Borane catalyzed transesterification of tert-butyl esters using α-aryl α-diazoesters

Maying Yan, ${ }^{a+}$ Lei Xiao, ${ }^{a+}$ Jiangkun Xiong, ${ }^{a}$ Lvnan Jin, ${ }^{a}$ Douglas W. Stephan, ${ }^{a, b^{*}}$ and Jing Guo ${ }^{a^{*}}$alnstitute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China${ }^{b}$ Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
*Corresponding Author.
Professor Jing Guo
Email: quojing@nbu.edu.cn
Professor Douglas W. Stephan
Email: dstephan@chem.utoronto.ca
Phone: 416-946-3294
Supporting Information
Table of Contents
General information 2
Preparation of 3-alkenyl-oxindoles ${ }^{1}$ 2
Preparation of α-diazo compounds ${ }^{2}$ 3
General procedure for catalytic selective carbonate functionality transfer reaction 3
Typical procedure for gram-scale version of selective carbonate functionality transfer reaction 4
Single crystal X-ray crystallography 5
Characterization data 6
References 29
NMR spectra of isolated compounds. 30

General information

All preparative procedures were performed in an inert atmosphere of dry, deoxygenated ($\mathrm{O}_{2}<0.5$ ppm) argon, using glovebox techniques or standard Schlenk techniques unless otherwise specified. Solvents were stored over activated $3 \AA ̊$ molecular sieves following drying procedures. Dichloromethane (DCM) and hexane were purchased from Tedia Company, Inc. Toluene and ethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were purchased from Tedia Company, Inc. 1,2-Dichloroethane (DCE) was purchased from Adamas-beta. Deuterated solvent $\left(\mathrm{CDCl}_{3}\right)$ was purchased from Cambridge Isotope Laboratories, Inc. and used without further purification. Methyl phenylacetate was obtained from Energy Chemical. p-Tolyacetic acid, p-fluorophenylacetic acid, p chlorophenylacetic acid, p-bromophenylacetic acid, p-tert-butylphenlacetic acid, m methylphenylacetic acid, 2-(naphthalen-2-yl)acetic acid, o-tolylacetic acid, 2-bromophenylacetic acid and 3,4-dimethylphenylacetic acid were obtained from Aladdin. p-lodophenylacetic acid, pcyanophenylacetic acid, 3-bromophenylacetic acid, 4-methoxyphenylacetic acid, 3,4(methylenedioxy)phenylacetic acid and p-toluenesulfonyl azide were obtained from Adamas-beta. p-(Trifluoromethyl)phenylacetic acid was obtained from Innochem. Thin-layer chromatography (TLC) was performed on EMD Silica Gel 60 F254 aluminum plates or EMD basic Aluminium Oxide 60 F254 plastic plates. Silicycle Silia-P Flash Silica Gel was used for all column chromatography.

All NMR spectra were collected at 298 K on Bruker 500 spectrometers in 5 mm diameter NMR tubes. ${ }^{1} \mathrm{H}$ chemical shifts are reported relative to proteo-solvent signals $\left(\mathrm{CDCl}_{3}, \delta=7.26 \mathrm{ppm}\right)$. Data are reported as: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{dt}=$ doublet of triplets, ddd $=$ doublet of doublet of doublets), coupling constants (Hz), integration and assignment. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts are reported relative to proteo-solvent signals ($\left.\mathrm{CDCl}_{3}, \delta=77.00 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were measured at 376 MHz and $\mathrm{CFCl}_{3}(-63.2 \mathrm{ppm})$ was used as an external standard. Departmental facilities were used for mass spectrometry (FTMS ESI)

Preparation of 3-alkenyl-oxindoles ${ }^{1}$

Step 1: To an MeCN solution (0.10 M) of isation (1.0 equiv.) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv.) and benzyl bromide (1.5 equiv.) at room temperature. The mixture was heat at reflux overnight. The mixture was cooled, filtered and concentrated. The residue was purified by recrystallization.

Step 2: To a stirred solution of tert-butyl 2-(triphenylphosphoranylidene) acetate (11 mmol, 1.1 equiv.) in anhydrous THF (10 mL), the N-benzylindoline-2,3-dione ($10 \mathrm{mmol}, 10 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature until the reaction was completed monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (ethyl acetate/ petroleum ether $=1: 5 \sim 1: 2$). 3-Alkenyl-oxindoles were obtained as a red or orange solid.

Preparation of α-diazo compounds ${ }^{2}$

Phenylacetic acid derivatives (53.0 mmol) was dissolved in alcohols (80 mL) and concentrated sulfuric acid (0.5 mL) was added. The mixture was refluxed for 15 hours with stirring. Upon cooling the mixture and evaporating the excess alcohols, the mixture was subjected to column chromatography (ethyl acetate/petroleum ether $=1: 50$), and ester was obtained as a colorless oil.

DBU (15.0 mmol) was added to ester (10.0 mmol) and p-toluenesulfonyl azide ($2.960 \mathrm{~g}, 15.0$ mmol) in MeCN (15 mL). The reaction mixture was stirred overnight. TLC was used to confirm the consumption of the starting materials, and upon so doing, the reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. An extraction with DCM ($3 \times 30 \mathrm{~mL}$), washing with brine (3 x 10 mL), drying over MgSO_{4} was performed, before the mixture was concentrated under pressure to the crude product. Purification by column chromatography (ethyl acetate/petroleum ether $=$ 1:100) gave the α-diazoester as a dark orange oil.

