Two Distinct Protocols for the Synthesis of Unsymmetrical 3,4-

Disubstituted Maleimides Based on Transition-Metal Catalysts

Farzaneh Bandehali-Naeini,^[a] Zahra Tanbakouchian,^[a] Noushin Farajinia-Lehi,^[a] Nicolas Mayer,^[b] Morteza Shiri,^{[a],*} and Martin Breugst^{[b]*}

[a] Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak,

Tehran 1993893973 (Iran)

[b] Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz (Germany)

mshiri@alzahra.ac.ir; martin.breugst@chemie.tu-chemnitz.de

Table of Content

1. Experimental Details	S2
2. Details of the Crystallographic Studies	S10
3. Details of the Computational Investigations	S12
4. Copies of NMR Spectra	
5. References	S93

1. Experimental Details

Starting materials and solvents were purchased from commercial suppliers (Merck and Aldrich) and used without further purification unless otherwise stated. The Ugi-adducts **1** were prepared by following the literature report.¹ Melting points are determined by an Electrothermal 9100 apparatus and are uncorrected. FT-IR spectra were recorded based on a Shimadzu Infra-Red Spectroscopy IR-435. Nuclear magnetic resonance (NMR) spectra were recorded based on a Bruker AVANCE Spectrometer 400 MHz for ¹H,100 MHz for ¹³C{¹H} in DMSO-d₆ as solvent. Mass spectra were recorded Bruker Maxis Impact mass spectrometer using electrospray ionization (ESI+) and a Leco CHNS, model 932 was used for elemental analysis.

Typical procedure for the synthesis of Ugi adduct 1a. To a stirred solution of 2-formylindole (145 mg, 1.00 mmol) and *p*-toluidine (107 mg, 1.00 mmol) in MeOH (5 mL), 2-bromophenyl acetic acid (213 mg, 1.00 mmol) and cyclohexyl isocyanide (109 mg, 1.00 mmol) were added under reflux in an oil bath. The reaction process was monitored by TLC. After 24 h, the residue was filtered and washed with methanol and Et₂O. The solid was dried and collected as pure product **1a** and used for further reactions (465 mg, 73%).

White powder, mp: 200–202 °C. ¹H-NMR (300 MHz, CDCl₃): δ 9.75 (s, 1H), 7.62 (d, 1H, J = 7.8 Hz), 7.53 (d, 1H, J = 7.8 Hz), 7.36–7.39 (m, 1H), 7.14–7.23 (m, 9H), 6.49 (s, 1H), 5.71 (d, 1H, J

= 7.8 Hz), 5.37 (s, 1H), 3.79-3.82 (m, 1H), 3.50-3.65 (q, 2H, J = 16.8 Hz) 2.37 (s, 3H), 1.85 (m, 2H), 1.55–1.69 (m, 3H), 1.29–1.33 (m, 2H), 1.00– 1.07 (m, 3H); ¹³C{¹H}-NMR (75 MHz, CDCl₃): δ 172.0, 166.7, 140.0, 138.8, 136.7, 136.0, 135.8, 133.0, 132.0, 130.5, 128.7, 128.1, 127.5, 127.2, 125.0, 122.6, 120.6, 119.9, 111.8, 104.9, 76.7, 49.1, 42.5, 32.9, 32.8, 25.4, 24.9, 21.2; IR (KBr) \tilde{v} (cm⁻¹) =1624, 3371. Elem. Anal. calcd for

C₃₁H₃₂BrN₃O₂ C, 66.67; H, 5.78; N, 7.52 found: C, 66.53; H, 5.72; N, 7.55.

General procedure for synthesis of various 4-aryl-3-pyrrolo-maleimides 2a–j. A mixture of Ugi product 1 (1 mmol), $Pd(OAc)_2$ (11.2 mg, 50 µmol, 5 mol%), PPh_3 (26.2 mg, 100µmol, 10 mol%), and K_2CO_3 (276 mg, 2.00 mmol) were dissolved in DMSO (5.0 mL) and stirred for 2 h at 100 °C in an oil bath. The progress of the reaction was monitored by TLC. After completion, the reaction was quenched by the addition of CH_2Cl_2 (20 mL), and the organic phase was washed by water and brine, and dried over Na_2SO_4 (ca 5g). The solvent was removed under reduced pressure,

and the residue was purified by column chromatography using *n*-hexane as eluent and silica gel as stationary phase.

3-(2-Bromophenyl)-1-cyclohexyl-4-(1H-indol-2-yl)-1H-pyrrole-2,5-dione (2a): Flash column

chromatography (in *n*-hexane) yielded the title compound as orange powder in 86% (385 mg, 0.856 mmol) from the corresponding Ugi product (559 mg, 1.00 mmol); mp 161–163 °C; ¹H-NMR (300 MHz, CDCl₃): δ 10.23 (s, 1H), 7.83 (d, 1H, J = 7.8 Hz), 7.41–7.56 (m, 5H), 7.27 (t, 1H, J = 7.5 Hz), 7.11 (t, 1H, J = 7.5 Hz), 6.52 (d, 1H, J = 0.9 Hz), 4.09–4.19 (m, 1H), 2.18–2.30 (m, 2H), 1.75–

1.91 (m, 5H), 1.32–1.49 (m, 3H); ¹³C {¹H}-NMR (75 MHz, CDCl₃): δ 171.9; 169.6, 137.6, 133.6, 131.5, 131.1, 131.0, 130.8, 129.1, 128.1, 127.7, 127.2, 125.2, 123.4, 121.7, 120.9, 111.8, 109.3, 51.5, 30.1, 26.0, 25.2; IR (KBr) \tilde{v} (cm⁻¹) =1326, 1524, 1637, 1697, 3385; HR-MS (ESI) [M+H]⁺: m/z calcd for C₂₄H₂₁⁸¹BrN₂O₂⁺ 451.0846 found: 451.0839. Supplementary crystallographic data for **2a** have been deposited at the Cambridge Crystallographic Data Center. CCDC: 1976139. 3-(2-Bromophenyl)-1-butyl-4-(1*H*-indol-2-yl)-1*H*-pyrrole-2,5-dione (**2b**): Flash column

chromatography (in *n*-hexane) yielded the title compound as orange powder in 81% (342 mg, 0.807 mmol) from the corresponding Ugi product (533 mg, 1.00 mmol); mp 154–156 °C; ¹H-NMR (300 MHz, DMSO-d₆): δ 11.32 (s, 1H), 7.87–7.90 (m, 1H), 7.58–7.64 (m, 2H), 7.46–7.55 (m, 3H), 7.20 (t, 1H,

J = 7.5 Hz), 7.00 (t, 1H, J = 7.5 Hz), 6.37 (d, 1H, J = 1.5 Hz), 3.62 (t, 2H, J = 6.9 Hz), 1.59–1.68 (m, 2H), 1.30–1.42 (m, 2H), 0.94 (t, 3H, J = 7.2 Hz); ¹³C {¹H}-NMR (75 MHz, DMSO-d₆): δ 170.8, 169.9, 138.6, 133.5, 132.2, 132.0, 131.7, 129.9, 128.9, 127.5, 126.8, 124.8, 123.1, 121.5, 120.8, 113.5, 108.3, 38.0, 30.5, 19.9, 14.0; IR (KBr) \tilde{v} (cm⁻¹) = 1326, 1524, 1632, 1699, 3395; HR-MS (ESI) [M+H]⁺: m/z calcd for C₂₂H₁₉⁸¹BrN₂O₂⁺ 423.0710, found: 423.0697.

