Supporting Information

Synthesis of the indeno[1,2-*b*]indole core of janthitrem B

Marvin Fresia,^a Alexandra Dierks,^a Peter G. Jones^b and Thomas Lindel^{*a}

^a Institute of Organic Chemistry, Technical University Braunschweig, Hagenring 30, 38106 Braunschweig, Germany

^b Institute of Inorganic and Analytical Chemistry, Technical University Braunschweig, Hagenring 30, 38106 Braunschweig, Germany

Contents

1	Additional synthethic routes	S3
	1.1 Synthesis of cyclopentadiene 9	S3
	1.2 Attempted Barton-McCombie deoxygenation	S5
•		•
2		S6
		S6
		56
		56
3	Experimental procedures and analytical data	S 8
	3.1 2-Methylcyclohex-1-ene-1-carboxylic acid (4)	S8
	3.2 (1 <i>H</i> -Benzo[<i>d</i>][1,2,3]triazol-1-yl)(2-methylcyclohex-1-en-1-yl)methanone (5)	S9
	3.3 (1 <i>H</i> -Indol-3-yl)(2-methylcyclohex-1-en-1-yl)methanone (6)	S9
	3.4 <i>cis</i> -4a-Methyl-1,3,4,4a,5,10a-hexahydroindeno[1,2- <i>b</i>]indol-10(2 <i>H</i>)-one (7)	S10
	3.5 (1-Methyl-1 <i>H</i> -indol-3-yl)(2-methylcyclohex-1-en-1-yl)methanone (S20)	S11
	3.6 <i>cis</i> -4a,5-Dimethyl-1,3,4,4a,5,10a-hexahydroindeno[1,2- <i>b</i>]indol-10(2 <i>H</i>)-one (S21)	S12
	3.7 3-((2-Methylcyclohex-1-en-1-yl)methyl)-1 <i>H</i> -indole (S2)	S12
	3.8 3-((2-Methylcyclohex-1-en-1-yl)methyl)-1-tosyl-1 <i>H</i> -indole (S3)	S13
	3.9 Epoxide S4	S14
	3.10 1-(1-Methylcyclopentyl)-2-(1-tosyl-1 <i>H</i> -indol-3-yl)ethan-1-one (S5)	S15
	3.11 (2-Methylcyclohex-1-en-1-yl)(1-tosyl-1 <i>H</i> -indol-3-yl)methyl acetate (S9)	S16
	3.12 (E)-3-((2-Methylcyclohex-2-en-1-ylidene)methyl)-1-tosyl-1H-indole (S10)	S17
	3.13 <i>cis</i> -Hydrindanone 8	S18
	3.14 4a-Methyl-5-tosyl-1,2,3,4,4a,5-hexahydroindeno[1,2-b]indole (9)	S18
	3.15 Bromohydrin 10	S19
	3.16 Cyclobutane 11	S20
	3.17 Diol 14	S21
	3.18 Sulfite 16	S22
	3.19 Ketone 17	S23
	3.20 Diol 18	S23
	3.21 Sulfite 19	S24
	3.22 <i>cis</i> -Hydrindanone 20	S25
	3.23 <i>trans</i> -Hydrindanone 21	S26
	3.24 Alcohol S11	S27
	3.25 Silyl ether S13 and xanthate S12	S28
	3.26 <i>cis</i> -Hydrindane S14	S29
	3.27 Alcohols S15 and S22	S30
	3.28 Xanthates S16 and S23 and silyl ether S17	S31
	3.29 Dithiolane 22	S33
	3.30 <i>trans</i> -Hydrindane 23	S34
	3.31 <i>trans</i> -Hydrindane 24	S35
4	NMR spectra of new compounds	S37
5	X-ray crystallographic data	S88

1.1 Synthesis of cyclopentadiene 9

After considerable experimentation, we managed to allylate indole with 2-methylcyclohexenylmethanol (**S1**) in the presence of $MoO_2(acac)_2/NH_4PF_6$ (10%) in nitromethaneL^[1] in modest yield (27%), whereby many side products formed (Scheme S1). We exposed purified allylindole **S2** to various Lewis acids and observed only decomposition (TMSOTf, TBSOTf, TIPSOTf, AlCl₃, SnCl₄) or no conversion (Au(PPh₃)NTf₂, AgPF₆). Our case differs from Dethe's examples, as the carbon next to the double bond (C-6') is secondary, while the published examples only contained quaternary carbons. We decided to N-tosylate the rather sensitive 3-allylated product **S2** to the more stable compound **S3** and attempted an epoxidation/ring opening/cyclization sequence. After tosyl protection, epoxidation with *m*-CPBA afforded cyclohexene oxide **S4** without affecting the indole nucleus. Upon exposure to BF₃ • OEt₂, epoxide **S4** did not form the desired tetracycle **S6**, but underwent ring contraction to acyl cyclopentane **S5** by Meinwald rearrangement. The desired cyclization is probably not prevented by the N-tosyl group, since the free indole reacted in the same manner. In orienting experiments, we obtained the analogous epoxide and acylcyclopentane, which could not be fully characterized because of inseparable, colored by-products.

Scheme S1. Attempted epoxidation/ring opening/cyclization sequence to synthesize indeno[1,2b]indole **S5**.

^[1] H. Yang, L. Fang, M. Zhang, C. Zhu, *Eur. J. Org. Chem.* **2009**, *2009*, 666–672.

Ramasastry and coworkers reported the Pd-catalyzed 5-endo-trig cyclization of bisallylacetates affording N-tosylated indeno[*b*]indoles.^[2] Thus, we synthesized the new bisallylacetate **S9** by hydroxyalkylation of 3-iodo-*N*-tosylindole with aldehyde **S8**, after iodine/Li exchange, followed by acetylation (Scheme S2). When the acid-sensitive allylic acetate **S9** was treated with PdCl₂ (10%) in toluene (80 °C), we did not observe any cyclization. Instead, elimination of HOAc had occurred, yielding dienylindole **S10** with a C-2'/C-3' cyclohexene double bond. The difference from the published case is again the absence of the geminal methyl groups at C-6', which may induce a conformation of the intermediate η^3 -Pd complex, which favors cyclization.

Scheme S2. Synthesis and attempted cyclizations of bisallylacetate S9.

^[2] B. Singh, S. K. Bankar, K. Kumar, S. S. V. Ramasastry, Chem. Sci. 2020, 11, 4948–4953.

1.2 Attempted Barton-McCombie deoxygenation

Orienting experiments on a Barton-McCombie deoxygenation of *trans*-hydrindane **21** were conducted with the *cis*-isomer **20** in order to save precious material. DIBAL-H reduction of **20** occurred from the convex side and afforded alcohol **S11** diastereoselectively (Scheme S3). Conversion to xanthate **S12** was accompanied by the stable trimethylsilyl ether **S13**. Radical reduction (HSn(n-Bu)₃/AIBN) gave *cis*-hydrindane **S14**, albeit in modest yield (30%).

Scheme S3. Barton-McCombie deoxygenation of *cis*-hydrindanone **20**.

Next, we applied the same sequence with *trans*-hydrindanone **21**. DIBAL-H reduction afforded the secondary alcohol **S15**, this time as a mixture (5:2) of diastereomers (Scheme S4). These were converted into xanthates **S16** in low yield. Disastrously, the radical reduction employing Et_3B as radical starter to lower the reaction temperature, resulted only in decomposition. Since the conversion of alcohol **S15** into xanthate **S16** was already sluggish, we did not pursue this strategy any further.

2.1 General Methods

Air- and moisture-sensitive liquids were transferred by syringe. Analytical thin-layer chromatography (TLC) was performed using aluminum plates pre-coated with silica gel (silica gel 60 F₂₅₄, Merck or silica gel 60 RP-18 F_{254S}, Merck). TLC plates were visualized by exposure to ultraviolet light ($\lambda = 254$ nm) and then were stained by submersion in a vanillin solution (6.8 g vanillin dissolved in 200 mL EtOH and 2.5 mL H₂SO₄) followed by a brief heating. Concentration under reduced pressure was performed by rotary evaporation at 50 °C, unless otherwise noted. Flash column chromatography was performed on Merck silica gel 60 (40 – 63 µm). Column height was 15 cm, unless otherwise noted.

2.2 Materials

Chemicals were purchased from commercial suppliers and used without further purification. Solvents were dried prior to use by using standard methods^[3], unless otherwise noted.

2.3 Instrumentation

NMR spectra were recorded with a Bruker AV III 400 (400 MHz for ¹H) or a Bruker AVIIIHD500 (500 MHz for ¹H) spectrometer at 299 K. ¹¹B, ¹³C and ¹⁹F NMR spectra were recorded with broadband ¹H-decoupling. ¹H chemical shifts are given in ppm (δ scale) relative to tetramethylsilane with tetramethylsilane as the internal standard (¹H = 0.00 ppm). ¹³C chemical shifts are given in ppm (δ scale) relative to tetramethylsilane with the residual solvent peak as the internal standard (¹³C = 77.16 ppm (CDCl₃), 128.06 ppm (C₆D₆)). The signals were assigned by ¹H,¹³C-HSQC-, ¹H,¹³C-HMBC-, ¹H,¹H-COSY-, and ¹H,¹H-NOESY-experiments. The multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sext (sextet), sept (septet), m (multiplet) or a combination thereof.

Mass spectra were obtained with a ThermoFinnigan MAT95XL or a ThermoFisher Scientific (LTQ-Orbitrap Velos) spectrometer.

IR spectra were recorded with a Bruker Tensor 27 spectrometer using diamond ATR technique. UV/Vis spectra were measured with a Varian Cary 100 Bio UV/Vis spectrometer.

Irradiations were carried out in a Rayonet (RPR-200) reactor equipped with 16 x RPR-3000Å ($\lambda_{max} = 300 \text{ nm}$) or 16 x RPR-3500Å ($\lambda_{max} = 350 \text{ nm}$) using a self-made flow reactor. The flow reactor (Figure S1) consists of FEP tubing (inner diameter: 0.8 mm, outer diameter:1.6 mm, length: 10 m) wrapped around a 2.5 L amber glass bottle (outer diameter: 13 cm). The solutions were pumped through the reactor with a syringe or HPLC pump and collected in a flask wrapped in aluminum foil.

^[3] W. L. F. Armarego, *Purification of laboratory chemicals*, Eighth edition / W.L.F. Armarego, Butterworth-Heinemann, Amsterdam, **2017**.

2 General information

Figure S1. Flow reactor (left) and flow reactor inside the Rayonet reactor (right).

3.1 2-Methylcyclohex-1-ene-1-carboxylic acid (4)

To triethyl orthoformate (67 mL, 400 mmol, 2.00 eq.) under argon was added dropwise a solution of BF₃ • OEt₂ (61 mL, 480 mmol, 2.40 eq.) in CH₂Cl₂ (200 mL) at -30 °C. The mixture was stirred at 0 °C for 20 min. Cyclohexanone (**S18**, 21 mL, 200 mmol, 1.00 eq.) was added dropwise at -78 °C. DIPEA (100 mL, 600 mmol, 3.00 eq.) was added dropwise at -78 °C. The solution was stirred at -78 °C for 1 h and poured into sat. NaHCO₃ (400 mL), diluted with CH₂Cl₂ (100 mL) and stirred rapidly for 10 min. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3x100 mL). The combined organic phases were washed with ice-cold 10% H₂SO₄, H₂O, dried over MgSO₄, filtered and concentrated. Distillation (0.8 mbar, oil bath temperature: 120 °C) of the residue afforded the crude ketone **S19** as a yellow oil (25.3 g).

Magnesium turnings (4.60 g, 189 mmol) were suspended in Et₂O (19 mL) under argon. At room temperature MeI (1.0 mL, 16 mmol) was added and the reaction mixture stirred until the exothermic reaction obviously started. A solution of MeI (11 mL, 173 mmol) in Et₂O (48 mL) was added dropwise at 0 °C. The mixture was stirred for 40 min under reflux. A solution of the crude ketone **S19** (25.3 g) in Et₂O (42 mL) was added dropwise at 0 °C and stirred at that temperature for 40 min. The mixture was diluted with Et₂O (42 mL) and stirred for 20 min under reflux. The reaction was quenched by the addition of 1 M HCl (210 mL) at 0 °C. The phases were separated and the aqueous phase was extracted with Et₂O (3x100 mL). The combined organic phases were washed with H₂O, dried over MgSO₄, filtered and concentrated. The obtained residue (19.3 g) was dissolved in acetone (76 mL) and 2 M HCl (24 mL). The solution was stirred for 2.5 h under reflux. H₂O (200 mL) was added at room temperature and the mixture was extracted with Et₂O (3x100 mL). The combined organic phases were washed with H₂O, dried organic phases were washed with H₂O and sat. NaCl, dried over MgSO₄, filtered and concentrated. Distillation (0.6 mbar, oil bath temperature: 80 °C) of the residue afforded the crude aldehyde **S8** as a colorless oil (10.8 g).

To a solution of the crude aldehyde **S8** (10.8 g) and 2-methyl-2-butene (28 mL, 262 mmol) in *t*-BuOH (260 mL) was added a solution of NaH₂PO₄ (20.9 g, 174 mmol) and NaClO₂ (18.9 g, 209 mmol) in H₂O (87 mL) dropwise at room temperature. The mixture was rapidly stirred for 20 h at room temperature. *t*-BuOH was removed under reduced pressure and the pH was adjusted to 3 by the addition of 2 M HCl. The mixture was extracted with TBME (3x200 mL). The combined organic phases were concentrated to about one-tenth of the original volume and extracted with sat. NaHCO₃ (5x50 mL). The pH of the combined aqueous phases was adjusted to 3 by the addition of 2 M HCl. The mixture was extracted with TBME (3x100 mL). The combined organic phases were washed with H₂O and sat. NaCl, dried over MgSO₄, filtered and concentrated. 2-Methylcyclohex-1-ene-1-carboxylic acid (4) was obtained as a colorless solid (6.35 g, 45.3 mmol, 23% over 4 steps). Analytical data are in agreement with the previously reported.^[4]

^[4] R. K. Dieter, Y. Jenkitkasemwong, J. W. Dieter, J. Org. Chem. 1984, 49, 3183–3195.

3.2 (1*H*-Benzo[*d*][1,2,3]triazol-1-yl)(2-methylcyclohex-1-en-1-yl)methanone (5)

To a solution of benzotriazole (13.2 g, 111 mmol, 4.40 eq.) in CH_2Cl_2 (130 mL) was added $SOCl_2$ (2.0 mL, 27.6 mmol, 1.10 eq.) dropwise at room temperature. The solution was stirred for 30 min at room temperature. Carboxylic acid **4** (3.52 g, 25.1 mmol, 1.00 eq.) was added and the mixture stirred for 3 h at room temperature. The suspension was filtered through a pad of silica gel (rinsed with CH_2Cl_2) and the filtrate concentrated. The residue was dissolved in TBME (100 mL) and washed with sat. NaHCO₃ (3x30 mL), dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (20:1)] afforded *N*-acylbenzotriazole **5** as a colorless solid (5.66 g, 23.5 mmol, 93%).

TLC [petroleum ether/EtOAc (8:1)]: $R_{f} = 0.56$ [vanillin: yellow].

¹**H NMR** (500 MHz, CDCl₃, 2-methylcyclohex-1-ene moiety marked with *): δ [ppm] = 8.35 – 8.30 (m, 1 H, 7-*H*), 8.16 – 8.10 (m, 1 H, 4-*H*), 7.69 – 7.64 (m, 1 H, 6-*H*), 7.54 – 7.48 (m, 1 H, 5-*H*), 2.51 – 2.44 (m, 2 H, 6*-*H*), 2.25 – 2.16 (m, 2 H, 3*-*H*), 1.82 – 1.75 (m, 4 H, 4*-*H*, 5*-*H*), 1.73 – 1.69 (m, 3 H, 2*-CH₃).

¹³**C** NMR (126 MHz, CDCl₃, 2-methylcyclohex-1-ene moiety marked with *): δ [ppm] = 170.6 (1 C, 1-(*C*=O)-1*), 146.3 (1 C, *C*-3a*), 141.0 (1 C, *C*-2*), 131.5 (1 C, *C*-7a*), 130.3 (1 C, *C*-6), 127.2 (1 C, *C*-1*), 126.2 (1 C, *C*-5), 120.2 (1 C, *C*-4), 114.7 (1 C, *C*-7), 31.6 (1 C, *C*-3*), 27.6 (1 C, *C*-6*), 22.3 (1 C, *C*-4*), 22.2 (1 C, *C*-5*), 21.6 (1 C, 2*-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2935 (m), 2853 (m), 2165 (m), 2024 (m), 1974 (m), 1707 (s), 1670 (m), 1600 (m), 1482 (m), 1442 (m), 1363 (s), 1319 (m), 1282 (s), 1227 (m), 1191 (m), 1135 (m), 1097 (m), 1040 (s), 1005 (m), 929 (s), 876 (s), 786 (s), 742 (s), 624 (s), 546 (m). **UV/Vis** (THF): λ_{max} (lg ε) = 299 (3.40), 266 (3.31).

ESI-HRMS: calculated [C₁₄H₁₅N₃O+Na]⁺: 264.11073

found:

264.11076 (0.11 ppm).

3.3 (1*H*-Indol-3-yl)(2-methylcyclohex-1-en-1-yl)methanone (6)

To a solution of *N*-acyl benzotriazole **5** (2.4 g, 10 mmol, 1.00 eq.) and indole (1.46 g, 12.5 mmol, 1.25 eq.) in CH_2CI_2 (50 mL) was added Ti CI_4 (2.2 mL, 20 mmol, 2.00 eq.) dropwise at room temperature. The solution was stirred for 2 h at room temperature. The reaction was quenched by the addition of 25% NaOH (13 mL, 100 mmol, 10.0 eq.) at 0 °C. The mixture was stirred rapidly while warming up to room temperature. The biphasic mixture was filtered through a pad of Celite 545 (rinsed with CH_2CI_2). The filtrate was dried over MgSO₄, filtered and concentrated. The residue was filtered through a pad of silica gel (rinsed with $CHCI_3/EtOAc 4:1$) and the filtrate

concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (6:1) to (4:1) to (2:1) to (1:1)] afforded ketone **6** as an off-white solid (1.99 g, 8.32 mmol, 83%).

TLC [petroleum ether/EtOAc (2:1)]: $R_{f} = 0.43$ [vanillin: red].

¹**H NMR** (400 MHz, CDCl₃, 2-methylcyclohex-1-ene moiety marked with *): δ [ppm] = 9.16 (s, 1 H, 1-*H*), 8.41 – 8.33 (m, 1 H, 4-*H*), 7.75 (d, *J* = 3.0 Hz, 1 H, 2-*H*), 7.46 – 7.40 (m, 1 H, 7-*H*), 7.33 – 7.26 (m, 2 H, 5-*H*, 6-*H*), 2.36 – 2.26 (m, 2 H, 6*-*H*), 2.13 – 2.04 (m, 2 H, 3*-*H*), 1.80 – 1.66 (m, 4 H, 4*-*H*, 5*-*H*), 1.63 – 1.61 (m, 3 H, 2*-CH₃).