General procedure for catalytic selective carbonate functionality transfer reaction

In an inert atmosphere glovebox, to a solution of 3-alkenyl-oxindoles (0.20 mmol , 1 equiv.) and diazomethanes (0.24 mmol , 1.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was added a solution of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(1.0$ $\mathrm{mg}, 0.002 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$. The reaction was stirred for the specified time at room temperature. The residue was purified by flash chromatography (eluent: ethyl acetate/ petroleum ether $=1: 20 \sim 1: 6)$ on silica gel to afford the desired products.

Typical procedure for gram-scale version of selective carbonate functionality transfer reaction

In an inert atmosphere glovebox, a Schlenk flask (100 mL) was charged with tert-butyl (E)-2-(1-benzyl-2-oxoindolin-3-ylidene)acetate (1.68 g, 5.0 mmol). Next, methyl 4bromophenyldiazoacetate ($1.53 \mathrm{~g}, 6.0 \mathrm{mmol}$) and DCM $(40 \mathrm{~mL})$ were added. Then, a solution of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.025 \mathrm{~g}, 0.05 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ was added to the mixture under stirring. The reaction mixture was stirred at room temperature for 24 hours. The residue was purified by flash chromatography (eluent: ethyl acetate/petroleum ether $=1: 20 \sim 1: 6$) on silica gel to afford the carbonate functionality transfer product 1a as an orange solid ($2.35 \mathrm{~g}, 93 \%$ yield).

In an inert atmosphere glovebox, a Schlenk flask (100 mL) was charged with tert-butyl cinnamate ($1.02 \mathrm{~g}, 5.0 \mathrm{mmol}$). Next, methyl 4-bromophenyldiazoacetate ($1.530 \mathrm{~g}, 6.0 \mathrm{mmol}$) and DCM (40 $\mathrm{mL})$ were added. Then, a solution of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.025 \mathrm{~g}, 0.05 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ was added to the mixture under stirring. The reaction mixture was stirred at room temperature for 24 hours. The residue was purified by flash chromatography (eluent: ethyl acetate/petroleum ether = 1:50~1:20) on silica gel to afford the carbonate functionality transfer product 26 as a white solid ($1.76 \mathrm{~g}, 95 \%$ yield).

Single crystal X-ray crystallography

X-ray crystallographic data were collected on a Bruker D8 QUEST diffractometer using Cu (60W, Diamond, $\mu \mathrm{K} \alpha=12.894 \mathrm{~mm}^{-1}$) micro-focus X -ray sources at 161 K . The structure was solved and refined using Full-matrix least-squares based on F^{2} with program SHELXS and SHELXL ${ }^{3}$ within OLEX2. ${ }^{4}$

Characterization data

Methyl(E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl)acetate 1

Prepared according to the general procedure (24 h). The title compound 1 was obtained as an orange solid in 99% yield (100.6 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.56(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=8.5$ $\mathrm{Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 168.43, 167.29, 164.59, 145.36, 139.39, 135.23, 132.89, 132.35, 132.03, 129.17, 129.06, 128.80, 127.73, 127.17, 123.63, 122.88, 120.61, 119.70, 109.22, 74.33, 52.89,
43.82. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Br}^{78.9183} \mathrm{NO}_{5}{ }^{+}$, ([M+H] $\left.{ }^{+}\right)$: 506.0598 ; Found: 506.0601; $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Br}^{80.9163} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 508.0578$; Found: 508.0579.

Gram-scale methyl(E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl) acetate 1

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (s, 1H), 4.95 (d, J=2.0 Hz, 2H), $3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 168.42, 167.25, 164.57, 145.31, 139.37, 135.19, 132.88, 132.30, 132.00, 129.15, 129.03, 128.77, 127.71, 127.15, 123.61, 122.87, 120.58, 119.66, 109.20, 74.30, 52.89, 43.77.

Ethyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl)acetate 2

Prepared according to the general procedure (24 h). The title compound 2 was obtained as an orange solid in 96% yield (98.9 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.47(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$
(d, J=8.5 Hz, 2H), $7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.22-4.10(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}), $\delta: 167.94,167.34,164.62,145.34,139.28,135.25,132.85$, 132.51, 131.99, 129.15, 129.04, 128.81, 127.74, 127.18, 123.55, 122.89, 120.76, 119.74, 109.22, 74.50, 62.08, 43.84, 13.96. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{78.9183} \mathrm{NO}_{5}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right): 520.0754$; Found: 520.0758; $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{80.9163} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 522.0734 ;$ Found: 522.0736.

Isopropyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl)acetate 3

Prepared according to the general procedure (24 h). The title compound 3 was obtained as an orange solid in 96% yield (103.1 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.55(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (d, J=8.0 Hz, 2H), $7.44(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.12-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 167.45,167.38,164.63,145.34$, 139.18, 135.27, 132.82, 132.64, 131.96, 129.10, 129.03, 128.82, 127.75, 127.20, 123.46, 122.90, 120.87, 119.76, 109.22, 74.70, 69.94, 43.85, 21.61, 21.38. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{Br}^{78.9183} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 534.0911$; Found: 534.0914; $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{Br}^{80.9163} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right):$ 536.0890; Found: 536.0893.

Cyclohexyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl)acetate 4

Prepared according to the general procedure (24 h). The title compound 4 was obtained as an orange solid in 98% yield (113.9 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.47$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (d, J=9.0 Hz, 2H), $7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.81-4.75(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.67-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.13(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 167.35,167.33,164.60,145.30,139.15,135.25,132.80,132.75,131.91$, 129.08, 129.03, 128.79, 127.73, 127.18, 123.41, 122.88, 120.85, 119.73, 109.19, 74.67, 74.51, 43.83, 31.22, 30.97, 25.12, 23.37, 23.24. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{Br}^{78.9183} \mathrm{NO}_{5}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 574.1224$; Found: $574.1225 ; \mathrm{C}_{31} \mathrm{H}_{29} \mathrm{Br}^{80.9163} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 576.1203$; Found: 576.1204.

Methyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(4-fluorophenyl)acetate 5

Prepared according to the general procedure (24 h). The title compound 5 was obtained as an orange solid in 91% yield (81.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.67$ (d, J=8.0 Hz, 1H), 7.67 - $7.64(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.5$
$\mathrm{Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 168.75,167.36$, $164.70,163.27\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=249.2 \mathrm{~Hz}\right.$), 145.37, 139.32, 135.27, $132.87,129.56$ (d, $\mathrm{J}_{\mathrm{C}-\mathrm{F}}=8.6 \mathrm{~Hz}$), 129.27 (d, $J_{C-F}=3.3 \mathrm{~Hz}$), 129.08, 128.83, 127.76, 127.20, 122.91, 120.80, 119.76, 115.92 (d, Jc$\mathrm{F}=21.8 \mathrm{~Hz}$), 109.24, 74.36, 52.86, 43.85. ${ }^{19}$ F\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl} 3$), ס: -111.61. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{FNO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 446.1398$; Found: 446.1397

Methyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(4-chlorophenyl)acetate 6

Prepared according to the general procedure (24 h). The title compound 6 was obtained as an orange solid in 96% yield (89.6 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.50 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , CDCl_{3}), $\delta: 168.56,167.37,164.67,145.41,139.43,135.49,135.27,132.92,131.87,129.12$, 128.95, 128.85, 127.78, 127.21, 122.94, 120.72, 119.77, 109.26, 74.33, 52.93, 43.88. HRMS (ESI, $\mathrm{m} / \mathrm{z})$: Calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClNO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 462.1103$; Found: 462.1104.

Methyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(4-(trifluoromethyl)phenyl) acetate 7

Prepared according to the general procedure (24 h). The title compound 7 was obtained as an orange solid in 90% yield (89.0 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.48$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.62 (s, 4H), $7.27-7.17$ (m, 6H), 7.06 (s, 1H), 6.94 (t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (s, 1H), 4.86 (s, 2H), 3.71 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}), ס: 168.20, 167.25, 164.50, 145.40, 139.60, 137.17, 135.21, 132.97, 131.45 (q, JC-F = 32.6 H), 129.06, 128.79, 127.84, 127.74, 127.17, $125.79\left(q, J_{C-F}=3.8 \mathrm{~Hz}\right), 123.74\left(q, J_{C-F}=272.8 \mathrm{~Hz}\right), 122.89,120.37,119.67,109.25$, 74.25, 52.98, 43.81. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta:-62.75$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 496.1366$; Found: 496.1364.

Methyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(3-bromophenyl)acetate 8

Prepared according to the general procedure (24 h). The title compound 8 was obtained as an orange solid in 99% yield (100.4 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ : $8.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (s, 1H), $7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.02$ (t, J=7.5 Hz, 1H), $6.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.34,167.30,164.55,145.38,139.47,135.41,135.24,132.92,132.50$,
130.53, 130.37, 129.08, 128.81, 127.74, 127.18, 126.13, 122.91, 122.81, 120.57, 119.72, 109.24, 74.17, 52.96, 43.84. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Br}^{78.9183} \mathrm{NO}_{5}{ }^{+}$, ([M+H] $\left.{ }^{+}\right): 506.0598$; Found: 506.0601; $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Br}^{80.9163} \mathrm{NO}_{5}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 508.0578$; Found: 508.0579.

Methyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(2-bromophenyl)acetate 9

Prepared according to the general procedure (24 h). The title compound 9 was obtained as an orange solid in 89% yield (89.8 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.51$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (dd, J= $8.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (d, J= $8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.17$ (m, 7H), $7.03(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H})$, 3.73 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}), δ : 168.42, 167.32, 164.45, 145.30, 139.29, 135.25, $133.37,133.25,132.81,130.90,129.55,129.13,128.78,127.93,127.70,127.15,124.15,122.89$, 120.77, 119.74, 109.17, 73.80, 52.88, 43.79. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Br}^{78.9183} \mathrm{NO}_{5}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 506.0598$; Found: $506.0602 ; \mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Br}^{80.9163} \mathrm{NO}_{5}{ }^{+}$, ([M+H] $\left.]^{+}\right): 508.0578$; Found: 508.0580.

Methyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-phenylacetate 10

Prepared according to the general procedure (24 h). The title compound 10 was obtained as an orange solid in 93% yield (86.0 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56

- 7.53 (m, 2H), $7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: 168.89,167.40,164.81,145.33,139.14,135.29,133.32,132.78,129.42,129.09,128.87$, 128.82, 127.74, 127.63, 127.19, 122.90, 121.04, 119.80, 109.20, 75.11, 52.79, 43.84. HRMS (ESI, $\mathrm{m} / \mathrm{z})$: Calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{5}{ }^{+}$, ([M+H] ${ }^{+}$):428.1492; Found: 428.1496.

Methyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(p-tolyl)acetate 11

Prepared according to the general procedure (24 h). The title compound 11 was obtained as an orange solid in 90% yield (79.8 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$ 169.03, 167.41, 164.85, 145.29, 139.47, 139.02, 135.30, 132.73, 130.37, 129.55, 129.08, 128.81, 127.73, 127.62, 127.19, 122.88, 121.18, 119.81, 109.18, 75.01, 52.73, 43.83, 21.23. HRMS (ESI, $\mathrm{m} / \mathrm{z})$: Calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{5}{ }^{+}$, ([M+H] ${ }^{+}$):442.1649; Found: 442.1650.

Methyl (E)-2-(2-(1-benzyl-2-oxoindolin-3-ylidene)acetoxy)-2-(4-(tert-butyl)phenyl)acetate 12

Prepared according to the general procedure (24 h). The title compound 12 was obtained as an orange solid in 87% yield (84.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.56$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 $-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.10(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), б: 169.03, 167.40, 164.87, 152.58, 145.30, 139.00, 135.30, 132.72, 130.26, 129.08, 128.81, 127.72, 127.41, 127.18, 125.84, 122.87, 121.18, 119.81, 109.17, 74.98, 52.72, 43.82, 34.68, 31.21. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{5}{ }^{+}$, ([M+H] ${ }^{+}$):484.2118; Found: 484.2121.
tert-Butyl 1'-benzyl-2'-oxo-2,2-diphenylspiro[cyclopropane-1,3'-indoline]-3-carboxylate 13

Prepared according to the general procedure (24 h). The title compound 13 was obtained as a white solid in 52% yield ($54.5 \mathrm{mg},>19: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.38$ (d, $J=7.0 \mathrm{~Hz}$, 2H), $7.36-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 7 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 172.89,167.00,143.32,141.72,136.56,136.32,130.47$, 128.91, 128.67, 128.43, 128.32, 127.94, 127.59, 127.56, 127.36, 127.25, 127.01, 123.55, 120.71, 108.33, 81.90, 51.92, 44.16, 42.12, 41.85, 28.15. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NO}_{3}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 502.2377 ;$ Found: 502.2379.

2-(tert-Butyl) 3-ethyl 1'-benzyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2,3-dicarboxylate 14

Prepared according to the general procedure (24 h). The title compound 14 was obtained as a white solid in 49% yield ($42.0 \mathrm{mg},>19: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ : $7.33-7.21$ ($\mathrm{m}, 6 \mathrm{H}$), $7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.79(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ : 172.01, 166.06, 166.03, 143.33, 135.55, 128.71, 128.13, 127.59, 127.14, 124.54, 122.48, 122.27, 109.12, 82.51, 61.61, 44.10, 37.15, 36.34, 35.29, 27.99, 14.06. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{5}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 422.1962; Found: 422.1959.

Methyl (E)-2-(2-(1-benzyl-5-fluoro-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl) acetate 15

Prepared according to the general procedure (24 h). The title compound 15 was obtained as an orange solid in 96% yield (100.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.33$ (dd, $J=9.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{td}$, $J=8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.76 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.33,167.04,164.36,158.86$ (d, Jc-f $=240.4$ $\mathrm{Hz}), 141.43\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.1 \mathrm{~Hz}\right), 138.97\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 134.93,132.20,132.08,129.21,128.88$, 127.87, 127.14, 123.74, 122.02, 120.58 (d, $J_{C-F}=9.7 \mathrm{~Hz}$), 119.16 (d, $J_{\mathrm{C}-\mathrm{F}}=24.2 \mathrm{~Hz}$), $116.62(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=27.0 \mathrm{~Hz}\right), 109.69\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7.9 \mathrm{~Hz}\right), 74.48,52.96,43.96 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$
-119.78. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{78.9183} \mathrm{FNO}_{5}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$: 524.0503; Found: 524.0505; $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{80.9163} \mathrm{FNO}_{5}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 526.0483$; Found: 526.0483

Methyl (E)-2-(2-(1-benzyl-5-chloro-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl) acetate 16

Prepared according to the general procedure (24 h). The title compound 16 was obtained as an orange solid in 94% yield (101.4 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.48(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26-7.17$ (m, 5H), $7.15(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 168.32, 166.85, 164.30, 143.74, 138.31, 134.79, 132.46, 132.17, 132.10, 129.25, 129.00, 128.90, 128.35, 127.91, 127.13, 123.76, 122.20, 120.85, 110.16, 74.50, 52.98, 43.94. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{78.9183} \mathrm{Cl}^{34.9689} \mathrm{NO}_{5}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right): 540.0208$; Found: $540.0208 ; \mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{80.9163} \mathrm{Cl}^{34.9689} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 542.0188 ; Found: 542.0184.

Methyl (E)-2-(2-(1-benzyl-5-bromo-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl) acetate 17

Prepared according to the general procedure (24 h). The title compound 17 was obtained as an orange solid in 94% yield (110.3 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.65(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27$ (m, 2H), $7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, 2H), 3.76 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.26,166.63,164.21,144.12,138.04$, 135.27, 134.72, 132.11, 132.04, 131.61, 129.20, 128.84, 127.85, 127.08, 123.70, 122.14, 121.17, 115.55, 110.60, 74.44, 52.93, 43.84. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{78.9183}{ }_{2} \mathrm{NO}_{5}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$: 583.9703; Found: 583.9705; $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{78.9183} \mathrm{Br}^{80.9163} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 585.9683 ; Found: 585.9683; $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{80.9163}{ }_{2} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 587.9662$; Found: 587.9661.