3-(2-Bromophenyl)-1-(*tert*-butyl)-4-(1*H*-indol-2-yl)-1*H*-pyrrole-2,5-dione (**2c**): Flash column chromatography (in *n*-hexane) yielded the title compound as orange powder in 83% (350 mg, 0.826 mmol) from the corresponding Ugi product (532 mg, 1.00 mmol); mp 145–147 °C; ¹H-NMR (300 MHz, CDCl₃): δ 10.16 (s, 1H), 7.71 (d, 1H, J = 7.2 Hz), 7.38–7.47 (m, 3H), 7.28–7.35 (m, 2H) 7.17 (t, 1H, J = 7.5 Hz),

6.98 (t, 1H, J = 7.5 Hz), 6.34 (d, 1H, J = 1.2 Hz), 1.64 (s, 9H); ${}^{13}C{}^{1}H$ -NMR (75 MHz, CDCl₃): δ 172.8, 167.9, 137.4, 133.6, 132.6, 131.2, 131.5, 131.1, 129.0, 128.2, 125.2, 121.8, 120.9, 111.9,

109.2, 58.3, 29.3; IR (KBr) \tilde{v} (cm⁻¹) = 1329, 1524, 1638, 1697, 3388; HR-MS (ESI) [M+H]⁺: m/zcalcd for $C_{22}H_{19}^{81}BrN_2O_2^+$ 423.0710 found: 423.0705.

3-(2-Bromophenyl)-4-(1*H*-indol-2-yl)-1-(2,4,4-trimethylpentan-2-yl)-1*H*-pyrrole-2,5-dione (2d):

Flash column chromatography (in *n*-hexane) yielded the title compound as orange powder in 77% (368 mg, 0.768 mmol) from the corresponding Ugi product (589 mg, 1.00 mmol); mp 172–174 °C; ¹H-NMR (300 MHz, CDCl₃): δ 10.18 (s, 1H), 7.71 (d, 1H, J = 8.0 Hz), 7.37–7.42 (m, 2H), 7.24–7.33 (m, 3H), 7.17 (t, 1H, J = 8.2 Hz) 6.93 (t, 1H, J = 7.6 Hz), 6.33 (d, 1H, J = 1.2

Hz), 1.86–2.00 (m, 2H), 1.70–1.71 (m, 2H); ${}^{13}C{}^{1}H$ -NMR (75 MHz, CDCl₃): δ 173.5, 171.3, 137.4, 133.5, 131.6, 131.5, 131.0, 130.8, 128.8, 128.0, 127.6, 127.1, 125.0, 123.3, 121.6, 120.7, 111.7, 109.1, 61.6, 50.9, 31.6, 31.2, 30.1; IR (KBr) \tilde{v} (cm⁻¹) = 1359, 1508, 1647, 1693, 3407; HR-MS (ESI) $[M+H]^+$: m/z calcd for $C_{26}H_{27}^{81}BrN_2O_2^+$ 481.1309 found: 481.1312.

3-(2-Bromophenyl)-4-(1*H*-indol-2-yl)-1-phenyl-1*H*-pyrrole-2,5-dione NH 2e

chromatography (in *n*-hexane) yielded the title compound as orange powder in 75% (331 mg, 0.747 mmol) from the corresponding Ugi product (553 mg, 1.00 mmol); mp 180–182 °C; ¹H-NMR (300 MHz, CDCl₃): δ 10.19 (s, 1H), 7.86– 7.89 (m, 1H), 7.54–7.57 (m, 6H), 7.42–7.51 (m, 4H), 7.29–7.34 (m, 1H), 7.10– 7.16 (m, 1H), 6.62 (d, 1H, J = 1.2 Hz); ¹³C{¹H}-NMR (75 MHz, CDCl₃): δ

Flash

(**2e**):

column

170.7, 168.4, 137.8, 133.7, 131.5, 131.4, 131.2, 131.0, 130.9, 129.5, 129.2, 128.2, 128.0, 127.8, 126.9, 126.2, 125.6, 123.4, 121.9, 121.1, 111.9, 110.2; IR (KBr) \tilde{v} (cm⁻¹) = 1394, 1523, 1630, 1709, 3394; HR-MS (ESI) $[M+H]^+$: m/z calcd for C₂₄H₁₅BrN₂O₂⁺ 443.0397 found: 443.2236. 3-(2-Bromo-5-methoxyphenyl)-1-cyclohexyl-4-(1H-indol-2-yl)-1H-pyrrole-2,5-dione (2f): Flash

column chromatography (in *n*-hexane) yielded the title compound as orange powder in 86% (411 mg, 0.857 mmol) from the corresponding Ugi product (559 mg, 1.00 mmol); mp 168–170 °C; ¹H-NMR (300 MHz, CDCl₃): δ 10.20 (s, 1H), 7.54 (d, 1H, J = 7.8 Hz), 7.26–7.44 (m, 4H), 7.05–7.13 (m, 2H), 6.60 (d, 1H, J = 1.2 Hz), 4.11 (m, 1H), 3.94 (s, 3H), 2.16–2.28 (m, 2H), 1.84–1.95

(m, 4H), 1.28–1.45 (m, 4H); ${}^{13}C{}^{1}H$ -NMR (75 MHz, CDCl₃): δ 172.0, 169.9, 161.1, 137.5, 131.5, 131.1, 129.1, 127.7, 127.4, 125.1, 124.0, 123.2, 121.7, 120.8, 118.8, 114.4, 111.7, 109.1, 55.7, 51.4, 30.1, 30.0, 26.0, 25.2; IR (KBr) \tilde{v} (cm⁻¹) = 1286, 1593, 1637, 1697, 3408; Elem. Anal. calcd for C₂₅H₂₃BrN₂O₃: C, 62.64; H, 4.84; N, 5.84 found: C, 62.52; H, 4.87; N, 5.78.

