Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Trifluoromethylthiolation of Alcohols Using Triphenylphosphine and N-Trifluoromethylthiophthalimide

Ye Yang, a Jiemin Ma, a Jiaxiang Zhang, Hu Cai*a and Wentao Xu*a

^a School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China. Email: caihu@ncu.edu.cn; wtxu@ncu.edu.cn

Table of Contents

1. General information	S3
2. Optimization of the trifluoromethylthiolation of alcohols	S3
3. General procedure	S4
4. Investigation of the reaction mechanism	S5
5. Characterization of products	S7
6. Preparation of substrates	S16
7. NMR spectra of products	S17

1. General information

All the reactions were conducted under air conditions unless otherwise noted. All solvents were obtained from commercial suppliers and used without further purification. Reagents were purchased from Energy Chemical, Bide pharma, and etc. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (300-400 mesh).

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a 400 MHz spectrometer in CDCl₃ (δ H = 0.0 ppm, δ C = 77.02 ppm as standard). Data for ¹H NMR are reported as follows: chemical shift (ppm, scale), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), and integration. Data for ¹³C NMR are reported in terms of chemical shift (ppm, scale), multiplicity, and coupling constant (Hz). High-resolution mass spectra were obtained by EI on a TOF mass analyzer. Mass spectra were obtained by EI on ISQ mass analyzer.

2. Optimizations of the reaction conditions

OH Phth-SCF ₃ (1.5 equiv), PPh ₃ (1.3 equiv) anhydrous THF (0.1 M), air, rt, 0.5 h				
	1a	$ \begin{array}{c} $	2a CF ₃	
	Entry	Variations from optimal conditions	Yield $(\%)^b$	
	1	none	90 (85)	
	2	Anhydrous DCE as solvent	22	
	3	Anhydrous CH ₃ CN as solvent	14	
	4	Anhydrous DMF as solvent	44	
	5	THF as solvent	15	
	6	Suc-SCF ₃ instead of Phth-SCF ₃	38	
	7	Sacc-SCF ₃ instead of Phth-SCF ₃	24	
	8	Without Ph ₃ P	ND	
	9	Adding FeCl ₃ (5 mol%)	53	

Table S1. Optimization of the Reaction Conditions^{*a*}

^{*a*}Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), Phth-SCF₃ (0.15 mmol, 1.5 equiv), PPh₃ (0.13 mmol, 1.3 equiv), anhydrous THF (1.0 mL), rt, 0.5 h. ^{*b*}GC yield using the acetophenone as the internal standard. The number in parentheses is the isolated yield. ND = not detected.

T 11 C	\mathbf{a}		• •	• •	1	1
Table V	/ ()m	timi791	100 01	organi	c nhos	nhinecu
I auto D	2. Op	umnza	uon oi	organn	c phos	philles
				0		1

OH 1a	Phth-SCF ₃ (1.5 equiv), PR ₃ (1.3 equiv) anhydrous THF (0.1 M), air, rt, 0.5 h			
Entry	PR ₃	Yield $(\%)^b$		
1	PPh ₃	91		
2	P(p-OMeC ₆ H ₄) ₃	23		
3	PPh ₂ CH ₃	trace		
4	P(OCH ₂ CH ₃) ₃	trace		
5	$P(^{t}Bu)_{3}$	37		

^{*a*}Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), Phth-SCF₃ (0.15 mmol, 1.5 equiv), PR₃ (0.13 mmol, 1.3 equiv), anhydrous THF (1.0 mL), rt, 0.5 h. ^{*b*}GC yield using the acetophenone as the internal standard.

Table S3. The screen of the amounts of reactants.

^{*a*}Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), Phth-SCF₃ (x equiv), PPh₃ (y equiv), anhydrous THF (1.0 mL), rt, 0.5 h. ^{*b*}GC yield using the acetophenone as the internal standard.

3. General procedure for trifluoromethylthiolation of alcohols

Three dried 2.0 mL resealable screw-capped vials were prepared. Alcohol (1.0 equiv, 0.1 mmol), triphenylphosphine (PPh₃, 1.3 equiv, 0.13 mmol, 34.1 mg) were placed n vial **1**. The solvent anhydrous tetrahydrofuran (THF, 0.5 mL) was added under air conditions. *N*-(trifluoromethylthio)phthalimide (Phth-SCF₃, 1.5 equiv, 0.15 mmol, 37.1 mg) and anhydrous tetrahydrofuran (THF, 0.5 mL) were added to vial **2**. The reaction mixtures in vial **1** and vial **2** were transferred in sequence to vial **3** with a Teflon-coated stir bar under air. The final reaction mixtures were stirred at room temperature for 30 minutes. When the reaction finished, the solvent was evaporated under reduced pressure and purified by flash column chromatography using a solvent mixture (ethyl acetate/petroleum ether) as an eluent to afford the purified product.

