1.9 Hz, 1H), 7.96 (ddd, J = 8.2, 2.2, 0.9 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 6.28 (d, J = 7.0 Hz, 1H), 5.28 (d, J = 7.0 Hz, 1H), 3.85 (s, 3H). 13C NMR (125 MHz, CDCl₃) δ 150.25, 137.57, 133.85, 128.88, 122.68, 120.28, 103.60, 77.30, 77.04, 76.79, 61.19.

(Z)-1-(2-methoxyvinyl)-3-(trifluoromethyl)benzene. (30)

Following the general procedure described above, the reaction of 1-ethynyl-3-(trifluoromethyl)benzene (0.2 mmol, 34.0 mg), methanol (0.5 mL) afforded compound **30** (39.6 mg, 98% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.62 (t, *J* = 3.8 Hz, 6.7 Hz, 1H), 7.30 (d, *J* = 5.0 Hz, 2H), 6.14 (d, *J* = 7.0 Hz, 1H), 5.17 (d, *J* = 7.0 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 149.30, 136.61, 131.20, 131.20, 128.49, 124.73, 124.70, 122.17, 122.14, 104.39, 60.95. Spectroscopic data in agreement with the literature⁵.

(Z)-1-fluoro-3-(2-methoxyvinyl)benzene. (3p)

Following procedure described the general above, the reaction of 1-ethynyl-3-fluorobenzene (0.2 mmol, 24.1 mg), methanol (0.5 mL) afforded compound **3p** (26.1 mg, 86% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 11.0 Hz, 1H), 7.22 (t, J = 5.2 Hz, 2H), 6.87 – 6.76 (m, 1H), 6.17 (d, J =7.0 Hz, 1H), 5.21 (d, J = 7.0 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 163.80, 161.87, 148.92, 138.08, 138.01, 129.42, 129.35, 123.84, 123.82, 114.82, 114.64, 112.57, 112.40, 104.75, 104.73, 60.84. Spectroscopic data in agreement with the literature⁵.

(*Z*)-3-(2-methoxyvinyl)aniline. (**3q**)

Following the general procedure described above, the reaction of 3-ethynylaniline (0.2 mmol, 23.4 mg), methanol (0.5 mL) afforded compound **3q** (21.4 mg, 72% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.08 (t, *J* = 7.8 Hz, 1H), 7.02 – 7.01

(m, 1H), 6.93 (d, J = 7.7 Hz, 1H), 6.53 – 6.49 (m, 1H), 6.10 (d, J = 7.0 Hz, 1H), 5.14 (d, J = 7.0 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.88, 146.14, 136.81, 129.04, 119.12, 114.91, 113.04, 105.78, 60.67. Spectroscopic data in agreement with the literature⁸.

(Z)-1-(2-methoxyvinyl)-3-methylbenzene. (3r)

Following the general procedure described above, the reaction of 1-ethynyl-3-methylbenzene (0.2 mmol, 23.2 mg), methanol (0.5 mL) afforded compound **3r** (20.7 mg, 70% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 6.7 Hz, 2H), 7.10 (t, J = 7.9 Hz, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.04 (d, J = 7.0 Hz, 1H), 5.12 (d, J = 7.0 Hz, 1H), 3.70 (s, 3H), 2.26 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.46, 135.56, 133.23, 129.08, 128.31, 105.83, 60.78, 21.41. Spectroscopic data in agreement with the literature⁴.

(Z)-2-(2-methoxyvinyl)aniline. (3s)

Following the general procedure described above, the reaction of 2-ethynylaniline (0.2 mmol, 23.4 mg), methanol (0.5 mL) afforded compound **3s** (26.8 mg, 90% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.77 (dd, *J* = 8.9, 2.9 Hz, 2H), 6.16 (d, *J* = 7.0 Hz, 1H), 5.24 (d, *J* = 7.0 Hz, 1H), 3.75 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.11, 142.54, 130.12, 127.44, 121.54, 119.11, 116.54, 101.50, 60.48. Spectroscopic data in agreement with the literature⁸.