¹³**C NMR** (101 MHz, CDCl₃, 2-methylcyclohex-1-ene moiety marked with *): δ [ppm] = 197.4 (1 C, 3-(*C*=O)-1*), 136.9 (1 C, *C*-7a), 134.5 (1 C, *C*-1*), 133.8 (1 C, *C*-2), 132.0 (1 C, *C*-2*), 125.6 (1 C, *C*-3a), 123.8 (1 C, *C*-6), 122.8 (1 C, *C*-5), 122.3 (1 C, *C*-4), 117.9 (1 C, *C*-3), 111.6 (1 C, *C*-7), 31.1 (1 C, *C*-3*), 27.9 (1 C, *C*-6*), 22.9 (1 C, *C*-4*), 22.6 (1 C, *C*-5*), 21.2 (1 C, 2*-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3146 (w), 3063 (w), 2924 (m), 2861 (m), 2669 (w), 2294 (w), 2070 (w), 1925 (w), 1742 (w), 1663 (m), 1575 (m), 1516 (m), 1423 (s), 1380 (m), 1307 (m), 1272 (m), 1239 (m), 1169 (m), 1133 (m), 1002 (m), 933 (m), 878 (m), 779 (s), 737 (s), 653 (s), 606 (m), 548 (m).

UV/Vis (THF): λ_{max} (lg ε) = 292 (4.04), 259 (4.00), 240 (4.15).

ESI-HRMS: calculated [C₁₆H₁₇NO+Na]⁺: 262.12023

found:

262.12015 (0.31 ppm).

3.4 *cis*-4a-Methyl-1,3,4,4a,5,10a-hexahydroindeno[1,2-*b*]indol-10(2*H*)-one (7)

A solution of ketone **6** (1.20 g, 5.00 mmol) in DCE (250 mL) was degassed by bubbling argon through it for 10 min. The solution was pumped through the flow reactor (1.2 mL min⁻¹, $\lambda = 300$ nm). The solution was concentrated (the DCE was collected and reused without affecting the yield). The residue was filtered through a pad of silica gel (rinsing with CHCl₃/EtOAc 2:1) and the filtrate concentrated. Flash column chromatography (dissolved in CH₂Cl₂ and dry-loaded on silica gel) on silica gel [petroleum ether/EtOAc (4:1) to (2:1) to (1:1)] afforded *cis*-hydrindanone **7** as an off-white solid (947 mg, 3.96 mmol, 79%).

TLC [petroleum ether/EtOAc (2:1)]: $R_{f} = 0.29$ [vanillin: red].

¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 9.75 (s, 1 H, 5-*H*), 7.92 – 7.88 (m, 1 H, 9-*H*), 7.44 – 7.40 (m, 1 H, 6-*H*), 7.27 – 7.19 (m, 2 H, 7-*H*, 8-*H*), 2.77 (dd, J = 6.3 Hz, 4.2 Hz, 1 H, 10a-*H*), 2.17 (dddd, J = 14.0 Hz, 4.6 Hz, 4.6 Hz, 4.6 Hz, 1 H, 1-*H* (*syn* to 4a-CH₃)), 1.87 (ddd, J = 13.6 Hz, 8.2 Hz, 4.4 Hz, 1 H, 4-*H* (*syn* to 4a-CH₃)), 1.83 – 1.74 (m, 1 H, 1-*H* (*anti* to 4a-CH₃)), 1.70 (ddd, J = 13.6 Hz, 8.2 Hz, 4.4 Hz, 1 H, 4-*H* (*anti* to 4a-CH₃)), 1.57 – 1.27 (m, 2 H, 2-*H*, 3-*H*), 1.53 (s, 3 H, 4a-CH₃), 1.43 – 1.41 (m, 2 H, 2-*H*, 3-*H*).

¹³**C NMR** (126 MHz, CDCl₃): δ [ppm] = 197.9 (1 C, *C*-10), 174.0 (1 C, *C*-4b), 142.0 (1 C, *C*-5a), 123.8 (1 C, *C*-7), 122.6 (1 C, *C*-8), 121.6 (1 C, *C*-9a), 121.3 (1 C, *C*-9), 118.5 (1 C, *C*-9b), 112.4

(1 C, C-6), 60.1 (1 C, C-10a), 39.1 (1 C, C-4a), 34.7 (1 C, C-4), 25.3 (1 C, 4a-CH₃), 22.0 (1 C, C-1), 19.8 (1 C, C-2), 19.2 (1 C, C-3).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3182 (m), 3067 (m), 2931 (m), 2861 (m), 1645 (s), 1539 (w), 1502 (w), 1449 (s), 1309 (m), 1230 (m), 1156 (m), 1092 (m), 1010 (w), 939 (w), 869 (m), 846 (w), 812 (w), 738 (s), 675 (m), 635 (m), 559 (m).

UV/Vis (THF): λ_{max} (lg ε) = 288 (3.75), 256 (4.28), 234 (4.26).

ESI-HRMS: calculated [C₁₆H₁₇NO+H]⁺: 240.13829

found:

240.13815 (0.58 ppm).

3.5 (1-Methyl-1H-indol-3-yl)(2-methylcyclohex-1-en-1-yl)methanone (S20)

To a solution of *N*-acyl benzotriazole **5** (412 mg, 1.70 mmol, 1.00 eq.) and *N*-methylindole^[5] (279 mg, 2.13 mmol, 1.25 eq.) in CH₂Cl₂ (13 mL) was added TiCl₄ (1 M in CH₂Cl₂, 3.4 mL, 3.41 mmol, 2.00 eq.) dropwise at room temperature. The solution was stirred for 2 h at room temperature. The reaction was quenched by the addition of sat. NaHCO₃. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3x50 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (4:1) to (2:1)] afforded ketone **S20** as a yellow oil which solidified in the freezer (322 mg, 1.27 mmol, 75%).

TLC [petroleum ether/EtOAc (4:1)]: $R_{f} = 0.33$ [vanillin: red].

¹**H NMR** (500 MHz, CDCl₃, 2-methylcyclohex-1-ene moiety marked with *): δ [ppm] = 8.37 – 8.31 (m, 1 H, 4-*H*), 7.59 (s, 1 H, 2-*H*), 7.37 – 7.28 (m, 3 H, 5-*H*, 6-*H*, 7-*H*), 3.84 (s, 3 H, 1-CH₃), 2.33 – 2.27 (m, 2 H, 6*-*H*), 2.12 – 2.07 (m, 2 H, 3*-*H*), 1.78 – 1.69 (m, 4 H, 4*-*H*, 5*-*H*), 1.64 – 1.60 (m, 3 H, 2*-CH₃).

¹³**C NMR** (126 MHz, CDCl₃, 2-methylcyclohex-1-ene moiety marked with *): δ [ppm] = 196.5 (1 C, 3-(*C*=O)-1*), 137.9 (1 C, *C*-7a), 137.5 (1 C, *C*-2), 134.6 (1 C, *C*-1*), 131.5 (1 C, *C*-2*), 126.4 (1 C, *C*-3a), 123.4 (1 C, *C*-6), 122.7 (1 C, *C*-5), 122.5 (1 C, *C*-4), 116.4 (1 C, *C*-3), 109.8 (1 C, *C*-7), 33.7 (1 C, 1-*C*H₃), 31.1 (1 C, *C*-3*), 27.9 (1 C, *C*-6*), 22.9 (1 C, *C*-4*), 22.7 (1 C, *C*-5*), 21.2 (1 C, 2*-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2926 (m), 2858 (m), 1599 (m), 1519 (m), 1457 (m), 1365 (m), 1274 (w), 1220 (m), 1156 (w), 1115 (m), 1068 (m), 1011 (m), 933 (w), 867 (m), 782 (m), 739 (s), 634 (w), 580 (w).

UV/Vis (THF): λ_{max} (lg ε) = 299 (4.15), 246 (4.17).

^[5] M. P. Tantak, V. Gupta, K. Nikhil, V. Arun, R. P. Singh, P. N. Jha, K. Shah, D. Kumar, *Bioorg. Med. Chem. Lett.* 2016, 26, 3167–3171.

3.6 *cis*-4a,5-Dimethyl-1,3,4,4a,5,10a-hexahydroindeno[1,2-*b*]indol-10(2*H*)one (S21)

A solution of ketone **S20** (101 mg, 400 µmol) in DCE (20 mL) was degassed by bubbling argon through it for 10 min. The solution was pumped through the flow reactor ($40 \,\mu L \,min^{-1}$, $\lambda = 350 \,nm$). The solution was concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (6:1) to (4:1) to (2:1)] afforded *cis*-hydrindanone **S21** (61 mg, 241 µmol, 60%) as an off-white solid and unreacted ketone **S20** as a yellowish oil which solidified in the freezer (17 mg, 67 µmol, 17%).

TLC [petroleum ether/EtOAc (4:1)]: $R_{f} = 0.17$ [vanillin: red].

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.97 - 7.93 (m, 1 H, 9-*H*), 7.33 - 7.24 (m, 3 H, 6-*H*, 7-*H*, 8-*H*), 3.82 (s, 3 H, 5-CH₃), 2.72 (dd, *J* = 6.3 Hz, 4.4 Hz, 1 H, 10a-*H*), 2.20 - 2.11 (m, 1 H, 1-*H* (*anti* to 4a-CH₃)), 1.98 - 1.90 (m, 1 H, 4-*H* (*syn* to 4a-CH₃)), 1.84 - 1.67 (m, 2 H, 1-*H* (*syn* to 4a-CH₃)), 4-*H* (*anti* to 4a-CH₃)), 1.62 - 1.31 (m, 2 H, 2-*H*, 3-*H*), 1.56 (s, 3 H, 4a-CH₃), 1.44 - 1.44 (m, 2 H, 2-*H*, 3-*H*).

¹³**C NMR** (101 MHz, CDCl₃): δ [ppm] = 196.7 (1 C, *C*-10), 172.3 (1 C, *C*-4b), 143.3 (1 C, *C*-5a), 123.4 (1 C, *C*-7), 122.5 (1 C, *C*-8), 121.4 (1 C, *C*-9), 121.4 (1 C, *C*-9a), 117.8 (1 C, *C*-9b), 109.9 (1 C, *C*-6), 60.6 (1 C, *C*-10a), 39.6 (1 C, *C*-4a), 33.7 (1 C, *C*-4), 31.3 (1 C, 5-*C*H₃), 24.7 (1 C, 4a-*C*H₃), 21.8 (1 C, *C*-1), 19.7 (1 C, *C*-2), 19.2 (1 C, *C*-3).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3054 (w), 2930 (m), 2859 (m), 1670 (s), 1523 (m), 1465 (s), 1449 (s), 1408 (s), 1326 (m), 1272 (w), 1213 (w), 1097 (m), 1052 (m), 1015 (w), 978 (w), 935 (w), 862 (m), 806 (m), 745 (s), 665 (w), 603 (w).

UV/Vis (THF): λ_{max} (lg ε) = 291 (3.84), 279 (3.99), 256 (4.23), 237 (4.25).

ESI-HRMS: calculated [C₁₇H₁₉NO+H]⁺: 254.15394

found:

254.15404 (0.39 ppm).

3.7 3-((2-Methylcyclohex-1-en-1-yl)methyl)-1*H*-indole (S2)

To a solution of $MoO_2(acac)_2$ (163 mg, 500 µmol, 0.10 eq.) and NH_4PF_6 (82 mg, 500 µmol, 0.10 eq.) in nitromethane (20 mL) was added indole (1.17 g, 10.0 mmol, 2.00 eq.) at 65 °C. After stirring for 5 min at 65 °C, allylic alcohol^[6] **S1** (631 mg, 5.00 mmol, 1.00 eq.) was added. The solution was stirred for 30 min at 65 °C and concentrated. Flash column chromatography on

^[6] C. Ye, X. Kou, G. Yang, J. Shen, W. Zhang, *Tetrahedron Lett.* **2019**, *60*, 1148–1152.

silica gel [petroleum ether/EtOAc (40:1) to (30:1)] afforded indole **S2** as a brownish oil which solidified in the freezer (304 mg, 1.35 mmol, 27%).

TLC [petroleum ether/EtOAc (10:1)]: $R_{f} = 0.45$ [vanillin: red].

¹**H NMR** (400 MHz, C₆D₆, 2-methylcyclohex-1-ene moiety marked with *): δ [ppm] = 7.75 – 7.72 (m, 1 H, 4-*H*), 7.26 – 7.18 (m, 2 H, 5-*H*, 6-*H*), 7.07 – 7.04 (m, 1 H, 7-*H*), 6.63 (s, 1 H, 1-*H*), 6.49 – 6.47 (m, 1 H, 2-*H*), 3.49 (s, 2 H, 3-C*H*₂-1*), 2.06 – 1.92 (m, 4 H, 3*-*H*, 6*-*H*), 1.76 (s, 3 H, 2*-C*H*₃), 1.60 – 1.45 (m, 4 H, 4*-*H*, 5*-*H*).

¹³**C NMR** (101 MHz, C_6D_6 , 2-methylcyclohex-1-ene moiety marked with *): δ [ppm] = 137.0 (1 C, C-7a), 129.5 (1 C, C-2*), 128.5 (1 C, C-3a), 126.6 (1 C, C-1*), 122.1 (1 C, C-6), 121.7 (1 C, C-2), 119.5 (1 C, C-5), 119.5 (1 C, C-4), 115.2 (1 C, C-3), 111.3 (1 C, C-7), 32.3 (1 C, C-3*), 29.9 (1 C, C-6*), 29.5 (1 C, 3-CH₂-1*), 24.0 (1 C, C-4*), 23.9 (1 C, C-5*), 19.6 (1 C, 2*-CH₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3411 (m), 3050 (w), 2919 (m), 2860 (m), 1616 (w), 1486 (w), 1448 (m), 1343 (m), 1225 (w), 1182 (w), 1136 (w), 1087 (m), 1045 (w), 1006 (w), 925 (w), 806 (w), 735 (s), 589 (m), 546 (w).

UV/Vis (THF): λ_{max} (lg ε) = 291 (3.70), 283 (3.76), 230 (4.18).

ESI-HRMS: calculated [C₁₆H₁₉N+H]⁺: 226.15903

found:

226.15916 (0.57 ppm).

3.8 3-((2-Methylcyclohex-1-en-1-yl)methyl)-1-tosyl-1*H*-indole (S3)

To a solution of indole **S2** (196 mg, 870 μ mol, 1.00 eq.) in PhMe (8.7 mL) was added 50% NaOH (8.7 mL), *n*-Bu₄NHSO₄ (44 mg, 131 μ mol, 0.15 eq.) and TsCl (332 mg, 1.74 mmol, 2.00 eq.) at 0 °C. The solution was stirred for 1 h at room temperature. H₂O was added and the mixture extracted with TBME (3x50 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (50:1) to (20:1)] afforded tosylindole **S3** as a colorless solid (179 mg, 472 μ mol, 54%).

TLC [Petroleum ether/EtOAc (10:1)]: $R_{f} = 0.50$ [vanillin: brown].

¹**H NMR** (500 MHz, CDCl₃, 2-methylcyclohexen-1-ene moiety marked with *): δ [ppm] = 7.98 – 7.95 (m, 1 H, 7-*H*), 7.71 – 7.68 (m, 2 H, *o*-*H*_{Ts}), 7.45 – 7.43 (m, 1 H, 4-*H*), 7.31 – 7.27 (m, 1 H, 6-*H*), 7.23 – 7.16 (m, 4 H, 2-*H*, 5-*H*, *m*-*H*_{Ts}), 3.32 (s, 2 H, 3-C*H*₂-1*), 2.31 (s, 3 H, *p*-C_{Ts}-C*H*₃), 2.05 – 1.99 (m, 2 H, 3*-*H*), 1.88 – 1.82 (m, 2 H, 6*-*H*), 1.71 – 1.70 (m, 3 H, 2*-C*H*₃), 1.63 – 1.52 (m, 4 H, 4*-*H*, 5*-*H*).

¹³**C NMR** (126 MHz, CDCl₃, 2-methylcyclohexen-1-ene moiety marked with *): δ [ppm] = 144.7 (1 C, *p*-*C*_{Ts}), 135.8 (1 C, *C*-7a), 135.4 (1 C, *ipso*-*C*_{Ts}), 131.6 (1 C, *C*-3a), 129.8 (2 C, *m*-*C*_{Ts}), 128.5 (1 C, *C*-2*), 127.1 (1 C, *C*-1*), 126.8 (2 C, *o*-*C*_{Ts}), 124.7 (1 C, *C*-6), 123.5 (1 C, *C*-2), 123.2 (1 C, *C*-5), 122.4 (1 C, *C*-3), 119.7 (1 C, *C*-4), 114.0 (1 C, *C*-7), 32.0 (1 C, *C*-3*), 29.7 (1 C, *C*-6*), 29.0 (1 C, 3-*C*H₂-1*), 23.6 (1 C, *C*-5*), 23.4 (1 C, *C*-4*), 21.7 (1 C, *p*-C_{Ts}-*C*H₃), 19.5 (1 C, 2*-*C*H₃).

$$\begin{split} & \text{IR} \text{ (diamond ATR): } \tilde{\nu} \text{ [cm}^{-1]} = 3112 \text{ (w), } 3056 \text{ (w), } 2926 \text{ (m), } 2861 \text{ (w), } 1596 \text{ (w), } 1491 \text{ (w), } \\ & 1443 \text{ (m), } 1360 \text{ (m), } 1277 \text{ (m), } 1168 \text{ (s), } 1105 \text{ (s), } 1018 \text{ (w), } 968 \text{ (m), } 805 \text{ (m), } 749 \text{ (s), } 708 \text{ (w), } \\ & 665 \text{ (s), } 620 \text{ (w), } 575 \text{ (s).} \\ & \text{UV/Vis (THF): } \lambda_{\text{max}} \text{ (Ig } \varepsilon) = 294 \text{ (3.60), } 254 \text{ (4.11), } 224 \text{ (4.33).} \\ & \text{ESI-HRMS: } \text{ calculated } [C_{23}H_{25}NO_2S+H]^+\text{: } 402.14982 \\ & \text{ found: } & 402.14998 \text{ (0.40 ppm).} \end{split}$$

3.9 Epoxide S4

To a solution of alkene **S3** (169 mg, 445 μ mol, 1.00 eq.) in CH₂Cl₂ (4.5 mL) was added NaHCO₃ (90 mg, 1.07 mmol, 2.40 eq.) and 70% *m*-CPBA (132 mg, 534 μ mol, 1.20 eq.) at 0 °C. The suspension was stirred for 1.5 h at 0 °C. The reaction was quenched by the addition of sat. Na₂SO₃. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3x20 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (30:1) to (20:1) to (10:1)] afforded epoxide **S4** as a colorless solid (140 mg, 354 μ mol, 80%).

TLC [petroleum ether/EtOAc (10:1)]: $R_{f} = 0.28$ [vanillin: brown].

¹**H NMR** (400 MHz, CDCl₃, 2-methylcyclohexane moiety marked with *): δ [ppm] = 8.01 – 7.96 (m, 1 H, 7-*H*), 7.75 – 7.70 (m, 2 H, *o*-*H*_{Ts}), 7.58 – 7.54 (m, 1 H, 4-*H*), 7.35 – 7.29 (m, 1 H, 6-*H*), 7.34 (s, 1 H, 2-*H*), 7.28 – 7.22 (m, 1 H, 5-*H*), 7.21 – 7.17 (m, 2 H, *m*-*H*_{Ts}), 2.97 (dd, *J* = 15.5 Hz, 1.1 Hz, 1 H, 3-CH₂-1*), 2.84 (dd, *J* = 15.5 Hz, 1.0 Hz, 1 H, 3-CH₂-1*), 2.33 (s, 3 H, *p*-C_{Ts}-CH₃), 2.03 – 1.70 (m, 1 H, 5*-*H*), 1.93 – 1.82 (m, 1 H, 5*-*H*), 1.69 – 1.62 (m, 2 H, 2*-*H*), 1.47 – 1.36 (m, 5 H, 3*-*H*, 4*-*H*, 6*CH₃), 1.36 – 1.12 (m, 2 H, 3*-*H*, 4*-*H*).

¹³**C NMR** (101 MHz, CDCl₃, 2-methylcyclohexane moiety marked with *): δ [ppm] = 144.9 (1 C, p- C_{Ts}), 135.5 (1 C, C-7a), 135.4 (1 C, *ipso*- C_{Ts}), 131.5 (1 C, C-3a), 129.9 (2 C, *m*- C_{Ts}), 126.9 (2 C, *o*- C_{Ts}), 124.9 (1 C, *C*-6), 123.9 (1 C, *C*-2), 123.4 (1 C, *C*-5), 120.3 (1 C, *C*-4), 119.7 (1 C, *C*-3), 113.9 (1 C, *C*-7), 64.2 (1 C, *C*-1*), 62.6 (1 C, *C*-6*), 31.9 (1 C, *C*-5*), 30.8 (1 C, 3- CH_2 -1*), 28.6 (1 C, *C*-2*), 21.7 (1 C, *p*- C_{Ts} - CH_3), 21.2 (1 C, *C*-3), 20.8 (1 C, 6*- CH_3), 20.5 (1 C, *C*-4*). **IR** (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3053 (w), 2931 (m), 2857 (w), 1597 (w), 1444 (m), 1356 (s), 1279 (m), 1167 (s), 1119 (s), 1022 (m), 967 (m), 907 (w), 870 (w), 808 (m), 741 (s), 663 (s), 568 (s), 542 (m).

UV/Vis (THF): λ_{max} (lg ε) = 292 (3.60), 252 (4.11), 223 (4.26).

ESI-HRMS: calculated [C₂₃H₂₅NO₃S+Na]⁺: 418.14474

found: 418.14494 (0.48 ppm).

3.10 1-(1-Methylcyclopentyl)-2-(1-tosyl-1*H*-indol-3-yl)ethan-1-one (S5)

To a solution of epoxide **S4** (128 mg, 324 μ mol, 1.00 eq.) in CH₂Cl₂ (6.0 mL) was added BF₃ • OEt₂ (50 μ L, 356 μ mol, 1.10 eq.) dropwise at 0 °C. The solution was stirred for 1 h at 0 °C. The reaction was quenched by the addition of sat. NaHCO₃. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3x20 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (20:1) to (15:1) to (10:1)] afforded ketone **S5** as a colorless solid (57 mg, 144 μ mol, 44%).

TLC [petroleum ether/EtOAc (10:1)]: $R_{f} = 0.25$ [vanillin: brown].

¹**H NMR** (500 MHz, CDCl₃, 1-methylcyclopentane moiety marked with *): δ [ppm] = 7.98 – 7.95 (m, 1 H, 7-*H*), 7.77 – 7.73 (m, 2 H, *o*-*H*_{Ts}), 7.52 – 7.51 (m, 1 H, 2-*H*), 7.43 – 7.40 (m, 1 H, 4-*H*), 7.32 – 7.28 (m, 1 H, 6-*H*), 7.24 – 7.18 (m, 3 H, 5-*H*, *m*-*H*_{Ts}), 3.85 (d, *J* = 1.0 Hz, 2 H, 3-CH₂-C(=O)-1*), 2.33 (s, 3 H, *p*-C_{Ts}-CH₃), 2.14 – 2.05 (m, 2 H, 2*-*H* (*syn* to 1*-CH₃)), 1.76 – 1.60 (m, 4 H, 3*-*H*, 4*-*H*), 1.51 – 1.43 (m, 2 H, 2*-*H* (*anti* to 1*-CH₃), 2*-*5* (*anti* to 1*-CH₃)), 1.29 (s, 3 H, 1*-CH₃).

¹³**C** NMR (126 MHz, CDCl₃, 1-methylcyclopentane moiety marked with *): δ [ppm] = 210.9 (1 C, 3-CH₂-*C*(=O)-1*), 144.9 (1 C, *p*-*C*_{Ts}), 135.5 (1 C, *ipso*-*C*_{Ts}), 135.2 (1 C, *C*-7a), 130.9 (1 C, *C*-3a), 130.0 (2 C, *m*-*C*_{Ts}), 127.0 (2 C, *o*-*C*_{Ts}), 124.9 (1 C, *C*-2), 124.8 (1 C, *C*-6), 123.3 (1 C, *C*-5), 119.6 (1 C, *C*-4), 116.2 (1 C, *C*-3), 113.9 (1 C, *C*-7), 56.3 (1 C, *C*-1*), 36.7 (2 C, *C*-2*, *C*-5*), 33.8 (1 C, 3-CH₂-C(=O)-1*), 25.3 (2 C, *C*-3*, *C*-4*), 24.8 (1 C, 1*-*C*H₃), 21.7 (1 C, *p*-C_{Ts}-*C*H₃). **IR** (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3099 (w), 3057 (w), 2952 (m), 2869 (w), 1699 (m), 1597 (w), 1444 (m), 1363 (s), 1305 (m), 1280 (m), 1168 (s), 1124 (s), 1088 (s), 1016 (m), 969 (s), 814 (m), 749 (s), 697 (m), 664 (s), 604 (m), 569 (s), 542 (m).

UV/Vis (THF): λ_{max} (lg ε) = 293 (3.61), 255 (4.11).

ESI-HRMS: calculated [C₂₃H₂₅NO₃S+Na]⁺: 418.14474

found:

418.14493 (0.45 ppm).

3.11 (2-Methylcyclohex-1-en-1-yl)(1-tosyl-1*H*-indol-3-yl)methyl acetate (S9)

To a solution of 3-iodo-1-tosylindole^[7] (2.38 g, 6.00 mmol, 1.20 eq.) in dry THF (60 mL) under argon was added *t*-BuLi (1.6 M in pentane, 7.5 mL, 12.0 mmol, 2.40 eq.) dropwise at $-78 \,^{\circ}$ C. The solution was stirred for 15 min at $-78 \,^{\circ}$ C. 2-Methylcyclohex-1-ene-1-carbaldehyde^[8] (**S8**, 621 mg, 5.00 mmol, 1.00 eq.) was added dropwise at $-78 \,^{\circ}$ C. The solution was stirred for 1 h at $-78 \,^{\circ}$ C. The reaction was quenched by the addition of sat. NaHCO₃. The phases were separated and the aqueous phase extracted with TBME (3x100 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (20:1) to (10:1) to (8:1) to (6:1) to (4:1), each +1% NEt₃] afforded the crude product as a purplish foam (1.00 g).

To a solution of the crude product, NEt₃ (700 μ L, 5.00 mmol, 1.00 eq.) and Ac₂O (470 μ L, 5.00 mmol, 1.00 eq.) in CH₂Cl₂ (30 mL) was added DMAP (61 mg, 500 μ mol, 0.10 eq.) at room temperature. The solution was stirred for 2 h at room temperature. The reaction was quenched by the addition of sat. NaHCO₃. The phases were separated and the aqueous phase extracted with CH₂Cl₂ (3x50 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (20:1) to (10:1) to (6:1), each +1% NEt₃] afforded allylic acetate **S9** as a colorless, sticky solid (824 mg, 1.88 mmol, 38% over 2 steps).

TLC [petroleum ether/EtOAc (4:1)]: $R_{f} = 0.31$ [vanillin: brown].

¹**H NMR** (400 MHz, C₆D₆, 2-methylcyclohex-1-ene moiety marked with *): δ [ppm] = 8.26 (ddd, J = 8.3 Hz, 0.8 Hz, 0.8 Hz, 1 H, 7-*H*), 7.81 (d, J = 1.4 Hz, 1 H, 2-*H*), 7.69 – 7.64 (m, 2 H, *o*-*H*_{Ts}), 7.46 (ddd, J = 7.9 Hz, 1.0 Hz, 0.9 Hz, 1 H, 4-*H*), 7.22 (d, J = 1.3 Hz, 1 H, 3-C*H*(O-C(=O)-CH₃)-1*), 7.18 – 7.12 (m, 1 H, 6-*H*), 7.03 (ddd, J = 8.1 Hz, 7.2 Hz, 0.9 Hz, 1 H, 5-*H*), 6.49 – 1.82 (m, 2 H, *m*-*H*_{Ts}), 2.14 – 2.03 (m, 1 H, 6*-*H*), 1.84 (s, 3 H, 2*-CH₃), 1.82 – 1.69 (m, 3 H, 3*-*H*, 6*-*H*), 1.68 (s, 3 H, 3-CH(O-C(=O)-CH₃)-1*), 1.61 (s, 3 H, *p*-C_{Ts}-CH₃), 1.46 – 1.32 (m, 3 H, 4*-*H*, 5*-*H*), 1.30 – 1.20 (m, 1 H, 5*-*H*).

¹³**C** NMR (101 MHz, C₆D₆, 2-methylcyclohex-1-ene moiety marked with *): δ [ppm] = 169.2 (1 C, 3-CH(O-C(=O)-CH₃)-1*), 144.6 (1 C, *p*-*C*_{Ts}), 136.4 (1 C, *C*-7a), 135.9 (1 C, *ipso*-*C*_{Ts}), 133.2 (1 C, *C*-1*), 129.8 (2 C, *m*-*C*_{Ts}), 129.7 (1 C, *C*-3a), 127.8 (1 C, *C*-2* (HMBC)), 126.9 (2 C, *o*-*C*_{Ts}), 125.2 (1 C, *C*-6), 124.2 (1 C, *C*-2), 123.7 (1 C, *C*-5), 122.5 (1 C, *C*-3), 120.4 (1 C, *C*-4), 114.5 (1 C, *C*-7), 69.5 (1 C, 3-CH(O-C(=O)-CH₃)-1*), 32.4 (1 C, *C*-3*), 24.6 (1 C, *C*-6*), 23.1 (1 C, *C*-4*), 23.0 (1 C, *C*-5*), 21.0 (1 C, *p*-C_{Ts}-*C*H₃), 20.5 (1 C, 3-CH(O-C(=O)-*C*H₃)-1*), 19.6 (1 C, 2*-*C*H₃).

^[7] B. Witulski, N. Buschmann, U. Bergsträßer, *Tetrahedron* **2000**, *56*, 8473–8480.

^[8] S. M. Makin, R. I. Kruglikova, T. K. Tagirov, B. M. Arshava, Zh. Org. Khim. 1983, 19, 101–105.

$$\begin{split} & \text{IR} \text{ (diamond ATR): } \tilde{\nu} \text{ [cm}^{-1]} = 2927 \text{ (m), } 2865 \text{ (w), } 1735 \text{ (m), } 1598 \text{ (w), } 1487 \text{ (w), } 1443 \text{ (m), } \\ & 1367 \text{ (s), } 1275 \text{ (m), } 1230 \text{ (s), } 1171 \text{ (s), } 1124 \text{ (s), } 1015 \text{ (m), } 971 \text{ (s), } 810 \text{ (m), } 749 \text{ (s), } 672 \text{ (s), } \\ & 572 \text{ (s).} \\ & \text{UV/Vis (THF): } \lambda_{\text{max}} \text{ (lg } \varepsilon) = 290 \text{ (3.63), } 283 \text{ (3.67), } 251 \text{ (4.15).} \\ & \text{ESI-HRMS: } \text{ calculated } [C_{25}H_{27}NO_4S+Na]^+\text{: } 460.15530 \\ & \text{ found: } & 460.15544 \text{ (0.30 ppm).} \end{split}$$

3.12 (E)-3-((2-Methylcyclohex-2-en-1-ylidene)methyl)-1-tosyl-1H-indole (S10)

A solution of allylic acetate **S9** (219 mg, 500 μ mol, 1.00 eq.) and PdCl₂ (9 mg, 50 μ mol, 0.1 eq.) in dry PhMe (5 mL) under argon was stirred for 7 h at 80 °C. Water was added and the mixture extracted with TBME (3x20 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (40:1)] afforded indole **S10** as a yellowish oil (116 mg, 307 μ mol, 61%). **TLC** [petroleum ether/EtoAc (4:1)]: $R_f = 0.78$ [vanillin: brown].

¹**H NMR** (400 MHz, CDCl₃, 2-methylcyclohex-2-en-1-ylidene moiety marked with *): δ [ppm] = 8.01 – 7.97 (m, 1 H, 7-*H*), 7.78 – 7.74 (m, 2 H, *o*-*H*_{Ts}), 7.58 – 7.54 (m, 1 H, 4-*H*), 7.51 (s, 1 H, 2-*H*), 7.32 (ddd, *J* = 7.7 Hz, 7.7 Hz, 1.2 Hz, 1 H, 6-*H*), 7.27 – 7.22 (m, 1 H, 5-*H*), 7.22 – 7.18 (m, 2 H, *m*-*H*_{Ts}), 6.40 (s, 1 H, 3-C*H*=1*), 5.86 – 5.82 (m, 2 H, 3*-*H*), 2.66 – 2.61 (m, 2 H, 6*-*H*), 2.32 (s, 3 H, *p*-C_{Ts}-C*H*₃), 2.23 – 2.16 (m, 2 H, 4*-*H*), 1.98 – 1.95 (m, 3 H, 2*-C*H*₃), 1.78 – 1.68 (m, 2 H, 5*-*H*).

¹³**C NMR** (101 MHz, CDCl₃, 2-methylcyclohex-2-en-1-ylidene moiety marked with *): δ [ppm] = 145.0 (1 C, p- C_{Ts}), 140.2 (1 C, C-1*), 135.4 (1 C, *ipso*- C_{Ts}), 134.8 (1 C, C-7a), 133.4 (1 C, C-2*), 131.5 (1 C, C-3a), 130.0 (2 C, m- C_{Ts}), 129.8 (1 C, C-3*), 126.9 (2 C, o- C_{Ts}), 125.0 (1 C, C-6), 123.5 (1 C, C-2), 123.4 (1 C, C-5), 120.0 (1 C, C-3), 119.7 (1 C, C-4), 113.8 (1 C, C-7), 111.1 (1 C, 1-CH=1*), 28.5 (1 C, C-6*), 26.0 (1 C, C-4*), 22.9 (1 C, C-5*), 21.7 (1 C, p- C_{Ts} -CH₃), 20.3 (1 C, 2*-CH₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2928 (m), 2867 (w), 2867 (w), 1716 (w), 1667 (w), 1597 (w), 1545 (w), 1444 (m), 1365 (m), 1289 (m), 1216 (w), 1168 (s), 1127 (s), 1088 (m), 1025 (w), 970 (m), 870 (m), 805 (m), 748 (s), 707 (w), 664 (s), 568 (s).

UV/Vis (THF): λ_{max} (lg ε) = 303 (4.03), 255 (4.24).

ESI-HRMS: calculated [C₂₃H₂₃NO₂S+Na]⁺: 400.13417 found: 400.13431 (0.35 ppm).

3.13 cis-Hydrindanone 8

To a solution of indole **7** (947 mg, 3.96 mmol, 1.00 eq.) and *n*-Bu₄NHSO₄ (202 mg, 594 μ mol, 0.15 eq.) in PhMe (40 mL) was added 50% NaOH (40 mL) and TsCl (1.51 mg, 7.91 mmol, 2.00 eq.) at 0 °C. The biphasic mixture was stirred rapidly for 2 h at room temperature. The mixture was diluted with water (100 mL) and extracted with TBME (3x100 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (10:1) to (5:1)] afforded tosylindole **8** as a colorless foam (1.31 g, 3.34 mmol, 84%).

TLC [petroleum ether/EtOAc (2:1)]: $R_{f} = 0.69$ [vanillin: brown].

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 8.04 – 7.97 (m, 1 H, 6-*H*), 7.94 – 7.87 (m, 1 H, 9-*H*), 7.79 – 7.75 (m, 2 H, *o*- H_{Ts}), 7.37 – 7.29 (m, 2 H, 7-*H*, 8-*H*), 7.29 – 7.25 (m, 2 H, *m*- H_{Ts}), 2.72 (dd, *J* = 6.3 Hz, 3.8 Hz, 1 H, 10a-*H*), 2.38 (s, 3 H, *p*- C_{Ts} - CH_3), 2.32 (ddd, *J* = 13.8 Hz, 6.8 Hz, 3.8 Hz, 1 H, 4-*H* (*syn* to 4a-CH₃)), 2.21 (dddd, *J* = 13.9 Hz, 4.4 Hz, 4.4 Hz, 4.4 Hz, 1 H, 1-*H* (*syn* to 4a-CH₃)), 1.85 (ddd, *J* = 13.8 Hz, 9.8 Hz, 4.1 Hz, 1 H, 4-*H* (*anti* to 4a-CH₃)), 1.81 – 1.70 (m, 4 H, 1-*H* (*anti* to 4a-CH₃), 4a-CH₃), 1.62 – 1.42 (m, 2 H, 2-*H* (*anti* to 4a-CH₃)), 3-*H* (*syn* to 4a-CH₃)), 1.41 – 1.23 (m, 2 H, 3-*H* (*anti* to 4a-CH₃), 2-*H* (*syn* to 4a-CH₃)).

¹³**C NMR** (101 MHz, CDCl₃): δ [ppm] = 198.3 (1 C, *C*-10), 172.0 (1 C, *C*-4b), 145.8 (1 C, *p*-*C*_{Ts}), 141.1 (1 C, *C*-5a), 135.9 (1 C, *ipso*-*C*_{Ts}), 130.2 (2 C, *m*-*C*_{Ts}), 127.0 (2 C, *o*-*C*_{Ts}), 125.7 (1 C, *C*-7), 124.9 (1 C, *C*-8), 124.7 (1 C, *C*-9b), 122.2 (1 C, *C*-9a), 121.3 (1 C, *C*-9), 114.9 (1 C, *C*-6), 61.2 (1 C, *C*-10a), 43.5 (1 C, *C*-4a), 34.6 (1 C, *C*-4), 24.5 (1 C, 4a-*C*H₃), 21.8 (1 C, *p*-*C*_{Ts}-*C*H₃), 21.6 (1 C, *C*-1), 20.6 (1 C, *C*-2), 19.6 (1 C, *C*-3).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2933 (w), 2858 (w), 1698 (m), 1593 (w), 1533 (w), 1476 (m), 1444 (m), 1410 (m), 1372 (m), 1318 (m), 1255 (m), 1176 (m), 1121 (m), 1081 (m), 1021 (m), 973 (m), 880 (w), 804 (m), 763 (m), 695 (w), 654 (m), 611 (w), 571 (m).

UV/Vis (THF): λ_{max} (lg ε) = 271 (4.03), 224 (4.47).

3.14 4a-Methyl-5-tosyl-1,2,3,4,4a,5-hexahydroindeno[1,2-b]indole (9)

To a solution of *cis*-hydrindanone **8** (1.46 g, 3.71 mmol, 1.00 eq.) in dry PhMe (37 mL) under argon was added DIBAL-H (1.2 M in PhMe, 3.7 mL, 4.45 mmol, 1.20 eq.) dropwise at -78 °C.

The solution was stirred for 3 h at -78 °C. The reaction was quenched by the addition of MeOH at -78 °C. Sat. potassium sodium tartrate solution was added at room temperature and the mixture rapidly stirred for 30 min. The phases were separated and the aqueous phase was extracted with TBME (3x50 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated.

To a solution of the crude product in CH_2CI_2 (37 mL) was added NEt₃ (1.6 mL, 11.1 mmol, 3.00 eq.) and MsCl (570 µL, 7.42 mmol, 2.00 eq.) at 0 °C. The solution was stirred for 1 h at 0 °C. The reaction was quenched by the addition of sat. NaHCO₃. The phases were separated and the aqueous phase was extracted with CH_2CI_2 (3x50 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (20:1)] afforded alkene **9** as a colorless foam (1.21 g, 3.21 mmol, 86% over 2 steps).

TLC [petroleum ether/EtOAc (10:1)]: $R_{f} = 0.18$ [vanillin: brown].

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 8.09 – 8.03 (m, 1 H, 6-*H*), 7.67 – 7.63 (m, 2 H, *o*-*H*_{Ts}), 7.52 – 7.47 (m, 1 H, 9-*H*), 7.26 – 7.19 (m, 2 H, 7-*H*, 8-*H*), 7.17 – 7.12 (m, 2 H, *m*-*H*_{Ts}), 6.31 (d, *J* = 1.9 Hz, 1 H, 10-*H*), 2.91 – 2.84 (m, 1 H, 4-*H* (*syn* to 4a-CH₃)), 2.69 – 2.62 (m, 1 H, 1-*H* (*anti* to 4a-CH₃)), 2.37 – 2.27 (m, 1 H, 1-*H* (*syn* to 4a-CH₃)), 2.30 (s, 3 H, *p*-C_{Ts}-C*H*₃), 2.02 – 1.93 (m, 1 H, 2-*H* (*syn* to 4a-CH₃)), 1.72 – 1.62 (m, 2 H, 3-*H*), 1.46 (s, 3 H, 4a-CH₃), 1.32 – 1.11 (m, 2 H, 2-*H* (*anti* to 4a-CH₃), 4-*H* (*anti* to 4a-CH₃)).

¹³**C NMR** (101 MHz, CDCl₃): δ [ppm] = 156.5 (1 C, *C*-10a), 153.0 (1 C, *C*-4b), 144.5 (1 C, *p*-*C*_{Ts}), 140.4 (1 C, *C*-5a), 136.0 (1 C, *ipso*-*C*_{Ts}), 129.7 (2 C, *m*-*C*_{Ts}), 129.4 (1 C, *C*-9b), 126.8 (2 C, *o*-*C*_{Ts}), 125.0 (1 C, *C*-9a), 123.7 (1 C, *C*-7), 123.6 (1 C, *C*-8), 119.6 (1 C, *C*-9), 115.3 (1 C, *C*-6), 112.6 (1 C, *C*-10), 50.5 (1 C, *C*-4a), 36.0 (1 C, *C*-4), 29.1 (1 C, *C*-2), 27.8 (1 C, *C*-1), 21.6 (1 C, *p*-*C*_{Ts}-*C*H₃), 19.5 (1 C, 4a-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3058 (w), 2929 (m), 2854 (m), 1596 (w), 1488 (w), 1444 (m), 1363 (s), 1307 (m), 1268 (w), 1218 (m), 1167 (s), 1121 (m), 1121 (m), 1086 (m), 1017 (w), 980 (m), 864 (m), 842 (m), 811 (m), 747 (s), 705 (w), 662 (s), 601 (w), 566 (m), 541 (m). **UV/Vis** (THF): λ_{max} (lg ε) = 311 (3.62), 268 (3.91), 228 (4.61).

ESI-HRMS: calculated $[C_{23}H_{23}NO_2S+Na]^+$: 400.13417

found:

400.13418 (0.02 ppm).

3.15 Bromohydrin 10

To a solution of alkene **9** (38 mg, 100 μ mol, 1.00 eq.) and NaHCO₃ (25 mg, 300 μ mol, 3.00 eq.) in MeCN (1.0 mL) and H₂O (250 μ L) was added Br₂ (1 M in *n*-heptane, 100 μ L, 100 μ mol, 1.00 eq.) dropwise at 0 °C. The solution was stirred for 2 h at 0 °C. The reaction was quenched by the addition of sat. Na₂SO₃. The phases were separated and the aqueous phase was extracted with TBME (3x50 mL). The combined organic phases were washed with sat. NaCl, dried

over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (10:1) to (8:1)] afforded bromohydrin **10** as a colorless foam (34 mg, 72 μ mol, 72%). **TLC** [petroleum ether/EtOAc (4:1)]: $R_{\rm f} = 0.53$ [vanillin: brown].

¹**H NMR** (400 MHz, C₆D₆): δ [ppm] = 8.47 – 8.43 (m, 1 H, 6-*H*), 7.66 – 7.61 (m, 1 H, 9-*H*), 7.58 – 7.53 (m, 2 H, o- H_{Ts}), 7.15 – 7.07 (m, 2 H, 7-*H*, 8-*H*), 6.48 – 6.43 (m, 2 H, m- H_{Ts}), 5.30 (d, J = 6.1 Hz, 1 H, 10-*H*), 2.94 – 2.84 (m, 1 H, 4-*H* (*anti* to 4a-CH₃)), 2.20 – 2.11 (m, 1 H, 1-*H* (*anti* to 4a-CH₃)), 1.79 – 1.67 (m, 2 H, 1-*H* (*syn* to 4a-CH₃), 4-*H* (*syn* to 4a-CH₃)), 1.66 (s, 3 H, p-C_{Ts}-CH₃), 1.62 (s, 3 H, 4a-CH₃), 1.61 – 1.49 (m, 2 H, 10-OH, 3-*H*), 1.36 – 1.22 (m, 2 H, 2-*H*, 3-*H*), 0.76 – 0.62 (m, 1 H, 2-*H*).

¹³**C NMR** (101 MHz, C_6D_6): δ [ppm] = 146.7 (1 C, C-4b), 144.5 (1 C, p- C_{Ts}), 141.2 (1 C, C-5a), 137.4 (1 C, *ipso*- C_{Ts}), 129.8 (2 C, m- C_{Ts}), 126.6 (2 C, o- C_{Ts}), 126.5 (1 C, C-9a), 125.9 (1 C, C-9b), 124.8 (1 C, C-7), 124.0 (1 C, C-8), 120.1 (1 C, C-9), 115.7 (1 C, C-6), 84.1 (1 C, C-10a), 79.8 (1 C, C-10), 51.6 (1 C, C-4a), 34.8 (1 C, C-1), 33.0 (1 C, C-4), 27.7 (1 C, 4a-CH₃), 23.0 (1 C, C-2), 22.7 (1 C, C-3), 21.0 (1 C, p- C_{Ts} -CH₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3533 (br. s), 3410 (w), 2929 (m), 2861 (w), 1594 (w), 1482 (w), 1444 (m), 1362 (m), 1304 (m), 1218 (w), 1174 (s), 1081 (m), 1023 (m), 985 (m), 931 (w), 856 (w), 810 (m), 749 (s), 711 (m), 662 (s), 613 (w), 570 (s).

UV/Vis (THF): λ_{max} (lg ε) = 259 (4.18), 226 (4.42).

ESI-HRMS: calculated [C₂₃H₂₄BrNO₃S+Na]⁺: 496.05525 found: 496.05528 (0.06 ppm).

3.16 Cyclobutane 11

A solution of alkene **9** (38 mg, 100 μ mol, 1.00 eq.) and tetracyanoethene (16 mg, 120 μ mol, 1.20 eq.) in DCE (400 μ L) was stirred at room temperature for 1 h and under reflux for 3 d. The mixture was concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (20:1) to (15:1) to (10:1) to (8:1) to (6:1) to (4:1)] afforded cyclobutane **11** as a solid (50 mg, 99 μ mol, 99%).

TLC [petroleum ether/EtOAc (4:1)]: $R_{f} = 0.54$ [vanillin: brown].

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 8.04 – 8.00 (m, 1 H, 8-*H*), 7.88 – 7.83 (m, 2 H, *o*-*H*_{Ts}), 7.62 – 7.58 (m, 1 H, 11-*H*), 7.39 – 7.30 (m, 2 H, 9-*H*, 10-*H*), 7.29 – 7.25 (m, 2 H, *m*-*H*_{Ts}), 4.36 (s, 1 H, 11c-*H*), 2.74 – 2.60 (m, 2 H, 3-*H* (*anti* to 6a-CH₃), 6-*H* (*syn* to 6a-CH₃)), 2.38 (s, 3 H, *p*-C_{Ts}-C*H*₃), 2.24 – 2.13 (m, 1 H, 3-*H* (*syn* to 6a-CH₃)), 2.06 – 1.96 (m, 1 H, 4-*H* (*syn* to 6a-CH₃)), 1.87 (s, 3 H, 6a-C*H*₃), 1.68 – 1.51 (m, 1 H, 5-*H* (*anti* to 6a-CH₃)), 1.48 – 1.37 (m, 2 H, 4-*H* (*anti* to 6a-CH₃)), 5-*H* (*syn* to 6a-CH₃)), 1.32 – 1.20 (m, 1 H, 6-*H* (*anti* to 6a-CH₃)).

¹³**C NMR** (101 MHz, CDCl₃): δ [ppm] = 153.8 (1 C, *C*-6b), 146.0 (1 C, *p*-*C*_{Ts}), 140.6 (1 C, *C*-7a), 135.5 (1 C, *ipso*-*C*_{Ts}), 130.3 (2 C, *m*-*C*_{Ts}), 127.2 (2 C, *o*-*C*_{Ts}), 125.8 (1 C, *C*-9), 124.4 (1 C, *C*-10), 124.0 (1 C, *C*-11a), 120.0 (1 C, *C*-11), 116.3 (1 C, *C*-11b), 115.0 (1 C, *C*-8), 111.9 (1 C,

1-*C*N), 110.5 (1 C, 2-*C*N), 110.0 (1 C, 2-*C*N), 109.4 (1 C, 1-*C*N), 67.6 (1 C, *C*-2a), 49.0 (1 C, *C*-11c), 48.6 (1 C, *C*-6a), 44.4 (1 C, *C*-2), 41.0 (1 C, *C*-6), 36.8 (1 C, *C*-1), 29.3 (1 C, *C*-3), 22.6 (1 C, *C*-4), 21.8 (1 C, *p*-C_{Ts}-*C*H₃), 20.0 (1 C, *C*-5), 16.2 (1 C, 6a-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2940 (m), 2863 (w), 1596 (w), 1548 (w), 1446 (m), 1367 (m), 1322 (m), 1254 (m), 1226 (w), 1175 (s), 1115 (m), 1086 (m), 1026 (m), 982 (m), 906 (m), 864 (w), 842 (w), 806 (m), 737 (s), 666 (s), 571 (s).

UV/Vis (THF): λ_{max} (lg ε) = 258 (4.10).

ESI-HRMS: calculated [C₂₉H₂₃N₅O₂S+Na]⁺: 528.14647 found: 528.14659 (0.23 ppm).

3.17 Diol 14

To a solution of alkene **9** (1.28 g, 3.40 mmol, 1.00 eq.), DABCO (38 mg, 340 µmol, 0.10 eq.) and MsNH₂ (647 mg, 6.80 mmol, 2.00 eq.) in *t*-BuOH (20 mL), THF (20 mL) and H₂O (20 mL) was added K₂CO₃ (1.41 g, 10.2 mmol, 3.00 eq.), K₃[Fe(CN)₆] (2.80 g, 8.50 mmol, 2.50 eq.) and K₂OsO₄ • 2 H₂O (25 mg, 68 µmol, 0.02 eq.). The mixture was stirred rapidly for 20 h at 30 °C. The reaction was quenched by the addition of sat. Na₂SO₃. The phases were separated and the aqueous phase was extracted with TBME (3x100 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (10:1) to (4:1) to (3:1) to (2:1)] afforded diol **14** (1.04 g, 2.51 mmol, 74%) as a colorless foam and unreacted alkene **9** (70 mg, 189 µmol, 5%) as a colorless foam.

TLC [petroleum ether/EtOAc (2:1)]: $R_{\rm f} = 0.29$ [vanillin: brown].

¹**H NMR** (600 MHz, C_6D_6): δ [ppm] = 8.44 - 8.42 (m, 1 H, 6-*H*), 7.69 - 7.67 (m, 1 H, 9-*H*), 7.66 - 7.63 (m, 2 H, *o*-*H*_{Ts}), 7.18 - 7.14 (m, 1 H, 7-*H*), 7.14 - 7.11 (m, 1 H, 8-*H*), 6.48 - 6.45 (m, 2 H, *m*-*H*_{Ts}), 4.66 (d, *J* = 8.0 Hz, 1 H, 10-*H*), 2.35 - 2.29 (m, 1 H, 4-*H* (*syn* to 4a-CH₃)), 2.12 (d, *J* = 8.4 Hz, 1 H, 10-*OH*), 1.96 (s, 1 H, 10a-*OH*), 1.65 (s, 3 H, *p*-C_{Ts}-C*H*₃), 1.64 - 1.59 (m, 1 H, 1-*H* (*anti* to 4a-CH₃)), 1.63 (s, 3 H, 4a-C*H*₃), 1.49 - 1.42 (m, 2 H, 2-*H*, 4-*H* (*anti* to 4a-CH₃)), 1.36 (ddd, *J* = 13.9 Hz, 10.6 Hz, 4.4 Hz, 1 H, 1-*H* (*syn* to 4a-CH₃)), 1.27 - 1.19 (m, 1 H, 3-*H* (*syn* to 4a-CH₃)), 1.12 - 1.03 (m, 2 H, 2-*H*, 3-*H* (*anti* to 4a-CH₃)).

¹³**C NMR** (151 MHz, C_6D_6): δ [ppm] = 151.1 (1 C, C-4b), 144.3 (1 C, p- C_{Ts}), 141.0 (1 C, C-5a), 137.5 (1 C, *ipso*- C_{Ts}), 129.7 (2 C, *m*- C_{Ts}), 127.2 (1 C, C-9a), 126.6 (2 C, *o*- C_{Ts}), 124.8 (1 C, C-9b), 124.5 (1 C, C-7), 124.0 (1 C, C-8), 120.0 (1 C, C-9), 115.6 (1 C, C-6), 85.9 (1 C, C-10a), 72.1 (1 C, C-10), 49.4 (1 C, C-4a), 37.1 (1 C, C-4), 31.5 (1 C, C-1), 22.8 (1 C, C-2), 21.2 (1 C, C-3), 21.0 (1 C, p- C_{Ts} - CH_3), 20.5 (1 C, 4a- CH_3).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3382 (br. s), 2931 (m), 2862 (w), 1595 (w), 1480 (w), 1447 (m), 1362 (m), 1308 (w), 1219 (w), 1174 (m), 1122 (w), 1055 (m), 984 (m), 936 (w), 892 (w), 812 (m), 750 (m), 711 (m), 661 (s), 624 (m), 572 (m).

3.18 Sulfite 16

To a solution of diol **14** (142 mg, 357 μ mol, 1.00 eq.) and NEt₃ (100 μ L, 714 μ mol, 2.00 eq.) in Et₂O (1.8 mL) was added a solution of SOCl₂ (26 μ L, 357 mmol, 1.00 eq.) in Et₂O (3.6 mL) dropwise at 0 °C. The mixture was stirred for 1.5 h at room temperature. The reaction was quenched by the addition of H₂O and the mixture extracted with TBME (3x10 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (15:1) to (10:1)] afforded a mixture (4:3) of diastereomeric sulfites **16** as a colorless solid (34 mg, 72 μ mol, 72%)

TLC [petroleum ether/EtOAc (10:1)]: $R_f = 0.49$ [vanillin: brown].

¹**H NMR** (400 MHz, CDCl₃, major diastereomer): δ [ppm] = 8.08 – 8.02 (m, 1 H, 9-*H*), 7.72 – 7.67 (m, 2 H, *o*-*H*_{Ts}), 7.62 – 7.55 (m, 1 H, 12-*H*), 7.35 – 7.22 (m, 4 H, 10-*H*, 11-*H*, *m*-*H*_{Ts}), 6.08 (s, 1 H, 12c-*H*), 2.61 – 2.45 (m, 2 H, 4-*H*, 7-*H*), 2.37 (s, 3 H, *p*-C_{Ts}-C*H*₃), 2.24 – 2.15 (m, 1 H, 4-*H*), 1.95 – 1.82 (m, 1 H, 5-*H*), 1.67 (s, 3 H, 7a-C*H*₃), 1.63 – 1.32 (m, 4 H, 5-*H*, 6-*H*, 7-*H*).

¹³**C** NMR (101 MHz, CDCl₃, major diastereomer): δ [ppm] = 151.4 (1 C, *C*-7b), 145.4 (1 C, *p*-*C*_{Ts}), 140.5 (1 C, *C*-8a), 136.2 (1 C, *ipso*-*C*_{Ts}), 130.1 (2 C, *m*-*C*_{Ts}), 126.7 (2 C, *o*-*C*_{Ts}), 125.0 (1 C, *C*-10), 124.7 (1 C, *C*-12a), 124.2 (1 C, *C*₁₁), 120.0 (1 C, *C*-12b), 119.5 (1 C, *C*-12), 115.2 (1 C, *C*-9), 105.4 (1 C, *C*-3a), 84.1 (1 C, *C*-12c), 49.7 (1 C, *C*-7a), 38.5 (1 C, *C*-7), 32.6 (1 C, *C*-4), 22.8 (1 C, *C*-5), 21.7 (1 C, *p*-C_{Ts}-CH₃), 19.30 (1 C, *C*-6), 19.29 (1 C, 7a-CH₃).

¹**H NMR** (400 MHz, CDCl₃, minor diastereomer): δ [ppm] = 8.02 – 7.96 (m, 1 H, 9-*H*), 7.62 – 7.55 (m, 1 H, 12-*H*), 7.54 – 7.49 (m, 2 H, *o*-*H*_{Ts}), 7.35 – 7.22 (m, 2 H, 10-*H*, 11-*H*), 7.21 – 7.17 (m, 2 H, *m*-*H*_{Ts}), 5.81 (s, 1 H, 12c-*H*), 2.61 – 2.45 (m, 1 H, 7-*H*), 2.33 (s, 3 H, *p*-C_{Ts}-C*H*₃), 2.03 – 1.96 (m, 2 H, 4-*H*), 1.95 – 1.82 (m, 1 H, 5-*H*), 1.64 (s, 3 H, 7a-C*H*₃), 1.63 – 1.32 (m, 4 H, 5-*H*, 6-*H*, 7-*H*).

¹³**C** NMR (101 MHz, CDCl₃, minor diastereomer): δ [ppm] = 150.6 (1 C, *C*-7b), 144.9 (1 C, *p*-*C*_{Ts}), 141.1 (1 C, *C*-8a), 136.7 (1 C, *ipso*-*C*_{Ts}), 130.1 (2 C, *m*-*C*_{Ts}), 126.2 (2 C, *o*-*C*_{Ts}), 125.0 (1 C, *C*-10), 124.6 (1 C, *C*-12a), 124.3 (1 C, *C*-11), 122.4 (1 C, *C*-12b), 119.6 (1 C, *C*-12), 115.2 (1 C, *C*-9), 108.6 (1 C, *C*-3a), 82.9 (1 C, *C*-12c), 49.8 (1 C, *C*-7a), 39.2 (1 C, *C*-7), 31.0 (1 C, *C*-4), 22.7 (1 C, *C*-5), 21.7 (1 C, *p*-C_{Ts}-*C*H₃), 19.5 (1 C, *C*-6), 19.4 (1 C, 7a-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2932 (w), 2861 (w), 1596 (w), 1479 (w), 1447 (m), 1369 (m), 1315 (w), 1260 (w), 1217 (m), 1177 (s), 1122 (m), 1084 (m), 1031 (w), 984 (m), 941 (m), 840 (m), 802 (m), 745 (m), 711 (m), 652 (s), 568 (s).

UV/Vis (THF): λ_{max} (lg ε) = 289 (3.40), 255 (4.16), 221 (4.50).

3.19 Ketone 17

A solution of sulfite **16** (76 mg, 166 μ mol) in Ph₂O (1.7 mL) was stirred for 2 h at 190 °C. Flash column chromatography on silica gel [petroleum ether to petroleum ether/EtOAc (20:1) to (15:1)] afforded ketone **17** as an off-white solid (34 mg, 86 μ mol, 52%).

TLC [petroleum ether/EtOAc (10:1)]: $R_{\rm f} = 0.50$ [vanillin: brown].

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 8.21 – 8.16 (m, 1 H, 4-*H*), 7.72 – 7.66 (m, 2 H, *o*-*H*_{Ts}), 7.47 – 7.43 (m, 1 H, 1-*H*), 7.35 (ddd, *J* = 8.4 Hz, 7.2 Hz, 1.3 Hz, 1 H, 3-*H*), 7.29 (ddd, *J* = 7.5 Hz, 7.5 Hz, 0.8 Hz, 1 H, 2-*H*), 7.23 – 7.18 (m, 2 H, *m*-*H*_{Ts}), 3.70 (dd, *J* = 7.0 Hz, 1.5 Hz, 1 H, 11-*H*), 2.40 – 2.31 (m, 4 H, 7-*H*, *p*-C_{Ts}-C*H*₃), 2.05 – 1.95 (m, 1 H, 10-*H*), 1.71 – 1.63 (m, 1 H, 10-*H*), 1.62 (s, 3 H, 6-C*H*₃), 1.55 – 1.38 (m, 4 H, 7-*H*, 8-*H*, 9-*H*), 1.37 – 1.27 (m, 1 H, 9-*H*), 1.03 – 0.90 (m, 1 H, 8-*H*).

¹³**C NMR** (101 MHz, CDCl₃): δ [ppm] = 215.4 (1 C, *C*-12), 145.1 (1 C, *p*-*C*_{Ts}), 143.0 (1 C, *C*-5a), 139.3 (1 C, *C*-4a), 136.5 (1 C, *ipso*-*C*_{Ts}), 130.0 (2 C, *m*-*C*_{Ts}), 126.7 (2 C, *o*-*C*_{Ts}), 125.6 (1 C, *C*-11a), 125.5 (1 C, *C*-11b), 125.0 (1 C, *C*-3), 123.9 (1 C, *C*-2), 119.5 (1 C, *C*-1), 115.2 (1 C, *C*-4), 55.4 (1 C, *C*-6), 46.7 (1 C, *C*-11), 38.9 (1 C, *C*-7), 27.6 (1 C, *C*-10), 25.7 (1 C, *C*-9), 24.7 (1 C, *C*-8), 21.7 (1 C, *p*-C_{Ts}-*C*H₃), 19.7 (1 C, 6-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2928 (w), 2854 (w), 1752 (m), 1594 (w), 1483 (w), 1445 (m), 1363 (m), 1316 (w), 1257 (w), 1217 (m), 1166 (s), 1084 (m), 1026 (m), 981 (m), 935 (w), 871 (m), 840 (w), 805 (w), 750 (m), 710 (m), 660 (s), 630 (m), 570 (m), 548 (w).

UV/Vis (THF): λ_{max} (lg ε) = 264 (4.15), 221 (4.44).

ESI-HRMS: calculated [C₂₃H₂₃NO₃S+Na]⁺: 416.12909 found: 416.12924 (0.36 ppm).

3.20 Diol 18

A solution of diol **14** (264 mg, 642 μ mol, 1.00 eq.) and [Ir(COD)py(PCy₃)]BARF (78 mg, 51 μ mol, 0.08 eq.) in dry CH₂Cl₂ (13 mL) under argon was degassed (three freeze-pump-thaw cycles) and back filled with H₂. The solution was stirred for 14 h at room temperature under H₂ and

concentrated afterwards. Flash column chromatography on silica gel [petroleum ether/EtOAc (2:1) to (1:2)] afforded indoline **18** as a colorless foam (254 mg, 614 µmol, 96%).

TLC [petroleum ether/EtOAc (1:1)]: $R_{f} = 0.46$ [vanillin: brown].

¹H NMR (400 MHz, C₆D₆): δ [ppm] = 8.09 (d, J = 8.1 Hz, 1 H, 6-*H*), 7.61 – 7.56 (m, 2 H, *o*-*H*_{Ts}), 7.18 – 7.14 (m, 1 H, 9-*H*), 7.08 – 7.01 (m, 1 H, 7-*H*), 6.83 (ddd, J = 7.5 Hz, 7.5 Hz, 1.1 Hz, 1 H, 8-*H*), 6.52 – 6.47 (m, 2 H, *m*-*H*_{Ts}), 4.79 (d, J = 11.0 Hz, 1 H, 4b-*H*), 3.99 (dd, J = 5.7 Hz, 5.7 Hz, 1 H, 10-*H*), 3.34 (dd, J = 11.0 Hz, 6.2 Hz, 1 H, 9b-*H*), 1.93 (d, J = 6.8 Hz, 1 H, 10-*OH*), 1.85 – 1.76 (m, 1 H, 4-*H* (*syn* to 4a-*CH*₃)), 1.68 (s, 3 H, *p*-C_{Ts}-*CH*₃), 1.62 (s, 1 H, 10a-*H*), 1.57 (s, 3 H, 4a-*CH*₃), 1.46 – 1.39 (m, 1 H, 1-*H* (*syn* to 4a-*CH*₃)), 1.24 – 1.15 (m, 1 H, 3-*H*), 1.12 – 0.99 (m, 3 H, 1-*H* (*anti* to 4a-*CH*₃), 2-*H*), 0.86 – 0.67 (m, 2 H, 3-*H*, 4-*H* (*anti* to 4a-*CH*₃)). 1³C NMR (101 MHz, C₆D₆): δ [ppm] = 143.9 (1 C, C-5a), 143.4 (1 C, *p*-C_{Ts}), 137.3 (1 C, *C*-9a), 135.5 (1 C, *ipso*-C_{Ts}), 129.6 (2 C, *m*-C_{Ts}), 128.4 (1 C, *C*-7), 127.6 (2 C, *o*-C_{Ts}), 125.1 (1 C, *C*-8), 124.1 (1 C, *C*-9), 117.7 (1 C, *C*-6), 81.8 (1 C, *C*-10a), 79.5 (1 C, *C*-10), 75.4 (1 C, *C*-4b), 51.4 (1 C, *C*-9b), 48.1 (1 C, *C*-4a), 31.2 (1 C, *C*-3), 29.8 (1 C, *C*-1), 22.9 (1 C, *C*-3), 21.1 (1 C, *C*-2), 21.0 (1 C, *p*-C_{Ts}-*CH*₃), 18.4 (1 C, 4a-*CH*₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3489 (br. s), 2932 (w), 2863 (w), 1725 (w), 1597 (w), 1464 (w), 1401 (w), 1344 (m), 1241 (w), 1161 (m), 1079 (m), 1033 (m), 968 (m), 858 (w), 812 (m), 758 (m), 701 (m), 658 (m), 618 (w), 574 (m), 545 (w).

UV/Vis (THF): λ_{max} (lg ε) = 285 (3.59), 257 (3.85), 221 (4.28).

ESI-HRMS: calculated [C₂₃H₂₇NO₄S+Na]⁺: 436.15530 found: 436.15549 (0.44 ppm).

3.21 Sulfite 19

To a solution of diol **18** (62 mg, 150 μ mol, 1.00 eq.) and NEt₃ (21 μ L, 300 μ mol, 2.00 eq.) in Et₂O (750 μ L) was added a solution of SOCl₂ (11 μ L, 150 μ mol, 1.00 eq.) in Et₂O (750 μ L) dropwise at 0 °C. The solution was stirred for 1 h at 0 °C and for 2.5 h at room temperature. NEt₃ (110 μ L, 1.50 mmol, 10.0 eq.) was added. Following, a solution of SOCl₂ (55 μ L, 750 μ mol, 5.00 eq.) in Et₂O (1.5 mL) was added dropwise at room temperature. The solution was stirred for 1 h at room temperature. The reaction was quenched by the addition of sat. NaHCO₃ and extracted with TBME (3x10 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether to petroleum ether/EtOAc (15:1) to (10:1) to (8:1)] afforded sulfite **19** as an off-white foam (65 mg, 141 μ mol, 94%).

TLC [petroleum ether/EtOAc (4:1)]: $R_{f} = 0.53$ [vanillin: brown].

¹**H NMR** (400 MHz, CDCl₃, major diastereomer): δ [ppm] = 7.71 – 7.65 (m, 1 H, 9-*H*), 7.52 – 7.46 (m, 2 H, *o*-*H*_{Ts}), 7.31 – 7.24 (m, 1 H, 10-*H*), 7.22 – 7.07 (m, 4 H, 11-*H*, 12-*H*, *m*-*H*_{Ts}), 5.21 (d, J = 2.9 Hz, 1 H, 12c-*H*), 4.55 (d, J = 10.3 Hz, 1 H, 7b-*H*), 3.37 – 3.31 (m, 1 H, 12b-*H*), 2.41

(ddd, J = 14.0 Hz, 3.3 Hz, 3.3 Hz, 1 H, 4-H (*anti* to 7a-CH₃)), 2.35 (s, 3 H, p-C_{Ts}-CH₃), 1.95 (ddd, J = 14.0 Hz, 14.0 Hz, 4.8 Hz, 1 H, 4-H (*syn* to 7a-CH₃)), 1.87 - 1.67 (m, 2 H, 5-H, 7-H (*syn* to 7a-CH₃)), 1.49 (s, 3 H, 4a-CH₃), 1.43 - 1.27 (m, 2 H, 6-H), 1.17 - 0.91 (m, 1 H, 5-H), 0.65 - 0.48 (m, 1 H, 7-H (*anti* to 7a-CH₃)).

¹³**C NMR** (101 MHz, CDCl₃, major diastereomer): δ [ppm] = 144.4 (1 C, *p*-*C*_{Ts}), 143.1 (1 C, *C*-8a), 134.7 (1 C, *ipso*-*C*_{Ts}), 134.2 (1 C, *C*-12a), 129.8 (2 C, *m*-*C*_{Ts}), 129.2 (1 C, *C*-10), 127.2 (2 C, *o*-*C*_{Ts}), 125.7 (1 C, *C*-11), 124.0 (1 C, *C*-12), 118.0 (1 C, *C*-9), 103.5 (1 C, *C*-3a), 91.5 (1 C, *C*-12c), 74.8 (1 C, *C*-7b), 52.3 (1 C, *C*-12b), 49.0 (1 C, *C*-7a), 32.6 (1 C, *C*-7), 30.9 (1 C, *C*-4), 24.8 (1 C, *C*-5), 21.7 (1 C, *p*-C_{Ts}-*C*H₃), 20.2 (1 C, *C*-6), 18.4 (1 C, 7a-*C*H₃).

¹H NMR (400 MHz, CDCl₃, minor diastereomer): δ [ppm] = 7.71 – 7.65 (m, 1 H, 9-*H*), 7.52 – 7.46 (m, 2 H, *o*-*H*_{Ts}), 7.31 – 7.24 (m, 1 H, 10-*H*), 7.22 – 7.07 (m, 4 H, 11-*H*, 12-*H*, *m*-*H*_{Ts}), 4.94 (d, *J* = 2.9 Hz, 1 H, 12c-*H*), 4.89 (d, *J* = 10.1 Hz, 1 H, 7b-*H*), 3.95 – 3.89 (m, 1 H, 12b-*H*), 2.32 (s, 3 H, *p*-C_{Ts}-C*H*₃), 1.87 – 1.67 (m, 4 H, 4-*H*, 5-*H*, 7-*H* (*syn* to 7a-CH₃)), 1.50 (s, 3 H, 4a-C*H*₃), 1.43 – 1.27 (m, 2 H, 6-*H*), 1.17 – 0.91 (m, 1 H, 5-*H*), 0.65 – 0.48 (m, 1 H, 7-*H* (*anti* to 7a-CH₃)). ¹³C NMR (101 MHz, CDCl₃, minor diastereomer): δ [ppm] = 144.3 (1 C, *p*-C_{Ts}), 143.3 (1 C, *C*-8a), 135.1 (1 C, *C*-12a), 134.5 (1 C, *ipso*-C_{Ts}), 129.8 (2 C, *m*-C_{Ts}), 128.9 (1 C, *C*-10), 127.3 (2 C, *o*-C_{Ts}), 125.7 (1 C, *C*-11), 123.7 (1 C, *C*-12), 118.2 (1 C, *C*-9), 106.3 (1 C, *C*-3a), 90.1 (1 C, *C*-12c), 75.1 (1 C, *C*-7b), 51.7 (1 C, *C*-12b), 48.0 (1 C, *C*-7a), 32.5 (1 C, *C*-7), 29.8 (1 C, *C*-4), 24.1 (1 C, *C*-5), 21.7 (1 C, *p*-C_{Ts}-*C*H₃), 20.3 (1 C, *C*-6), 18.3 (1 C, 7a-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2941 (w), 2870 (w), 1597 (w), 1463 (w), 1353 (m), 1304 (w), 1275 (w), 1216 (m), 1162 (m), 1093 (w), 1036 (w), 987 (m), 919 (w), 855 (w), 811 (m), 764 (m), 704 (m), 658 (m), 620 (w), 573 (m), 544 (w).

UV/Vis (THF): λ_{max} (lg ε) = 255 (3.90), 222 (4.21).

3.22 cis-Hydrindanone 20

A solution of sulfite **19** ($22 \mu g$, $48 \mu mol$) in Ph₂O ($480 \mu L$) was stirred for 12 h at $190 \circ C$. Flash column chromatography on silica gel [petroleum ether to petroleum ether/EtOAc (20:1) to (10:1) to (8:1)] afforded ketone **20** (7 mg, $18 \mu mol$, 37%) as a colorless foam and unreacted sulfite **19** (9 mg, $20 \mu mol$, 41%) as an off-white foam.

TLC [petroleum ether/EtOAc (10:1)]: $R_{f} = 0.18$ [vanillin: brown].

¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 7.71 – 7.68 (m, 1 H, 6-*H*), 7.51 – 7.48 (m, 2 H, *o*-*H*_{Ts}), 7.42 – 7.39 (m, 1 H, 9-*H*), 7.29 – 7.25 (m, 1 H, 7-*H*), 7.16 – 7.13 (m, 2 H, *m*-*H*_{Ts}), 7.08 (ddd, *J* = 7.6 Hz, 7.6 Hz, 1.0 Hz, 1 H, 8-*H*), 4.48 (d, *J* = 10.3 Hz, 1 H, 4b-*H*), 3.53 – 3.49 (m, 1 H, 9b-*H*), 2.34 (s, 3 H, *p*-C_{Ts}-C*H*₃), 2.18 – 2.13 (m, 1 H, 10a-*H*), 2.07 – 2.00 (m, 1 H, 1-*H* (*anti* to 4a-CH₃)), 1.66 – 1.60 (m, 1 H, 4-*H* (*syn* to 4a-CH₃)), 1.53 (s, 3 H, 4a-C*H*₃), 1.48 – 1.37 (m, 2 H,

1-*H* (*syn* to 4a-CH₃), 2-*H* (*syn* to 4a-CH₃)), 1.37 – 1.22 (m, 2 H, 3-*H*), 0.92 – 0.80 (m, 1 H, 2-*H* (*anti* to 4a-CH₃)), 0.46 (ddd, *J* = 13.3 Hz, 13.3 Hz, 4.3 Hz, 1 H, 4-*H* (*anti* to 4a-CH₃)).

¹³**C NMR** (126 MHz, CDCl₃): δ [ppm] = 211.6 (1 C, *C*-10), 144.2 (1 C, *p*-*C*_{Ts}), 142.6 (1 C, *C*-5a), 134.7 (1 C, *ipso*-*C*_{Ts}), 130.7 (1 C, *C*-9a), 129.7 (2 C, *m*-*C*_{Ts}), 128.8 (1 C, *C*-7), 127.3 (2 C, *o*-*C*_{Ts}), 125.3 (1 C, *C*-8), 124.6 (1 C, *C*-9), 117.8 (1 C, *C*-6), 71.5 (1 C, *C*-4b), 55.0 (1 C, *C*-10a), 51.1 (1 C, *C*-9b), 43.1 (1 C, *C*-4a), 29.8 (1 C, *C*-4), 23.6 (1 C, 4a-*C*H₃), 22.1 (1 C, *C*-2), 21.7 (1 C, *p*-C_{Ts}-*C*H₃), 20.9 (1 C, *C*-3), 19.6 (1 C, *C*-1).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3035 (w), 2935 (m), 2863 (w), 1741 (m), 1597 (w), 1461 (m), 1346 (s), 1302 (m), 1255 (m), 1199 (w), 1158 (s), 1092 (m), 1034 (m), 965 (m), 873 (w), 807 (m), 755 (s), 709 (m), 660 (s), 609 (m), 569 (s).

UV/Vis (THF): λ_{max} (lg ε) = 256 (3.84), 228 (4.05).ESI-HRMS: calculated [C23H25NO3S+Na]+: 418.14474found:418.14490 (0.38 ppm).

3.23 *trans*-Hydrindanone 21

A solution of PPh₃ (354 mg, 1.35 mmol, 2.20 eq.) and C₂Cl₆ (320 mg, 1.35 mmol, 2.20 eq.) in dry MeCN (4.9 mL) under argon was stirred for 30 min at room temperature. To the solution *i*-Pr₂NEt (460 μ L, 2.70 mmol, 4.40 eq.) was added at 0 °C . A solution of diol **18** (254 mg, 614 μ mol, 1.00 eq.) in dry MeCN (4.9 mL) was added dropwise at 0 °C. The solution was stirred for 50 min at 0 °C and for 90 min under reflux. The reaction was quenched by the addition of H₂O at 0 °C and extracted with TBME (3x50 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (11:1) to (8:1), each +1% NEt₃] afforded *trans*-hydrindanone **21** (104 mg, 263 μ mol, 43%) as a colorless foam and a mixture of *trans*-hydrindanone **21** and *cis*-hydrindanone **20** (98 mg, 248 μ mol, 40%**21:20** = 3:7) as a colorless foam.

TLC [petroleum ether/EtOAc (4:1)]: $R_f = 0.57$ [vanillin: brown].

¹H NMR (600 MHz, C₆D₆): δ [ppm] = 8.00 – 7.98 (m, 1 H, 6-*H*), 7.59 – 7.56 (m, 2 H, *o*-*H*_{Ts}), 7.11 – 7.08 (m, 1 H, 9-*H*), 6.96 – 6.92 (m, 1 H, 7-*H*), 6.66 (ddd, *J* = 7.5 Hz, 7.5 Hz, 1.0 Hz, 1 H, 8-*H*), 6.59 – 6.56 (m, 2 H, *m*-*H*_{Ts}), 4.47 (d, *J* = 8.2 Hz, 1 H, 4b-*H*), 3.35 (d, *J* = 8.5 Hz, 1 H, 9b-*H*), 2.22 – 2.11 (m, 2 H, 4-*H*), 1.97 (dd, *J* = 11.9 Hz, 3.4 Hz, 1 H, 10a-*H*), 1.70 (s, 3 H, *p*-C_{Ts}-C*H*₃), 1.52 – 1.47 (m, 1 H, 1-*H* (*anti* to 4a-CH₃)), 1.46 – 1.40 (m, 1 H, 3-*H* (*anti* to 4a-CH₃)), 1.37 – 1.32 (m, 1 H, 2-*H* (*syn* to 4a-CH₃)), 1.25 – 1.09 (m, 2 H, 1-*H* (*syn* to 4a-CH₃), 3-*H* (*syn* to 4a-CH₃)), 0.72 (s, 3 H, 4a-C*H*₃), 0.56 (ddddd, *J* = 13.4 Hz, 13.4 Hz, 13.4 Hz, 4.5 Hz, 4.5 Hz, 1 H, 2-*H* (*anti* to 4a-CH₃)).

¹³**C NMR** (151 MHz, C₆D₆): δ [ppm] = 209.6 (1 C, *C*-10), 144.3 (1 C, *C*-5a), 144.0 (1 C, *p*-*C*_{Ts}), 134.7 (1 C, *ipso*-*C*_{Ts}), 129.6 (1 C, *C*-9a), 129.6 (2 C, *m*-*C*_{Ts}), 128.9 (1 C, *C*-7), 128.1 (2 C, *o*-*C*_{Ts}), 125.1 (1 C, *C*-8), 125.1 (1 C, *C*-9), 117.3 (1 C, *C*-6), 73.2 (1 C, *C*-4b), 53.5 (1 C, *C*-9b),

50.5 (1 C, *C*-10a), 43.7 (1 C, *C*-4a), 34.4 (1 C, *C*-4), 24.7 (1 C, *C*-2), 21.5 (1 C, *C*-3), 21.0 (1 C, *p*-C_{Ts}-*C*H₃), 19.7 (1 C, *C*-1), 19.6 (1 C, 4a-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2932 (m), 2860 (w), 1744 (m), 1594 (w), 1463 (m), 1352 (m), 1352 (m), 1301 (w), 1242 (w), 1161 (s), 1094 (m), 1034 (m), 973 (m), 939 (m), 858 (w), 811 (m), 752 (m), 710 (m), 667 (s), 620 (m), 572 (s).

UV/Vis (THF): λ_{max} (lg ε) = 290 (3.46), 257 (3.85), 221 (4.34).

ESI-HRMS: calculated $[C_{23}H_{25}NO_3S+K]^+$: 434.11867 found: 434.11891 (0.55 ppm).

3.24 Alcohol S11

To a solution of ketone **20** and **21** (102 mg, 258 μ mol, 1.00 eq., **20:21** = 6.5:1) in dry PhMe (5.2 mL) under argon was added DIBAL-H (1.2 M in PhMe, 260 μ L, 309 μ mol, 1.20 eq.) dropwise at –78 °C. The solution was stirred at –78 °C for 1 h. The reaction was quenched by the addition of MeOH at –78 °C. Sat. sodium potassium tartrate was added and the mixture stirred vigorously for 30 min at room temperature. The mixture was extracted with TBME (3x20 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (4:1)] afforded a alcohol **S11** as a colorless foam (69 mg, 174 μ mol, 67%.)

TLC [petroleum ether/EtOAc (4:1)]: $R_f = 0.30$ [vanillin: brown].

¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 7.76 – 7.73 (m, 1 H, 6-*H*), 7.50 – 7.47 (m, 2 H, *o*-*H*_{Ts}), 7.28 – 7.23 (m, 1 H, 7-*H*), 7.15 – 7.08 (m, 3 H, *m*-*H*_{Ts}, 9-*H*), 7.04 (ddd, *J* = 7.4 Hz, 7.4 Hz, 1.0 Hz, 1 H, 8-*H*), 4.49 (dd, *J* = 6.7 Hz, 6.7 Hz, 1 H, 10-*H*), 4.16 (d, *J* = 10.2 Hz, 1 H, 4b-*H*), 3.67 (dd, *J* = 10.2 Hz, 7.8 Hz, 1 H, 9b-*H*), 2.33 (s, 3 H, *p*-C_{Ts}-C*H*₃), 1.94 – 1.84 (m, 1 H, 4-*H*), 1.63 (ddd, *J* = 6.0 Hz, 6.0 Hz, 6.0 Hz, 1 H, 10a-*H*), 1.60 – 1.45 (m, 5 H, 1-*H*, 2-*H*, 3-*H*, 4-*H*), 1.30 – 1.17 (m, 5 H, 2-*H*, 4a-C*H*₃, 10-O*H*), 1.12 – 1.02 (m, 1 H, 1-*H*).

¹³**C NMR** (126 MHz, CDCl₃): δ [ppm] = 144.0 (1 C, *C*-5a), 143.9 (1 C, *p*-*C*_{Ts}), 134.3 (1 C, *ipso*-*C*_{Ts}), 132.1 (1 C, *C*-9a), 129.5 (2 C, *m*-*C*_{Ts}), 128.6 (1 C, *C*-7), 127.6 (2 C, *o*-*C*_{Ts}), 125.7 (1 C, *C*-9), 124.5 (1 C, *C*-8), 117.6 (1 C, *C*-6), 76.6 (1 C, *C*-10), 76.4 (1 C, *C*-4b), 50.2 (1 C, *C*-9b), 48.8 (1 C, *C*-10a), 43.8 (1 C, *C*-4a), 31.8 (1 C, *C*-4), 28.6 (1 C, 4a-*C*H₃), 23.4 (1 C, *C*-2), 22.5 (1 C, *C*-1), 21.8 (1 C, *C*-3), 21.6 (1 C, *p*-*C*_{Ts}-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3553 (br. s), 2925 (m), 2862 (w), 1597 (w), 1465 (m), 1400 (w), 1345 (s), 1293 (w), 1241 (w), 1161 (s), 1089 (m), 1034 (m), 974 (m), 951 (m), 908 (m), 811 (m), 723 (s), 664 (s), 573 (s).

UV/Vis (THF): λ_{max} (lg ε) = 258 (3.78), 223 (4.14).

ESI-HRMS: calculated [C₂₃H₂₇NO₃S+Na]⁺: 420.16039

found:

420.16061 (0.52 ppm).

3.25 Silyl ether S13 and xanthate S12

To a solution of alcohol **S11** (62 mg, 156 μ mol, 1.00 eq.) and CS₂ (10 μ L, 187 μ mol, 1.20 eq.) in dry THF (3.1 mL) under argon was added KHMDS (0.5 M in PhMe, 370 μ L, 187 μ mol, 1.20 eq.) dropwise at –78 °C. The solution was stirred for 10 min at –78 °C and for 8 h at room temperature. MeI (20 μ L, 374 μ mol, 2.40 eq.) was added at 0 °C. The solution was stirred for 14 h at room temperature. The reaction was quenched by the addition of sat. NH₄Cl and extracted with TBME (3x10 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (30:1) to (20:1) to (15:1)] afforded silyl ether **S13** (14 mg, 30 μ mol, 19%) as a colorless solid and xanthate **S12** (54 mg, 111 μ mol, 71%) as a yellow oil.

TLC [petroleum ether/EtOAc (4:1)]: $R_{f} = 0.69$ [vanillin: brown].

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.68 – 7.64 (m, 1 H, 6-*H*), 7.48 – 7.43 (m, 2 H, *o*-*H*_{Ts}), 7.22 – 7.17 (m, 1 H, 7-*H*), 7.16 – 7.12 (m, 1 H, 9-*H*), 7.12 – 7.08 (m, 2 H, *m*-*H*_{Ts}), 6.97 (ddd, *J* = 7.4 Hz, 7.4 Hz, 1.1 Hz, 1 H, 8-*H*), 4.59 (dd, *J* = 8.3 Hz, 6.5 Hz, 1 H, 10-*H*), 4.10 (d, *J* = 9.3 Hz, 1 H, 4b-*H*), 3.47 (dd, *J* = 8.8 Hz, 8.8 Hz, 1 H, 9b-*H*), 2.39 – 2.30 (m, 4 H, 4-*H*, *p*-C_{Ts}-C*H*₃), 1.55 – 1.23 (m, 6 H, 1-*H*, 2-*H*, 3-*H*, 4-*H*, 10a-*H*), 1.16 (s, 3 H, 4a-C*H*₃), 1.00 – 0.80 (m, 1 H, 3-*H*), 0.45 – 0.29 (m, 1 H, 1-*H*), 0.09 (s, 9 H, 10-O-Si(C*H*₃)₃).

¹³**C NMR** (101 MHz, CDCl₃): δ [ppm] = 143.7 (1 C, *p*-*C*_{Ts}), 142.9 (1 C, *C*-5a), 134.6 (1 C, *ipso*-*C*_{Ts}), 134.4 (1 C, *C*-9a), 129.4 (2 C, *m*-*C*_{Ts}), 127.7 (1 C, *C*-7), 127.5 (2 C, *o*-*C*_{Ts}), 127.1 (1 C, *C*-9), 124.0 (1 C, *C*-8), 117.1 (1 C, *C*-6), 75.7 (1 C, *C*-10), 74.6 (1 C, *C*-4b), 49.5 (1 C, *C*-10a), 49.4 (1 C, *C*-9b), 43.2 (1 C, *C*-4a), 33.3 (1 C, *C*-4), 31.7 (1 C, 4a-*C*H₃), 23.8 (1 C, *C*-3), 23.4 (1 C, *C*-1), 23.0 (1 C, *C*-2), 21.6 (1 C, *p*-C_{Ts}-*C*H₃), 0.1 (3 C, 10-O-Si(*C*H₃)₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2929 (m), 2860 (w), 1596 (w), 1463 (m), 1394 (w), 1347 (m), 1298 (w), 1249 (m), 1159 (s), 1101 (s), 1052 (m), 961 (m), 893 (m), 835 (s), 739 (s), 665 (s), 638 (m), 569 (s), 541 (w).

UV/Vis (THF): λ_{max} (lg ε) = 259 (3.82), 222 (4.25).

ESI-HRMS: calculated [C₂₆H₃₅NO₃SSi+Na]⁺: 492.19991

found: 492.19972 (0.39 ppm).

TLC [petroleum ether/EtOAc (4:1)]: $R_{f} = 0.54$ [vanillin: brown].

¹H NMR (500 MHz, CDCl₃): δ [ppm] = 7.73 (d, J = 8.2 Hz, 1 H, 6-*H*), 7.49 – 7.46 (m, 2 H, *o*-*H*_{Ts}), 7.25 – 7.21 (m, 1 H, 7-*H*), 7.15 – 7.11 (m, 2 H, *m*-*H*_{Ts}), 6.99 (ddd, J = 7.5 Hz, 7.5 Hz, 1.1 Hz, 1 H, 8-*H*), 6.93 – 6.90 (m, 1 H, 9-*H*), 6.54 (dd, J = 7.8 Hz, 5.9 Hz, 1 H, 10-*H*), 4.22 (d, J = 10.4 Hz, 1 H, 4b-*H*), 3.92 (dd, J = 10.1 Hz, 7.9 Hz, 1 H, 9b-*H*), 2.33 (s, 3 H, *p*-C_{Ts}-C*H*₃), 2.16 (s, 3 H, 10-O-C(=S)-SC*H*₃), 1.95 (ddd, J = 5.9 Hz, 5.9 Hz, 5.9 Hz, 1 H, 10a-*H*), 1.76 (ddd, J = 13.8 Hz, 10.0 Hz, 3.7 Hz, 1 H, 4-*H* (*anti* to 4a-CH₃)), 1.66 – 1.46 (m, 5 H, 1-*H*, 2-*H*, 3-*H*, 4-*H* (*syn* to CH₃)), 1.38 – 1.20 (m, 5 H, 4a-CH₃, 1-*H*, 3-*H*).

¹³**C** NMR (126 MHz, CDCl₃): δ [ppm] = 215.3 (1 C, 10-O-*C*(=S)-SCH₃), 144.1 (1 C, *p*-*C*_{Ts}), 143.4 (1 C, *C*-5a), 134.2 (1 C, *ipso*-*C*_{Ts}), 131.7 (1 C, *C*-9a), 129.6 (2 C, *m*-*C*_{Ts}), 128.4 (1 C, *C*-7), 127.5 (2 C, *o*-*C*_{Ts}), 126.0 (1 C, *C*-9), 124.6 (1 C, *C*-8), 117.2 (1 C, *C*-6), 86.4 (1 C, *C*-10), 76.3 (1 C, *C*-4b), 48.8 (1 C, *C*-9b), 48.1 (1 C, *C*-10a), 44.0 (1 C, *C*-4a), 30.3 (1 C, *C*-4), 27.3 (1 C, 4a-*C*H₃), 22.6 (1 C, *C*-3), 22.3 (1 C, *C*-1), 21.7 (1 C, *p*-C_{Ts}-*C*H₃), 21.3 (1 C, *C*-2), 18.4 (1 C, 10-O-C(=S)-SCH₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2919 (m), 2860 (m), 1596 (w), 1467 (m), 1348 (m), 1254 (w), 1216 (s), 1159 (s), 1093 (m), 1040 (s), 955 (s), 903 (m), 809 (m), 761 (m), 732 (m), 667 (s), 576 (s).

UV/Vis (THF): λ_{max} (lg ε) = 280 (4.12), 223 (4.31).

ESI-HRMS: calculated $[C_{25}H_{29}NO_3S_3+Na]^+$: 510.12018 found: 510.12015 (0.06 ppm).

3.26 cis-Hydrindane S14

A solution of xanthate **S12** (42 mg, 86 μ mol, 1.00 eq.), n-Bu₃SnH (120 μ L, 431 μ mol, 5.00 eq.) and AIBN (7 mg, 43 μ mol, 0.50 eq.) in dry PhMe (4.3 mL) was degassed (three freeze-pump-thaw cycles) and back filled with Ar. The solution was stirred under reflux for 2 h and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (100:1) to (60:1) to (30:1) to (20:1)] afforded *cis*-hydrindane **S14** as a colorless solid (10 mg, 26 μ mol, 30%).

TLC [petroleum ether/EtOAc (10:1)]: $R_{f} = 0.50$ [vanillin: brown].

¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 7.68 – 7.65 (m, 1 H, 6-*H*), 7.50 – 7.47 (m, 2 H, *o*-*H*_{Ts}), 7.21 – 7.16 (m, 1 H, 7-*H*), 7.14 – 7.10 (m, 2 H, *m*-*H*_{Ts}), 7.03 (ddd, *J* = 7.4 Hz, 7.4 Hz, 1.0 Hz, 1 H,

8-*H*), 7.00 – 6.97 (m, 1 H, 9-*H*), 4.11 (d, J = 10.6 Hz, 1 H, 4b-*H*), 3.32 (ddd, J = 10.1 Hz, 10.1 Hz, 6.6 Hz, 1 H, 9b-*H*), 2.33 (s, 3 H, p-C_{Ts}-C*H*₃), 2.06 – 1.96 (m, 1 H, 10-*H* (*syn* to 4a-CH₃)), 1.78 – 1.68 (m, 2 H, 10-*H* (*anti* to 4a-CH₃), 10a-*H*), 1.59 (dddd, J = 13.6 Hz, 13.6 Hz, 4.0 Hz, 4.0 Hz, 1 H, 1-*H*), 1.48 – 1.11 (m, 9 H, 1-*H*, 2-*H*, 3-*H*, 4-*H*, 4a-C*H*₃), 0.90 – 0.82 (m, 1 H, 4-*H*). ¹³C NMR (126 MHz, CDCl₃): δ [ppm] = 143.6 (1 C, p-C_{Ts}), 142.9 (1 C, C-5a), 139.4 (1 C, C-9a), 135.1 (1 C, *ipso*-C_{Ts}), 129.5 (2 C, *m*-C_{Ts}), 127.6 (1 C, C-7), 127.3 (2 C, *o*-C_{Ts}), 125.0 (1 C, C-8), 124.0 (1 C, C-9), 117.3 (1 C, C-6), 78.3 (1 C, C-4b), 44.1 (1 C, C-10a), 44.0 (1 C, C-4a), 42.9 (1 C, C-9b), 34.1 (1 C, C-10), 27.5 (1 C, C-4), 23.8 (1 C, C-1), 23.5 (1 C, 4a-CH₃), 21.8 (1 C, C-3), 21.6 (1 C, p-C_{Ts}-CH₃), 20.5 (1 C, C-2).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2926 (m), 2863 (w), 1597 (w), 1461 (m), 1344 (m), 1258 (w), 1227 (w), 1158 (s), 1092 (m), 1023 (m), 955 (m), 894 (w), 805 (m), 755 (m), 714 (w), 665 (m), 622 (w), 570 (m).

UV/Vis (THF): λ_{max} (lg ε) = 258 (3.81).

ESI-HRMS: calculated [C₂₃H₂₇NO₂S+Na]⁺: 404.16547 found: 404.16558 (0.27 ppm).

3.27 Alcohols S15 and S22

To a solution of ketone **21** (40 mg, 101 μ mol, 1.00 eq.) in dry PhMe (2.0 mL) under argon was added DIBAL-H (1.2 M in PhMe, 100 μ L, 120 μ mol, 1.20 eq.) dropwise at –78 °C. The solution was stirred at –78 °C for 1 h. The reaction was quenched by the addition of MeOH at –78 °C. Sat. sodium potassium tartrate was added and the mixture stirred vigorously for 30 min at room temperature. The mixture was extracted with TBME (3x10 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (4:1)] afforded a inseparable mixture of alcohols **S15** and **S22** as a colorless foam (31 mg, 78 μ mol, 77%, **S15**:**S22** = 5:2).

TLC [petroleum ether/EtOAc (4:1)]: $R_f = 0.23$ [vanillin: brown].

¹**H NMR** (600 MHz, C₆D₆, major diastereomer): δ [ppm] = 8.05 – 8.02 (m, 1 H, 6-*H*), 7.60 – 7.57 (m, 2 H, *o*-*H*_{Ts}), 7.08 – 7.05 (m, 1 H, 9-*H*), 7.03 – 7.00 (m, 1 H, 7-*H*), 6.79 – 6.74 (m, 1 H, 8-*H*), 6.59 – 6.54 (m, 2 H, *m*-*H*_{Ts}), 4.28 (d, *J* = 8.5 Hz, 1 H, 4b-*H*), 3.68 (ddd, *J* = 9.8 Hz, 9.8 Hz, 9.8 Hz, 1 H, 10-*H*), 3.35 (dd, *J* = 8.3 Hz, 8.3 Hz, 1 H, 9b-*H*), 2.24 (ddd, *J* = 13.3 Hz, 3.2 Hz, 3.2 Hz, 1 H, 4-*H* (*syn* to 4a-CH₃)), 2.01 (ddd, *J* = 13.4 Hz, 13.4 Hz, 4.2 Hz, 1 H, 4-*H* (*anti* to 4a-CH₃)), 1.69 (s, 3 H, *p*-C_{Ts}-C*H*₃), 1.59 – 1.30 (m, 4 H, 1-*H*, 2-*H* (*anti* to 4a-CH₃)), 0.92 – 0.76 (m, 5 H, 1-*H*, 4a-CH₃, 10a-*H*), 0.42 (d, *J* = 10.3 Hz, 1 H, 10-O*H*).

¹³**C NMR** (151 MHz, C₆D₆, major diastereomer): δ [ppm] = 145.3 (1 C, *C*-5a), 143.6 (1 C, *p*-*C*_{Ts}), 135.2 (1 C, *ipso*-*C*_{Ts}), 130.7 (1 C, *C*-9a), 129.5 (2 C, *m*-*C*_{Ts}), 128.3 (1 C, *C*-7), 128.0 (2 C, *o*-*C*_{Ts}), 127.8 (1 C, *C*-9), 123.9 (1 C, *C*-8), 116.6 (1 C, *C*-6), 75.9 (1 C, *C*-10), 75.1 (1 C, *C*-4b),

49.5 (1 C, *C*-10a), 47.4 (1 C, *C*-9b), 43.2 (1 C, *C*-4a), 35.7 (1 C, *C*-4), 25.7 (1 C, *C*-1), 23.2 (1 C, *C*-2), 21.8 (1 C, *C*-3), 21.0 (1 C, *p*-C_{Ts}-*C*H₃), 19.5 (1 C, 4a-*C*H₃).

¹**H NMR** (600 MHz, C₆D₆, minor diastereomer): δ [ppm] = 8.02 – 8.00 (m, 1 H, 6-*H*), 7.64 – 7.61 (m, 2 H, *o*-*H*_{Ts}), 6.99 – 6.96 (m, 1 H, 7-*H*), 6.79 – 6.74 (m, 2 H, 8-*H*, 9-*H*), 6.59 – 6.54 (m, 2 H, *m*-*H*_{Ts}), 4.60 (d, *J* = 8.7 Hz, 1 H, 4b-*H*), 3.60 (d, *J* = 4.0 Hz, 1 H, 10-*H*), 3.49 (d, *J* = 8.6 Hz, 1 H, 9b-*H*), 2.37 (ddd, *J* = 13.2 Hz, 3.1 Hz, 3.1 Hz, 1 H, 4-*H* (*syn* to 4a-CH₃)), 2.01 (ddd, *J* = 13.4 Hz, 13.4 Hz, 4.2 Hz, 1 H, 4-*H* (*anti* to 4a-CH₃)), 1.67 (s, 3 H, *p*-C_{Ts}-C*H*₃), 1.59 – 1.30 (m, 7 H, 1-*H*, 2-*H*, 3-*H*, 4a-CH₃), 1.18 – 1.12 (m, 2 H, 2-*H*, 10a-*H*), 0.92 – 0.76 (m, 2 H, 1-*H*, 10-O*H*).

¹³**C NMR** (151 MHz, C₆D₆, minor diastereomer): δ [ppm] = 144.1 (1 C, *C*-5a), 143.5 (1 C, *p*-*C*_{Ts}), 135.3 (1 C, *ipso*-*C*_{Ts}), 134.5 (1 C, *C*-9a), 129.5 (2 C, *m*-*C*_{Ts}), 128.2 (1 C, *C*-7 (HSQC)), 128.0 (2 C, *o*-*C*_{Ts}), 125.3 (1 C, *C*-9), 124.5 (1 C, *C*-8), 117.0 (1 C, *C*-6), 83.0 (1 C, *C*-10), 76.8 (1 C, *C*-4b), 55.4 (1 C, *C*-9b), 48.5 (1 C, *C*-10), 46.3 (1 C, *C*-4a), 37.0 (1 C, *C*-4), 26.1 (1 C, *C*-1), 22.0 (1 C, 4a-*C*H₃), 21.7 (1 C, *C*-3), 21.6 (1 C, *C*-2), 21.0 (1 C, *p*-C_{Ts}-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3528 (w), 3454 (w), 2927 (m), 2861 (w), 1596 (w), 1467 (m), 1346 (m), 1238 (w), 1159 (s), 1090 (m), 1032 (m), 978 (w), 935 (m), 807 (m), 755 (m), 675 (m), 616 (w), 568 (s), 543 (w).

UV/Vis (THF): λ_{max} (lg ε) = 262 (3.77), 222 (4.21).

ESI-HRMS: calculated $[C_{23}H_{27}NO_3S+Na]^+$: 420.16039

found:

420.16059 (0.48 ppm).

To a solution of alcohols **S15** and **S22** (72 mg, 181 µmol, 1.00 eq., **S15:S22** = 5:2) and CS₂ (13 µL, 217 µmol, 1.20 eq.) in dry THF (3.6 mL) under argon was added KHMDS (0.5 \times in PhMe, 430 µL, 217 µmol, 1.20 eq.) dropwise at -78 °C. The solution was stirred for 10 min at -78 °C and for 13 h at room temperature. MeI (27 µL, 435 µmol, 2.40 eq.) was added at 0 °C. The solution was stirred for 21 h at room temperature. The reaction was quenched by the addition of sat. NH₄Cl and extracted with TBME (3x10 mL). The combined organic phases were washed

with sat. NaCl, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (30:1) to (20:1) to (15:1)] afforded silyl ether **S17** (6 mg, 13 μ mol, 7%) as a colorless solid and xanthates **S16** and **S23** (28 mg, 57 μ mol, 32%, **S16:S23** = 2:1) as a yellow oil.

TLC [petroleum ether/EtOAc (20:1)]: $R_f = 0.31$ [vanillin: brown].

¹**H NMR** (600 MHz, C₆D₆, major diastereomer): δ [ppm] = 8.05 – 8.02 (m, 1 H, 6-*H*), 7.58 – 7.55 (m, 2 H, *o*-*H*_{Ts}), 7.09 – 7.06 (m, 1 H, 9-*H*), 7.02 – 6.97 (m, 1 H, 7-*H*), 6.83 – 6.77 (m, 1 H, 8-*H*), 6.58 – 6.55 (m, 2 H, *m*-*H*_{Ts}), 5.72 (dd, *J* = 11.9 Hz, 7.9 Hz, 1 H, 10-*H*), 4.36 (d, *J* = 8.5 Hz, 1 H, 4b-*H*), 4.16 (dd, *J* = 8.2 Hz, 8.2 Hz, 1 H, 9b-*H*), 2.26 – 2.20 (m, 1 H, 4-*H* (*syn* to 4a-CH₃)), 2.08 – 1.98 (m, 4 H, 4-*H* (*anti* to 4a-CH₃), 10-O-C(=S)-SC*H*₃), 1.71 – 1.64 (m, 4 H, 10a-*H*, *p*-C_{Ts}-C*H*₃), 1.53 – 1.22 (m, 4 H, 1-*H*, 2-*H*, 3-*H*), 1.04 (dddd, *J* = 12.8 Hz, 12.8 Hz, 12.8 Hz, 3.9 Hz, 1 H, 1-*H*), 0.81 (s, 3 H, 4a-C*H*₃), 0.79 – 0.66 (m, 1 H, 2-*H*).

¹³**C** NMR (151 MHz, C₆D₆, major diastereomer): δ [ppm] = 216.8 (1 C, 10-O-C(=S)-SCH₃), 145.1 (1 C, C-5a), 143.8 (1 C, p-C_{Ts}), 135.0 (1 C, *ipso*-C_{Ts}), 130.1 (1 C, C-9a), 129.5 (2 C, *m*-C_{Ts}), 128.6 (1 C, C-7), 128.0 (2 C, *o*-C_{Ts} (HSQC)), 127.4 (1 C, C-9), 124.2 (1 C, C-8), 116.7 (1 C, C-6), 87.2 (1 C, C-10), 75.2 (1 C, C-4b), 46.0 (1 C, C-10a), 45.3 (1 C, C-9b), 42.6 (1 C, C-4a), 35.5 (1 C, C-4), 25.2 (1 C, C-2), 23.1 (1 C, C-1), 21.6 (1 C, C-3), 21.0 (1 C, *p*-C_{Ts}-CH₃), 19.4 (1 C, 4a-CH₃), 18.6 (1 C, 10-O-C(=S)-SCH₃).

¹**H NMR** (600 MHz, C₆D₆, minor diastereomer): δ [ppm] = 8.02 – 7.99 (m, 1 H, 6-*H*), 7.68 – 7.66 (m, 1 H, 9-*H*), 7.61 – 7.58 (m, 2 H, *o*-*H*_{Ts}), 7.02 – 6.97 (m, 1 H, 7-*H*), 6.83 – 6.77 (m, 1 H, 8-*H*), 6.58 – 6.55 (m, 2 H, *m*-*H*_{Ts}), 5.59 (d, *J* = 4.0 Hz, 1 H, 10-*H*), 4.46 (d, *J* = 8.6 Hz, 1 H, 4b-*H*), 3.85 (d, *J* = 8.7 Hz, 1 H, 9b-*H*), 2.40 – 2.35 (m, 1 H, 4-*H* (*syn* to 4a-CH₃)), 2.08 – 1.98 (m, 4 H, 4-*H* (*anti* to 4a-CH₃), 10-O-C(=S)-SCH₃), 1.71 – 1.64 (m, 3 H, *p*-C_{Ts}-CH₃), 1.53 – 1.22 (m, 5 H, 1-*H*, 2-*H*, 3-*H*, 10a-*H*), 1.20 (s, 3 H, 4a-CH₃), 1.14 – 1.09 (m, 1 H, 1-*H*), 0.79 – 0.66 (m, 1 H, 2-*H*).

¹³**C NMR** (151 MHz, C₆D₆, minor diastereomer): δ [ppm] = 215.6 (1 C, 10-O-C(=S)-SCH₃), 144.1 (1 C, C-5a), 143.7 (1 C, p- C_{Ts}), 135.1 (1 C, *ipso*- C_{Ts}), 132.9 (1 C, C-9a), 129.5 (2 C, *m*- C_{Ts}), 128.9 (1 C, C-7), 128.0 (2 C, *o*- C_{Ts} (HSQC)), 126.3 (1 C, C-9), 125.0 (1 C, C-8), 116.8 (1 C, C-6), 93.2 (1 C, C-10), 76.1 (1 C, C-4b), 52.6 (1 C, C-9b), 47.4 (1 C, C-10a), 46.9 (1 C, C-4a), 36.9 (1 C, C-4), 25.9 (1 C, C-2), 21.7 (1 C, C-1), 21.5 (1 C, C-3), 21.4 (1 C, 4a-CH₃), 21.0 (1 C, *p*- C_{Ts} -CH₃), 18.6 (1 C, 10-O-C(=S)-SCH₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2930 (m), 2860 (w), 1596 (w), 1467 (m), 1353 (m), 1301 (w), 1213 (m), 1161 (s), 1055 (s), 975 (m), 935 (m), 806 (m), 754 (m), 674 (m), 571 (s).

UV/Vis (THF): λ_{max} (lg ε) = 278 (4.16), 222 (4.36).

ESI-HRMS: calculated [C₂₅H₂₉NO₃S₃+Na]⁺: 510.12018 found: 510.12017 (0.02 ppm).

TLC [petroleum ether/EtOAc (20:1)]: $R_{f} = 0.46$ [vanillin: brown].

¹H NMR (500 MHz, CDCl₃): δ [ppm] = 7.65 – 7.62 (m, 1 H, 6-*H*), 7.54 – 7.50 (m, 2 H, *o*-*H*_{Ts}), 7.18 – 7.11 (m, 3 H, 7-*H*, *m*-*H*_{Ts}), 7.05 – 7.02 (m, 1 H, 9-*H*), 6.98 (ddd, *J* = 7.4 Hz, 7.4 Hz, 1.0 Hz, 1 H, 8-*H*), 4.35 (d, *J* = 8.6 Hz, 1 H, 4b-*H*), 3.88 (d, *J* = 4.3 Hz, 1 H, 10-*H*), 3.54 (d, *J* = 8.5 Hz, 1 H, 9b-*H*), 2.32 (s, 3 H, *p*-C_{Ts}-C*H*₃), 1.98 – 1.93 (m, 1 H, 4-*H* (*syn* to 4a-CH₃)), 1.76 – 1.69 (m, 2 H, 1-*H*, 4-*H* (*anti* to 4a-CH₃)), 1.67 – 1.60 (m, 1 H, 3-*H*), 1.58 – 1.45 (m, 2 H, 2-*H*, 3-*H*), 1.39 – 1.32 (m, 1 H, 2-*H*), 1.19 (s, 3 H, 4a-C*H*₃), 1.18 – 1.06 (m, 2 H, 1-*H*, 10a-*H*), 0.10 (s, 9 H, 10-O-Si(C*H*₃)₃).

¹³**C** NMR (126 MHz, CDCl₃): δ [ppm] = 143.8 (1 C, *p*-*C*_{Ts}), 143.2 (1 C, *C*-5a), 134.44 (1 C, *C*-9a), 134.42 (1 C, *ipso*-*C*_{Ts}), 129.5 (2 C, *m*-*C*_{Ts}), 128.0 (1 C, *C*-7), 127.8 (2 C, *o*-*C*_{Ts}), 124.9 (1 C, *C*-9), 124.5 (1 C, *C*-8), 116.7 (1 C, *C*-6), 83.0 (1 C, *C*-10), 76.5 (1 C, *C*-4b), 56.1 (1 C, *C*-9b), 48.1 (1 C, *C*-10a), 46.2 (1 C, *C*-4a), 36.6 (1 C, *C*-4), 26.0 (1 C, *C*-1), 22.1 (1 C, *C*-2), 21.6 (1 C, *p*-C_{Ts}-*C*H₃), 21.55 (1 C, 4a-*C*H₃), 21.51 (1 C, *C*-3), 0.2 (3 C, 10-O-Si(*C*H₃)₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3052 (w), 2927 (m), 2859 (m), 1597 (w), 1468 (m), 1451 (m), 1351 (m), 1293 (w), 1247 (m), 1159 (s), 1095 (s), 1023 (s), 972 (m), 930 (m), 840 (s), 759 (s), 699 (m), 662 (s), 573 (s).

UV/Vis (THF): λ_{max} (lg ε) = 260 (3.85), 222 (4.32).

ESI-HRMS: calculated [C₂₆H₃₅NO₃SSi+Na]⁺: 492.19991

492.19993 (0.04 ppm).

3.29 Dithiolane 22

found:

To a solution of ketone **21** (33 mg, 83 µmol, 1.00 eq.) and ethane-1,2-dithiol (34 µL, 417 µmol, 5.00 eq.) in dry CH₂Cl₂ (1.6 mL) under argon was added BF₃ • OEt₂ (20 µL, 166 µmol, 2.00 eq.) dropwise at 0 °C. The solution was stirred at room temperature for 15 h. The reaction was quenched by the addition of sat. NaHCO₃ and extracted with CH₂Cl₂ (3x20 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (20:1) to (10:1)] afforded dithiolane **22** as a colorless solid (11 mg, 23 µmol, 28%), and a mixture of ketones **21** and **20** as a colorless foam (21 mg, 53 µmol, 64%, **21:20** = 5.6:1).

TLC [petroleum ether/EtOAc (20:1)]: $R_{f} = 0.21$ [vanillin: brown].

¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 7.64 – 7.61 (m, 1 H, 6-*H*), 7.46 – 7.43 (m, 2 H, *o*-*H*_{Ts}), 7.34 – 7.31 (m, 1 H, 9-*H*), 7.22 – 7.18 (m, 1 H, 7-*H*), 7.12 – 7.08 (m, 2 H, *m*-*H*_{Ts}), 6.97 (td,

J = 7.6 Hz, 1.1 Hz, 1 H, 8-*H*), 4.34 (d, J = 8.7 Hz, 1 H, 4b-*H*), 4.03 (d, J = 8.9 Hz, 1 H, 9b-*H*), 3.32 – 3.17 (m, 1 H, 10-S-CH₂-CH₂-S-10 (*syn* to 4a-CH₃)), 3.26 – 3.24 (m, 1 H, 10-S-CH₂-CH₂-S-10 (*syn* to 4a-CH₃)), 3.15 – 3.06 (m, 2 H, 10-S-CH₂-CH₂-S-10 (*anti* to 4a-CH₃)), 2.31 (s, 3 H, p-C_{Ts}-CH₃), 2.11 – 2.04 (m, 1 H, 4-*H* (*syn* to 4a-CH₃)), 1.83 – 1.64 (m, 4 H, 1-*H*, 2-*H* (*syn* to 4a-CH₃)), 3.-*H*, 4-*H* (*anti* to 4a-CH₃)), 1.61 (dd, J = 11.9 Hz, 2.5 Hz, 1 H, 10a-*H*), 1.59 – 1.48 (m, 2 H, 1-*H*, 3-*H*), 1.26 (s, 3 H, 4a-CH₃), 1.23 – 1.11 (m, 1 H, 2-*H* (*anti* to 2-H)).

¹³**C** NMR (126 MHz, CDCl₃): δ [ppm] = 144.0 (1 C, *p*-*C*_{Ts}), 143.3 (1 C, *C*-5a), 133.8 (1 C, *ipso*-*C*_{Ts}), 132.4 (1 C, *C*-9a), 129.7 (1 C, *C*-9), 129.4 (2 C, *m*-*C*_{Ts}), 128.5 (1 C, *C*-7), 127.9 (2 C, *o*-*C*_{Ts}), 123.1 (1 C, *C*-8), 116.0 (1 C, *C*-6), 78.3 (1 C, *C*-10), 76.1 (1 C, *C*-4b), 61.8 (1 C, *C*-9b), 55.1 (1 C, *C*-10a), 45.2 (1 C, *C*-4a), 41.2 (1 C, 10-S-*C*H₂ (*syn* to 4a-CH₃)), 38.4 (1 C, 10-S-*C*H₂ (*anti* to 4a-CH₃)), 37.6 (1 C, *C*-4), 25.9 (1 C, *C*-2), 22.4 (1 C, *C*-1), 21.7 (1 C, *C*-3), 21.6 (1 C, *p*-C_{Ts}-*C*H₃), 21.3 (1 C, 4a-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2921 (m), 2857 (w), 1594 (w), 1466 (m), 1343 (m), 1242 (w), 1158 (s), 1093 (m), 1030 (m), 974 (m), 931 (m), 871 (w), 854 (w), 805 (m), 756 (m), 690 (m), 673 (m), 656 (m), 619 (w), 568 (s).

UV/Vis (THF): λ_{max} (lg ε) = 260 (3.73), 222 (4.23).

ESI-HRMS: calculated [C₂₅H₂₉NO₂S₃+Na]⁺: 494.12526

found:

494.12507 (0.38 ppm).

3.30 *trans*-Hydrindane 23

To a solution of dithiolane **22** (11 mg, 23 µmol, 1.00 eq.) and Et₃SiH (50 µL, 313 µmol, 13.6 eq.) in EtOH (800 µL) and dioxane (230 µL) under argon was added a slurry of Raney Ni in H₂O (230 µL, 672 mg, this equals approx. $1.167 \cdot (672 \text{ mg} - (230 \,\mu\text{L} \cdot 0.997 \,\text{mg}\,\mu\text{L}^{-1})) = 470 \,\text{mg}$ Ni, 8.01 mmol, 348 eq.). The reaction was stirred rapidly under reflux for 1.5 h. The mixture was filtered through Celite 545 (rinsed with CH₂Cl₂) and the filtrate dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (30:1)] afforded an inseparable mixture (6 mg) of *trans*-hydrindane **23** and two other products (1.0:0.1:0.1, ¹H NMR). [Based on analysis of the mixture (NMR and MS), we preliminary assigned these side-products as the C-10/C-10a dehydrogenated product and the mono-desulfurized starting material.]

To a solution of the crude product in CH_2CI_2 (600 µL) was added 70% *m*-CPBA (6 mg, 24 µmol, 1.05 eq.). The solution was stirred for 2 h at room temperature. The reaction was quenched by the addition NaHCO₃ and extracted with CH_2CI_2 (3x20 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (30:1)] afforded *trans*-hydrindane **23** as a colorless solid (5 mg, 13 µmol, 57%).

TLC [petroleum ether/EtOAc (10:1)]: $R_{f} = 0.53$ [vanillin: brown].

¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 7.63 – 7.60 (m, 1 H, 6-*H*), 7.53 – 7.49 (m, 2 H, o-*H*_{Ts}), 7.17 – 7.10 (m, 3 H, 7-*H*, *m*-*H*_{Ts}), 7.01 – 6.97 (m, 2 H, 8-*H*, 9-*H*), 4.15 (d, *J* = 8.4 Hz, 1 H, 4b-*H*), 3.57 (dd, *J* = 8.2 Hz, 8.2 Hz, 1 H, 9b-*H*), 2.32 (s, 3 H, p-C_{Ts}-C*H*₃), 2.02 – 1.94 (m, 1 H, 4-*H* (*syn* to 4a-CH₃)), 1.80 – 1.69 (m, 2 H, 10-*H* (*syn* to 4a-CH₃)), 4-*H* (*anti* to 4a-CH₃)), 1.69 – 1.61 (m, 2 H, 2-*H*, 3-*H*), 1.59 – 1.42 (m, 3 H, 1-*H*, 3-*H*, 10-*H* (*anti* to 4a-CH₃)), 1.30 – 1.02 (m, 3 H, 1-*H*, 2-*H*, 10a-*H*), 0.90 (s, 3 H, 4a-CH₃).

¹³**C NMR** (126 MHz, CDCl₃): δ [ppm] = 143.8 (1 C, *p*-*C*_{Ts}), 143.4 (1 C, *C*-5a), 137.3 (1 C, *C*-9a), 134.5 (1 C, *ipso*-*C*_{Ts}), 129.5 (2 C, *m*-*C*_{Ts}), 127.7 (2 C, *o*-*C*_{Ts}), 127.6 (1 C, *C*-7), 124.9 (1 C, *C*-9), 124.7 (1 C, *C*-8), 116.3 (1 C, *C*-6), 76.2 (1 C, *C*-4b), 45.7 (1 C, *C*-4a), 43.5 (1 C, *C*-9b), 42.8 (1 C, *C*-10a), 37.9 (1 C, *C*-10), 34.8 (1 C, *C*-4), 26.1 (1 C, *C*-2), 25.3 (1 C, *C*-1), 21.6 (1 C, *p*-*C*_{Ts}-*C*H₃), 21.5 (1 C, *C*-3), 18.4 (1 C, 4a-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 2926 (m), 2860 (m), 1596 (w), 1465 (m), 1384 (w), 1344 (s), 1292 (w), 1259 (w), 1224 (w), 1156 (s), 1093 (m), 1029 (m), 982 (m), 907 (m), 809 (m), 743 (s), 667 (s), 616 (m), 569 (s).

UV/Vis (THF): λ_{max} (lg ε) = 260 (3.74).

3.31 trans-Hydrindane 24

Sulfonamide **23** (44 mg, 115 μ mol, 1.00 eq.) was dissolved in dry THF (2.3 mL) and cooled to $-78 \,^{\circ}$ C. Separately, freshly cut sodium (80 mg, 3.46 mmol, 30.0 eq.) was added to a solution of naphthalene (222 mg, 1.73 mmol, 15.0 eq.) in dry THF (9 mL). This suspension was treated by sonication for 30 min, which gave a deep green solution (~0.2 M). The Na/naphthalene solution was added dropwise to the starting material at $-78 \,^{\circ}$ C. After full consumption of the starting material (monitored by TLC), the reaction was quenched by the addition of sat. NH₄Cl and extracted with TBME (3x20 mL). The combined organic phases were washed with sat. NaCl, dried over MgSO₄, filtered, and concentrated. Flash chromatography on silica gel [petroleum ether/EtOAc (60:1) to (30:1)] afforded the crude product (22 mg).

To a solution of the crude product in dry PhMe (5.8 mL) under argon was added Pd/C (10 wt% Pd on C, 184 mg, 173 μ mol, 1.50 eq.). The mixture was degassed (three freeze-pump-thaw cycles) and back filled with argon. The mixture was stirred for 27 h under reflux and then filtered through Celite 545 (rinsed with TBME) and the filtrate concentrated. Flash column chromatography on silica gel [petroleum ether/EtOAc (30:1)] afforded *trans*-hydrindane **24** as a colorless solid (8 mg, 36 μ mol, 31% over 2 steps).

TLC [petroleum ether/EtOAc (20:1)]: $R_{f} = 0.43$ [vanillin: brown].

¹**H NMR** (500 MHz, C_6D_6): δ [ppm] = 7.65 – 7.60 (m, 1 H, 9-*H*), 7.26 – 7.20 (m, 2 H, 7-*H*, 8-*H*), 7.14 – 7.09 (m, 1 H, 6-*H*), 6.62 (s, 1 H, 5-*H*), 2.64 (dd, J = 13.3 Hz, 6.3 Hz, 1 H, 10-*H* (*anti* to 4a-CH₃)), 2.37 (dd, J = 13.1 Hz, 11.0 Hz, 1 H, 10-*H* (*syn* to 4a-CH₃)), 2.26 – 2.17 (m, 1 H,

10a-*H*), 1.83 – 1.77 (m, 1 H, 4-*H* (*syn* to 4a-CH₃)), 1.74 – 1.67 (m, 1 H, 2-*H*), 1.60 – 1.45 (m, 5 H, 1-*H*, 3*H*, 4-*H* (*anti* to 4a-CH₃)), 1.30 – 1.21 (m, 1 H, 2-*H*), 0.87 (s, 3 H, 4a-CH₃).

¹³**C NMR** (126 MHz, C_6D_6): δ [ppm] = 152.5 (1 C, *C*-4b), 140.0 (1 C, *C*-5a), 125.9 (1 C, *C*-9a), 120.6 (1 C, *C*-7), 120.0 (1 C, *C*-8), 119.1 (1 C, *C*-9), 116.9 (1 C, *C*-9b), 112.0 (1 C, *C*-6), 55.9 (1 C, *C*-10a), 42.3 (1 C, *C*-4a), 35.3 (1 C, *C*-4), 28.3 (1 C, *C*-10), 27.2 (1 C, *C*-2), 25.0 (1 C, *C*-1), 21.7 (1 C, *C*-3), 17.2 (1 C, 4a-*C*H₃).

IR (diamond ATR): $\tilde{\nu}$ [cm⁻¹] = 3400 (m), 3056 (w), 2923 (m), 2854 (m), 1656 (w), 1608 (w), 1452 (m), 1366 (w), 1301 (m), 1254 (m), 1150 (w), 1094 (m), 1019 (m), 973 (w), 923 (w), 868 (w), 805 (m), 741 (m), 704 (m), 657 (w), 614 (w), 579 (w).

UV/Vis (THF): λ_{max} (lg ε) = 281 (3.69), 230 (4.36).

ESI-HRMS: calculated [C₁₆H₁₉N–H]⁻: 224.14447 found: 224.14465 (0.80 ppm).

(1H-Indol-3-yl)(2-methylcyclohex-1-en-1-yl)methanone (6)

(1-Methyl-1*H*-indol-3-yl)(2-methylcyclohex-1-en-1-yl)methanone (S20)

4 NMR spectra of new compounds

3-((2-Methylcyclohex-1-en-1-yl)methyl)-1*H*-indole (S2)

3-((2-Methylcyclohex-1-en-1-yl)methyl)-1-tosyl-1*H*-indole (S3)

Epoxide S4

1-(1-Methylcyclopentyl)-2-(1-tosyl-1*H*-indol-3-yl)ethan-1-one (S5)

(2-Methylcyclohex-1-en-1-yl)(1-tosyl-1*H*-indol-3-yl)methyl acetate (S9)

k ¹H NMR (400 MHz, C₆D₆) AcO Ts 14 13 12 11 10 9 8 7 б 5 4 3 2 1 ppm $\frac{1.02}{0.86}$ 2.03 1.002.08 1.00 3.13 3.29 3.03 3.00 .08 3.15/ 1.08/ $\begin{array}{c} 169.2 \\ 1364.6 \\ 1365.9 \\ 1335.9 \\ 1235.9 \\ 1229.8 \\ 1229.8 \\ 1229.7 \\ 1229.7 \\ 1223.7$ 32.4 24.6 23.1 23.0 21.0 20.5 19.6 ഹ. 69. 16 ^{13}C NMR (101 MHz, C₆D₆) AcO Ťs 220 80 60 40 200 180 160 140 120 100 20 ppm

(E)-3-((2-Methylcyclohex-2-en-1-ylidene)methyl)-1-tosyl-1H-indole (S10)

8.00 9.00 1.96 1.96 1.75 1.73 1.72 ¹H NMR (400 MHz, CDCl₃) Ťs 14 13 12 11 10 9 8 7 б 5 4 3 2 1 ppm]]][[$\frac{3.05}{2.37}$. 38/ $\frac{1.00}{0.98}$.11 .00 .16/ .19 30 .13 .11 \sim 145.0 135.4 135.4 135.4 1334.8 1333.4 1333.4 1333.4 125.0 125.0 1233.4 1233.4 1233.4 1233.4 1233.4 1123.0 1233.4 1123.0 1/ 1000 ¹³C NMR (101 MHz, CDCl₃) Ts

cis-Hydrindanone 8

4a-Methyl-5-tosyl-1,2,3,4,4a,5-hexahydroindeno[1,2-b]indole (9)

Diol 14

Bromohydrin 10

Cyclobutane 11

Sulfite 16

Ketone 17

Diol 18

4 NMR spectra of new compounds

Sulfite 19

cis-Hydrindanone 20

trans-Hydrindanone 21

Alcohol S11

Silyl ether S13

Xanthate S12

cis-Hydrindane S14

Alcohols S15 and S22

Xanthates S16 and S23

Silyl ether S17

Dithiolane 22

trans-Hydrindane 23

trans-Hydrindane 24

Crystal Structure Determinations of Compounds 7 and 23

Crystals for both compounds were obtained by evaporation from a mixture of *t*-butyl methyl ether and *n*-heptane. The selected crystals were mounted in inert oil on Hampton loops and transferred to the cold gas stream of a Rigaku/OD XtaLAB Synergy diffractometer. Mirror-focussed Mo- $K\alpha$ or Cu- $K\alpha$ radiation was employed for the intensity measurements of **7** and **23** respectively. Absorption corrections were implemented on the basis of multi-scans. The structure was refined anisotropically on F^2 using the program SHELXL-2019.^[9] The hydrogen atoms of the NH groups of **7** were refined freely, but with N-H distances restrained to be approximately equal (command "SADI"); other hydrogen atoms were included using rigid methyl groups or a riding model starting from calculated positions.

Special features and exceptions: The structure was refined as a two-component pseudomerohedral twin (by 180° rotation about the α axis). The relative volume of the minor twin component refined to 0.0977(9). The size of the integration box (used in the data reduction) was multiplied by 1.5 to enable better measurement of the split reflections, but this may have a systematic effect on the cell constants. The hydrogen atoms of the NH groups were refined freely. In the second independent molecule, the atoms C1' to C4' are disordered over two sets of positions. The occupation factors of the minor disorder component refined to 0.078(5). Appropriate restraints were employed to improve refinement stability, but the dimensions of disordered groups should always be intepreted with caution. CHECKCIF suggests the higher symmetry space group *Pca2*₁, but only with an 87% fit. However, the clear deviation of the β angle from 90° rules out this possibility. Compound **23** also crystallizes in a non-centrosymmetric space groups, with three independent molecules. The usual checks did not indicate any higher symmetry. The structure was refined as a two-component inversion twin; the relative volume of the smaller component refined to 0.471(10).

Crystallographic data are summarized in Table S1, and ellipsoid plots are presented as Figures S2 and S3. Figure S4 shows a packing diagram for **7**; the packing of **23** is extremely complex and we do not analyze it here. Complete data have been deposited with the Cambridge Crystallographic Data Centre under the numbers CCDC 2289675-6. Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif.

^[9] G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3–8.

Compound	7	23
Formula	C ₁₆ H ₁₇ NO	C ₂₃ H ₂₇ NO ₂ S
<i>M</i> _r	239.30	381.51
Crystal habit	colourless tablet	colourless needle
Cryst. size (mm)	0.25 x 0.2 x 0.15	0.15 x 0.03 x 0.02
Crystal system	monoclinic	monoclinic
Space group	Pc	la
Temperature (°C)	–173	-173
<i>a</i> (Å)	6.14568(10)	12.34580(14)
b (Å)	12.1476(2)	27.6089(3)
<i>c</i> (Å)	16.5252(3)	18.0509(2)
α (°)	90	90
β (°)	90.6799(16)	105.9373(12)
γ (°)	90	90
<i>V</i> (Å ³)	1233.61	5916.24
Ζ	4	12
<i>D</i> x (Mg m ⁻³)	1.289	1.285
λ (Å)	0.71073	1.54184
μ(mm ⁻¹)	0.08	1.6
Transmissions	0.733 – 1.000	0.635 – 1.000
F(000)	512	2448
$2\theta_{max}$	41.1	80.5
Refl. measured	123169	116565
Refl. indep.	16066	12388
R _{int}	0.040	0.042
Parameters	353	737
Restraints	31	2
wR(F ² , all refl.)	0.106	0.079
$R(F, >4\sigma(F))$	0.038	0.030
S	1.08	1.04
Max. ∆p (e Å ⁻³)	0.66, -0.30	0.34, -0.33

Table S1. Crystallographic data and structure refinement details for compounds 7 and 23.

Figure S2. The two independent molecules of compound **7** in the crystal. Ellipsoids correspond to 50% probability levels. Only the major orientation of the slightly disordered atoms C1' - C4' is shown. The dashed line indicates a hydrogen bond.

Figure S3. The three independent molecules of compound **23** in the crystal (one of these is shown in more detail in the main paper). Ellipsoids correspond to 50% probability levels. For clarity, only the sulfur atoms are labeled.

Figure S4. Packing diagram of compound **7**, viewed parallel to the *a* axis and showing the formation of simple chains of molecules, in which the two independent molecules alternate, parallel to the *b* axis The dashed lines indicate hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.