Methyl (E)-2-(2-(1-benzyl-5-iodo-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl) acetate 18

Prepared according to the general procedure (24 h). The title compound 18 was obtained as an orange solid in 93% yield (118.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56
(d, $J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 168.30$, $166.52,164.27,144.78,141.24,137.81,137.21,134.74,132.17,132.10,129.25,128.89,127.90$, 127.11, 123.76, 122.12, 121.62, 111.21, 85.50, 74.45, 52.99, 43.85. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{78.9183} \mathrm{NNO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right):$631.9564; Found: 631.9564; $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{80.9163} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 633.9544; Found: 633.9541.

Methyl (E)-2-(2-(1-benzyl-2-oxo-5-(trifluoromethoxy)indolin-3-ylidene)acetoxy)-2-(4bromophenyl)acetate 19

Prepared according to the general procedure (24 h). The title compound 19 was obtained as an orange solid in 97% yield (114.4 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ : 8.50 (s, 1H), 7.56 (d, J= 8.5 Hz, 2H), 7.42 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-7.31$ (m, 2H), $7.30-7.26$ (m, 3H), 7.17 (s, 1H), 7.14 (dd, $J=8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.29,167.05,164.28,144.62\left(q, J_{\mathrm{C}-\mathrm{F}}=2.1 \mathrm{~Hz}\right), 143.85$, 138.37, 134.74, 132.16, 132.10, 129.24, 128.95, 127.98, 127.18, 125.72, 123.77, 122.81, 122.58, $120.56,120.47$ ($q, J_{C-F}=257.54 \mathrm{~Hz}$), 109.64, $74.51,52.95,44.02 .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: ~-58.29$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{Br}^{78.9183} \mathrm{~F}_{3} \mathrm{NO}_{6}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$: 590.0421; Found:590.0422; $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{Br}^{80.9163} \mathrm{~F}_{3} \mathrm{NO}_{6}{ }^{+}$, ([M+H] ${ }^{+}$): 592.0400; Found: 592.0403.

Methyl (E)-2-(2-(1-benzyl-5-methyl-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl)
acetate 20

Prepared according to the general procedure (24 h). The title compound 20 was obtained as a dark orange solid in 90% yield (93.4 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ : $8.27(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.51 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.03 (s, 1H), 4.85 (s, 2H), 3.71 (s, 3H), 2.21 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.45,167.32,164.64,143.14,139.56,135.34,133.29,132.38,132.36,132.03$, 129.55, 129.18, 128.76, 127.67, 127.14, 123.63, 120.29, 119.69, 108.97, 74.27, 52.89, 43.81, 20.98. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{78.9183} \mathrm{NO}_{5}{ }^{+}$, ([M+H] $\left.{ }^{+}\right)$: 520.0754; Found: 520.0754; $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{80.9163} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 522.0734 ;$ Found: 522.0732.

Methyl (E)-2-(2-(1-benzyl-5-methoxy-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl)

 acetate 21

Prepared according to the general procedure (24 h). The title compound 21 was obtained as a dark red solid in 93% yield (93.1 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.15$ ($\mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.75$ (dd, $J=8.5$
$\mathrm{Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}), ס: 168.45, 167.18, 164.56, 155.79, 139.83, 139.17, 135.33, 132.37, 132.05, 129.19, 128.80, 127.72, 127.17, 123.65, 120.88, 120.40, 118.55, 114.97, 109.68, 74.30, 55.83, 52.90, 43.90. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{78.9183} \mathrm{NO}_{6}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right): 536.0704$; Found: 536.0703; $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{80.9163} \mathrm{NO}_{6}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 538.0683 ; Found: 538.0681 .

Methyl (E)-2-(2-(1-benzyl-6-chloro-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl) acetate 22

Prepared according to the general procedure (24 h). The title compound $\mathbf{2 2}$ was obtained as an orange solid in 86% yield (92.3 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.40(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26-7.17$ (m, 5H), 7.01 (s, 1H), 6.88 (dd, $J=8.5$ $\mathrm{Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (s, 1H), 4.81 (d, J=2.0 Hz, 2H), 3.68 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.34,167.27,164.50,146.43,138.82,138.25,134.71$, $132.22,132.04,130.06,129.16,128.92,127.94,127.13,123.69,122.88,120.95,118.14,109.78$, 74.40, 52.91, 43.91. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{78.9183} \mathrm{Cl}^{34.9689} \mathrm{NO}_{5}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right): 540.0208$; Found: $540.0208 ; \mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{80.9163} \mathrm{Cl}^{34.9689} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 542.0188 ; Found: 542.0184.

Methyl (E)-2-(2-(1-benzyl-6-bromo-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl)

 acetate 23

Prepared according to the general procedure (24 h). The title compound $\mathbf{2 3}$ was obtained as an orange solid in 94% yield (109.8 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ : 8.42 (d, J=8.0 Hz, 1H), 7.56 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36-7.26$ (m, 5H), 7.15 (dd, $J=8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, ~ J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.77$ (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}), $\delta: 168.37,167.19,164.56,146.39,138.39,134.70,132.21$, $132.08,130.22,129.19,128.97,127.98,127.30,127.14,125.95,123.74,121.25,118.59,112.61$, 74.45, 52.97, 43.94. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{78.9183}{ }_{2} \mathrm{NO}_{5}{ }^{+}$, ([M+H]+): 583.9703; Found: 583.9702; $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{78.9183} \mathrm{Br}^{80.9163} \mathrm{NO}_{5}{ }^{+}$, ([M+H] $\left.]^{+}\right): 585.9683$; Found: $585.9681 ; \mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{80.9163}{ }_{2} \mathrm{NO}_{5}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 587.9662$; Found: 587.9659.