4. Investigation of the reaction mechanism

4.1 ¹⁸O-labelled experiment

Fig. S1 The TIC spectrogram and MS spectrogram of the reaction mixture.

This ¹⁸O-labelled experiment suggested that PPh₃ was responsible for the deoxygenation. However, ¹⁶O=PPh₃ was detected. The ¹⁶O atoms probably originate from H₂¹⁶O. When 3.0 equiv of H₂¹⁸O was added in anhydrous THF, trifluoromethylthiophosphonium ion was directly hydrolyzed, giving ¹⁸O=PPh₃ (eq 1). In addition, there's no isotope exchange (eq 2). These results further demonstrated that H₂O could quench the reaction, delivering O=PPh₃.

Preparation of ¹⁸O-labelled benzylic alcohol (Ref. A. Yadav, M. D. Ambule, R. Kant and A. K. Srivastava, *Eur. J. Org. Chem.*, 2020, **2020**, 5709-5713.)

Fig. S2 The MS spectrogram of ¹⁸O-labelled benzylic alcohol.

4.2 ³¹P NMR study of reaction

A simple ³¹P NMR study of reaction mixture was conducted to clarify the different P species. When mixing PPh₃ and Phth-SCF₃ in THF, we are surprised to find that is formed ($\delta = 27.07$ ppm). This result could also explain why the ¹⁶O-triphenylphosphorus oxide was produced when using ¹⁸O-benzylic alcohol. The peak at 22.12 ppm can be assigned to trifluoromethylthiophodphonium III. Under the standard conditions, two new signals were detected at $\delta = 20.36$, and -53.38 ppm. A peak at -53.38 ppm could be assigned to the intermediate **IV** and the other may be assigned to the intermediate **V**.

5. Characterization of products

SCF3

(4-phenylbutyl)(trifluoromethyl)sulfane (2a) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv PPh₃ reagent with reaction time of 0.5 h, 20.3 mg, 85%, purified by flash chromatography, yellow oil; Rf = 0.5 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (t, *J* = 7.3 Hz, 2H), 7.23 – 7.13 (m, 3H), 2.88 (t, *J* = 5.5 Hz, 2H), 2.64 (t, *J* = 4.9 Hz, 2H), 1.78 – 1.67 (m, 4H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.59; GCMS (EI) m/z 233 (M)⁺.

(3-(benzyloxy)propyl)(trifluoromethyl)sulfane (**2b**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv PPh₃ reagent with reaction time of 0.5 h, 17.8 mg, 71%, purified by flash chromatography, yellow oil; Rf = 0.6 (petroleum ether/ethylacetate 20:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.28 (m, 5H), 4.50 (s, 2H), 3.57 (t, *J* = 5.8 Hz, 2H), 3.01 (t, *J* = 7.2 Hz, 2H), 1.99 (p, *J* = 6.5 Hz, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.81; GCMS (EI) m/z 250 (M)⁺.

(3-(4-bromophenyl)propyl)(trifluoromethyl)sulfane (2c) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv PPh₃ reagent with reaction time of 0.5 h, 22.8 mg, 78%, purified by flash chromatography, yellow oil; Rf = 0.8 (petroleum ether/ethylacetate 50:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 8.2 Hz, 2H), 7.05 (d, *J* = 6.8 Hz, 2H), 2.86 (t, *J* = 6.7 Hz, 2H), 2.69 (t, *J* = 7.1 Hz, 2H), 2.00 (p, *J* = 7.1, 6.6 Hz, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.0; ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.4, 131.6, 131.1 (q, *J* = 308.4 Hz), 130.2, 120.1, 33.7, 30.8, 29.1 (q, *J* = 2.0 Hz); HRMS (EI) cacld for C₁₀H₁₀BrF₃S (M⁺): 297.9633, found 297.9639.

benzyl (3-((trifluoromethyl)thio)propyl)carbamate (2d) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv PPh₃ reagent with reaction time of 0.5 h, 22.9 mg, 78%, purified by flash chromatography, white solid; Rf = 0.5 (petroleum ether/ ethylacetate 5:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.28 (m, 5H), 5.10 (s, 2H), 4.90 (s, 1H), 3.40 – 3.21 (m, 2H), 3.01 – 2.82 (m, 2H), 2.01 – 1.81 (m, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.19; GCMS (EI) m/z 292 (M)⁺.

(3-phenylprop-2-yn-1-yl)(trifluoromethyl)sulfane (2e) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv PPh₃ reagent with reaction time of 0.5 h, 15.4 mg, 70%, purified by flash chromatography, yellow oil; Rf = 0.6 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 7.2 Hz, 2H), 7.35 – 7.28 (m, 3H), 3.89 (s, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.9; ¹³C NMR (101 MHz, Chloroform-*d*) δ 131.8, 130.4 (q, *J* = 308.7), 128.7, 128.3, 122.3, 84.6, 82.2, 19.5 (q, *J* = 3.4 Hz). HRMS (EI) cacld for C₁₀H₇F₃S (M⁺): 216.0215, found 216.0216.

$$\underset{Me}{\overset{Me}{\xrightarrow{}}}_{Me} \overset{SCF_3}{\xrightarrow{}}$$

(4-(tert-butyl)benzyl)(trifluoromethyl)sulfane (**2f**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv PPh₃ reagent with reaction time of 0.5 h, 18.1 mg, 72%, purified by flash chromatography, colorless solid; Rf = 0.6 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.3 Hz, 2H), 4.10 (s, 2H), 1.31 (s, 9H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.26; GCMS (EI) m/z 248 (M)⁺.

([1,1'-biphenyl]-4-ylmethyl)(trifluoromethyl)sulfane (2g) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 15.4 mg, 67%, purified by flash chromatography, yellow solid; Rf = 0.5 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (ddt, *J* = 8.2, 5.8, 2.4 Hz, 4H), 7.47 – 7.41 (m, 3H), 7.41 – 7.32 (m, 2H), 4.17 (s, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.04; GCMS (EI) m/z 267 (M)⁺.

(3-phenoxybenzyl)(trifluoromethyl)sulfane (2h) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv PPh₃ reagent with reaction time of 0.5 h, 19.3 mg, 68%, purified by flash chromatography, yellow oil; Rf = 0.5 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.32 (m, 2H), 7.29 (t, *J* = 7.9 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.01 (s, 1H), 7.00 – 6.98 (m, 2H), 6.93 (d, *J* = 8.2 Hz, 1H), 4.06 (s, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.6; ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.7, 156.8, 137.0, 130.5 (q, *J* = 308.4 Hz), 130.2, 129.8, 123.6, 123.6, 119.1, 119.1, 118.2, 34.0 (q, *J* = 2.4 Hz). HRMS (EI) cacld for C₁₄H₁₁F₃OS (M⁺): 284.0477, found 284.0482.

(3,5-dimethoxybenzyl)(trifluoromethyl)sulfane (**2i**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv PPh₃ reagent with reaction time of 0.5 h, 17.1 mg, 68%, purified by flash chromatography, yellow oil; Rf = 0.3 (petroleum ether/ethylacetate 100:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.48 (d, *J* = 2.0 Hz, 2H), 6.39 (t, *J* = 2.0 Hz, 1H), 4.05 (s, 2H), 3.79 (s, 6H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -40.91; GCMS (EI) m/z 251 (M)⁺.

(2,4-dichlorobenzyl)(trifluoromethyl)sulfane (**2j**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 18.5 mg, 71%, purified by flash chromatography, yellow oil; Rf = 0.7 (petroleum ether/ethylacetate 20:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 1.7 Hz, 1H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.25 – 7.22 (m, 1H), 4.17 (s, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.4; ¹³C NMR (101 MHz, Chloroform-*d*) δ 134.9, 134.8, 131.6, 131.3, 130.7 (q, *J* = 308.7 Hz), 129.8, 127.5, 31.5 (q, *J* = 2.5 Hz). HRMS (EI) cacld for C₈H₅Cl₂F₃S (M⁺): 259.9436, found 259.9445.

(trifluoromethyl)(2,4,6-trimethylbenzyl)sulfane (2k) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃ reagent with reaction time of 0.5

h, 18.9 mg, 80%, purified by flash chromatography, yellow oil; Rf = 0.7 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.86 (s, 2H), 4.19 (s, 2H), 2.38 (s, 6H), 2.26 (s, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -40.97; GCMS (EI) m/z 233 (M)⁺.

2-(((trifluoromethyl)thio)methyl)benzofuran (21) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv PPh₃ reagent with reaction time of 0.5 h, 13.1 mg, 57%, purified by flash chromatography, yellow oil; Rf = 0.5 (petroleum ether/ethylacetate 50:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 8.2 Hz, 1H), 7.29 (t, *J* = 7.7 Hz, 1H), 7.23 (t, *J* = 7.4 Hz, 1H), 6.68 (s, 1H), 4.25 (s, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 155.2, 151.4, 130.4 (q, *J* = 308.1 Hz) 128.1, 124.7, 123.1, 121.0, 111.2, 105.7, 27.1 (q, *J* = 2.9 Hz). HRMS (EI) cacld for C₁₀H₇F₃OS (M⁺): 232.0164, found 232.0173.

tert-butyl 3-(((trifluoromethyl)thio)methyl)-1H-indole-1-carboxylate (**2m**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 26.3 mg, 79%, purified by flash chromatography, yellow solid; Rf = 0.6 (petroleum ether/ethylacetate 50:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 7.1 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 4.27 (s, 2H), 1.67 (s, 9H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.8; ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.4, 135.6, 130.7 (q, *J* = 308.4 Hz), 128.9, 125.0, 125.0, 122.8, 118.9, 115.5, 113.8, 84.1, 28.2, 24.9 (q, *J* = 2.8 Hz). HRMS (EI) cacld for C₁₅H₁₆F₃NO₂S (M⁺): 331.0848, found 331.0860.

4-methoxy-3,5-dimethyl-2-(((trifluoromethyl)thio)methyl)pyridine (**2n**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 9.55 mg, 48%, purified by flash chromatography, yellow solid; Rf = 0.3 (petroleum ether/ethylacetate 20:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (s, 1H), 4.29 (s, 2H), 3.77 (s, 3H), 2.28 (s, 3H), 2.25 (s, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.32; GCMS (EI) m/z 250 (M)⁺.

Me O SCF3

ethyl 6-((trifluoromethyl)thio)hexanoate (**20**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 17.8 mg, 73%, purified by flash chromatography, colorless oil; Rf = 0.6 (petroleum ether/ethylacetate 20:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 4.13 (q, *J* = 7.1 Hz, 2H), 2.88 (t, *J* = 7.4 Hz, 2H), 2.31 (t, *J* =

7.4 Hz, 2H), 1.73 (dd, J = 15.2, 7.7 Hz, 2H), 1.67 – 1.59 (m, 2H), 1.49 – 1.42 (m, 2H), 1.28 (d, J = 3.8 Hz, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.24; GCMS (EI) m/z 243 (M)⁺.

SCF3

(*trifluoromethyl*)(undec-10-en-1-yl)sulfane (**2p**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 37.4 mg, 75%, purified by flash chromatography,colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.81 (ddt, *J* = 16.9, 10.1, 6.7 Hz, 1H), 5.03 – 4.89 (m, 2H), 2.87 (t, *J* = 7.4 Hz, 1H), 2.04 (q, *J* = 7.0 Hz, 2H), 1.85 – 1.76 (m, 1H), 1.68 (p, *J* = 7.4 Hz, 2H), 1.43 – 1.27 (m, 12H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.59.

SCF₃

benzhydryl(trifluoromethyl)sulfane (**2q**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 1 h, 16.6 mg, 59%, purified by flash chromatography, colorless oil; Rf = 0.8 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (d, *J* = 7.5 Hz, 4H), 7.34 (t, *J* = 7.4 Hz, 4H), 7.27 (t, *J* = 7.2 Hz, 2H), 5.69 (s, 1H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.36; GCMS (EI) m/z 268 (M)⁺.

(4-phenylbutan-2-yl)(trifluoromethyl)sulfane (**2r**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 1 h, 25.4 mg, 55%, purified by flash chromatography, colorless oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 (t, *J* = 7.4 Hz, 2H), 7.20 (dd, *J* = 11.2, 7.2 Hz, 3H), 3.30 (h, *J* = 6.8 Hz, 1H), 2.75 (t, *J* = 7.9 Hz, 2H), 1.95 (dh, *J* = 14.6, 7.3 Hz, 2H), 1.46 (d, *J* = 6.8 Hz, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.28; GCMS (EI) m/z 234 (M)⁺.

(1s, 3r, 5R, 7S)-3-(2-((trifluoromethyl)thio)ethyl)adamantan-1-ol (**3a**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 12.3 mg, 44%, purified by flash chromatography, yellow oil; Rf = 0.4 (petroleum ether/ethylacetate 5:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 4.12 (q, *J* = 7.1 Hz, 2H), 3.48 (s, 1H), 2.89 – 2.79 (m, 1H), 2.05 (s, 3H), 1.67 (q, *J* = 11.7, 11.2 Hz, 3H), 1.60 – 1.51 (m, 2H), 1.48 – 1.40 (m, 3H), 1.26 (t, *J* = 7.1 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 131.0 (q, *J* = 307.0 Hz) 68.7, 60.4, 49.4, 44.6, 42.8, 40.5, 36.4, 35.3, 30.5, 24.3, 21.0, 14.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.4; HRMS (ESI) cacld for C₁₃H₁₉F₃NaOS⁺ (M+Na)⁺: 303.1001, found 303.1003.

(10*R*, 13*S*, 17*S*)-11-hydroxy-10, 13-dimethyl-17-(2-((trifluoromethyl)thio)acetyl)-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3*H*-cyclopenta[a]phenanthren-3-one. (**3b**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 24.2 mg, 57%, purified by flash chromatography, yellow oil; Rf = 0.6 (petroleum ether/ethylacetate 2:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 5.69 (s, 1H), 4.43 (s, 1H), 4.12 (q, *J* = 7.1 Hz, 1H), 3.84 (d, *J* = 3.7 Hz, 2H), 2.61 (t, *J* = 8.9 Hz, 1H), 2.54 – 2.43 (m, 2H), 2.36 (dt, *J* = 16.6, 4.2 Hz, 1H), 2.28 – 2.14 (m, 4H), 2.02 (d, *J* = 8.9 Hz, 2H), 1.83 (dtd, *J* = 22.9, 15.3, 14.5, 7.0 Hz, 4H), 1.45 (s, 3H), 1.30 – 1.24 (m, 2H), 1.17 (dd, *J* = 11.3, 5.2 Hz, 1H), 1.08 (dd, *J* = 13.5, 4.3 Hz, 1H), 0.95 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.8, 199.5, 171.9, 131.6 (q, *J* = 307.0Hz) 122.4, 67.9, 61.9, 57.4, 56.3, 47.9, 43.7, 41.6 (q, *J* = 1.8 Hz), 39.2, 35.0, 33.8, 32.5, 32.0, 31.3, 24.3, 23.1, 20.9, 16.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.4; HRMS (EI) cacld for C₂₂H₂₉F₃O₃S (M⁺):412.1678, found 412.1694.

O SCF3

5-(((trifluoromethyl)thio)methyl)benzo[d][1,3]dioxole (4a) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 14.5 mg, 62%, purified by flash chromatography, yellow oil; Rf = 0.6 (petroleum ether/ethylacetate 20:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.81 (d, *J* = 6.7 Hz, 1H), 6.78 (s, 1H), 6.75 (d, *J* = 7.9 Hz, 1H), 5.96 (s, 2H), 4.05 (s, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.19; GCMS (EI) m/z 235 (M)⁺.

SCF3

cinnamyl(trifluoromethyl)sulfane (**4b**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 14.2 mg, 65%, purified by flash chromatography, yellow oil; Rf = 0.6 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 7.4 Hz, 2H), 7.34 – 7.24 (m, 3H), 6.59 (d, *J* = 15.7 Hz, 1H), 6.21 (dt, *J* = 15.2, 7.4 Hz, 1H), 3.71 (d, *J* = 7.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.1, 134.4, 130.8 (q, *J* = 308.1 Hz), 128.7, 128.1, 126.5, 123.0, 32.7 (q, *J* = 2.4 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -40.9; HRMS (EI) cacld for C₁₀H₉F₃S (M⁺): 218.0372, found 218.0873.