3-(2-Bromo-5-methoxyphenyl)-1-butyl-4-(1*H*-indol-2-yl)-1*H*-pyrrole-2,5-dione (2g): Flash

column chromatography (in *n*-hexane) yielded the title compound as orange powder in 81% (366 mg, 0.807 mmol) from the corresponding Ugi product (563 mg, 1.00 mmol); mp 111–113 °C; ¹H-NMR (300 MHz, CDCl₃): δ 10.18 (s, 1H), 7.55 (d, 1H, J = 7.8 Hz), 7.27–7.44 (m, 4H), 7.05–7.14 (m, 2H), 6.64 (s, 1H), 3.93 (s, 3H₃), 3.73 (t, 2H, J = 6.9 Hz), 1.70–1.80 (m, 2H), 1.39–1.52

(m, 2H), 1.03 (t, 3H, J = 7.2 Hz); ¹³C{¹H}-NMR (75 MHz, CDCl₃): δ 172.0, 170.0, 161.2, 137.6, 131.5, 131.1, 129.3, 127.8, 127.4, 125.2, 124.0, 123.1, 121.7, 120.9, 118.8, 114.5, 111.8, 109.2, 55.7, 38.2, 30.7, 20.1, 13.7; IR (KBr) \tilde{v} (cm⁻¹) = 1324, 1595, 1634, 1699, 3383; Elem. Anal. calcd for C₂₃H₂₁BrN₂O₃ C, 60.94; H, 4.67; N, 6.18 found: C, 60.88; H, 4.63; N, 6.15.

4'-(2-Bromophenyl)-1'-cyclohexyl-1*H*,1'*H*-[2,3'-bipyrrole]-2',5'-dione (2h): Flash column chromatography (in *n*-hexane) yielded the title compound as yellow powder in 84% (334 mg, 0.837 mmol) from the corresponding Ugi product (509 mg, 1.00 mmol); mp 193–195 °C; ¹H-NMR (300 MHz, DMSO-d₆): δ δ 11.28 (s, 1H), 7.81–7.84 (m, 1H), 7.52–7.58 (m, 1H), 7.43–7.49 (m, 2H), 7.09–7.12 (m, 1H), 6.13–6.16 (m, 1H), 5.96–5.99 (m, 1H), 3.88–3.98 (m, 1H), 1.99–2.11 (m, 2H), 1.65–1.98 (m, 5H), 1.36–1.40 (m, 3H); ¹³C{¹H}-NMR (75 MHz, DMSO-d₆): δ 171.1, 170.2, 133.3,

132.4, 131.9, 131.5, 129.5, 128.8, 126.2, 125.6, 123.6, 121.5, 116.1, 111.4, 50.8, 30.1, 26.0, 25.4; IR (KBr) \tilde{v} (cm⁻¹) = 1386, 1585, 1632, 1685, 3406; HR-MS (ESI) [M+H]⁺: m/z calcd for $C_{20}H_{19}^{81}BrN_2O_2^+$ 399.0710 found: 399.0705.

4'-(2-Bromophenyl)-1'-butyl-1*H*,1'*H*-[2,3'-bipyrrole]-2',5'-dione (2i): Flash column

chromatography (in *n*-hexane) yielded the title compound as yellow powder in 79% (294 mg, 0.787 mmol) from the corresponding Ugi product (482 mg, 1.00 mmol); mp 98–100 °C; ¹H-NMR (300 MHz, CDCl₃): δ 10.51 (s, 1H), 7.76–7.79 (m, 1H), 7.45–7.51 (m, 1H), 7.35–7.41 (m, 2H), 7.07 (d, 1H, *J* = 1.2 Hz), 6.21–

6.25 (m, 2H), 3.68 (t, 2H, J = 7.2 Hz), 1.65–1.75 (m, 2H), 1.36–1.48 (m, 2H), 1.00 (t, 3H, J = 7.2 Hz,); ¹³C{¹H}-NMR (75 MHz, CDCl₃): δ 172.4, 170.3, 133.4, 131.8, 131.1, 130.7, 129.0, 127.9, 125.5, 124.0, 123.7, 122.8, 116.3, 111.7, 38.0, 30.6, 20.0, 13.7; IR (KBr) \tilde{v} (cm⁻¹) = 1405, 1441, 1629, 1689, 3408; HR-MS (ESI) [M+H]⁺: m/z calcd for C₁₈H₁₇⁸¹BrN₂O₂⁺ 375.0526 found: 375.0524.

4'-(2-Bromophenyl)-1'-(tert-butyl)-1H,1'H-[2,3'-bipyrrole]-2',5'-dione (2j): Flash column

chromatography (in *n*-hexane) yielded the title compound as yellow powder in 85% (316 mg, 0.847 mmol) from the corresponding Ugi product (482 mg, 1.00 mmol); mp 181–183 °C; ¹H-NMR (300 MHz, CDCl₃): δ 10.57 (s, 1H), 7.75–7.78 (m, 1H), 7.45–7.50 (m, 1H), 7.34–7.38 (m, 2H), 7.04 (d, 1H, J = 1.5 Hz), 6.17–6.21 (m, 2H), 1.73 (s, 9H); ¹³C {¹H}-NMR (75 MHz, CDCl₃): δ 173.4, 171.5, 133,3, 132.1, 131.1, 130.6, 128.6, 127.8, 126.0, 123.8, 123.6, 122.6, 116.0, 111.3, 57.9, 29.1; IR (KBr) \tilde{v} (cm⁻¹) = 1349, 1466, 1644, 1693, 3411; HR-MS (ESI) [M+H]⁺: *m/z* calcd for C₁₈H₁₇⁸¹BrN₂O₂⁺ 373.0553 found: 373.0550.

General procedure for synthesis of various maleimide-fused pyrrolo[1,2-a]quinolines 3a–l). A mixture of Ugi product 1 (1 mmol), CuI (10 mol%), L-proline (20 mol%), and K₂CO₃ (2 equiv.) were dissolved in DMSO (5.0 mL) and stirred for 4 h at 130 °C. The progress of the reaction was monitored by TLC. After completion, the reaction was quenched by the addition of CH₂Cl₂ (20 mL), and the organic phase was washed by water and brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by column chromatography using *n*-hexane as eluent and silica gel as stationary phase.

2-Cyclohexyl-1*H*-indolo[1,2-*a*]pyrrolo[3,4-*c*]quinoline-1,3(2*H*)-dione (3a): Flash column

chromatography (in *n*-hexane) yielded the title compound as violet powder in 87% (320 mg, 0.869 mmol) from the corresponding Ugi product (559 mg, 1.00 mmol); mp 270–272 °C; ¹H-NMR (300 MHz, CDCl₃): δ 8.82 (dd, 1H, J = 1.5 Hz), 8.61 (d, 1H, J = 8.7 Hz), 8.46 (d, 1H, J = 8.7 Hz), 7.98 (d, 1H, J = 8.1 Hz), 7.73–7.79 (m, 1H) 7.59 (s, 1H), 7.46–7.56 (m, 3H), 4.11–4.22 (m, 1H), 2.22–

2.34 (m, 2H), 1.76–1.98 (m, 5H), 1.29–1.48 (m, 3H); ${}^{13}C{}^{1}H$ -NMR (75 MHz, CDCl₃): δ 169.2, 167.8, 138.2, 133.9, 131.2, 130.9, 128.0, 127.1, 125.1, 124.1, 123.9, 123.4, 122.8, 122.6, 117.6, 116.0, 114.4, 100.5, 51.0, 30.1, 26.1, 25.2; IR (KBr) \tilde{v} (cm⁻¹) = 1371, 1610, 1697, 3432; HR-MS (ESI) [M+H]⁺: *m/z* calcd for C₂₄H₂₀N₂O₂⁺ 369.1605, found: 369.1597.

2-Butyl-1H-indolo[1,2-*a*]pyrrolo[3,4-c]quinoline-1,3(2*H*)-dione (**3b**): Flash column chromatography (in *n*-hexane) yielded the title compound as violet powder in 78% (267 mg, 0.779 mmol) from the corresponding Ugi product (532 mg, 1.00 mmol); mp 170–172 °C; ¹H-NMR (300 MHz, DMSO-d₆): δ 8.87 (d, 1H, J = 8.7 Hz), 8.75 (d, 1H, J = 8.7 Hz), 8.70 (d, 1H, J = 7.8 Hz), 8.07 (d, 1H, J = 7.8

Hz), 7.89 (t, 1H, J = 7.9 Hz), 7.49–7.62 (m, 4H), 3.62 (t, 2H, J = 6.9 Hz), 1.60–1.70 (m, 2H), 1.31–

1.44 (m, 2H), 0.95 (t, 3H, J = 7.2 Hz); ¹³C {¹H}-NMR (75 MHz, DMSO-d₆): δ 169.1, 167.7, 137.8, 133.7, 132.4, 130.7, 128.0, 126.7, 125.0, 124.8, 124.7, 124.0, 123.4, 122.8, 117.4, 117.0, 115.4, 100.2, 37.7, 30.6, 20.0, 14.0; IR (KBr) \tilde{v} (cm⁻¹) = 1096, 1609, 1694, 2856, 2923; HR-MS (ESI) [M+H]⁺: m/z calcd for C₂₂H₁₈N₂O₂⁺ 343.1448, found 343.1438.

2-(*tert*-Butyl)-1*H*-indolo[1,2-*a*]pyrrolo[3,4-*c*]quinoline-1,3(2*H*)-dione (**3c**): Flash column chromatography (in *n*-hexane) yielded the title compound as violet powder in 81% (277 mg, 0.809 mmol) from the corresponding Ugi product (533 mg, 1.00 mmol); mp 165–167 °C; ¹H-NMR (300 MHz, CDCl₃): δ 8.86 (d, 1H, J = 7.8

Hz), 8.64 (d, 1H, J = 8.7 Hz), 8.50 (d, 1H, J = 8.4 Hz), 8.00 (d, 1H, J = 7.8 Hz), 7.74–7.79 (m, 1H), 7.76–7.61 (m, 4H), 1.79 (s, 9H); ¹³C {¹H}-NMR (75 MHz, DMSO-d₆): δ 170.2, 168.6, 137.8, 133.5, 132.2, 130.7, 127.8, 126.7, 124.7, 124.6, 123.3, 122.7, 117.2, 116.9, 115.3, 100.1, 57.6, 29.2; IR (KBr) \tilde{v} (cm⁻¹) = 1287, 1645, 1700, 2923, 2960; Elem. Anal. calcd for C₂₂H₁₈N₂O₂: C, 77.17; H, 5.30; N, 8.18, found: C, 77.23; H, 5.33; N, 8.24.

2-Isopropyl-1*H*-indolo[1,2-*a*]pyrrolo[3,4-*c*]quinoline-1,3(2*H*)-dione (**3d**): Flash column chromatography (in *n*-hexane) yielded the title compound as violet powder in 82% (269 mg, 0.819 mmol) from the corresponding Ugi product (518 mg, 1.00 mmol); mp 228–231 °C; ¹H-NMR (300 MHz, CDCl₃): δ 8.79 (dd, 1H, *J* = 1.5 Hz, *J* = 1.5 Hz), 8.55 (d, 1H, *J* = 8.4 Hz), 8.41 (d, 1H, *J* = 8.4 Hz), 7.96 (d, 1H, *J* = 7.2 Hz), 7.70–7.76 (m, 1H), 7.44–7.55 (m, 4), 4.55–4.64 (m, 1H), 1.60 (d, 6H, *J* = 6.9 Hz); ¹³C{¹H}-NMR (75 MHz, CDCl₃): δ 169.1, 167.7, 138.2, 133.8, 131.1, 130.9, 127.9, 127.1, 125.1, 124.1, 123.9, 123.5, 122.8, 122.6, 117.6, 115.9, 114.4, 100.5, 43.1, 20.3; IR (KBr) \tilde{v} (cm⁻¹) = 1362, 1610, 1701, 2873, 2931; Elem. Anal. calcd for C₂₁H₁₆N₂O₂: C, 76.81; H, 4.91; N, 8.53, found: C, 76.53; H, 4.87; N, 8.42.

2-(2,4,4-Trimethylpentan-2-yl)-1H-indolo[1,2-a]pyrrolo[3,4-c]quinoline-1,3(2H)-dione (3e):

Flash column chromatography (in *n*-hexane) yielded the title compound as violet powder in 75% (298 mg, 0.748 mmol) from the corresponding Ugi product (575 mg, 1.00 mmol); mp 201–203 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.91 (dd, 1H, J = 1.5 Hz, J = 1.5 Hz), 8.71 (d, 1H, J = 8.4 Hz), 8.51–8.57 (m, 1H), 8.04 (d, 1H, J = 7.8 Hz), 7.80–7.86 (m, 1H), 7.73 (s, 1H), 7.47–7.64

(m, 8H); ${}^{13}C{}^{1}H$ -NMR (100 MHz, CDCl₃): δ 170.8, 169.3, 138.4, 133.9, 131.1, 131.0, 127.9, 127.2, 125.1, 124.0, 123.9, 123.3, 122.8, 122.6, 117.5, 116.0, 114.4, 100.7, 61.3, 51.1, 31.7, 31.1,

30.2; IR (KBr) \tilde{v} (cm⁻¹) = 1351, 1610, 1703, 2855, 2926; HR-MS (ESI) [M+H]⁺: m/z calcd for C₂₆H₂₆N₂O₂⁺ 399.2074, found: 399.2063.

2-Phenyl-1*H*-indolo[1,2-*a*]pyrrolo[3,4-*c*]quinoline-1,3(2*H*)-dione (**3f**): Flash column chromatography (in *n*-hexane) yielded the title compound as violet powder in 75% (271 mg, 0.749 mmol) from the corresponding Ugi product (575 mg, 1.00 mmol); mp 198–200 °C; ¹H-NMR (300 MHz, CDCl₃): δ 8.92 (dd, 1H, J = 1.5Hz, J = 1.5 Hz), 8.72 (d, 1H, J = 8.4 Hz), 8.56 (d, 1H, J = 8.7 Hz), 8.05 (d, 1H, 3f J = 7.8 Hz), 7.78–7.87 (m, 1H), 7.73 (s, 1H), 7.52–7.64 (m, 6H), 7.44–7.50 (m, 2H); ${}^{13}C{}^{1}H$ -NMR (75 MHz, CDCl₃): δ 182.0, 181.9, 138.5, 134.1, 131.6, 131.0, 129.2, 128.0, 127.5, 127.3, 126.5, 124.5, 124.2, 123.5, 123.1, 122.8, 121.3, 117.5, 116.1, 114.5, 112.3, 101.3; IR (KBr) \tilde{v} (cm⁻¹) = 1382, 1641, 1709, 2853, 2923; HR-MS (ESI) [M+H]⁺: m/z calcd for

C₂₄H₁₄N₂O₂⁺ 363.1135, found: 363.1131.

2-Cyclohexyl-5-methoxy-1*H*-indolo[1,2-*a*]pyrrolo[3,4-*c*]quinoline-1,3(2*H*) dione (**3g**): Flash

column chromatography (in *n*-hexane) yielded the title compound as violet powder in 88% (350 mg, 0.878 mmol) from the corresponding Ugi product (589 mg, 1.00 mmol); mp 245–247 °C; ¹H-NMR (300 MHz, CDCl₃): δ 8.69 (d, 1H, J = 8.7 Hz), 8.30 (d, 1H, J = 7.8 Hz), 7.93–7.98 (m, 2H), 7.45–7.51 (m, 3H), 7.01 ÓМе (dd, 1H, J = 2.4 Hz, J = 2.1 Hz), 4.14 (m, 1H), 4.02 (s, 1H), 2.21-2.34 (m, 2H),1.76–1.97 (m, 5H), 1.36–1.48 (m, 3H); ${}^{13}C{}^{1}H$ -NMR (75 MHz, CDCl₃): δ 169.3, 168.0, 162.3, 139.8, 133.5, 131.2, 128.4, 128.3, 124.1, 123.5, 122.8, 122.3, 121.7, 114.1, 111.2, 110.4, 101.7,

99.8, 55.8, 50.9, 30.2, 29.7, 26.2; IR (KBr) \tilde{v} (cm⁻¹) = 1350, 1613, 1701, 2852, 2923; Elem. Anal. calcd for C₂₅H₂₂N₂O₃: C, 75.36; H, 5.57; N, 7.03, found: C, 75.21; H, 5.51; N, 7.11.

2-Butyl-5-methoxy-1*H*-indolo[1,2-*a*]pyrrolo[3,4-*c*]quinoline-1,3(2*H*)-dione (**3h**): Flash column chromatography (in *n*-hexane) yielded the title compound as violet powder in 85% (316 mg, 0.849 mmol) from the corresponding Ugi product (563 mg, 1.00 mmol); mp 190–192 °C; ¹H-NMR (300 MHz, CDCl₃): δ 8.39 (d, 1H, J = 8.7Hz), 7.95–7.98 (m, 1H), 7.77–7.80 (m, 1H), 7.55 (s, 1H), 7.32–7.39 (m, 2H), ÓМе 7.21 (s, 1H), 6.78 (dd, 1H, J = 1.5 Hz, J = 1.8 Hz), 3.88 (s, 3H), 3.62 (t, 2H, J

= 7.2 Hz), 1.66–1.76 (m, 2H), 1.39–1.52 (m, 2H), 1.03 (t, 3H, J = 7.2 Hz); ¹³C{¹H}-NMR (75) MHz, CDCl₃): δ 169.0, 167.7, 162.0, 139.2, 133.0, 130.9, 128.0, 127.9, 123.8, 123.4, 122.6, 122.1, 121.2, 113.9, 110.7, 110.2, 101.0, 99.6, 55.6, 37.6, 30.9, 20.2, 13.7; IR (KBr) \tilde{v} (cm⁻¹) = 1356,

3h

1617, 1700, 2860, 2925; Elem. Anal. calcd for C₂₃H₂₀N₂O₃: C, 74.18; H, 5.41; N, 7.52, Found: C, 74.08; H, 5.44; N, 7.48.

2-(*tert*-Butyl)-5-methoxy-1*H*-indolo[1,2-*a*]pyrrolo[3,4-*c*]quinoline-1,3(2*H*)-dione (**3i**): Flash

column chromatography (in *n*-hexane) yielded the title compound as violet powder in 79% (294 mg, 0.789 mmol) from the corresponding Ugi product (562 mg, 1.00 mmol); mp 249–251 °C; ¹H-NMR (300 MHz, CDCl₃): δ 8.75 (d, 1H, *J* = 9 Hz), 8.39 (d, 1H, *J* = 7.8 Hz), 8.08 (s, 1H), 7.95–7.98 (m, 1H), 7.44–7.53 (m, 3H), 7.03 (dd, 1H, *J* = 2.1 Hz, *J* = 2.1 Hz), 4.05 (s, 3H), 1.79 (s, 9H); ¹³C{¹H}-

NMR (75 MHz, CDCl₃): δ 170.6, 169.2, 162.2, 140.0, 133.5, 131.2, 128.5, 128.3, 124.0, 123.5, 122.8, 122.4, 121.9, 114.2, 111.1, 110.3, 101.8, 99.9, 57.7, 55.8, 29.2; IR (KBr) \tilde{v} (cm⁻¹) = 1349, 1614, 1700, 2853, 2923; Elem. Anal. calcd for C₂₃H₂₀N₂O₃: C, 74.18; H, 5.41; N, 7.52, found: C, 75.01; H, 5.37; N, 7.47.

6-Chloro-2-cyclohexyl-1*H*-indolo[1,2-*a*]pyrrolo[3,4-*c*]quinoline-1,3(2*H*)-dione (**3**j: Flash column

chromatography (in *n*-hexane) yielded the title compound as violet powder in 72% (291 mg, 0.722 mmol) from the corresponding Ugi product (593 mg, 1.00 mmol); mp 183–185 °C; ¹H-NMR (300 MHz, CDCl₃): δ 8.58 (d, 1H, *J* = 9.3 Hz), 8.34 (s, 1H), 8.15 (d, 1H, *J* = 8.1 Hz), 7.19–7.46 (m, 4H), 3.99–4.14 (m, 1H),

³ 3³ 2.14–2.18 (m, 1H), 1.68–1.87 (m, 3H, 1.18–1.26 (m, 5H), 0.80–0.84 (m, 1H); $^{13}C{^{1}H}$ -NMR (75 MHz, CDCl₃): δ 137.5, 136.2, 132.6, 129.9, 126.8, 126.8, 123.5, 123.2, 122.2, 121.7, 114.9, 114.8, 113.0, 110.1, 50.0, 29.1, 28.7, 25.1, 24.2; IR (KBr) \tilde{v} (cm⁻¹) = 1378, 1642, 1701, 2867, 2944; MS (ESI) [M+H]⁺: *m/z* calcd for C₂₄H₂₀ClN₂O₂⁺ 403.11, found: 403.13. Elem. Anal. calcd for C₂₄H₁₉ClN₂O₂: C, 71.55; H, 4.75; N, 6.95; Found C, 71.38; H, 4.68; N, 7.01.

2-Cyclohexyl-1*H*-dipyrrolo[1,2-*a*:3',4'-*c*]quinoline-1,3(2*H*)-dione

chromatography (in *n*-hexane) yielded the title compound as orange powder in 84% (267 mg, 0.839 mmol) from the corresponding Ugi product (509 mg, 1.00 mmol); mp 275–277 °C; ¹H-NMR (300 MHz, CDCl₃): δ 8.78 (d, 1H, J = 8.1 Hz), 8.1 (s, 1H), 7.78 (d, 1H, J = 8.4 Hz), 7.68–7.69 (m, 1H), 7.51–7.54 (m, 1H) 7.30–7.34 (m, 1H), 7.03–7.06 (m, 1H), 4.09–4.18 (m, 1H), 2.21–2.33 (m, 2H), 1.91–1.95 (m, 2H),

(**3**k):

Flash

1.74–1.85 (m, 3H), 1.38–1.50 (m, 3H); ¹³C{¹H}-NMR (75 MHz, CDCl₃): δ 169.7, 168.1, 134.3, 130.2, 126.8, 125.1, 123.6, 118.9, 118.6, 117.5, 116.2, 115.8, 114.8, 106.8, 50.8, 30.2, 26.1, 25.2;

column

IR (KBr) \tilde{v} (cm⁻¹) = 1349, 1624, 1698, 2851, 2920; HR-MS (ESI) [M+H]⁺: m/z calcd for C₂₀H₁₈N₂O₂⁺ 319.1448, found 319.1439.

2-Butyl-1*H*-dipyrrolo[1,2-*a*:3',4'-*c*]quinoline-1,3(2*H*)-dione (**3**I): Flash column chromatography

(in *n*-hexane) yielded the title compound as violet powder in 82% (239 mg, 0.818) mmol) from the corresponding Ugi product (482 mg, 1.00 mmol); mp 116-118 °C; ¹H-NMR (300 MHz, CDCl₃): δ 8.77 (dd, 1H, J = 1.2 Hz, J = 1.2 Hz), 8.09

(dd, 1H, J = 1.2 Hz, J = 0.9 Hz), 7.97 (d, 1H, J = 8.4 Hz), 7.65–7.71 (m, 1H), 7.48–7.54 (m, 1H), 7.33 (dd, 1H, J = 0.9 Hz, J = 1.2 Hz), 7.04 (dd, 1H, J = 2.7 Hz, J = 2.7 Hz), $3.70-3.75 (m, 2H), 1.68-1.78 (m, 2H), 1.40-1.48 (m, 2H), 1.00 (t, 3H, J = 7.2 Hz); {}^{13}C{}^{1}H{}-NMR$ (75 MHz, CDCl₃): δ 169.7, 168.1, 134.2, 130.3, 126.8, 125.2, 125.1, 123.6, 118.8, 117.5, 116.3, 115.8, 114.7, 106.9, 37.7, 30.9, 20.1, 13.7; IR (KBr) \tilde{v} (cm⁻¹) = 1362, 1625, 1704, 2854, 2925; HR-MS (ESI) $[M+H]^+$: m/z calcd for $C_{18}H_{16}N_2O_2^+$ 393.1292, found: 393.1285.

2-(tert-Butyl)-1H-dipyrrolo[1,2-a:3',4'-c]quinoline-1,3(2H)-dione chromatography (in n-hexane) yielded the title compound as orange powder in 86% (250 mg, 0.855 mmol) from the corresponding Ugi product (482 mg, 1.00 mmol); mp 198–200 °C; 1H-NMR (300 MHz, CDCl3): δ 8.78 (d, 1H, J = 8.1 Hz), 8.06 (s, 1H), 7.95 (d, 1H, J = 8.4 Hz), 7.64–7.69 (m, 1H), 7.47–7.52 (m, 1H), 7.30 (d, 1H, J = 3.0 Hz), 7.00–7.03 (m, 1H), 1.77 (s, 9H); 13C{1H}-NMR (75 MHz, CDCl3):

171.0,169.2, 134.4, 130.1, 126.8, 125.1, 125.0, 123.4, 118.5, 117.4, 116.0, 115.6, 114.7, 106.7, 57.6, 29.2; IR (KBr) \tilde{v} (cm-1) = 1355, 1612, 1697, 2850, 2953; HR-MS (ESI) [M+H]+: m/z calcd for C18H16N2O2+ 293.1292, found: 293.1283.

2. Details of the Crystallographic Studies

Single crystals of **2a** were prepared by slow evaporation of a n-hexane solution. Crystallographic single crystal X-ray data were collected on a SuperNova instrument with a micro-focus sealed Xray tube (Mo K-alpha radiation: $\lambda = 0.71073$ Å) or a Bruker Kappa Apex2 diffractometer with a micro-focus sealed X-ray tube (Ag K-alpha radiation: $\lambda = 0.56086$ Å). Absorption correction was done with SADABS. Cell refinement and data reduction were done in SAINT-plus.² The structures were solved and refined with SHELXT and SHELXL, respectively, in Olex2.³

Flash

(**3m**):

column

ltem	Value
Molecular formula	C24 H21 Br N2 O2
Formula weight	449.34
Crystal system	triclinic
Space Group	P -1
a (Å)	12.1123
b (Å)	13.4106
c (Å)	15.0272
α (°)	90.102
β(°)	111.664
γ(°)	113.639
Volume (Å ³)	2045.7
Z	4
Т (К)	153
ρ (g cm ⁻¹)	1.459
λ (Å)	0.71073
μ (mm ⁻¹)	2.032
# measured refl	15127
# unique refl	6435
R _{int}	0.1047
# parameters	523
R(F ²), all refl	0.0941
R _w (F ²), all refl	0.2834
Goodness of fit	1.209

Crystal data for [**2a**]: C24 H21 Br N2 O2, M = 449.34, triclinic, Space group P -1 (no. 2), a = 12.1123(7)Å, b = 13.4106(9) Å, c = 15.0272(7) Å, $a = 90.102(5)^{\circ}$, $\beta = 111.664(5)^{\circ}$, $\gamma = 113.639(6)^{\circ}$, V = 2045.7(2)Å³, T = 153 K, Z = 4, $d_c = 1.459$ g cm⁻³, μ (Mo K α , $\lambda = 0.71073$ Å) = 2.032 mm⁻¹, 15127 reflections collected, 6435 unique [$R_{int} = 0.1047$], which were used in all calculations. Refinement on F², final R(F) = 0.0941, R_w(F2) = 0.2834. CCDC number unknown. CCDC: 1976139.

3. Details of the Computational Investigations

The conformational space for each structure was explored by using the OPLS3 force field⁴ and a modified Monte Carlo search algorithm implemented in MacroModel.⁵ An energy cutoff of 100 kJ mol⁻¹ was employed for the conformational analysis, and structures with heavy-atom root meansquare deviations (RMSD) of up to 1.5 Å after the initial force-field optimizations were considered to be the same conformer. The remaining structures were then optimized with the PBE0 functional,⁶ Grimme's D3 correction with Becke-Johnson damping,⁷ and the triple- ζ basis set def2-TZVP.⁸ The calculations an extremely fine grid with 99 radial shells per atom and 974 angular points per shell for the numerical integration of the density. Vibrational analysis verified that each structure was a minimum or a transition state and for the latter, following the intrinsic reaction coordinates (IRC) confirmed that all transition states connected the corresponding reactants and products on the potential energy surface. Thermal corrections were obtained from unscaled harmonic vibrational frequencies at the same level of theory for a standard state of 1 mol L⁻¹ and 298.15 K. Entropic contributions to free energies were obtained from partition functions evaluated with Grimme's quasi-harmonic approximation.⁹ This method employs the free-rotor approximation for all frequencies below 100 cm⁻¹, the rigid-rotor-harmonic-oscillator (RRHO) approximation for all frequencies above 100 cm⁻¹, and a damping function to interpolate between the two expressions. Similar results were obtained from partition functions evaluated with Cramer's and Truhlar's quasiharmonic approximation.¹⁰ Electronic energies were subsequently calculated with the double-hybrid functional DSD-BLYP,¹¹ the triple- ζ basis set def2-TZVPPD,⁸ Grimme's D3 correction with Becke-Johnson damping,⁷ and the SMD solvation model for DMSO.¹² The calculations were performed with Gaussian16¹³ and ORCA.¹⁴

Starting Material: 2-(2-Bromophenyl)acetic Acid

SCF energy:	-3032.670824 hartree
Zero-point correction:	+0.133948 hartree
Enthalpy correction:	+0.144920 hartree
Free energy correction:	+0.095684 hartree
Truhlar's Delta G correction:	+0.097966 hartree
Grimme's Delta G correction:	+0.097538 hartree

Cartesian Coordinates

С	2.69492	1.65062	-0.04704
С	1.38961	1.88204	-0.44633
С	3.07985	0.37771	0.34237
С	2.15852	-0.65693	0.33388
С	0.85718	-0.40440	-0.06582
С	0.44359	0.86304	-0.46655
Н	3.40977	2.46446	-0.03881
Н	1.08604	2.87926	-0.74593
Н	4.09836	0.18347	0.65688
Н	2.44346	-1.65553	0.63880
Br	-0.37649	-1.84004	-0.05088
С	-0.96241	1.13841	-0.88770
С	-1.92660	1.24390	0.28497
Н	-1.30889	0.36861	-1.58391
Н	-1.01005	2.09618	-1.41603
0	-1.60380	1.49669	1.40365
0	-3.22572	1.08633	-0.03569
Н	-3.31336	0.83439	-0.96080

Starting Material: Pyrrole-2-carbaldehyde

SCF energy:	-323.253475 hartree
Zero-point correction:	+0.093054 hartree
Enthalpy correction:	+0.099650 hartree
Free energy correction:	+0.063591 hartree
Truhlar's Delta G correction:	+0.063591 hartree
Grimme's Delta G correction:	+0.063604 hartree

С	-1.60635	-0.90883	0.00006
С	-1.97990	0.42238	-0.00008
Ν	-0.25924	-0.96946	-0.00002
С	0.26402	0.29324	0.00001
С	-0.79891	1.18198	0.00006
Н	-2.21091	-1.80207	0.00009
Η	-2.99296	0.79166	-0.00015
Н	-0.71431	2.25793	0.00008
С	1.68823	0.50333	0.00001
0	2.50105	-0.39809	-0.00002
Η	2.00386	1.56482	-0.00005
Η	0.31813	-1.79392	-0.00004

Starting Material: 2-Isocyano-2-methylpropane

SCF energy:	-250.436995 hartree
Zero-point correction:	+0.129949 hartree
Enthalpy correction:	+0.138268 hartree
Free energy correction:	+0.099688 hartree
Truhlar's Delta G correction:	+0.099688 hartree
Grimme's Delta G correction:	+0.099684 hartree

Cartesian Coordinates

С	-0.72911	-1.34281	-0.54621
С	-0.25354	-0.00006	-0.00000
Н	-1.82044	-1.36784	-0.55629
Н	-0.36654	-2.16179	0.07667
Η	-0.36669	-1.49428	-1.56403
С	-0.72827	0.19806	1.43621
Н	-1.81953	0.20074	1.46345
Н	-0.36664	1.14755	1.83366
Н	-0.36486	-0.60698	2.07657
С	-0.72957	1.14460	-0.88932
Н	-1.82091	1.16562	-0.90566
Н	-0.36725	1.01514	-1.91021
Н	-0.36733	2.10178	-0.51144
Ν	1.17802	0.00001	-0.00064
С	2.34284	0.00020	-0.00038

Starting Material: Toluidine

SCF energy:	-326.626194 hartree
Zero-point correction:	+0.144788 hartree
Enthalpy correction:	+0.153443 hartree
Free energy correction:	+0.111932 hartree
Truhlar's Delta G correction:	+0.113456 hartree
Grimme's Delta G correction:	+0.112991 hartree

С	-0.71626	-1.19554	-0.00819
С	-1.43423	0.00000	-0.00447
С	0.66762	-1.18724	-0.01070
С	1.39277	0.00001	-0.00915
С	0.66761	1.18724	-0.01070
С	-0.71628	1.19554	-0.00819
Ν	-2.82206	-0.00001	-0.06304
С	2.89119	-0.00000	0.02234
Η	3.29901	0.88341	-0.47325
Н	3.29905	-0.88256	-0.47478
Η	3.26975	-0.00089	1.04980
Н	-1.25073	-2.14031	-0.01771
Η	1.19832	-2.13435	-0.01541
Н	1.19831	2.13436	-0.01541
Н	-1.25074	2.14031	-0.01770
Н	-3.26154	-0.83438	0.29005
Н	-3.26156	0.83437	0.29003