Methyl (E)-2-(2-(1-benzyl-6-methoxy-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl)

 acetate 24

Prepared according to the general procedure (24 h). The title compound 24 was obtained as an orange solid in 93% yield (99.8 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.52$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54
(d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=9.0$ Hz, 2.5 Hz, 1H), 6.21 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$ (s, 1H), 4.88 (d, J = $0.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.75 (s, 6H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.59,168.17,165.04,163.75,147.48,139.07,135.28$, 132.54, 131.97, 131.06, 129.14, 128.79, 127.72, 127.17, 123.52, 116.92, 112.95, 106.50, 97.09 , 74.12, 55.50, 52.83, 43.80. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{78.9183} \mathrm{NO}_{6}{ }^{+}$, ($\left.(\mathrm{M}+\mathrm{H}]^{+}\right): 536.0703$; Found: 536.0706; $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{80.9163} \mathrm{NO}_{6}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 538.0683 ;$ Found: 538.0685.

Methyl (E)-2-(2-(1-benzyl-7-chloro-2-oxoindolin-3-ylidene)acetoxy)-2-(4-bromophenyl)

 acetate 25

Prepared according to the general procedure (24 h). The title compound 25 was obtained as a yellow solid in 95% yield (102.9 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ : 8.57 ($\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~s}$, $1 \mathrm{H}), 6.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , CDCl_{3}), $\delta: 168.28,167.88,164.32,141.05,137.72,136.88,135.20,132.15,132.03,129.14$, 128.54, 127.59, 127.23, 126.33, 123.73, 123.69, 122.44, 121.97, 115.60, 74.45, 52.91, 45.15. HRMS(ESI,m/z): Calcd. For $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{78.9183} \mathrm{Cl}^{34.9689} \mathrm{NO}_{5}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 540.0208 ; Found:540.0212; $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Br}^{80.9163} \mathrm{C}^{34.9689} \mathrm{NO}_{5}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 542.0188$; Found:542.0189.

(E)-1-(4-bromophenyl)-2-methoxy-2-oxoethyl cinnamate 26

Prepared according to the general procedure (24 h). The title compound 26 was obtained as colorless oil in 87% yield (70.3 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.79(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ $-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}), $\delta: 168.88,165.85,146.53,133.96,132.91,131.94,130.63,129.22$, 128.86, 128.21, 123.42, 116.55, 73.70, 52.71. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 375.0226 ;$ Found: 375.0230; $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 377.0206 ;$ Found: 377.0209.

Gram-scale (E)-1-(4-bromophenyl)-2-methoxy-2-oxoethyl cinnamate 26

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.78(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 5 \mathrm{H})$, $6.56(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.89,165.87$, 146.54, 133.95, 132.89, 131.95, 130.64, 129.23, 128.87, 128.22, 123.43, 116.52, 73.70, 52.73. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 375.0226; Found: 375.0230; $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 377.0206; Found: 377.0209.

1-(4-Bromophenyl)-2-methoxy-2-oxoethyl (E)-3-(4-fluorophenyl)acrylate 27

Prepared according to the general procedure (24 h). The title compound 27 was obtained as colorless oil in 99% yield (78.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.72$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.52 (d, J = 16.0 Hz, 1H), 6.03 (s, 1H), 3.75 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}), ס: 168.87, $165.74,164.06$ (d, $J_{\mathrm{C}-\mathrm{F}}=252.4 \mathrm{~Hz}$), 145.19, 132.88, 131.97, 130.26 (d, $\mathrm{J}_{\mathrm{c}-\mathrm{F}}=3.3 \mathrm{~Hz}$), 130.16 (d, $J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}$), 129.23, 123.47, 116.33 (d, $J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}$), 116.07 ($\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=22.1 \mathrm{~Hz}$), 73.74, 52.74 . ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CDCI3) $\delta-108.71$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Br}^{78.9183} \mathrm{FNO}_{4}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 393.0132 ;$ Found: 393.0132.; $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Br}^{80.9163} \mathrm{FNO}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 395.0112 ;$ Found: 395.0110.

Prepared according to the general procedure (24 h). The title compound 28 was obtained as colorless oil in 97% yield (79.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ : 7.72 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.52(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 168.84$, 165.63, 145.05, 136.60, 132.83, 132.48, 131.99, 129.39, 129.24, 129.20, 123.51, 117.17, 73.80, 52.77. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Br}^{78.9183} \mathrm{Cl}^{34.9689} \mathrm{O}_{4}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$: 408.9837; Found: 408.9836.; $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Br}^{80.9163} \mathrm{Cl}^{34.9689} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 410.9816$; Found: 410.9812.