(*Z*)-1-(2-methoxyvinyl)-2-(trifluoromethyl)benzene. (**3**t)

Following the general procedure described above, the reaction of 1-ethynyl-2-(trifluoromethyl)benzene (0.2 mmol, 34 mg), methanol (0.5 mL) afforded compound **3t** (20.6 mg, 51% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.38 (t, *J* = 7.7 Hz, 1H), 7.13 (t, *J* = 7.7 Hz, 1H), 6.17 (d, *J* = 7.3 Hz, 1H), 5.47 (dd, *J* = 7.2, 1.8 Hz, 1H), 3.70 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 149.52, 133.93, 133.92, 131.36, 130.65, 125.57, 125.52, 125.41, 100.55, 100.53, 60.87. Spectroscopic data in agreement with the literature⁹.

(*Z*)-1-(2-methoxyvinyl)-2-methylbenzene. (**3u**)

Following the general procedure described above, the reaction of 1-ethynyl-2-methylbenzene (0.2 mmol, 23.2 mg), methanol (0.5 mL) afforded compound **3u** (13.3 mg, 45% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.1 Hz, 2H), 7.05(t, *J* = 7.7 Hz, 1H), 6.80 (t, *J* = 7.7 Hz, 1H), 6.09 (d, *J* = 7.0 Hz, 1H), 5.19 (d, *J* = 7.0 Hz, 1H), 3.76 (s, 3H), 2.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 146.81, 134.91, 132.58, 128.43, 127.66, 105.18, 60.13, 20.76. Spectroscopic data in agreement with the literature⁶.

(Z)-1-(2-methoxyvinyl)naphthalene. (3v)

Following the general procedure described above, the reaction of 1-ethynylnaphthalene (0.2 mmol, 23.2 mg), methanol (0.5 mL) afforded compound 3v (23.5 mg, 64% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.2 Hz, 1H), 8.03 (d, J = 7.3 Hz, 1H), 7.84 (t, J = 7.6 Hz, 1H), 7.71 (t, J = 8.9 Hz, 1H), 7.54 – 7.44 (m, 3H), 6.39 (d, J = 7.2 Hz, 1H), 5.92 (d, J = 7.2 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 148.66, 126.74, 126.73, 126.47, 126.10, 125.33, 123.90, 101.57, 53.60. Spectroscopic data in agreement with the literature⁸.

(*Z*)-1-(2-methoxyvinyl)-3,5-dimethylbenzene. (**3**w)

Following the general procedure described above, the reaction of 1-ethynyl-3,5-dimethylbenzene (0.2 mmol, 26.0 mg), methanol (0.5 mL) afforded compound **3w** (26.5 mg, 72% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.20 (s, 2H), 6.80 (s, 1H), 6.10 (d, *J* = 7.0 Hz, 1H), 5.16 (d, *J* = 7.0 Hz, 1H), 3.78 (s, 3H), 2.30 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 148.10, 136.20, 133.87, 129.72, 128.95, 106.47, 61.42, 22.05. Spectroscopic data in agreement with the literature⁸.

(Z)-1-ethynyl-4-(2-methoxyvinyl)benzene. (3x)

Following the general procedure described above, the reaction of 1,4-diethynylbenzene (0.2 mmol, 25.2 mg), methanol (0.5 mL) afforded compound **3x** (14.9 mg, 47% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 6.17 (d, J = 7.0 Hz, 1H), 5.20 (d, J = 7.0 Hz, 1H), 3.80 (s, 3H), 3.07 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 148.98, 136.59, 131.97,

127.97, 118.90, 105.09, 84.22, 60.88. Spectroscopic data in agreement with the literature⁷.

