Oxa-azabenzobenzocyclooctynes (O-ABCs): Heterobiarylcyclooctynes bearing an endocyclic heteroatom

Eshani Das, ${ }^{\dagger}, b$ Mark Aldren M. Feliciano, ${ }^{\dagger}, a, b$ Pavel Yamanushkin, ${ }^{b}$ Xinsong Lin, ${ }^{c}$ Brian Gold ${ }^{*}, a, b$
${ }^{a}$ Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, 88003, United States
${ }^{b}$ Department of Chemistry and Chemical Biology, University of New Mexico State, Albuquerque, New Mexico, 87131, United States
${ }^{c}$ Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, United States
*Email: bgold@nmsu.edu

	Content
Table of Contents	Page
List of Abbreviations	S 2
Experimental Procedures	S 2
Competition Experiment	S 8
Kinetic Analysis	S 9
X-Ray Crystallography Data	S 10
Computational Details \& Data	S 15
NMR spectra	S 18
Cartesian Coordinates, Total Energies, and Imaginary Frequencies (TS's)	S 30
References	S 36

List of Abbreviations

ABC	azabenzobenzocyclooctyne
AIBN	azobisisobutyronitrile
CCl $_{4}$	carbon tetrachloride
CuAAC	copper-catalyzed azide-alkyne cycloaddition
DIBO	dibenzocyclooctyne
DIBAC	dibenzoazacyclooctyne
DCM	dichloromethane
DMSO	dimethylsulfoxide
DIC	N, N^{\prime}-diisopropylcarbodiimide
EDC	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
EtOAc	ethyl acetate
LiHMDS	lithium bis(trimethylsilyl)amide
IRC	intrinsic reaction coordinate
NBO	natural bonding orbital
ODIBO	oxadibenzocyclooctyne
O-ABC	oxa-azabenzobenzocyclooctyne
SM	starting material
SPAAC	strain-promoted azide-alkyne cycloaddition
THF	tetrahydrofuran
TS	transition state

Experimental Procedures

General. All chemicals were from commercial sources and were used without further purification. NMR spectra were acquired with an Avance 500 spectrometer from Bruker (Billerica, MA, USA). ${ }^{13} \mathrm{C}$ NMR spectra were registered with broadband decoupling. ${ }^{1} \mathrm{H}$ NMR chemical shifts were determined relative to the ${ }^{1} \mathrm{H}$ signals of either CDCl_{3} at 7.26 ppm , acetone- d_{6} at 2.05 ppm , or DMSO- d_{6} at 2.50 ppm . ${ }^{13} \mathrm{C}$ NMR chemical shifts were determined relative to the ${ }^{13} \mathrm{C}$ signals of either CDCl_{3} at 77.16 ppm , acetoned_{6} at 29.84 or 206.26 ppm , or DMSO- d_{6} at 39.53 ppm . Mass spectra were acquired by using positive ionization with a G2 XS QToF mass spectrometer from Waters (Milford, MA, USA). Column chromatography was performed on a Selekt automated flash chromatography system from Biotage (Uppsala, Sweden) using prepacked, high capacity normal phase Sfär cartridges. Thin-layer chromatography was performed using TLC Silica gel $60 \mathrm{~F}_{254}$ Plates from EMD Millipore (Burlington, MA, USA). UV-Vis spectroscopy was performed on a Cary 60 Spectrophotometer from Agilent Technologies (Santa Clara, CA, USA).

The phrase "dry [solvent]" indicates that specified commercial HPLC-grade, inhibitor-free solvents were further purified by degassing and passing consecutively through two columns filled with activated alumina on a solvent purification system from Pure Process Technology (Nashua, NH, USA). Water was purified by dual stage deionization followed by dual stage reverse osmosis.

The phrase "concentrated under reduced pressure" refers to the removal of solvents and other volatile materials using a rotary evaporator at water aspirator pressure (<20 Torr) while maintaining the water-bath temperature below $30^{\circ} \mathrm{C}$. Residual solvent was removed from samples by the vacuum (<0.1 Torr) achieved by a mechanical belt-drive oil pump.

All procedures were performed in air at ambient temperature $\left(\sim 21^{\circ} \mathrm{C}\right)$ and pressure (1.0 atm) unless indicated otherwise.

Scheme S1. Synthesis of O-ABC precursor ketone 1.
3-((2-iodophenoxy)methyl)picolinonitrile. To a stirred solution of 3-methyl-2pyridinecarbonitrile ($3.0 \mathrm{~g}, 25.4 \mathrm{mmol}$, 1.0 equiv.) and N-bromosuccinimide ($4.97 \mathrm{~g}, 27.9 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CCl}_{4}(80 \mathrm{~mL})$ was added azobisisobutyronitrile ($0.42 \mathrm{~g}, 2.54 \mathrm{mmol}, 0.1$ equiv.) under irradiation with a tungsten lamp. The reaction mixture was stirred at reflux for 16 h , then cooled to room temperature, filtered and washed with CCl_{4}. The filtrate was concentrated under reduced pressure and the crude brominated product was subjected to the next step without further purification. The crude 3-(bromomethyl)-2pyridinecarbonitrile ($4.51 \mathrm{~g}, 22.9 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.48 \mathrm{~g}, 25.2 \mathrm{mmol}$, 1.1 equiv.), and 2-iodophenol ($5.04 \mathrm{~g}, 22.9 \mathrm{mmol}, 1$ equiv.) were dissolved in anhydrous acetone $(100 \mathrm{~mL})$ and refluxed overnight. The resulting mixture was cooled to room temperature and the solvent was removed under reduced pressure. The dry residue was diluted with ethyl acetate, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, then purified by flash chromatography (hexanes:EtOAc, 4:1, $R_{\mathrm{f}}=0.22$) to give 3-((2-iodophenoxy)methyl)picolinonitrile as a white solid ($6.83 \mathrm{~g}, 80 \%$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69$ (dd, $J=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{ddt}, J=8.1,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (dd, $J=$ $8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (ddd, $J=8.2,7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (td, $J=7.6,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.3,150.3,139.9,137.6,136.3,131.7,130.0$, 127.3, 124.0, 115.5, 112.9, 86.6, 66.7. HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 358.9652$; found, 358.9664 .
benzo[6,7]oxepino[4,3-b]pyridin-11(5H)-one (1) was prepared via a modified Parham cyclization approach previously reported to synthesize ketone $\mathbf{2}$. ${ }^{\text {S1 }}$

A stirred solution of 3-((2-iodophenoxy)methyl)picolinonitrile ($3.0 \mathrm{~g}, 8.9 \mathrm{mmol}, 1.0$ equiv.) in dry THF (300 mL) was cooled under $\operatorname{Ar}(\mathrm{g})$ to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath), then n-butyllithium (2.5 M in Hexanes, $10.7 \mathrm{mmol}, 4.3 \mathrm{~mL}, 1.2$ equiv.) was added dropwise via syringe pump at a rate $24 \mathrm{~mL} / \mathrm{h}$. The reaction mixture was kept at $-78^{\circ} \mathrm{C}$ for 1 h , and then allowed to slowly warm to room temperature while stirring overnight. The reaction mixture was quenched using $5 \% \mathrm{HCl}$ and stirred for an hour. The free base was obtained by adding sufficient $10 \% \mathrm{NaOH}$ solution to turn the solution basic, and stirring for an additional hour, which was extracted with EtOAc. The solvent was then removed under reduced pressure and the dry residue was purified flash chromatography (hexanes:EtOAc 1:1, $R_{\mathrm{f}}=0.22$) to provide compound $\mathbf{1}$ as gummy white solid ($0.855 \mathrm{~g}, 45 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.24(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.14$ (ddd, $J=8.1,7.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.4,160.9$, $156.5,151.0,136.3,135.9,132.4,131.3,126.5,124.8,122.5,120.6,71.5$. HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$212.0706; found, 212.0695.

Scheme S2. Synthesis of O-ABC-II precursor ketone 2.
\mathbf{N}-Methoxy- $\mathbf{N}, \mathbf{2}$-dimethylbenzamide was prepared according to previously reported procedures. ${ }^{\text {S2 }}$ Characterization data matched the desired compound.

2-(((2-iodopyridin-3-yl)oxy)-N-methoxy-N-methylbenzamide. To a stirred solution of N -methoxy- N,2-dimethylbenzamide ($1.0 \mathrm{~g}, 5.6 \mathrm{mmol}, 1.0$ equiv.) and N-bromosuccinimide ($1.19 \mathrm{~g}, 6.7 \mathrm{mmol}$, 1.2 equiv.) in $\mathrm{CCl}_{4}(25 \mathrm{~mL})$ was added azobisisobutyronitrile ($0.09 \mathrm{~g}, 0.6 \mathrm{mmol}, 0.1$ equiv.) under irradiation with a tungsten lamp. The reaction mixture was stirred at reflux for 2 h , then cooled to room temperature, filtered and washed with CCl_{4}. The filtrate was concentrated under reduced pressure and the crude brominated product was subjected to next step without further purification. The crude 2 -(bromomethyl)- N-methoxy- N-methylbenzamide ($0.91 \mathrm{~g}, 3.5 \mathrm{mmol}, 1.0$ equiv.), 2-iodopyridin-3-ol (1.56 g , $7.1 \mathrm{mmol}, 2.0$ equiv.), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.46 \mathrm{~g}, 10.6 \mathrm{mmol}, 3.0$ equiv.) were dissolved in anhydrous acetone (20 mL) and refluxed overnight. The resulting mixture was cooled to room temperature and the solvent was removed under reduced pressure. The dry residue was diluted with ethyl acetate, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, then purified by flash chromatography (EtOAc:hexanes 1:1, $\left.\quad R_{\mathrm{f}}=0.27\right)$ to give 2-(((2-iodopyridin-3-yl)oxy)methyl)- N -methoxy- N methylbenzamide as a colorless gummy solid ($1.20 \mathrm{~g}, 54 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{dd}, J=$ $4.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 2 \mathrm{H}), 5.25$ (s, 2H), $3.53(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,154.4,143.1,133.6,133.4$, $130.2,128.3,128.0,127.3,123.7,118.9,112.1,68.6,61.5,33.8$. HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{IN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$399.0200; found, 399.0181.
benzo[5,6]oxepino[3,2-b]pyridin-11(6H)-one (2). ${ }^{\mathrm{S} 1}$ To a stirred solution of 2-(((2-iodopyridin-3-yl)oxy)methyl)- N-methoxy- N-methylbenzamide ($0.390 \mathrm{~g}, 0.98 \mathrm{mmol}, 1.0$ equiv.) in dry THF (20 mL), was added $i \mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(1.3 \mathrm{M}\right.$ in THF, $1.07 \mathrm{mmol}, 0.83 \mathrm{~mL}, 1.1$ equiv.) dropwise at $-15^{\circ} \mathrm{C}$. The resulting mixture was slowly allowed to warm to room temperature and was stirred for another hour. The reaction mixture was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with EtOAC, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and subjected to flash column chromatography (hexanes:EtOAc 1:1, $R_{\mathrm{f}}=0.13$) to provide compound $\mathbf{2}$ as light brown gummy solid $(0.150 \mathrm{~g}, 73 \%) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66-8.64(\mathrm{~m}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56$ $-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.6$, 159.1, 144.3, 140.1, 139.4, 134.8, 133.4, 130.9, 130.3, 129.9, 128.9, 128.2, 74.0. HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$212.0706; found, 212.0701.

4-((N-Tetrazolyl)methyl)morpholine was prepared according to previously reported procedures. ${ }^{\text {S3 }}$ Characterization data matched the desired compound.

2-Azabenzobenzo-8-chlorobenzocyclooctyne (ABC) was prepared according to previously reported procedures. ${ }^{53}$ Characterization data matched the desired compound.

11-(1H-tetrazol-5-yl)-6,11-dihydrodibenzo[b,e]oxepin-11-ol was prepared en route to ODIBO (unsubstituted) to test the compatibility of the previously reported carbene-mediated ring expansion approach ${ }^{53,54}$ with systems bearing endocyclic oxygen atoms.

A stirred solution of 4 -((N-tetrazolyl)methyl)morpholine ($0.644 \mathrm{~g}, 3.80 \mathrm{mmol}, 2.0$ equiv.) and dibenzo[b,e]oxepin-11(6H)-one ($0.400 \mathrm{~g}, 1.90 \mathrm{mmol}, 1.0$ equiv.) in dry THF (15 mL) was cooled under $\operatorname{Ar}(\mathrm{g})$ to $-78{ }^{\circ} \mathrm{C}$ (dry ice/acetone bath), then LiHMDS (1.0 M in THF, $4.0 \mathrm{mmol}, 4.0 \mathrm{~mL}$, 2.1 equiv.) was added dropwise. The reaction mixture was kept at $-78^{\circ} \mathrm{C}$ for 2 h , and then allowed to slowly warm to room temperature while stirring overnight. The reaction mixture was concentrated under reduced pressure, and the remaining residue was treated with aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 25 \mathrm{~mL})$ and stirred at room temperature for 1 h. The solution was then extracted with EtOAc and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The dry residue was subjected to flash column chromatography (hexanes:EtOAc 1:1, $R_{\mathrm{f}}=0.14$) to provide title compound as white gummy solid (0.426 $\mathrm{g}, 80 \%) .{ }^{1} \mathbf{H}$ NMR (500 MHz , Acetone) $\delta 8.11(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}(125 \mathrm{MHz}$, Acetone) $\delta 162.7,156.0,141.1,137.0,135.9,130.7,129.3$, 128.2, 128.0, 127.1, 126.0, 124.2, 122.1, 73.3, 72.3. HRMS (ESI-TOF) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$ 279.0887; found, 279.0887.

ODIBO. A stirred solution of 11-(1H-tetrazol-5-yl)-6,11-dihydrodibenzo[b,e]oxepin-11-ol (0.360 g , $1.28 \mathrm{mmol}, 1.0$ equiv.) in dry THF (30 mL) was treated with EDC ($0.270 \mathrm{~g}, 1.41 \mathrm{mmol}, 1.1$ equiv.) and allowed to react overnight. The reaction mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography (hexanes:EtOAc 9.7:0.3, $R_{\mathrm{f}}=0.2$) to provide ODIBO as yellow gummy solid ($0.243 \mathrm{~g}, 90 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.20$ $-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left\{{ }^{1} \mathbf{H}\right\}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,147.2,130.3,129.4,129.1,128.0,127.1,126.4,125.9,124.0,122.2,118.0$, 114.3, 111.7, 78.0. HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$207.0804; found, 207.0806.

11-(1H-tetrazol-5-yl)-5,11-dihydrobenzo[6,7]oxepino[4,3-b]pyridin-11-ol (1'). A stirred solution of 4 -((N-tetrazolyl)methyl)morpholine $\left(\begin{array}{llllll}0.530 & \mathrm{~g}, & 3.13 \mathrm{mmol}, & 2.0 & \text { equiv.) and }\end{array}\right.$ benzo[6,7] oxepino[4,3-b]pyridin-11(5H)-one $\mathbf{1}(0.330 \mathrm{~g}, 1.56 \mathrm{mmol}$, 1.0 equiv.) in dry THF (10 mL), was cooled under $\operatorname{Ar}(\mathrm{g})$ to $-78{ }^{\circ} \mathrm{C}$ (dry ice/acetone bath), then LiHMDS (1.0 M in THF, 3.3mmol, $3.3 \mathrm{~mL}, 2.1$ equiv.) was added dropwise. The reaction mixture was kept at $-78^{\circ} \mathrm{C}$ for 2 h , and then allowed to slowly warm to room temperature while stirring overnight. The reaction mixture was concentrated under reduced pressure, and the remaining residue was treated with aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 20 \mathrm{~mL})$ and stirred at room temperature for 1 h . The solution was then extracted with EtOAc and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The dry residue was subjected to flash column chromatography (DCM:MeOH 9:1, $R_{\mathrm{f}}=0.15$) to provide compound $\mathbf{1}^{\prime}$ 'as light brown gummy solid ($0.297 \mathrm{~g}, 1.06 \mathrm{mmol}, 67 \%$). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Acetone) $\delta 8.57-8.55(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{dd}, \mathrm{J}=7.8$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{td}, \mathrm{J}=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, \mathrm{J}=7.6,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, \mathrm{J}=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}$ (125 MHz , Acetone) $\delta 162.2,156.1,153.8,146.2,137.4,136.9,133.1,131.4,126.8,125.5,125.3,122.6$, 72.1, 71.3; HRMS (ESI-TOF) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 280.0840$; found, 280.0844.

11-(1H-tetrazol-5-yl)-6,11-dihydrobenzo[5,6]oxepino[3,2-b]pyridin-11-ol (2'). A stirred solution of 4 -((N-tetrazolyl)methyl)morpholine $\left(\begin{array}{lllll}0.160 & \mathrm{~g}, & 0.95 & \mathrm{mmol}, ~ 2.0 & \text { equiv. }) \text { and }\end{array}\right.$ benzo[5,6]oxepino[3,2-b]pyridin-11($6 H$)-one $2(0.100 \mathrm{~g}, 0.47 \mathrm{mmol}, 1.0$ equiv.) in dry THF (5 mL), was cooled under $\operatorname{Ar}(\mathrm{g})$ to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath), then LiHMDS (1.0 M in THF, $1.0 \mathrm{mmol}, 1.0 \mathrm{~mL}, 2.1$ equiv.) was added dropwise. The reaction mixture was kept at $-78^{\circ} \mathrm{C}$ for 2 h , and then allowed to slowly
warm to room temperature while stirring overnight. The reaction mixture was concentrated under reduced pressure, and the remaining residue was treated with aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and stirred at room temperature for 1 h . The solution was then extracted with EtOAc and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The dry residue was subjected to flash column chromatography ($\mathrm{DCM}: \mathrm{MeOH} 9: 1, R_{\mathrm{f}}=0.15$) to provide compound $\mathbf{2}^{\prime}$ as light brown gummy solid $(0.085 \mathrm{~g}, 64 \%) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.57(\mathrm{brs}, 2 \mathrm{H}), 8.15-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.20(\mathrm{~m}$, $5 \mathrm{H}), 5.67(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4,153.8$, 141.6, 139.9, 139.4, 133.1, 131.1, 129.8, 129.8, 129.7, 126.4, 125.8, 72.3, 71.3. HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$282.0986; found, 282.0972 .

6-oxa-2-azabenzobenzocyclooctyne (O-ABC). A stirred solution of $\mathbf{1}^{\prime}(0.025 \mathrm{~g}, 0.089 \mathrm{mmol}, 1.0$ equiv.) in DCM (25 mL) under $\operatorname{Ar}(\mathrm{g})$ was treated with DIC ($0.0151 \mathrm{~mL}, 0.098 \mathrm{mmol}, 1.1$ equiv.). The resulting solution was stirred at room temperature for 16 h , protected from light. After completion of reaction, as monitored by TLC, silica gel was added and solvent was removed under reduced pressure. The silica-bound residue was immediately subjected to flash chromatography. DMSO- $d_{6}(0.6 \mathrm{~mL})$ was added to the combined fractions containing O-ABC ($\sim 25 \mathrm{~mL}$). The mobile phase (hexanes:EtOAc 4:1, $R_{\mathrm{f}}=0.20$) was then removed under reduced pressure while protecting the compound from light. The flask was charged with $\operatorname{Ar}(\mathrm{g})$ before removing the residual mobile phase under high vacuum for 30 mins, affording a pure solution of O-ABC. 1,3,5-Trimethoxybenzene ($0.1 \mathrm{~mL}, 10 \mathrm{mg} / \mathrm{mL}$) was added as an internal standard to 0.4 mL of $\mathrm{O}-\mathrm{ABC}$ solution and relative proton intensities enabled determination of the yield (6%). ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO) $\delta 8.59(\mathrm{dd}, J=5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}$, $3 \mathrm{H}), 7.28$ (dd, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}(125 \mathrm{MHz}, \mathrm{DMSO}) \delta 169.9,149.8,146.1,143.2,137.8,130.4,127.2,124.3$, 122.6, 122.2, 115.8, 115.0, 111.4, 76.0. HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$208.0757; found, 208.0757.

3-benzyl-3,8-dihydrobenzo[7,8][1,2,3]triazolo[4',5':5,6]oxocino[4,3-b]pyridine (3).

Procedure A. A stirred solution of $\mathbf{1}^{\prime}(0.015 \mathrm{~g}, 0.053 \mathrm{mmol}, 1$ equiv.) in DCM (10 mL) under $\operatorname{Ar}(\mathrm{g})$ was treated with DIC ($0.009 \mathrm{~mL}, 0.059 \mathrm{mmol}, 1.1$ equiv.), followed by benzyl azide $(0.021 \mathrm{~g}, 0.16 \mathrm{mmol}$, 3 equiv.). The resulting solution was stirred at room temperature for 16 h , protected from light. The reaction mixture was concentrated under reduced pressure and was subjected to flash chromatography (EtOAc:hexanes $4: 1, R_{\mathrm{f}}=0.32$) to afford the cycloadduct as an amorphous white solid ($0.005 \mathrm{~g}, 30 \%$).

Procedure B. Immediately following isolation of $\mathrm{O}-\mathrm{ABC}$ via flash column chromatography, a solution was prepared in DMSO- d_{6} as described above, and 1,3,5-trimethoxybenzene was added as an internal standard $(0.001 \mathrm{~g}, 0.0059 \mathrm{mmol})$ in order to determine the concentration. To this solution of $\mathrm{O}-\mathrm{ABC}$ (6.4 $\mu \mathrm{M}, 0.5 \mathrm{~mL}, 0.0032 \mathrm{mmol}, 1$ equiv.) was added benzyl azide ($0.00047 \mathrm{~g}, 0.0035 \mathrm{mmol}, 1.1$ equiv.). Within minutes, the alkyne had quantitatively formed the triazole product, as determined by ${ }^{1} \mathrm{H}$ NMR.

Crystals for X-ray diffraction were obtained by dissolving $\sim 5 \mathrm{mg}$ of the obtained solid in DCM, followed by 3-4 drops of HPLC-grade hexanes. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{dd}, J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ $(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=8.7$, $7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 5.05$ $(\mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,150.0,147.9,145.5,138.5,135.8,133.4,133.0,130.7$, 129.9, 128.6, 128.1, 127.7, 124.0, 122.4, 120.5, 117.9, 69.3, 52.9; HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$341.1397; found, 341.1392 .

3-benzyl-3,9-dihydrobenzo[6,7][1,2,3]triazolo[4',5':4,5]oxocino[3,2-b]pyridine (4). To a stirred solution of 11-(1H-tetrazol-5-yl)-6,11-dihydrobenzo[5,6]oxepino[3,2-b]pyridin-11-ol 3' (0.026 g,
$0.09 \mathrm{mmol}, 1.0$ equiv.) in dry THF (30 mL) was added EDC ($0.020 \mathrm{~g}, 0.10 \mathrm{mmol}, 1.1$ equiv.), followed by benzyl azide ($0.037 \mathrm{~g}, 0.28 \mathrm{mmol}, 3.0$ equiv.). The resulting mixture was allowed to stir at room temperature overnight. The reaction mixture was concentrated under reduced pressure and was subjected to flash chromatography (hexanes:EtOAc, $4: 1, R_{\mathrm{f}}=0.16$) to provide the cycloadduct as an amorphous white solid ($0.017 \mathrm{~g}, 53 \%$). Crystals for X-ray diffraction were obtained by dissolving $\sim 5 \mathrm{mg}$ of the obtained solid in DCM, followed by 3-4 drops of HPLC-grade hexanes. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31$ (dd, $J=4.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 4 \mathrm{H})$, $7.14-7.08(\mathrm{~m}, 3 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.3,144.2,142.5$, 136.0, 134.0, 132.9, 132.4, 132.2, 130.6, 129.9, 129.6, 129.5, 129.2, 128.7, 128.2, 127.8, 124.9, 70.7, 53.4. HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 341.1397$; found, 341.1379.

3-benzyl-11-chloro-8,9-dihydro-3H-benzo[5,6][1,2,3]triazolo[4',5':7,8]cycloocta[1,2-
b]pyridine (5). To a solution of $\mathrm{ABC}\left(0.015 \mathrm{~g}, 0.063 \mathrm{mmol}, 1.0\right.$ equiv.) in $1 \mathrm{mLCH} \mathrm{CN}_{3} \mathrm{CN}$ was added benzyl azide ($0.0092 \mathrm{~g}, 069 \mathrm{mmol}, 1.1$ equiv.). Upon completion of the reaction, the solvent was removed under reduced pressure and the dry residue was purified by flash chromatography (hexanes:EtOAc 1:1, $R_{\mathrm{f}}=0.76$), affording the pure cycoadduct as an amorphous white solid ($0.0198 \mathrm{~g}, 85 \%$). Crystals for X-ray diffraction were obtained by dissolving $\sim 5 \mathrm{mg}$ of the obtained solid in DCM, followed by 3-4 drops of HPLC-grade hexanes. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=13.6,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-$ $7.12(\mathrm{~m}, 6 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.7,145.7,145.7,139.9,138.8,136.4,135.7,134.2,133.3,132.7,130.0$, 128.8, 128.6, 128.1, 127.7, 126.8, 123.8, 52.8, 34.2, 33.3. HRMS (ESI-TOF) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{Cl}$ $[\mathrm{M}+\mathrm{H}]^{+}$373.1214; found, 373.1207.

Competition Experiment

Immediately following isolation of O-ABC via flash column chromatography, a solution was prepared in DMSO- d_{6} as described above. To a $400 \mu \mathrm{~L}$ of $\mathrm{O}-\mathrm{ABC}$ solution, $1,3,5$-trimethoxybenzene ($100 \mu \mathrm{~L}, 1$ $\mathrm{mg} / \mathrm{mL}$) was added as an internal standard in order to determine the concentration. To this solution of OABC (determined to be $4.4 \mathrm{mM}, 0.5 \mathrm{~mL}, 2.2 \mu \mathrm{~mol}, 1.0$ equiv.), $524 \mu \mathrm{~L}$ of ABC ($2.2 \mu \mathrm{~mol}, 1.0$ equiv.) was added from a stock solution (4.2 mM) in DMSO- d_{6} and the ratio was determined to be $1: 1$ by ${ }^{1} \mathrm{H}$ NMR. 103 $\mu \mathrm{L}$ of benzyl azide was added from a stock solution $(15 \mathrm{mM})$ in DMSO- d_{6} and the reaction mixture was allowed to run to completion. Analysis by ${ }^{1} \mathrm{H}$ NMR (Figure S1) indicated complete consumption of benzyl azide and an $8.4: 1$ ratio of cycloadducts $3: 5$ (integration values of $1.94: 0.23$, relative to $1,3,5$ trimethoxybenzene).

Figure S1. The rate of the SPAAC between O-ABC and benzyl azide was estimated in a competition experiment against ABC in DMSO- d_{6}. Experimental details are described above. The top three spectra correspond to the competition experiment (inset: integration of cycloadducts relative to trimethoxybenzene), determination of $\mathrm{O}-\mathrm{ABC}: \mathrm{ABC}$ ratio prior to addition of benzyl azide (inset: integration values $1.05: 1.05$, relative to $1,3,5$-trimethoxybenzene), and $\mathrm{O}-\mathrm{ABC}$ with 1,3,5-trimethoxybenzene (internal standard). The bottom three spectra are provided for reference.

Kinetic Analysis

The rate constant of the reaction between ABC and benzyl azide was determined by UV-Vis spectroscopy by following the decay of the characteristic 320 nm absorbance of ABC. The cycloaddition reaction was performed in DMSO at $25^{\circ} \mathrm{C}$ under pseudo-first order conditions, using 10 -fold excess of azide. Stock solutions of ABC (0.04 mM in DMSO) and benzyl azide (1.6 mM in DMSO) were prepared and mixed in a 1.0 mL cuvette (0.5 mL each), which was inverted three times and inserted into the spectrophotometer. The initial concentrations at the outset of the reaction were 0.04 mM and 0.4 mM for ABC and benzyl azide, respectively. A spectrum was acquired every 10 seconds for 1200 seconds. Reaction velocity was determined from the inverse of the slope of a semilog plot of absorbance as a function of time and the slope was used to calculate a pseudo-first-order rate constant (k) for the reaction (Figure S3), which was converted to a second-order rate constant $\left(k=k^{\prime} /\left[\mathrm{BnN}_{3}\right]\right)$ as the mean \pm SD from triplicate measurements.

The rate constant for the cycloaddition reaction between ABC and benzyl azide in DMSO was found to be $k=0.6 \pm 0.003 \mathrm{M}^{-1} \mathrm{~s}^{-1}$.

Figure S2. Ultraviolet spectra of ABC (green), benzyl azide (red), and cycloadduct 5 (blue) in DMSO at 1.6 mM .

X-Ray Crystallography

Crystals for X-ray diffraction were obtained by dissolving $\sim 5 \mathrm{mg}$ of 3,4 , or 5 in DCM, followed by 3-4 drops of HPLC-grade hexanes. Details regarding diffraction data collection and each structure are provided below. This work made use of the Rigaku Synergy-S single-crystal X-ray diffractometer, which was acquired through the NSF MRI program (CHE-1828362).

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. ${ }^{55}$ CCDC 2259714, 2286852, and 2286853 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Figure S4. ORTEP diagram of $\mathbf{3}\left(\mathrm{O}-\mathrm{ABC}-\mathrm{BnN}_{3}\right.$ cycloadduct) with 50% probability ellipsoids.
Data collection. A clear whiteish colourless, irregular shaped crystal was mounted on a nylon loop with perfluoroether oil. The sample was crystallized by a slow evaporation method. Data were collected from a shock-cooled single crystal at $99.9(6) \mathrm{K}$ on a XtaLAB Synergy, Dualflex, HyPix four-circle diffractometer with a micro-focus sealed X-ray tube using a mirror as monochromator and a HyPix detector. The diffractometer was equipped with an Oxford Cryostream 800 low temperature device and used $\mathrm{Cu} K_{\alpha}$ radiation $(\lambda=1.54184 \AA)$. All data were integrated with Crysalispro and a gaussian absorption correction using SCALE3 ABSPACK was applied. ${ }^{\text {S6 }}$ The structure was solved by dual methods using SHELXT and refined by full-matrix least-squares methods against F^{2} by SHELXL. ${ }^{\text {S7 }}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were refined isotropic on calculated positions using a riding model with their $U_{\text {iso }}$ values constrained to 1.5 times the $U_{\text {eq }}$ of their pivot atoms for terminal sp^{3} carbon atoms and 1.2 times for all other carbon atoms.

Table S1. Crystal data and structure refinement for $\mathbf{3}$ (O-ABC cycloadduct).

CCDC number	2259714
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$
Formula weight	340.38
Temperature [K]	99.9(6)
Crystal system	triclinic
Space group (number)	$P \overline{1}$ (2)
$a[\AA]$	7.8488(2)
$b[\AA]$	9.8954(3)
$c[\AA]$	12.1031(4)
$\alpha\left[{ }^{\circ}\right]$	68.423(3)
$\beta\left[{ }^{\circ}\right]$	74.665(3)
$\gamma\left[{ }^{\circ}\right]$	77.346(3)
Volume [\AA^{3}]	835.21(5)
Z	2
$\rho_{\text {calc }}\left[\mathrm{gcm}^{-3}\right]$	1.353
$\mu\left[\mathrm{mm}^{-1}\right]$	0.693
$F(000)$	356
Crystal size [mm^{3}]	$0.195 \times 0.098 \times 0.018$
Crystal colour	clear whiteish colourless
Crystal shape	irregular
Radiation	$\mathrm{Cu} K_{\alpha}(\lambda=1.54184 \AA)$
2θ range [${ }^{\circ}$]	8.02 to 154.82 (0.79 \AA)
Index ranges	$\begin{aligned} & -9 \leq \mathrm{h} \leq 9 \\ & -12 \leq \mathrm{k} \leq 12 \\ & -15 \leq 1 \leq 15 \end{aligned}$
Reflections collected	38664
Independent reflections	3490
	$R_{\text {int }}=0.0525$
	$R_{\text {sigma }}=0.0180$
Completeness to $\theta=67.684^{\circ}$	99.9 \%
Data / Restraints /	3490/0/236
Parameters	
Goodness-of-fit on F^{2}	1.067
Final R indexes	$R_{1}=0.0368$
$[I \geq 2 \sigma(I)]$	$\mathrm{w} R_{2}=0.0961$
Final R indexes	$R_{1}=0.0395$
[all data]	$\mathrm{w} R_{2}=0.0980$
	0.22/-0.20
Extinction coefficient	0.0044(7)

Figure S5: ORTEP diagram of 4 ($\mathrm{O}-\mathrm{ABC}-\mathrm{II}-\mathrm{BnN}_{3}$ cycloadduct) with 50% probability ellipsoids.
Data collection. A single clear irregular-shaped crystal of approximate dimension $0.303 \times 0.284 \times 0.160$ mm^{3} was adhered to a Mitegen loop with Paratone oil. Crystallographic data were collected at temperature 150 K on a Rigaku-Oxford Diffraction XtaLAB-Synergy-S diffractometer with a Hypix-6000HE (Hybrid Photon Counting) detector, using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation of wavelength $1.54187 \AA$. The intensity data were measured by a ω-scan with 0.5° oscillations for each frame with the intensity that is more than $10: 1$ for data-to-parameter ratio. The program suite CrysAlis ${ }^{\text {Pro }}$ was used for data collection, absorption correction, and data reduction. ${ }^{\text {S6 }}$ The structures were solved using the GUI Olex2 ${ }^{\text {S8 }}$ with the dual-space algorithm of SHELXT and refined by full-matrix least-squares methods on F^{2} with SHELXL-2014 refinement package using Least Squares minimisation. ${ }^{\text {7 }}$ The compound $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$ crystallized in the monoclinic crystal system, with the space group $P 2_{l} / c$ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were inserted at calculated positions or if possible based on difference Fourier analysis and refined with a riding model or without restrictions.

Table S2. Crystal data and structure refinement for 4 (O-ABC-II cycloadduct).

Identification code	2286852
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$
Formula weight	340.38
Temperature $/ \mathrm{K}$	$149.99(10)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a / \AA	$9.11690(10)$
b / \AA	$12.31300(10)$

c / \AA	$14.85260(10)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$94.1900(10)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1662.84(3)$
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.360
μ / mm^{-1}	0.696
$\mathrm{~F}(000)$	712.0
Crystal size $/ \mathrm{mm}^{3}$	$0.303 \times 0.284 \times 0.160$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	9.34 to 156.094
Index ranges	$-11 \leq \mathrm{h} \leq 11,-15 \leq \mathrm{k} \leq 15,-17 \leq 1 \leq 18$
Reflections collected	34000
Independent reflections	$3550\left[\mathrm{R}_{\text {int }}=0.0397, \mathrm{R}_{\text {sigma }}=0.0181\right]$
Data/restraints/parameters	$3550 / 0 / 236$
Goodness-of-fit on F^{2}	1.061
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0345, \mathrm{wR}_{2}=0.0881$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0358, \mathrm{wR}_{2}=0.0891$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$0.24 /-0.18$

Figure S6: ORTEP diagram of $5\left(\mathrm{ABC}-\mathrm{BnN}_{3}\right.$ cycloadduct) with 50% probability ellipsoids.

Data collection. A Single clear plate-shaped crystal of approximate dimension $0.825 \times 0.137 \times 0.102$ mm^{3} was adhered to a Mitegen loop with Paratone oil. Crystallographic data were collected at temperature 150 K on a Rigaku-Oxford Diffraction XtaLAB-Synergy-S diffractometer with a Hypix-6000HE (Hybrid Photon Counting) detector, using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation of wavelength $1.54187 \AA$. The intensity data were measured by a ω-scan with 0.5° oscillations for each frame with the intensity that is more than $10: 1$ for data-to-parameter ratio. The program suite CrysAlis ${ }^{\mathrm{Pro}}$ was used for data collection, absorption correction, and data reduction. ${ }^{\text {S6 }}$ The structures were solved using the GUI Olex2 ${ }^{\text {S8 }}$ with the dual-space algorithm of SHELXT and refined by full-matrix least-squares methods on F^{2} with SHELXL-2014 refinement package using Least Squares minimisation. ${ }^{57}$ The compound $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{4}$ crystallized in the monoclinic crystal system, with the space group $\mathrm{P} 2{ }_{1} / \mathrm{c}$. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were inserted at calculated positions or if possible based on difference Fourier analysis and refined with a riding model or without restrictions.

Table S3. Crystal data and structure refinement for $\mathbf{5}$ (ABC cycloadduct).

Identification code	2286853
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{4}$
Formula weight	372.85
Temperature/K	$149.99(10)$
Crystal system	monoclinic
Space group	$\mathrm{P}_{1} / \mathrm{c}$
a / \AA	$10.93403(10)$
b / \AA	$21.4604(2)$
c / \AA	$7.91748(8)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$105.1277(9)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1793.45(3)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.381
$\mu /$ mm $^{-1}$	1.990
$\mathrm{~F}(000)$	776.0
Crystal size/mm ${ }^{3}$	$0.825 \times 0.137 \times 0.102$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	8.24 to 155.73
Index ranges	$-13 \leq \mathrm{h} \leq 13,-23 \leq \mathrm{k} \leq 27,-9 \leq 1 \leq 9$
Reflections collected	35683
Independent reflections	$3757\left[\mathrm{R}_{\text {int }}=0.0817, \mathrm{R}_{\text {sigma }}=0.0316\right]$
Data/restraints/parameters	$3757 / 0 / 244$
Goodness-of-fit on F^{2}	1.084
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0470, \mathrm{wR} \mathrm{R}_{2}=0.1328$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0486, \mathrm{wR} \mathrm{R}_{2}=0.1348$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$0.32 /-0.39$

Computational Details \& Data

Computational Details. Gas phase geometry optimizations were performed with the Gaussian 16 software ${ }^{\text {s9 }}$ at the M06-2X level of theory ${ }^{\text {s10 }}$ with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. Single point energies of located minima were performed at the M06-2X/6-311++G(d,p) level of theory, including the PCM solvation model for DMSO. Manual conformational searches were performed for both the SMs and TSs. Frequency calculations were performed to confirm stationary points as minima or first-order saddle points. All ΔE and ΔE^{\nRightarrow} values include zero-point corrections. Coordinates, total energies, and imaginary frequencies (transition states) are provided below. NBO analysis employed the NBO 7.0 program, ${ }^{\text {S11 }}$ implemented through the Gaussian 16 software.

Table S4. Energies and free energies of activation, and for cycloadditions of methyl azide with DIBO, ODIBO, ABC, O-ABC and O-ABC-II. Energies for the preferred regioisomer are in bold typeface.

Compound	$\boldsymbol{s y n} \mathbf{T S}$		$\boldsymbol{a n t i}$ TS	
	$\boldsymbol{\Delta} \boldsymbol{E}^{\ddagger}$	$\boldsymbol{\Delta} \boldsymbol{G}^{\ddagger}$	$\boldsymbol{\Delta} \boldsymbol{E}^{\ddagger}$	$\boldsymbol{\Delta} \boldsymbol{G}^{\ddagger}$
DIBO	10.8	23.6	10.8	23.6
ODIBO	8.4	21.1	9.1	21.9
ABC	10.0	22.4	11.1	23.9
O-ABC	7.6	20.0	9.4	21.9
O-ABC-II	7.8	20.2	8.7	21.4

Table S5. Distortion/interaction (activation-strain) analysis for the preferred transition states of the cycloadditions of methyl azide with DIBO, ODIBO, ABC , and $\mathrm{O}-\mathrm{ABC}$. All energies in $\mathrm{kcal} / \mathrm{mol}$.

Compound	$\boldsymbol{\Delta} \boldsymbol{E}^{\text {distortion }}$			$\boldsymbol{\Delta} \boldsymbol{E}^{\dagger_{\text {interaction }}}$
	1,3-Dipole	Alkyne	Total	
DIBO	15.9	3.1	19.0	-8.2
ODIBO	14.1	2.5	16.6	-7.0
ABC	14.3	2.7	17.0	-7.2
O-ABC	12.7	2.1	14.8	-7.1
O-ABC-II	12.9	2.1	15.0	

able S6. Second-order perturbations $\left(E_{2}\right)$ obtained from natural bonding orbital analysis (NBO) for SMs and the TSs.

	DIBO		ODIBO		ABC		O-ABC		O-ABC-II	
	SM	TS								
$\pi_{\text {in }} \rightarrow \pi^{*}{ }_{\text {aryll/aryl2 }}$	0.6/0.6	4.4/- ${ }^{a}$	$0.5 /$ - a	5.9/0.9	0.7/0.7	$-{ }^{a} / 3.3$	$0.6 /$ - a	$-{ }^{a} / 0.8$	- ${ }^{a} / 0.6$	0.9/5.6
$\pi_{\text {out }} \rightarrow \pi^{*}{ }_{\text {aryl1/aryl2 }}$	15.6/15.6	11.4/14.8	16.2/15.8	10.5/14.4	19.4/14.9	19.8/11.7	20.2/15.1	20.5/14.0	19.7/15.5	19.1/10.4
$\pi_{\text {in }} \rightarrow \sigma^{*}{ }_{\text {CX/CC, exo }}$	4.5/4.5	2.7/4.1	4.4/4.8	2.4/4.2	5.6/4.3	4.9/3.3	5.9/4.5	4.8/4.3	6.3/4.3	5.2/2.8
$\pi_{\text {in }} \rightarrow \sigma^{*}{ }_{\text {CC, endo (aryl1/2) }}$	2.9/2.9	2.7/3.7	3.0/3.1	2.1/3.8	2.5/2.9	2.8/3.1	2.4/3.3	2.8/4.0	2.7/3.0	2.8/2.8
$\pi^{*}{ }_{\text {in }} \rightarrow \sigma^{*}{ }_{\text {CX/CC, exo }}$	- ${ }^{\text {/ }}$ - ${ }^{\text {a }}$	0.7/1.0	- ${ }^{a} /$ - a	0.6/0.9	- ${ }^{\text {a }}$ - ${ }^{\text {a }}$	1.3/0.8	- ${ }^{\text {/ }}$ - ${ }^{\text {a }}$	1.3/0.9	- ${ }^{a}$ - ${ }^{\text {a }}$	1.3/0.6
$\pi^{*}{ }_{\text {in }} \rightarrow \sigma^{*}{ }_{\text {CC, endo (aryl1/2) }}$	- ${ }^{\text {/ }}$ - ${ }^{\text {a }}$	1.0/1.4	- ${ }^{\text {/ }}$ - ${ }^{\text {a }}$	0.9/1.5	- ${ }^{\text {/ }}$ - ${ }^{\text {a }}$	1.4/1.1	- ${ }^{\text {/ }}$ - ${ }^{\text {a }}$	1.4/1.4	- ${ }^{\text {/ }}$ - ${ }^{\text {a }}$	1.4/0.9
$\pi_{\text {aryll }} \rightarrow \sigma^{*} \mathrm{CO} / \mathrm{CC}$	3.9	3.8	7.5	7.6	4.0	4.0	7.7	7.8	$2.8{ }^{\text {b }}$	2.7^{b}
$\mathrm{n}_{\mathrm{O}} \rightarrow \pi^{*}{ }_{\text {aryl2 }}$	-	-	16.9^{c}	$16.9^{\text {c }}$	-	-	17.1^{c}	$16.5^{\text {c }}$	$16.8{ }^{\text {c,d }}$	$16.4{ }^{\text {c,d }}$
$\mathrm{n}_{\mathrm{O}} \rightarrow \sigma^{*}$ aryl, endo	-	-	$9.8{ }^{\text {c }}$	9.5^{c}	-	-	$9.8{ }^{\text {c }}$	$9.4{ }^{\text {c }}$	10.3^{c}	$10.1{ }^{\text {c }}$
$\pi_{\text {aryl1/aryl2 }} \rightarrow \pi^{*}{ }_{\text {in }}$	0.6/0.6	4.8/- ${ }^{a}$	0.5/- ${ }^{a}$	6.3/1.2	$\square^{a} / 0.8$	- ${ }^{a} / 3.2$	- ${ }^{a} / 0.5$	- ${ }^{a} / 0.8$	${ }^{-}{ }^{a} / 0.6$	0.7/5.5
$\pi_{\text {aryl1/aryl2 }} \rightarrow \pi^{*}$ out	19.1/19.1	14.9/20.2	18.5,19.6	12.9/19.6	12.5/19.7	12.9/17.7	12.1/20.3	12.2/20.7	12.8/19.1	12.6/14.7
$\sigma_{\mathrm{CC} \text {, endo (aryl1/2) }} \rightarrow \pi^{*}$ in	3.6/3.6	5.7/3.7	3.9/3.8	5.0/5.4	3.3/3.7	6.1/4.9	3.5/3.9	6.4/5.5	3.4/3.9	6.1/4.4
$\sigma_{\mathrm{CC} \text {, endo (aryl1/2) }} \rightarrow \pi^{*}$ out	- ${ }^{\text {/ }}$ - ${ }^{\text {a }}$	1.0/- ${ }^{\text {a }}$	-- ${ }^{\text {/ }}{ }^{\text {a }}$	1.6/-a ${ }^{\text {a }}$	- ${ }^{\text {a }}$ - ${ }^{\text {a }}$	- ${ }^{a} / 0.7$	- ${ }^{\text {/ - }}{ }^{\text {a }}$	- ${ }^{\text {/ }}$ - ${ }^{\text {a }}$	- ${ }^{a}$-- ${ }^{\text {a }}$	$-^{a} / 1.4$

${ }^{a}$ The value is $<0.5 \mathrm{kcal} / \mathrm{mol}$, the default threshold for printing E_{2} interactions in the NBO program; ${ }^{b}$ The value given for OABC-II is the $\pi_{\text {aryll }} \rightarrow \sigma^{*}$ oC interaction; ${ }^{c}$ The value is the sum of interactions for both lone pairs on oxygen; ${ }^{d}$ The value given for $\mathrm{O}-\mathrm{ABC}-\mathrm{II}$ is the $\mathrm{n}_{\mathrm{O}} \rightarrow \pi_{\text {aryll }}$ interaction.

Figure S7. Orbital diagrams and energies (eV) calculated at the M06-2X/6-311++G(d,p)-CPCM(DMSO)//M06-2X/6-31G(d) level of theory.

NMR Spectra

Cartesian Coordinates (\AA), Total Energies (Hartree), and Imaginary Frequencies (cm ${ }^{-1}$; TS's)

O-ABC

C	4.13535200	-0.74572600	-0.13972100
C	2.88714500	-1.34390800	-0.29282000
C	1.73378000	-0.57155400	-0.21533100
C	1.83647300	0.82115400	0.02469200
C	3.09512100	1.40434100	0.18638500
C	4.24130400	0.62292600	0.10420200
H	5.03134600	-1.35450900	-0.20873200
H	2.78566800	-2.40628100	-0.48759400
H	3.16036500	2.47153100	0.37011800
H	5.21729800	1.08062500	0.22558300
C	0.56959200	1.47363300	0.07231400
C	-0.64294700	1.48819400	0.03360400
C	-0.44733000	-1.19640000	0.61230300
H	-0.60050300	-2.25023700	0.86842500
H	-0.03952300	-0.68385900	1.49019000
C	-1.90737800	0.81348900	0.02265300
C	-1.77949900	-0.58154600	0.24292300
C	-2.94190600	-1.33756500	0.18161800
H	-2.89790000	-2.41298600	0.33556400
C	-4.15996500	0.67496000	-0.25115600
C	-4.15657500	-0.70520100	-0.07273300
H	-5.09211000	1.20206500	-0.43994500
H	-5.08246700	-1.26692000	-0.12701900
N	-3.06372600	1.43394100	-0.21039000
O	0.52311500	-1.16472400	-0.45093200
Sum of electronic	and zero-point	Energies:	-668.50984
Sum of electronic	and thermal Energies: -668.49871		
Sum of electronic	and thermal	Enthalpies:	-668.49776
Sum of electronic	and thermal	Free Energies:	-668.54693

ABC			
C	-4.25093700	0.65339000	-0.01435500
C	-3.04182300	1.30711000	-0.24828600
C	-1.83790700	0.60792900	-0.26659400
C	-1.87719700	-0.78926300	-0.02740000
C	-3.08801500	-1.44464800	0.20270900
C	-4.27522100	-0.72135800	0.20656800
H	-5.17672300	1.22025500	-0.00952900
H	-3.03408400	2.37911000	-0.42797200
H	-3.08719800	-2.51473600	0.38165200
H	-5.21753400	-1.22900000	0.38539200
C	-0.58348300	-1.39493700	-0.00526300
C	0.62991600	-1.41391700	-0.02115900
C	0.53776400	1.28125700	0.58663900
H	0.74715600	2.31270500	0.88584300
H	0.09737600	0.78587800	1.45918800
C	1.92047600	-0.78811200	0.01439000
C	1.85471200	0.60611700	0.27088000
C	3.06239200	1.29533700	0.25337800
H	3.07426200	2.36660100	0.43904200
C	4.18473700	-0.76646000	-0.20914100
C	4.24720400	0.60702600	0.00945500
H	5.09191200	-1.33711100	-0.39318200
H	5.20220300	1.12094500	-0.00492200
N	3.04917000	-1.46327000	-0.21348000
C	-0.52125800	1.29271000	-0.57151500
H	-0.07965500	0.81527600	-1.45366800
H	-0.73007000	2.32987900	-0.84931700
Sum of electronic	and	zero-point	Energies:

Sum of electronic and thermal Enthalpies: -632.57556
Sum of electronic and thermal Free Energies: -632.62501

ODIBO			
C	-4.17266000	-0.76072200	-0.04753800
C	-2.93001800	-1.34712500	0.19490100
C	-1.77498800	-0.57543200	0.24076600
C	-1.88396900	0.82094200	0.02385600
C	-3.12620200	1.40719900	-0.21524700
C	-4.26892500	0.61319500	-0.24764800
H	-5.06425300	-1.37872000	-0.07902400
H	-2.85905400	-2.42014900	0.35354400
H	-3.18813000	2.47770800	-0.37957000
H	-5.23594100	1.06899800	-0.43512000
C	-0.61719000	1.47997600	0.03702700
C	-0.43888500	-1.19227800	0.59891000
H	-0.02816800	-0.68889200	1.48096200
H	-0.58675400	-2.24953300	0.84277200
C	0.59549200	1.48789800	0.08505100
C	1.85871600	0.82739300	0.02975100
C	1.74481900	-0.56326900	-0.22226600
C	2.89256700	-1.34384300	-0.30306100
H	2.78224900	-2.40378700	-0.50642100
C	3.12222800	1.39744500	0.19828100
H	3.19684800	2.46241000	0.39166900
C	4.26255500	0.60745900	0.11115900
C	4.14603000	-0.75810600	-0.14335600
H	5.24203000	1.05641400	0.23789900
H	5.03697200	-1.37394800	-0.21556400
O	0.53084800	-1.14436200	-0.46683500
Sum of electronic	and zero-point	Energies:	-652.45727
Sum of electronic	and thermal Energies: -652.44598		
Sum of electronic	and thermal	Enthalpies: -652.44504	
Sum of electronic	and thermal	Free Energies:	-652.49443

DIBO

C	-4.26372400	-0.66385300	0.02137200
C	-3.04966200	-1.30766500	0.25769700
C	-1.84975700	-0.60127800	0.27043200
C	-1.89801500	0.79453500	0.02170600
C	-3.11378600	1.43959900	-0.21119300
C	-4.29675800	0.70912400	-0.20821900
H	-5.18581400	-1.23681100	0.02166800
H	-3.03470200	-2.37845000	0.44441300
H	-3.12062100	2.50838700	-0.39816200
H	-5.24242800	1.20996700	-0.38908200
C	-0.60679600	1.40641000	-0.00830800
C	-0.52939900	-1.27736600	0.58005700
H	-0.08803200	-0.78727000	1.45535300
H	-0.73473500	-2.31154100	0.87169500
C	0.60705500	1.40687200	0.01036100
C	0.52895300	-1.27733100	-0.57911100
H	0.73422400	-2.31155100	-0.87077100
H	0.08764300	-0.78727200	-1.45438400
C	1.89808100	0.79456400	-0.02105100
C	1.84954400	-0.60143200	-0.26977700
C	3.04940700	-1.30785000	-0.25782000
H	3.03406900	-2.37866100	-0.44437400
C	3.11415500	1.43950400	0.21063000
H	3.12122700	2.50829800	0.39754900
C	4.29704900	0.70894300	0.20655800
C	4.26369900	-0.66406200	-0.02277500
H	5.24305700	1.20955700	0.38632500
H	5.18584300	-1.23693700	-0.02358200
Sum of electronic	and $2 e r o-p o i n t$	Energies:	-616.53449

```
Sum of electronic and thermal Energies: -616.52301
Sum of electronic and thermal Enthalpies: -616.52207
Sum of electronic and thermal Free Energies: -616.57174
```


OABC-II

Methyl azide ($\mathbf{M e N}_{3}$)

$\mathrm{O}-\mathrm{ABC}-\mathrm{MeN}_{3} \mathrm{TS}$

C	-3.61247300	-2.30374000	-0.10696600
C	-2.31112300	-2.66129000	0.23429500
C	-1.32080400	-1.68996700	0.27201300
C	-1.68883600	-0.36321800	-0.05713100
C	-3.86944200	-0.96637300	-0.38723900
H	-4.40888400	-3.03830800	-0.14841800
H	-2.06326800	-3.69284400	0.47225500
H	-4.87549100	-0.64242100	-0.64437200
C	2.10892000	-1.08453300	-0.18304500
C	3.37749500	-1.65267000	-0.21390600
C	4.50265400	-0.84522700	-0.07488600
C	4.36321900	0.52976300	0.10684900
C	3.09755700	1.10251300	0.13457200
C	1.95394300	0.31005900	-0.01233000
H	3.45959100	-2.72474400	-0.35863600

H	5.49110100	-1.29308600	-0.10569000
H	5.24192200	1.15651300	0.21803000
H	2.97328100	2.17217000	0.26045200
C	-0.61300800	0.59587300	-0.06208900
C	0.08750100	-2.01736200	0.69547200
H	0.39003700	-1.36094300	1.51861200
H	0.13003900	-3.05436100	1.04728500
C	0.60743400	0.80663200	-0.02116500
N	-1.54259900	2.56547900	-0.29744800
N	-0.46190200	3.16750200	-0.16353600
N	0.68329800	3.10856300	-0.12471300
C	-2.65956400	2.99663000	0.54822900
H	-3.43837900	2.25392400	0.39212800
H	-2.37926100	3.02780200	1.60646400
H	-3.02128200	3.98002100	0.23486800
O	1.02423300	-1.89377000	-0.38447200
N	-2.94081200	-0.00955600	-0.36476700
Sum of electronic	and zero-point Energies:	-872.5095	
Sum of electronic and thermal Energies: -872.4937			
Sum of electronic and thermal	Enthalpies: -872.49276		
Sum of electronic and thermal	Free Energies:	-872.55305	
Imaginary Frequency $: ~-354.65$			

ABC-MeN $\mathbf{N S}_{3}$ TS

C	-3.76390800	-2.15729400	-0.01148700
C	-2.47686300	-2.60109600	0.27185200
C	-1.41840000	-1.69939400	0.28782800
C	-1.71656500	-0.34555200	-0.00571800
C	-3.94582800	-0.80220000	-0.26593900
H	-4.60666700	-2.83969500	-0.02792300
H	-2.28866300	-3.65016600	0.48683400
H	-4.93702800	-0.40980500	-0.48253100
C	2.17881500	-1.11314100	-0.27678200
C	3.46972400	-1.63436000	-0.24137800
C	4.56546600	-0.82324200	0.04452300
C	4.37777400	0.53249900	0.29887600
C	3.09864700	1.07529000	0.26617100
C	1.99302800	0.26531100	-0.01448100
H	3.61737400	-2.69211300	-0.44425700
H	5.56363100	-1.24992100	0.06481200
H	5.22823600	1.16952600	0.52050200
H	2.94116500	2.13007600	0.45788700
C	-0.59291200	0.56453600	-0.03997100
C	-0.01059200	-2.12624200	0.60771500
H	0.35675100	-1.52547800	1.44696900
H	-0.02608600	-3.16627800	0.94722900
C	0.63552700	0.75153600	-0.02865700
C	0.98712900	-1.98204000	-0.58783600
H	0.45215800	-1.55751800	-1.44481200
H	1.33542500	-2.97329500	-0.89199900
N	-1.46720700	2.54597200	-0.32508000
N	-0.36592800	3.12357000	-0.25011800
N	0.77672600	2.99622900	-0.23654700
C	-2.55540200	3.07882400	0.50014200
H	-2.26720200	3.14928300	1.55443400
H	-2.86391800	4.06362800	0.13797400
H	-3.37382800	2.37314300	0.38611500
N	-2.95576000	0.08823000	-0.26545200

Sum of electronic and zero-point Energies: -836.58372
Sum of electronic and thermal Energies: -836.56777
Sum of electronic and thermal Enthalpies: -836.56683
Sum of electronic and thermal Free Energies: -836.62737
Imaginary Frequency: -385.37
ODIBO-MeN ${ }_{3}$ TS

C	-3.70357700	-2.21871000	-0.11155500
C	-2.42782100	-2.51708800	0.36508100
C	-1.41193600	-1.56852800	0.32817500
C	-1.68712500	-0.28652400	-0.19923000
C	-2.96277900	0.00346300	-0.69029400
C	-3.96593200	-0.95999600	-0.64486300
H	-4.48539300	-2.97064400	-0.07608500
H	-2.21586900	-3.50467900	0.76693800
H	-3.14617600	0.98054000	-1.12708900
H	-4.95275000	-0.72862900	-1.03374400
C	2.05143800	-1.15350600	-0.11358300
C	3.29075000	-1.78233300	-0.06112700
C	4.45677000	-1.02285300	-0.03095200
C	4.38822300	0.36898000	-0.03958400
C	3.15257200	1.00331000	-0.08824400
C	1.96940100	0.25858500	-0.13059300
H	3.31732200	-2.86695500	-0.05991800
H	5.42083000	-1.52093100	0.00181700
H	5.29775100	0.96015800	-0.01333400
H	3.08494300	2.08541900	-0.10193800
C	-0.57620600	0.62586700	-0.22605900
C	-0.03051300	-1.88323200	0.84457000
H	0.28045300	-1.13542800	1.58215600
H	-0.03026900	-2.86694000	1.32666900
C	0.64781500	0.81825600	-0.19112600
N	-1.46943500	2.64755100	-0.16807100
N	-0.35144600	3.20399000	-0.10255300
N	0.78752800	3.09202500	-0.17551200
C	-2.35828100	2.90575600	0.97209300
H	-1.82518900	2.84721700	1.92637500
H	-2.84139100	3.88213600	0.87635500
H	-3.12295000	2.12954000	0.94108200
0	0.93192000	-1.93055700	-0.22282400
Sum of electronic and zero-point Energies: -856.45562			
Sum of electronic and thermal Energies: -856.43976			
Sum of electronic and thermal Enthalpies: -856.43882			
Sum of electronic and thermal Free Energies: -856.49879			
Imaginary Frequency: -386.19			

DIBO-MeN ${ }_{3}$ TS

C	-3.85583600	-2.05235200	-0.06397300
C	-2.60082000	-2.43020600	0.40832800
C	-1.51801800	-1.55514700	0.36171700
C	-1.71583100	-0.25963600	-0.17194200
C	-2.97378400	0.10769200	-0.66269700
C	-4.03926300	-0.78376000	-0.60772500
H	-4.68548800	-2.75079900	-0.01500000
H	-2.45495800	-3.42589100	0.81962100
H	-3.09396700	1.09089400	-1.10722800
H	-5.00984200	-0.48999600	-0.99509200
C	2.12038200	-1.20411100	-0.17486000
C	3.38417900	-1.77804200	-0.05814900
C	4.52703900	-0.99123300	0.06347500
C	4.41480200	0.39578900	0.06905400
C	3.16364100	0.99184200	-0.03821200
C	2.01064200	0.20814400	-0.15562800
H	3.47299400	-2.86145000	-0.07148300
H	5.50177000	-1.46190600	0.14812500
H	5.30119800	1.01582300	0.15938500
H	3.06790000	2.07088600	-0.02881700
C	-0.55519300	0.59475000	-0.22269400
C	-0.14331600	-1.96617200	0.82467700
H	0.22160300	-1.24313400	1.56235500
H	-0.20888100	-2.93308000	1.33200900
C	0.67725100	0.75854100	-0.22016100
C	0.88991600	-2.05956200	-0.34731700

H	0.38920900	-1.76561800	-1.27676400
H	1.19878400	-3.10129100	-0.47455800
N	-1.39142100	2.62367700	-0.16140000
N	-0.26187900	3.16364600	-0.13846400
N	0.86931000	2.99573900	-0.24879700
C	-2.24828600	2.92651800	0.99175500
H	-1.69589300	2.87445500	1.93534900
H	-2.70954200	3.91242100	0.88567300
H	-3.03198000	2.16893300	0.99315800
Sum of electronic and zero-point Energies: -820.5291			
Sum of electronic and thermal Energies: -820.51311			
Sum of electronic and thermal Enthalpies: -820.51217			
Sum of electronic and thermal Free Energies: -820.57221			
Imaginary Frequency: -415.57			

O-ABC-II-MeN \mathbf{N}_{3} TS

C	-4.50827500	-0.86432100	-0.11506800
C	-3.39600700	-1.64388400	0.19847800
C	-2.12647100	-1.08003000	0.25515700
C	-1.97081300	0.29908400	-0.01212100
C	-3.08952200	1.07735600	-0.31815900
C	-4.35168600	0.49471100	-0.37224200
H	-5.49337000	-1.31813100	-0.15694800
H	-3.51575700	-2.70515200	0.40120300
H	-2.95600400	2.13576900	-0.51143900
H	-5.21592400	1.10525700	-0.61446300
C	1.30001100	-1.69714200	-0.21352200
C	2.29350700	-2.66467800	-0.28327000
C	3.61855600	-2.27830200	-0.11808500
C	3.89116400	-0.93397500	0.11957400
C	1.67553500	-0.35190400	0.02553000
H	2.00909400	-3.69421800	-0.47536900
H	4.42456400	-3.00208700	-0.17073800
H	4.91555200	-0.59561100	0.25511400
C	-0.62579300	0.80432800	0.03366100
C	-0.92918000	-1.90587400	0.64534900
H	-0.41715900	-1.44818300	1.49881500
H	-1.24814400	-2.91376800	0.93063100
C	0.59534500	0.59900600	0.07423900
N	-0.73209400	3.07809000	0.24738000
N	0.41215600	3.16297500	0.28266800
N	1.50702200	2.57976900	0.38146400
C	2.59714500	3.06772200	-0.47098700
H	2.94131500	4.04781000	-0.12874500
H	3.39449200	2.33729300	-0.36115400
H	2.29193100	3.12997600	-1.52075300
O	0.00626100	-2.05217600	-0.44316800
N	2.95266400	0.00857500	0.18963000
Sum of electronic	and $2 e r 0-p 0 i n t$	Energies:	-872.50843
Sum of electronic	and thermal	Energies:	-872.49264
Sum of electronic	and	thermal	Enthalpies:

References

S1. (a) Farrokh, J,; Campos, C.; Hunt, D. A. Tetrahedron Lett. 2015, 56, 5245.; See also: (b) Tagawa, H.; Kubo, S.; Ishikawa, F. Chem. Pharm. Bull. 1981, 29, 3515.; (c) Iwasaki, N.; Ohashi, T.; Musoh, K.; Nishino, H.; Kado, N.; Yasuda, H. K.; Ito, Y. J. Med. Chem. 1995, 38, 496.; (d) Piwinski, J. J.; Wong, J. K.; Green, M. J.; Ganguly, A. K. Int. Patent WO 89/10369, 1989.; (e) Afonso, A.; Kelly, J. M.; Rosenblum, S.; Wolin, R.; Weinstein, J. Int. Patent WO 98/15556, 1998.
S2. Muir, C. W.; Kennedy, A. R.; Redmond, J. M.; Watson, A. J. B. Org. Biomol. Chem. 2013, 11, 3337.
S3. Dones, J. M.; Abularrage, N. S.; Khanal, N.; Gold, B.; Raines, R. T. J. Am. Chem. Soc. 2021, 143, 9489.
S4. (a) Wardrop, D. J.; Komenda, J. P. Org. Lett. 2012, 14, 1548-1551; (b) Alexakos, P. D.; Wardrop, D. J. J. Org. Chem. 2019, 84, 12430-12436.
S5. Groom, C.R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. Acta Cryst. 2016, B72, 171.
S6. Crysalispro, 1.171.42.84, 2023, Rigaku OD.
S7. (a) Sheldrick, G. M. Acta Cryst. 2015, A71, 3. (b) Sheldrick, G. M. Acta Cryst. 2015, C71, 3.
S8. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339.

S9. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
S10. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
S11. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Karafiloglou, P.; Landis, C. R.; Weinhold, F. NBO 7.0; Theoretical Chemistry Institute, University of Wisconsin-Madison: Madison, WI, 2018.