1-(4-Bromophenyl)-2-methoxy-2-oxoethyl (E)-3-(4-trifluoromethylphenyl)acrylate 29

Prepared according to the general procedure (24 h). The title compound 29 was obtained as colorless oil in 92% yield (81.8 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.79(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (t, $J=9.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.05 (s, 1H), 3.76 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.76,165.34,144.58,137.34$ (d, $J_{\mathrm{C}-\mathrm{F}}=1.0 \mathrm{~Hz}$), $132.73,132.07(\mathrm{q}, J=32.9 \mathrm{~Hz}), 132.04,129.27,128.35,125.87\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right)$, 123.71 ($q, J_{C-F}=272.7 \mathrm{~Hz}$), 123.60, 119.22, 73.95, 52.81. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta:-$ 62.90. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 443.0100; Found: 443.0102.; $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 445.0080$; Found: 445.0079 .

1-(4-Bromophenyl)-2-methoxy-2-oxoethyl (E)-3-(p-tolyl)acrylate 30

Prepared according to the general procedure (24 h). The title compound 30 was obtained as colorless oil in 98% yield (76.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.77$ (d, J=16.0 Hz, 1H), 7.55 (d, J=8.5 Hz, 2H), $7.45-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$
(s, 1H), 3.75 (s, 3H), 2.37 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.96,166.06,146.57$, 141.16, 133.00, 131.94, 131.28, 129.61, 129.23, 128.25, 123.40, 115.41, 73.65, 52.70, 21.43. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 389.0383; Found: 389.0380.; $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 391.0363$; Found: 391.0357.

1-(4-bromophenyl)-2-methoxy-2-oxoethyl (E)-3-(4-isopropylphenyl)acrylate 31

Prepared according to the general procedure (24 h). The title compound 31 was obtained as colorless oil in 85% yield (71.7 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.77$ (d, J=16.0 Hz, 1H), 7.55 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.48 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.52(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.88(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 168.99, 166.12, 152.06, 146.63, 133.03, 131.97, 131.68, 129.26, 128.40, 127.03, 123.43, 115.49, 73.68, 52.74, 34.07, 23.69. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 417.0696$; Found: 417.0694; $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 419.0676$; Found: 419.0671.

1-(4-Bromophenyl)-2-methoxy-2-oxoethyl (E)-3-(m-tolyl)acrylate 32

Prepared according to the general procedure (24 h). The title compound 32 was obtained as colorless oil in 83% yield (64.3 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.76$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (d, J=8.5 Hz, 2H), 7.42 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (d, J=7.5 Hz, 1H), $6.55(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.93,165.95,146.76,138.55,133.95,132.98,131.96,131.50,129.23$, 128.90, 128.77, 125.45, 123.43, 116.32, 73.70, 52.73, 21.24. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 389.0383 ;$ Found:389.0381.; $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 391.0363 ;$ Found: 391.0360.

Prepared according to the general procedure (24 h). The title compound 33 was obtained as colorless oil in 92% yield (71.7 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 8.01 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 -7.49 (m, 3H), 7.37 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 168.98,166.07,144.30,137.94$, 132.99, 132.95, 132.01, 130.86, 130.44, 129.25, 126.54, 126.38, 123.49, 117.46, 73.78, 52.78,
19.74. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 389.0383$; Found:389.0380.;
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 391.0363$; Found: 391.0356.
1-(4-bromophenyl)-2-methoxy-2-oxoethyl (E)-3-(2,4-dimethylphenyl)acrylate 34

Prepared according to the general procedure (24 h). The title compound 34 was obtained as colorless oil in 92% yield (74.0 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.07(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: 168.99,166.23,144.18,140.83,137.90,133.03,131.95,131.61,130.07,129.22,127.18$, 126.50, 123.40, 116.18, 73.68, 52.72, 21.28, 19.61. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 403.0540$; Found: 403.0535; $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 405.0520$; Found: 405.0513.

1-(4-bromophenyl)-2-methoxy-2-oxoethyl (E)-3-(naphthalen-1-yl)acrylate 35

Prepared according to the general procedure (24 h). The title compound 35 was obtained as colorless oil in 94% yield (79.7 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.65(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ ($\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.92-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.45(\mathrm{~m}, 7 \mathrm{H}), 6.68(\mathrm{~d}, J=$
$16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 168.92,165.81,143.51$, $133.59,132.93,131.99,131.30,131.22,130.92,129.26,128.70,126.95,126.23,125.36,125.25$, 123.48, 123.16, 119.01, 73.82, 52.76. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+}$, ([M+H] $]^{+}$): 425.0383; Found: 425.0379; $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 427.0363; Found: 427.0358.

1-(4-bromophenyl)-2-methoxy-2-oxoethyl (E)-3-(naphthalen-2-yl)acrylate 36

Prepared according to the general procedure (24 h). The title compound 36 was obtained as colorless oil in 99% yield (84.0 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: $7.97-7.94$ (m, 2H), 7.87 $7.82(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$ 168.95, 165.95, 146.59, 134.35, 133.16, 132.98, 131.99, 131.50, 130.40, 129.26, 128.73, 128.60, 127.74, 127.42, 126.74, 123.46, 123.39, 116.68, 73.76, 52.76. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Br}^{78.9183} \mathrm{O}_{4}^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 425.0383$; Found: 425.0377; $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 427.0363$; Found: 427.0356.

1-(4-bromophenyl)-2-methoxy-2-oxoethyl (E)-non-2-enoate 37

Prepared according to the general procedure (24 h). The title compound 37 was obtained as colorless oil in 83% yield (65.5 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ : 7.52 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.96-5.92(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 2 \mathrm{H})$, $1.49-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, б: 168.98, 165.57, 151.96, 133.02, 131.92, 129.19, 123.36, 119.78, 73.46, 52.67, 32.34, 31.51, 28.78, 27.73, 22.46, 13.99. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+}$, ([M+H]+): 383.0853; Found: 383.0848; $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 385.0833; Found: 385.0827.