(*Z*)-(1-methoxyethene-1,2-diyl)dibenzene. (**3**y)

Following the general procedure described above, the reaction of 1,2-diphenylethyne (0.2 mmol, 35.6 mg), methanol (0.5 mL) afforded compound **3y** (14.7 mg, 35% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.4 Hz, 4H), 7.21 (t, *J* = 7.7 Hz, 5H), 7.06 (t, *J* = 7.4 Hz, 2H), δ 5.67 (s, 1H), δ 4.20 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.85, 132.22, 130.84, 129.64, 128.25, 106.21, 60.58. Spectroscopic data in agreement with the literature¹⁰.

(Z)-2-(2-methoxyvinyl)pyridine. (3z)

Following the general procedure described above, the reaction of 2-ethynylpyridine (0.2 mmol, 20.6 mg), methanol (0.5 mL) afforded compound **3z** (22.4 mg, 83% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.53 (d, *J* = 4.6 Hz, 1H), 7.59 (td, *J* = 7.7, 1.6 Hz, 1H), 7.20 (d, *J* = 7.8 Hz, 1H), 7.12 (dd, *J* = 7.1, 5.3 Hz, 1H), 6.34 (d, *J* = 7.2 Hz, 1H), 5.50 (d, *J* = 7.2 Hz, 1H), 3.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 157.33, 150.95, 149.23, 136.36, 124.15, 121.51, 104.45, 53.56. Spectroscopic data in agreement with the literature⁸.

(Z)-1-bromo-4-(2-ethoxyvinyl)benzene. (3aa)

Following the general procedure described above, the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), ethanol (0.5 mL) afforded compound **3aa** (42.4 mg, 94% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.5 Hz, 2H), 7.39 (d, *J* = 8.6 Hz, 2H), 6.23 (d, *J* = 7.0 Hz, 1H), 5.16 (d, *J* = 7.0 Hz, 1H), 3.99 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.18, 132.47, 131.18, 129.71, 118.98, 104.38, 69.30, 15.45. Spectroscopic data in agreement with the literature⁴.

(Z)-1-bromo-4-(2-propoxyvinyl)benzene. (3ab)

Following the general procedure described above, the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), propanol (0.5 mL) afforded compound **3ab** (39.8 mg, 83% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.5 Hz, 2H), 7.39 (d, *J* = 8.5 Hz, 2H), 6.23 (d, *J* = 7.0 Hz, 1H), 5.15 (d, *J* = 7.0 Hz, 1H), 3.89 (t, *J* = 6.6 Hz, 2H), 1.75 (dd, *J* = 8.3, 3.1 Hz, 2H), 1.01 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.54, 131.18, 129.68, 118.93, 104.21, 75.44, 23.22, 10.41. Spectroscopic data in agreement with the literature⁵.

(Z)-1-bromo-4-(2-isopropoxyvinyl)benzene. (**3ac**)

Following the general procedure described above, the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), isopropanol (0.5 mL) afforded compound **3ac** (21.6 mg, 45% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.5 Hz, 2H), 6.22 (d, *J* = 7.0 Hz, 1H), 5.14 (d, *J* = 7.0 Hz, 1H), 4.33 (dt, *J* = 14.1, 7.2 Hz, 1H), 1.33 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 149.22, 136.78, 132.85, 131.35, 120.60, 105.88, 77.11, 24.89. Spectroscopic data in agreement with the literature⁴.

(Z)-1-bromo-4-(2-(nonyloxy)vinyl)benzene. (3ad)

Following procedure described the general above. the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), nonyl alcohol (0.5 mL) afforded compound **3ad** (21.6 mg, 39% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 6.22 (d, J = 7.0 Hz, 1H), 5.14 (d, J = 7.0 Hz, 1H), 3.92 (t, J = 6.6 Hz, 2H), 1.74 - 1.69 (m, 2H), 1.27 (s, 12H), 0.88 (t, J= 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.56, 135.10, 131.17, 129.66, 118.91, 104.19, 73.98, 31.87, 29.86, 29.50, 29.30, 29.24, 25.84, 22.68, 14.12. Spectroscopic data in agreement with the literature⁸.