(S)-(2-(6-methoxynaphthalen-2-yl)propyl)(trifluoromethyl)sulfane (4c) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with

reaction time of 0.5 h, 18.7 mg, 63%, purified by flash chromatography, yellow solid; Rf = 0.5 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (dd, *J* = 8.2, 6.1 Hz, 2H), 7.56 (s, 1H), 7.29 (d, *J* = 8.5 Hz, 1H), 7.18 – 7.08 (m, 2H), 3.90 (s, 3H), 3.26 – 3.19 (m, 1H), 3.13 (ddd, *J* = 24.0, 11.8, 6.2 Hz, 2H), 1.45 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.6, 139.0, 133.7, 131.2 (q, *J* = 307.0 Hz), 129.2, 128.9, 127.3, 125.6, 125.3, 119.1, 105.6, 55.3, 39.6, 37.7 (q, *J* = 1.7 Hz), 20.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.2; HRMS (EI) cacld for C₁₅H₁₅F₃OS (M⁺): 300.0790, found 300.0798.

(2-(2-fluoro-[1,1'-biphenyl]-4-yl)propyl)(trifluoromethyl)sulfane (4d) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 26.3 mg, 82%, purified by flash chromatography, colorless oil; Rf = 0.4 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 7.4 Hz, 2H), 7.47 – 7.38 (m, 3H), 7.37 (d, *J* = 7.4 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 11.6 Hz, 1H), 3.20 – 3.13 (m, 1H), 3.08 (td, *J* = 11.7, 9.8, 5.3 Hz, 2H), 1.42 (d, *J* = 6.2 Hz, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.1, -117.5; ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.8 (d, *J* = 248.6 Hz), 145.5 (d, *J* = 7.1 Hz), 135.5 (d, *J* = 1.2 Hz), 131.1 (q, *J* = 307.4), 130.9 (d, *J* = 4.0 Hz), 129.0, 128.9, 128.5, 127.7, 123.0 (d, *J* = 3.3 Hz), 114.5 (d, *J* = 23.2 Hz), 39.4, 37.4 (q, *J* = 1.9 Hz), 20.7; HRMS (EI) cacld for C₁₆H₁₄F₄S (M⁺): 314.0747, found 314.0758.

methyl N-((benzyloxy)carbonyl)-S-(trifluoromethyl)cysteinate (4e) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 18.3 mg, 54%, purified by flash chromatography, orange oil; Rf = 0.7 (petroleum ether/ ethylacetate 5:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.30 (m, 5H), 5.63 (s, 1H), 5.13 (s, 2H), 4.72 – 4.65 (m, 1H), 3.79 (s, 3H), 3.49 (dd, *J* = 14.1, 4.0 Hz, 1H), 3.34 (dd, *J* = 14.1, 4.8 Hz, 1H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.0; ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 155.5, 135.9, 130.4 (q, *J* = 308.1 Hz), 128.6, 128.3, 128.1, 67.4, 53.3, 53.0 (q, *J* = 2.4 Hz). GCMS (EI) m/z 337 (M)⁺.

(Z)-(2-(4-(4-chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethyl)(trifluoromethyl)sulfane(4f)
According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3
equiv Ph₃P reagent with reaction time of 0.5 h, 31.8 mg, 69%, purified by flash chromatography,

colorless oil; Rf = 0.6 (petroleum ether/ethylacetate 20:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.26 (m, 5H), 7.23 – 7.10 (m, 5H), 6.80 (d, *J* = 8.6 Hz, 2H), 6.54 (d, *J* = 8.6 Hz, 2H), 4.07 (t, *J* = 6.5 Hz, 2H), 3.41 (t, *J* = 7.4 Hz, 2H), 3.16 (t, *J* = 6.5 Hz, 2H), 2.92 (t, *J* = 7.4 Hz, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.3; ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.2, 142.7, 141.6, 140.9, 135.6, 131.8, 130.9 (q, *J* = 309.1 Hz), 129.5, 128.4, 128.2, 127.0, 126.7, 113.6, 66.2, 42.8, 38.6, 28.9 (q, *J* = 2.1 Hz); HRMS (EI) cacld for C₂₅H₂₂ClF₃OS (M⁺): 462.1026, found 462.1042.

2,3-dimethoxy-5-methyl-6-(10-((trifluoromethyl)thio)decyl)cyclohexa-2,5-diene-1,4-dione (4g) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 34.9 mg, 83%, purified by flash chromatography, brown oil; Rf = 0.5 (petroleum ether/ethylacetate 10:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 4.02 – 3.96 (m, 6H), 2.87 (t, *J* = 7.4 Hz, 2H), 2.45 (t, *J* = 7.2 Hz, 2H), 2.01 (s, 3H), 1.68 (p, *J* = 7.4 Hz, 2H), 1.36 (dd, *J* = 14.8, 7.4 Hz, 14H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.28; GCMS (EI) m/z 422 (M)⁺.

((6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)methyl)(trifluoromethyl)sulfane (**4h**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 18.5 mg, 78%, purified by flash chromatography, yellow oil; Rf = 0.7 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 5.56 (s, 1H), 3.58 – 3.43 (m, 2H), 2.42 (dt, J = 8.8, 5.7 Hz, 1H), 2.35 – 2.22 (m, 2H), 2.19 (t, J = 5.5 Hz, 1H), 2.13 – 2.06 (m, 1H), 1.49 – 1.36 (m, 1H), 1.30 (s, 3H), 0.82 (s, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.3; ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.2, 131.9 (q, J = 308.1 Hz), 122.4, 45.0, 40.4, 36.2 (q, J = 2.2 Hz), 34.4, 31.6, 31.3, 26.1, 21.1; HRMS (EI) cacld for C₁₁H₁₅F₃S (M⁺): 236.0841, found 236.0844.

(3,7-dimethyloctyl)(trifluoromethyl)sulfane (4i) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 17.1 mg, 72%, purified by flash chromatography, yellow oil; Rf = 0.5 (petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 2.97 – 2.80 (m, 2H), 1.53 (dd, *J* = 13.0, 6.4 Hz, 4H), 1.30 (dd, *J* = 13.7, 7.5 Hz, 3H), 1.17 – 1.11 (m, 3H), 0.90 (d, *J* = 6.1 Hz, 3H), 0.87 (d, *J* = 6.6 Hz, 6H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.24.

(3,7-dimethyloct-6-en-1-yl)(trifluoromethyl)sulfane (**4j**) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5

h, 19.1 mg, 79%, purified by flash chromatography, yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.08 (t, J = 7.1 Hz, 1H), 2.97 – 2.80 (m, 2H), 1.98 (dt, J = 15.7, 7.3 Hz, 3H), 1.68 (s, 3H), 1.60 (s, 3H), 1.53 (ddd, J = 17.4, 11.7, 6.0 Hz, 2H), 1.39 – 1.29 (m, 2H), 0.91 (d, J = 6.4 Hz, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.24; GCMS (EI) m/z 240 (M)⁺.

Me SCF₃

((9Z, 12Z)-octadeca-9,12-dien-1-yl)(trifluoromethyl)sulfane (4k) According to the general procedure in 0.1 mmol scale using 1.5 equiv Phth-SCF₃ reagent and 1.3 equiv Ph₃P reagent with reaction time of 0.5 h, 25.4 mg, 73%, purified by flash chromatography, yellow oil; Rf = 0.6 (petroleum ether/ethylacetate 20:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 5.40 (dd, J = 10.7, 7.0 Hz, 2H), 5.32 (dd, J = 10.7, 7.1 Hz, 2H), 2.87 (t, J = 7.4 Hz, 2H), 2.77 (t, J = 6.3 Hz, 2H), 2.05 (q, J = 6.4 Hz, 4H), 1.68 (p, J = 7.3 Hz, 2H), 1.38 (dd, J = 14.8, 6.3 Hz, 6H), 1.33 – 1.28 (m, 10H), 0.89 (t, J = 6.7 Hz, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -41.6; ¹³C NMR (101 MHz, Chloroform-*d*) δ 130.2, 131.2 (q, J = 307.0 Hz), 130.0, 128.1, 127.9, 31.6, 31.4, 29.9 (q, J = 2.0 Hz), 29.4, 29.4, 29.3, 29.2, 28.9, 28.5, 27.2, 27.2, 25.6, 22.6, 14.1.

6. Preparation of substrates.

General procedure:

$$R = alkyl, aryl$$

The following reactants were prepared from the carboxylic acid according to general procedure (Ref. (a) X. Jiang, Z. Deng and P. Tang, *Angew Chem. Int. Ed.*, 2018, **57**, 292; (b) L. Wang, T. Li, S. Perveen, S. Zhang, X. Wang, Y. Ouyang and P. Li, *Angew Chem. Int. Ed.*, 2022, **61**, e202213943; (c) G. P. Choudhary, K. Soni and P. Soni, *Journal of Drug Delivery and Therapeutics*, 2019, **9**, 316.).