Prepared according to the general procedure (24 h). The title compound 38 was obtained as colorless oil in 95% yield (76.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.58-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.47$ (d, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 168.92,165.86,146.41$, 141.53, 135.70, 132.96, 131.90, 129.23, 129.20, 128.76, 127.25, 125.83, 123.36, 119.42, 73.57, 52.68. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 401.0383; Found: 401.0378.; $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 403.0363$; Found: 403.0356.

1-(4-Bromophenyl)-2-methoxy-2-oxoethyl (E)-5-phenylpent-4-enoate 39

Prepared according to the general procedure (24 h). The title compound 39 was obtained as colorless oil in 97% yield (75.1 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 7.55(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40 $-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-$ $6.30(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta:$ $170.72,168.70,136.60,134.01,132.61,131.96,129.19,128.49,127.62,126.27,123.50,120.62$, 73.84, 52.76, 37.77. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right): 389.0383$; Found: 389.0380.; $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 391.0363$; Found: 391.0359.

1-(4-Bromophenyl)-2-methoxy-2-oxoethyl 3-phenylpropiolate 40

Prepared according to the general procedure (24 h). The title compound 40 was obtained as colorless oil in 94% yield (70.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: $7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 4 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 168.11,152.89,133.11,132.05,130.97,129.33,128.58,123.77,119.13$, 88.39, 79.75, 74.70, 52.94. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+}$, ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right): 373.0070$; Found: 373.0067; $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 375.0050; Found: 375.0045.

1-(4-Bromophenyl)-2-methoxy-2-oxoethyl benzoate 41

Prepared according to the general procedure (24 h). The title compound 41 was obtained as colorless oil in 96% yield (67.3 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 8.12$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61$7.55(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 4 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ : 168.82, 165.65, 133.59, 132.96, 132.03, 129.92, 129.21, 128.95, 128.47, 123.50, 74.10, 52.78. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}^{78.9183} \mathrm{O}_{4}{ }^{+}$, $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 349.0070; Found: 349.0074; $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}^{80.9163} \mathrm{O}_{4}{ }^{+},\left([\mathrm{M}+\mathrm{H}]^{+}\right): 351.0050$; Found: 351.0049.

References

1 a) G. Wille, W. Steglich, Synthesis, 2001, 759; b) B. Tan, N. R. Candeias, C. F. Barbas III, J. Am. Chem. Soc., 2011, 133, 4672; c) A. Noole, N. S. Sucman, M. A. Kabeshov, T. Kanger, F. Z. Macaev, A. V. Malkov, Chem. Eur. J., 2012, 18, 14929.

2 S. Lee, G.-S. Hwang and D. H. Ryu, J. Am. Chem. Soc., 2013, 135, 7126.
3 G. M. Sheldrick, Acta Crystallographica Section A, 2008, 64, 112.
4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.

NMR spectra of isolated compounds

$1{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$1{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

Gram-scale $1^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Gram-scale $1{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3})

$2{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

茞

$2{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllllllllllll}146 & 144 & 142 & 140 & 138 & 136 & 134 & 132 & 130 & 128 & 126 & 124 & 122 & 120 & 118\end{array}$

$3{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

		$\stackrel{1}{\circ}$					$\stackrel{H}{\circ}$		$\begin{aligned} & 1{ }^{1} \\ & =8 \\ & =0 \end{aligned}$										
1.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.1

$3{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$4{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{B}{B n}$

$4{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$5{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$5{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

> n
0
0
0
0
0
0
> 器家尔虺
> 天ํํํ

[^0]$5{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$6{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	$\stackrel{\text { \% }}{+}$

$6{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$7{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$7{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$7{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

¿ ?

$8{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$8{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)											

$9{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$9{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
-

今N゚~
-52.881
-43.790

$10{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$10{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$11{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$11{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3})

$12{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$12{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

a

$13{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ल O OU

$\stackrel{\cong}{0}$
$\stackrel{+}{i}$

$13{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$14{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
응

Noñon in in

$14{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$15{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$15{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$16{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$17{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
응

$\stackrel{\infty}{\infty}$

$17{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$18{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$19{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$19{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
	200	190	180	170	160	150	140	130	120	$f 1$（ppm）	100		80	70	60	50					

$19{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$20{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$20{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$21{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
关

$21{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$

$22{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$22{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$23{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$23{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$24{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$

$25{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$25{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]$26{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 $26{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Gram-scale $26{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Gram-scale $26{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$27{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$27{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^2]$27{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$28{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$29{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{8}{\substack{0 \\ \hline 1}}$

$29{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$29{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$30{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

¢\%	
©®	

$31{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$31{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3})
응응응

$32{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$32{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
\(33{ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
```


$33{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$34{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 $\stackrel{\circ}{\circ}$

$34{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

+ ${ }_{\text {¢ }}^{\text {N }}$	®
$\stackrel{\infty}{\circ} \stackrel{\circ}{\circ}$	
TT	

$35{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	. 5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

$35{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$36{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 $36{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$37{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$37{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$38{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$38{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$39{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$39{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$40{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underbrace{\text { - }}$
 $40{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$41{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$41{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (pp											

[^0]:

[^1]:

[^2]:

