Supplementary Information

Convenient route to Fmoc-homotyrosine via metallaphotoredox catalysis and its use in the total synthesis of anabaenopeptin cyclic peptides

Christopher Bérubé,^{a,b} Louis-David Guay,^{a,b} Tommy Fraser,^c Victor Lapointe,^{a,b} Sébastien Cardinal,^c and Éric Biron^{a,b,*}

^a Faculté de pharmacie, Université Laval, Québec, Québec, Canada, G1V 0A6

- ^b Laboratory of Medicinal Chemistry, Centre de recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, Canada, G1V 0A6
- ^c Departement de biologie, chimie et géographie, Université de Rimouski, 300 allée des Ursulines, Rimouski, Québec, Canada, G5L 3A1

Corresponding author: Eric.Biron@pha.ulaval.ca

Table of Contents

Figure S1. Characterization of anabaenopeptin F (1).	. 1
Figure S2. Characterization of (2S)-2-amino-4-bromobutanoic acid hydrobromide compounds (4).	.7
Figure S3. Characterization of methyl (2S)-4-bromo-2-([(9H-fluoren-9-ylmethoxy)carbonyl]amino)butanoate (5).	11
Figure S4. Characterization of 4-tert-butoxyphenyl bromide (6).	15
Figure S5. Characterization of methyl (2S)-4-(4-tert-butoxyphenyl)-2-([(9H-fluoren-9-ylmethoxy)carbonyl]amino)butanoate (Fmoc-L-Htyr(OtBu)-OMe) (7)	17
Figure S6. Characterization of (2S)-4-(4-tert-butoxyphenyl)-2-([(9H-fluoren-9-ylmethoxy)carbonyl]amino)butanoic acid (Fmoc-L-Htyr(OtBu)-OH) (8)	21
Figure S7. Characterization of Boc-D-Lys(Fmoc)-Oall.	25
Figure S8. Characterization of anabaenopeptin F L-allo-Ile4 (10).	28
Figure S9. Carboxypeptidase B inhibition assay of anabaenopeptin F (1) (left) and anabaenopeptin F L-allo-Ile4 (10) (right).	33
Table S1. Chemical shift table of isolated and synthetic ABP F (1) and (10)	34

Figure S1. Characterization of anabaenopeptin F (1).

c) 13 C NMR spectrum of anabaenopeptin F (1) in DMSO-d6

d) ¹H-¹H COSY spectrum of anabaenopeptin F (1) in DMSO-d6

4

e) HSQC spectrum of anabaenopeptin F (1) in DMSO-d6

f) HRMS spectrum of anabaenopeptin F (1)

 $[M + H]^+$ calculated mass for C₄₂H₆₂N₁₀O₉ : 851.4744, found 851.4854.

a) IR spectrum of H-L-Hser(Br)-OH (4)

b) ¹H NMR spectrum H-L-Hser(Br)-OH (4) in CDCl₃

c) ¹³C NMR-APT spectrum H-L-Hser(Br)-OH (4) in CDCl₃

d) HRMS spectrum H-L-Hser(Br)-OH (4)

[M+TFA-H]⁺ calculated for C₄H₉Br₂NO₂: 373.8856, found 373.6090.

10

a) IR spectrum of Fmoc-L-Hser(Br)-OMe (5)

c) ¹³C NMR-APT spectrum Fmoc-L-Hser(Br)-OMe (5) in CDCl₃

d) HRMS spectrum of Fmoc-L-Hser(Br)-OMe (5)

 $\left[M+Na\right]^{\scriptscriptstyle +}$ calculated for $C_{20}H_{20}BrNO_4Na;$ 440.0468, found 440.0446.

Figure S4. Characterization of 4-*tert*-butoxyphenyl bromide (6).

b) ¹³C NMR-APT spectrum of 4-*tert*-butoxyphenyl bromide (6) in CDCl₃

Figure S5. Characterization of methyl (2*S*)-4-(4-*tert*-butoxyphenyl)-2-([(9H-fluoren-9-ylmethoxy)carbonyl]amino)butanoate (Fmoc-L-Htyr(OtBu)-OMe) (7).

a) IR spectrum of Fmoc-L-Htyr(OtBu)-OMe (7)

c) ¹³C NMR-APT spectrum of Fmoc-L-Htyr(OtBu)-OMe (7) in CDCl₃

d) HRMS spectrum of Fmoc-L-Htyr(OtBu)-OMe (7)

 $[M+Na]^+$ calculated for $C_{30}H_{33}NO_5Na:510.2256,$ found 510.2247.

Figure S6. Characterization of (2S)-4-(4-tert-butoxyphenyl)-2-([(9H-fluoren-9-ylmethoxy)carbonyl]amino)butanoic acid (Fmoc-L-Htyr(OtBu)-OH) (**8**).

a) IR spectrum of Fmoc-L-Htyr(OtBu)-OH (8)

b) ¹H NMR spectrum of Fmoc-L-Htyr(OtBu)-OH (8) in CDCl₃

22

c) ¹³C NMR-APT spectrum of Fmoc-L-Htyr(OtBu)-OH (8) in CDCl₃

d) HRMS spectrum of Fmoc-L-Htyr(OtBu)-OH (8)

 $[M + Na]^+$ calculated for C₂₉H₃₁NO₅Na : 496.2094, found 496.2129.

Figure S7. Characterization of Boc-D-Lys(Fmoc)-Oall.

a) ¹H NMR spectrum of Boc-D-Lys(Fmoc)-Oall in CDCl₃

b) ¹³C NMR-APT spectrum of Boc-D-Lys(Fmoc)-Oall in CDCl₃

c) HRMS spectrum of Boc-D-Lys(Fmoc)-Oall

Figure S8. Characterization of anabaenopeptin F L-allo-Ile4 (10).

a) HPLC profile of purified anabaenopeptin F L-*allo*-Ile4 (10) (λ =220nm)

b) ¹H NMR spectrum of anabaenopeptin F L-allo-Ile4 (10) in DMSO-d6

c) ¹H-¹H COSY spectrum of anabaenopeptin F L-*allo*-Ile4 (10) in DMSO-d6

d) HSQC spectrum of anabaenopeptin F L-allo-Ile4 (10) in DMSO-d6

e) HRMS spectrum of anabaenopeptin F L-allo-Ile4 (10)

 $[M + H]^+$ calculated for C₄₂H₆₃N₁₀O₉: 851.4744, found 851.4854.

Figure S9. Carboxypeptidase B inhibition assay of anabaenopeptin F (1) (left) and anabaenopeptin F L-*allo*-Ile4 (10) (right).

		Isolated ABP F	Synthetic ABP F 1	Synthetic ABP F L-allo-Ile4
		(Brönstrup, 2016)	5	10
	Position	$\delta_{\rm H}$ mult $J({\rm Hz})$	$\delta_{\rm H}$ mult $J({\rm Hz})$	$\delta_{\rm H}$ mult $J({\rm Hz})$
Phe (1)	1	-	-	-
	2	4.20		
	2	4.38	4.38 (ddd, 12.5, 8.8, 3.4)	4.40 (ddd, 12.5, 8.9, 3.4)
	3	2.77	2.78 (dd, 13.9, 11.8)	2.79 (dd, 13.1, 10.3)
	1	3.31	5.55 (dd, 15.9, 5.4)	5.50 (dd, 15.9, 5.3)
	5 9	7.06	7.06 (d. 7.0)	7 07 (d. 6.8)
	6.8	7.00	7.18 (m)	7.20 (m)
	7	7.15	7.10 (m) 7.14 (m)	7.17 (m)
	ŃH	8.62	8.69 (d. 8.8)	8.65 (8.9)
NMeAla (2)	1	-	-	-
	2	4.77	4.79 (q, 6.9)	4.82 (q, 6.4)
	3	1.06	1.06 (d, 6.7)	1.08 (d, 6.8)
	NMe	1.78	1.76 (s)	1.79 (s)
Htyr (3)	1	-	-	-
	2	4.71	4.72 (ddd 7.9, 5.4, 5.4)	4.74 (ddd 7.8, 5.4, 5.4)
	3	1.71	1.72 (m)	1.72 (m)
		1.87	1.88 (m)	1.88 (m)
	4	2.43	2.43 (ddd, 13.6, 11.0, 6.5)	2.44 (ddd, 13.6, 11.1, 6.4)
	~	2.63	2.63 (ddd, 13.6, 11.0, 4.4)	2.64 (ddd, 13.6, 11.0, 4.4)
	5 6 10	-	-	(02(175))
	7 9	6.67	6.66 (d, 8.0)	6.92(0, 7.3)
	8	0.07	0.00 (d, 8.0)	0.08 (d, 8.0)
	NH	8 92	8 93 (d 4 3)	8 93 (d 4 6)
Ile (4)	1	-		-
	2	4.04	4.08 (dd, 7.7, 7.1)	4.09 (dd, 7.7, 7.1)
	3	1.76	1.76 (m)	1.78 (m)
	4	1.16	1.15 (m)	1.16 (m)
		1.62	1.61 (m)	1.62 (m)
	5	0.88	0.82 (t, 7.4)	0.90 (t, 7.5)
	6	0.89	0.88 (d, 6.5)	0.92 (d, 7.3)
	NH	6.93	6.92 (d, 7.0)	6.92 (d, 7.5)
Lys (5)	1	-	-	-
	2	3.92	3.94 (ddd, 6.7, 6.7, 4.2)	3.94 (ddd, 6.7, 6.7, 4.2)
	3	1.56	1.61 (m)	1.55 (m)
	4	1.01	1.15 (m)	1 17 (m)
	7	1.10	1.15 (m) 1.31 (m)	1.17 (III) 1.26 (m)
	5	1.29	1.51 (m) 1 47 (m)	1.20 (m) 1 48 (m)
	6	2.80	2 78 (m)	2 80 (m)
	Ũ	2.50	2.50 (1111 12 (0.0 0.0 12)	2.57 (1111, 12.5, 9.7, 9.9, 4.0)
	. NIL	3.56	3.59 (dddd, 13.6, 8.8, 8.8, 4.2)	3.57 (dddd, 13.5, 8.7, 8.8, 4.0)
		7.14	7.15 (m)	7.15 (m)
A = (6)	E-NH	/.14	7.13 (III)	7.13 (III)
Aig (0)	1	2 78	$\frac{-}{410}$ (ddd 80 70 50)	-
	$\frac{2}{3}$	1.55	4.10 (ddd, 8.0, 7.9, 5.0) 1 54 (m)	1.09 (udd, 8.1, 7.9, 4.8)
	5	1.00	1.72 (m)	1.72 (m)
	4	1.36	1.47 (m)	1.48 (m)
		1.46		()
	5	3.01	3.10 (m)	3.10 (m)
	6	-		
	α-NH	broad	6.46 (d, 8.1)	6.49 (d, 8.0)
	ε-NH	broad	7.52 (t, 5.8)	7.51 (t, 6.1)
	COOH	n.a.	12.69	12.65 (s)

Table S1 – Chemical shift table of isolated and synthetic ABP F (1) and (10)