4.5 mmol scale, white solid, 426.6 mg, 66%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.66 (m, 2H), 7.59 (s, 1H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.16 – 7.08 (m, 2H), 3.90 (s, 3H), 3.75 (d, *J* = 6.7 Hz, 2H), 3.06 (h, *J* = 6.9 Hz, 1H), 1.45 (s, 1H), 1.34 (d, *J* = 7.0 Hz, 3H); GCMS (EI) m/z 216 (M)⁺.

2-(2-fluoro-[1,1'-biphenyl]-4-yl)propan-1-ol

2.0 mmol scale, white solid, 302.0 mg, 66%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 8.1 Hz, 2H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.36 (dd, *J* = 14.6, 7.6 Hz, 2H), 7.07 (dd, *J* = 17.6, 9.9 Hz, 2H), 3.73 (d, *J* = 6.7 Hz, 2H), 2.98 (h, *J* = 6.9 Hz, 1H), 1.50 (s, 1H), 1.30 (d, *J* = 7.0 Hz, 3H); GCMS (EI) m/z 230 (M)⁺.

4.0 mmol scale, white solid, 385.6 mg, 98%, ¹H NMR (400 MHz, Chloroform-*d*) δ 3.71 (t, *J* = 7.4 Hz, 2H), 2.19 (s, 2H), 1.68 (d, *J* = 11.5 Hz, 2H), 1.63 (d, *J* = 11.7 Hz, 3H), 1.54 (s, 2H), 1.46 (d, *J* = 12.8 Hz, 8H); GCMS (EI) m/z 196 (M)⁺.

7. NMR spectras of products.

(4-phenylbutyl)(trifluoromethyl)sulfane (2a)

benzyl (3-((trifluoromethyl)thio)propyl)carbamate (2d)

(3-phenylprop-2-yn-1-yl)(trifluoromethyl)sulfane (2e)

S22

([1,1'-biphenyl]-4-ylmethyl)(trifluoromethyl)sulfane (2g)

(3-phenoxybenzyl)(trifluoromethyl)sulfane (2h)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

(3,5-dimethoxybenzyl)(trifluoromethyl)sulfane (2i)

(2,4-dichlorobenzyl)(trifluoromethyl)sulfane (2j)

S28

2-(((trifluoromethyl)thio)methyl)benzofuran (21)

tert-butyl 3-(((trifluoromethyl)thio)methyl)-1H-indole-1-carboxylate (2m)

S32

ethyl 6-((trifluoromethyl)thio)hexanoate (20)

(1s,3r,5R,7S)-3-(2-((trifluoromethyl)thio)ethyl)adamantan-1-ol (**3a**)

fl (ppm)

(10R,13S,17S)-11-hydroxy-10,13-dimethyl-17-(2-((trifluoromethyl)thio)acetyl)-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one. (**3b**)

 $\begin{array}{c} -2.22\\ -2.22\\ -2.22\\ -2.22\\ -2.22\\ -2.22\\ -2.22\\ -2.23\\ -2$ $\begin{array}{c} 5.69 \\ 4.43 \\ 3.84 \\ 2.61 \\ 2.61 \\ 2.59 \\ 2.49 \\ \end{array}$ 2.49 2.45 1.83 .79 1.78 1.75 1.45 1.28 0.95 2.44 1.28 24 δ 20

5-(((trifluoromethyl)thio)methyl)benzo[d][1,3]dioxole (4a)

cinnamyl(trifluoromethyl)sulfane (4b)

(S)-(2-(6-methoxynaphthalen-2-yl)propyl)(trifluoromethyl)sulfane (4c)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

methyl N-((benzyloxy)carbonyl)-S-(trifluoromethyl)cysteinate (4e)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

2,3-dimethoxy-5-methyl-6-(10-((trifluoromethyl)thio)decyl)cyclohexa-2,5-diene-1,4-dione (4g)

((6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)methyl)(trifluoromethyl)sulfane (4h)

(3,7-dimethyloctyl)(trifluoromethyl)sulfane (4i)

(3,7-dimethyloct-6-en-1-yl)(trifluoromethyl)sulfane (4j)