(Z)-1-(2-(benzyloxy)vinyl)-4-bromobenzene. (3ae)

Following the general procedure described above, the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), phenylmethanol (1.0 mmol, 108.1 mg) afforded compound **3ae** (46.1 mg, 80% yield) as pale yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.50 (d, *J* = 8.5 Hz, 2H), 7.45 – 7.35 (m, 7H), 6.31 (d, *J* = 7.0 Hz, 1H), 5.22 (d, *J* = 7.0 Hz, 1H), 5.00 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.89, 136.99, 134.82, 131.26, 129.88, 128.68, 128.20, 127.29, 119.24, 105.25, 75.11. Spectroscopic data in agreement with the literature⁶. Spectroscopic data in agreement with the literature¹¹.

(Z)-1-bromo-4-(2-((4-bromobenzyl)oxy)vinyl)benzene. (3af)

Following general procedure described reaction the above, the of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), (4-bromophenyl)methanol (1.0 mmol, 185.9 mg) afforded compound **3af** (50.0 mg, 68% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (dd, J = 8.4 Hz, 2.1 Hz, 4H), 7.32 (d, J = 8.5 Hz, 2H), 7.19 - 7.14 (m, 2H), 6.19 (d, J = 7.0 Hz, 1H), 5.15 (d, J = 7.0 Hz, 1H), 4.86 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.52, 135.95, 134.61, 131.84, 131.30, 129.89, 128.94, 122.19, 119.43, 105.67, 74.32. Spectroscopic data in agreement with the literature¹¹.

(Z)-1-bromo-4-(2-((4-(trifluoromethoxy)benzyl)oxy)vinyl)benzene. (3ag)

Following the general procedure described above, the reaction of 1-bromo-4-ethynylbenzene (0.2)mmol. 36.2 mg), (4-(trifluoromethoxy)phenyl)methanol (1.0 mmol, 192.0 mg) afforded compound 3ag (47.6 mg, 64% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 8.5 Hz, 2H), 7.35 – 7.29 (m, 4H), 7.15 (d, J = 8.2 Hz, 2H), 6.20 (d, J = 7.0 Hz, 1H), 5.16 (d, J = 7.0 Hz, 1H), 4.90 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.52, 135.68, 134.60, 131.31, 129.90, 128.63, 121.18, 119.46, 105.71, 74.16. Spectroscopic data in agreement with the literature⁸.

(Z)-1-bromo-4-(2-((4-(trifluoromethyl)benzyl)oxy)vinyl)benzene. (3ah)

Following procedure the general described above, the reaction of 36.2 1-bromo-4-ethynylbenzene (0.2)mmol, mg), (4-(trifluoromethyl)phenyl)methanol (1.0 mmol, 176.1 mg) afforded compound **3ah** (35.6 mg, 50% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 8.1 Hz, 2H), 7.52 - 7.46 (m, 4H), 7.42 (d, J = 8.6 Hz, 2H), 6.27 (d, J = 7.0 Hz, 1H), 5.26 (d, J = 7.0 Hz, 1H), 5.05 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 145.41, 139.94, 133.45, 130.29, 128.88, 126.16, 124.63, 124.60, 118.50, 104.88, 73.14. Spectroscopic data in agreement with the literature⁸.

(Z)-1-bromo-4-(2-((4-methylbenzyl)oxy)vinyl)benzene. (3ai)

Following procedure described the general above, the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), p-tolylmethanol (1.0 mmol, 122.1 mg) afforded compound **3ai** (29.5 mg, 49% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 6.22 (d, J = 7.0 Hz, 1H), 5.11 (d, J = 7.0 Hz, 1H), 4.87 (s, 2H), 2.28 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 146.88, 138.04, 134.89, 133.94, 131.23, 129.85, 129.35, 127.49, 119.16, 105.11, 75.05, 21.22. Spectroscopic data in agreement with the literature⁸.

(Z)-1-bromo-4-(2-((4-methoxybenzyl)oxy)vinyl)benzene. (3aj)

Following the general procedure described above, the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), (4-methoxyphenyl)methanol (1.0 mmol, 138.7 mg) afforded compound **3aj** (41.3 mg, 65% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 7.23 (d, *J* = 8.3 Hz, 2H), 6.84 (d, *J* = 8.4 Hz, 2H), 6.24 (d, *J* = 7.0 Hz, 1H), 5.12 (d, *J* = 7.0 Hz, 1H), 4.84 (s, 2H), 3.74 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.61, 146.77, 134.89, 131.22, 129.83, 129.12, 129.01, 119.14, 114.05, 105.08, 74.86, 55.31. Spectroscopic data in agreement with the literature⁸.

(Z)-1-bromo-3-(((4-bromostyryl)oxy)methyl)benzene. (3ak)

Br

Following procedure described the general above, the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), (3-bromophenyl)methanol (1.0 mmol, 185.9 mg) afforded compound **3ak** (43.4 mg, 59% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (s, 1H), 7.40 (d, *J* = 8.3 Hz, 3H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 7.5 Hz, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 6.19 (d, *J* = 7.0 Hz, 1H), 5.16 (d, J = 7.0 Hz, 1H), 4.87 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.47, 139.24, 134.57, 131.31, 130.31, 130.26, 129.92, 125.77, 122.75, 119.47, 105.76, 74.15. Spectroscopic data in agreement with the literature⁸.

(Z)-1-(((4-bromostyryl)oxy)methyl)-3-chlorobenzene. (3al)

Following procedure described reaction the general above, the of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), (3-chlorophenyl)methanol (1.0 mmol, 142.3 mg) afforded compound **3al** (32.8 mg, 51% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.6 Hz, 2H), 7.25 – 7.15 (m, 4H), 6.19 (d, J = 7.0 Hz, 1H), 5.16 (d, J = 7.0 Hz, 1H), 4.88 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.49, 138.98, 134.61, 134.58, 131.67, 131.31, 130.02, 129.92, 128.36, 127.33, 126.74, 125.28, 119.46, 105.74, 74.23. Spectroscopic data in agreement with the literature⁸.

(Z)-1-(((4-bromostyryl)oxy)methyl)-3-(trifluoromethyl)benzene. (**3am**)

Following procedure described reaction the general above, the of 1-bromo-4-ethynylbenzene (0.2)mmol. 36.2 mg), (3-(trifluoromethyl)phenyl)methanol (1.0 mmol, 176.6 mg) afforded compound 3am (32.7 mg, 46% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 7.7 Hz, 2H), 7.48 (d, J = 7.8 Hz, 4H), 7.41 (d, J = 8.2 Hz, 2H), 6.27 (d, J = 7.0 Hz, 1H), 5.26 (d, J = 6.9 Hz, 1H), 5.05 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.44, 134.48, 131.69, 131.34, 129.92, 127.45, 127.21, 126.74, 125.68, 125.65, 119.56, 105.95, 74.20. Spectroscopic data in agreement with the literature⁸.

(*Z*)-1-(((4-bromostyryl)oxy)methyl)-3-methylbenzene. (**3an**)

Following procedure described reaction the general above, the of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), m-tolylmethanol (1.0 mmol, 122.1 mg) afforded compound **3an** (34.4 mg, 57% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.1 Hz, 1H), 7.15 (dd, *J* = 12.4, 7.2 Hz, 3H), 6.29 (d, *J* = 7.0 Hz, 1H), 5.19 (d, *J* = 7.0 Hz, 1H), 4.94 (s, 2H), 2.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 146.93, 138.38, 136.88, 134.86, 131.24, 129.87, 128.97, 128.59, 128.10, 124.45, 119.19, 105.12, 75.16, 21.45. Spectroscopic data in agreement with the literature⁸.

(Z)-1-(((4-bromostyryl)oxy)methyl)-3-methoxybenzene. (**3ao**)

Following procedure described the general above, the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), (3-methoxyphenyl)methanol (1.0 mmol, 138.2 mg) afforded compound **3ao** (23.5 mg, 37% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.20 (dd, J = 8.2, 1.9 Hz, 1H), 6.89 - 6.82 (m, 2H), 6.79 (d, J = 8.3 Hz, 1H), 6.22 (d, J = 7.0 Hz, 1H), 5.14 (d, J = 7.0 Hz, 1H), 4.89 (s, 2H), 3.71 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.87, 146.85, 138.58, 134.80, 131.25, 129.89, 129.74, 119.41, 113.66, 112.69, 105.35, 74.91, 55.24. Spectroscopic data in agreement with the literature⁸.

(Z)-1-bromo-2-(((4-bromostyryl)oxy)methyl)benzene. (3ap)

Following procedure described reaction of the general above, the 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), (2-bromophenyl)methanol (1.0 mmol, 185.9 mg) afforded compound **3ap** (47.8 mg, 65% yield) as pale yellow oil. 1 H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 7.9 Hz, 1H), 7.52 (d, J = 8.5 Hz, 2H), 7.43 (dd, *J* = 7.6, 2.4 Hz, 3H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.7 Hz, 1H), 6.31 (d, *J* = 7.0 Hz, 1H), 5.26 (d, J = 7.0 Hz, 1H), 5.07 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 149.30, 136.61, 131.20, 131.20, 130.58, 130.33, 128.49, 124.73, 124.70, 122.17, 122.14, 104.39, 60.95. Spectroscopic data in agreement with the literature⁸.

(Z)-1-(((4-bromostyryl)oxy)methyl)-2-methoxybenzene. (3aq)

Following procedure described above. the reaction of the general 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), (2-methoxyphenyl)methanol (1.0 mmol, 138.1 mg) afforded compound **3aq** (46.4 mg, 73% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 8.5 Hz, 2H), 7.35 – 7.27 (m, 3H), 7.23 (t, J =7.8 Hz, 1H), 6.90 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 8.2 Hz, 1H), 6.27 (d, J = 7.0 Hz, 1H), 5.11 (d, J = 7.0 Hz, 1H), 4.96 (s, 2H), 3.78 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.63, 135.04, 131.20, 129.82, 129.28, 128.57, 125.52, 120.60, 119.02, 110.30, 104.77, 70.65, 55.36. Spectroscopic data in agreement with the literature⁸.

(Z)-1-(((4-bromostyryl)oxy)methyl)-2-(trifluoromethyl)benzene. (3ar)

Following the general procedure described above, the reaction of 1-bromo-4-ethynylbenzene (0.2)36.2 mmol, mg), (2-(trifluoromethyl)phenyl)methanol (1.0 mmol, 176.5 mg) afforded compound 3ar (44.1 mg, 62% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 7.9 Hz, 2H), 7.58 (d, J = 7.2 Hz, 1H), 7.51 (d, J = 8.3 Hz, 2H), 7.43 (t, J = 8.5 Hz, 3H), 6.27 (d, J = 7.0 Hz, 1H), 5.27 (d, J = 7.0 Hz, 1H), 5.20 (s, 2H). ¹³C NMR (125) MHz, CDCl₃) δ 147.80, 146.71, 134.55, 132.29, 131.66, 131.33, 129.93, 128.79, 128.37, 127.94, 126.76, 126.01, 125.97, 119.50, 105.82, 71.34, 71.31. Spectroscopic data in agreement with the literature⁸.

(Z)-1-bromo-2-(((4-bromostyryl)oxy)methyl)-4,5-dimethoxybenzene. (3as)

Following procedure described reaction the general above, the of 1-bromo-4-ethynylbenzene (0.2)mmol. 36.2 mg), (2-bromo-4,5-dimethoxyphenyl)methanol (1.0 mmol, 245.3 mg) afforded compound **3as** (63.3 mg, 74% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 7.07 - 7.00 (m, 2H), 6.31 (d, J = 7.0 Hz, 1H), 5.27 (d, J = 7.0 Hz, 1H), 4.99 (s, 2H), 3.87 (s, 3H), 3.76 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) & 159.85, 146.83, 138.56, 134.78, 131.23, 129.87, 129.72, 119.39, 119.24, 113.64, 112.67, 105.33, 77.28, 77.03, 76.77, 74.89, 55.22. Spectroscopic data in agreement with the literature⁸.

(Z)-1-bromo-4-(2-phenoxyvinyl)benzene. (3at)

Following the general procedure described above, the reaction of 1-bromo-4-ethynylbenzene (0.2 mmol, 36.2 mg), phenol (1.0 mmol, 94.4 mg) afforded compound **3at** (43.8 mg, 80% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.13 (t, *J* = 9.5 Hz, 3H), 6.64 (d, *J* = 6.9 Hz, 1H), 5.56 (d, *J* = 6.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 157.13, 142.42, 133.86, 131.41, 130.22, 129.82, 123.63, 120.23, 116.99, 109.16. Spectroscopic data in agreement with the literature¹¹.

(Z)-1-methyl-3-(2-phenoxyvinyl)benzene. (3au)

Following procedure described reaction the general above, the of 1-ethynyl-3-methylbenzene (0.2 mmol, 23.2 mg), phenol (1.0 mmol, 94.4 mg) afforded compound **3au** (31.1 mg, 74% yield) as pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.39 (m, 2H), 7.29 (t, *J* = 7.9 Hz, 2H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.07 – 7.02 (m, 3H), 6.96 (d, J = 7.5 Hz, 1H), 6.52 (d, J = 6.9 Hz, 1H), 5.52 (d, J = 6.9 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.87, 146.85, 138.58, 134.80, 131.25, 129.89, 129.74, 119.41, 119.26, 113.66, 112.69, 105.35, 23.22. Spectroscopic data in agreement with the literature¹¹.

8. Spectroscopic Data

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3a**.

¹H NMR (500 MHz, CDCl₃) of compound **3b**.

¹³C NMR (125 MHz, CDCl₃) of compound **3b**.
¹H NMR (500 MHz, CDCl₃) of compound 3c.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3c**.

 1 H NMR (500 MHz, CDCl₃) of compound **3d**.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3d**.

¹H NMR (500 MHz, CDCl₃) of compound 3e.

¹³C NMR (125 MHz, CDCl₃) of compound **3e**.

 1 H NMR (500 MHz, CDCl₃) of compound **3f**.

¹³C NMR (125 MHz, CDCl₃) of compound **3f**.

¹H NMR (500 MHz, CDCl₃) of compound 3g.

¹³C NMR (125 MHz, CDCl₃) of compound **3g**.

 1 H NMR (500 MHz, CDCl₃) of compound **3h**.

 ^{13}C NMR (125 MHz, CDCl_3) of compound **3h**.

¹H NMR (500 MHz, CDCl₃) of compound **3i**.

¹³C NMR (125 MHz, CDCl₃) of compound **3i**.

 1 H NMR (500 MHz, CDCl₃) of compound **3j**.

¹³C NMR (125 MHz, CDCl₃) of compound **3j**.

¹H NMR (500 MHz, CDCl₃) of compound 3k.

¹³C NMR (125 MHz, CDCl₃) of compound **3k**.

¹H NMR (500 MHz, CDCl₃) of compound **3**l.

¹³C NMR (125 MHz, CDCl₃) of compound **3l**.

S56

¹H NMR (500 MHz, CDCl₃) of compound **3m**.

S57

¹³C NMR (125 MHz, CDCl₃) of compound **3m**.

 1 H NMR (500 MHz, CDCl₃) of compound **3n**.

 ^{13}C NMR (125 MHz, CDCl_3) of compound **3n**.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **30**.

¹H NMR (500 MHz, CDCl₃) of compound **3p**.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3p**.

¹H NMR (500 MHz, CDCl₃) of compound 3q.

 ^{13}C NMR (125 MHz, CDCl_3) of compound **3q**.

¹H NMR (500 MHz, CDCl₃) of compound 3r.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3r**.

 1 H NMR (500 MHz, CDCl₃) of compound **3s**.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3s**.

 1 H NMR (500 MHz, CDCl₃) of compound **3t**.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3t**.

1 H NMR (500 MHz, CDCl₃) of compound **3u**.

 ^{13}C NMR (125 MHz, CDCl_3) of compound **3u**.

¹H NMR (500 MHz, CDCl₃) of compound 3v.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3v**.

¹H NMR (500 MHz, CDCl₃) of compound 3w.

 13 C NMR (125 MHz, CDCl₃) of compound **3w**.

¹H NMR (500 MHz, CDCl₃) of compound 3x.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3x**.

¹H NMR (500 MHz, CDCl₃) of compound 3y.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3y**.

 ^1H NMR (500 MHz, CDCl₃) of compound **3z**.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3z**.

¹H NMR (500 MHz, CDCl₃) of compound **3aa**.

¹³C NMR (125 MHz, CDCl₃) of compound **3aa**.

¹H NMR (500 MHz, CDCl₃) of compound **3ab**.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3ab**.

¹H NMR (500 MHz, CDCl₃) of compound **3ac**.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **3ac**.

 1 H NMR (500 MHz, CDCl₃) of compound **3ad**.

¹³C NMR (125 MHz, CDCl₃) of compound **3ad**.

¹H NMR (500 MHz, CDCl₃) of compound **3ae**.

¹³C NMR (125 MHz, CDCl₃) of compound **3ae**.

 ^1H NMR (500 MHz, CDCl₃) of compound **3af**.

¹³C NMR (125 MHz, CDCl₃) of compound **3af**.

 1 H NMR (500 MHz, CDCl₃) of compound **3ag**.

¹³C NMR (125 MHz, CDCl₃) of compound **3ag**.

 1 H NMR (500 MHz, CDCl₃) of compound **3ah**.

¹³C NMR (125 MHz, CDCl₃) of compound **3ah**.

 1 H NMR (500 MHz, CDCl₃) of compound **3ai**.

¹³C NMR (125 MHz, CDCl₃) of compound **3ai**.

 1 H NMR (500 MHz, CDCl₃) of compound **3aj**.

¹³C NMR (125 MHz, CDCl₃) of compound **3aj**.

¹H NMR (500 MHz, CDCl₃) of compound **3ak**.

¹³C NMR (125 MHz, CDCl₃) of compound **3ak**.

¹H NMR (500 MHz, CDCl₃) of compound **3al**.

¹³C NMR (125 MHz, CDCl₃) of compound **3al**.

¹³C NMR (125 MHz, CDCl₃) of compound **3am**.

¹H NMR (500 MHz, CDCl₃) of compound **3an**.

¹³C NMR (125 MHz, CDCl₃) of compound **3an**.

 1 H NMR (500 MHz, CDCl₃) of compound **3ao**.

¹³C NMR (125 MHz, CDCl₃) of compound **3ao**.

¹H NMR (500 MHz, CDCl₃) of compound **3ap**.

¹³C NMR (125 MHz, CDCl₃) of compound **3ap**.

 1 H NMR (500 MHz, CDCl₃) of compound **3aq**.

¹³C NMR (125 MHz, CDCl₃) of compound **3aq**.

¹H NMR (500 MHz, $CDCl_3$) of compound **3ar**.

S119

¹³C NMR (125 MHz, CDCl₃) of compound **3ar**.

 1 H NMR (500 MHz, CDCl₃) of compound **3as**.

¹³C NMR (125 MHz, CDCl₃) of compound **3as**.

¹H NMR (500 MHz, CDCl₃) of compound **3at**.

¹³C NMR (125 MHz, CDCl₃) of compound **3at**.

 1 H NMR (500 MHz, CDCl₃) of compound **3au**.

¹³C NMR (125 MHz, CDCl₃) of compound **3au**.