Ugi Adduct 1i: 2-(2-Bromophenyl)-N-(2-(tert-butylamino)-2-oxo-1-(1H-pyrrol-2-

yl)ethyl)-N-(p-tolyl)acetamide

SCF energy:	-3856.678127 hartree
Zero-point correction:	+0.487390 hartree
Enthalpy correction:	+0.518266 hartree
Free energy correction:	+0.423937 hartree
Truhlar's Delta G correction:	+0.432477 hartree
Grimme's Delta G correction:	+0.431135 hartree

С	0.94926	-0.00881	2.32834
С	1.40878	-0.54129	1.02210
С	2.74338	0.03594	0.52469
Ν	3.37447	-0.79022	-0.32145
С	4.56528	-0.45980	-1.10837
С	4.88730	-1.69962	-1.93115
Η	5.10203	-2.55205	-1.28217
Η	5.76281	-1.51666	-2.55608
Н	4.05129	-1.96534	-2.58380
С	5.73241	-0.13428	-0.18242
Η	5.93532	-0.97625	0.48300
Н	5.51210	0.74365	0.42338
Н	6.62988	0.06122	-0.77381
С	4.27046	0.71788	-2.03457
Н	3.45980	0.46607	-2.72353
Η	5.15536	0.96168	-2.62682
Н	3.98507	1.59722	-1.45686
0	3.13717	1.15267	0.83620
Н	2.84655	-1.61546	-0.58863
С	0.08951	-0.57824	3.24294
С	-0.12156	0.37179	4.26792
С	0.62129	1.48578	3.94767
Ν	1.25418	1.24165	2.77357
Η	-0.35129	-1.56019	3.16108
Η	-0.73439	0.25160	5.14735
Н	0.75771	2.41640	4.47426
Η	1.92664	1.81562	2.28439
Ν	0.40759	-0.34231	-0.05159
Η	1.50728	-1.62376	1.10581
С	-0.15708	0.95122	-0.22647
С	-1.12937	1.42847	0.64472
С	0.28939	1.75554	-1.26313
С	-0.26645	3.01066	-1.45899
С	-1.25658	3.49269	-0.61181
С	-1.66642	2.68511	0.44849
Η	-2.43307	3.04371	1.12716
Н	-1.46189	0.80532	1.46478
Н	0.08448	3.62863	-2.27871
С	-1.87802	4.83767	-0.82823
Н	1.07860	1.39614	-1.91388
Н	-1.36679	5.39078	-1.61713
Н	-1.84743	5.43928	0.08339
Η	-2.92955	4.73979	-1.11408
С	0.26203	-1.34149	-0.96028
0	1.01176	-2.30877	-0.98377
С	-0.86616	-1.25046	-1.97829

С	-2.18148	-0.67988	-1.54294
Н	-0.99053	-2.27982	-2.32134
Η	-0.49444	-0.67705	-2.83186
С	-2.71919	0.42252	-2.20276
С	-2.92976	-1.22186	-0.50034
С	-4.14129	-0.67643	-0.10683
С	-4.63916	0.43224	-0.77053
С	-3.92818	0.97901	-1.82752
Η	-2.15191	0.86585	-3.01316
Br	-2.30077	-2.74405	0.43006
Н	-4.68711	-1.12229	0.71468
Η	-5.58453	0.86186	-0.46095
Н	-4.31046	1.84460	-2.35517

Iminium Intermediate 4:

-3855.890165 hartree
+0.475634 hartree
+0.506591 hartree
+0.412984 hartree
+0.420717 hartree
+0.419648 hartree

С	1.00453	2.55706	-0.27402
С	1.06729	1.32285	0.36495
С	2.50672	0.84687	0.61054
Ν	2.92412	-0.10835	-0.22268
С	4.25682	-0.74807	-0.17915
С	4.24800	-1.80639	-1.27174
Н	3.49467	-2.57406	-1.07287
Н	5.21797	-2.30221	-1.31240
Н	4.05452	-1.36392	-2.25244
С	4.47836	-1.39386	1.18302
Н	3.70890	-2.14032	1.38832
Н	4.45706	-0.64884	1.97769
Н	5.45160	-1.88794	1.19688
С	5.32693	0.29707	-0.47079
Н	5.16315	0.75555	-1.44907
Н	6.30894	-0.17884	-0.48070
Н	5.33247	1.07409	0.29324
0	3.15033	1.46094	1.43010
Н	2.22456	-0.56165	-0.79095
С	2.12157	3.26327	-0.78546
С	1.67309	4.45420	-1.31439
С	0.28968	4.48601	-1.12320
Ν	-0.09788	3.36639	-0.51545
Н	3.14107	2.91607	-0.73558
Н	2.26187	5.22787	-1.77946
Н	-0.42565	5.25007	-1.38914
Н	-1.04677	3.13920	-0.26585
Ν	0.02271	0.59858	0.79389
С	-1.31997	1.01984	0.51359
С	-1.84323	0.83981	-0.75987
С	-2.07016	1.62160	1.50958
С	-3.36647	2.02978	1.22860

С	-3.92133	1.84685	-0.03533
С	-3.13372	1.25343	-1.02498
Η	-3.54616	1.10174	-2.01596
Η	-1.24209	0.36962	-1.52866
Η	-3.95497	2.50049	2.00789
С	-5.33217	2.24533	-0.32535
Н	-1.64134	1.78011	2.49286
Н	-5.71502	2.94217	0.42003
Н	-5.98149	1.36469	-0.32167
Н	-5.42183	2.70611	-1.31049
С	0.23313	-0.57272	1.62406
0	1.30376	-0.75502	2.11371
С	-0.95125	-1.46847	1.90481
С	-1.91321	-1.82349	0.81022
Н	-1.50698	-1.00333	2.72521
Н	-0.49242	-2.36894	2.32024
С	-3.28048	-1.66001	1.01943
С	-1.51736	-2.37471	-0.40529
С	-2.42940	-2.72465	-1.38689
С	-3.78210	-2.53527	-1.15502
С	-4.20837	-2.00799	0.05431
Н	-3.61647	-1.24386	1.96264
Br	0.32069	-2.67048	-0.76297
Н	-2.08207	-3.15214	-2.31867
Н	-4.49911	-2.81526	-1.91719
Н	-5.26538	-1.87371	0.24916

Intermediate 5

SCF energy:	-3855.430838 hartree
Zero-point correction:	+0.463056 hartree
Enthalpy correction:	+0.493555 hartree
Free energy correction:	+0.399833 hartree
Truhlar's Delta G correction:	+0.408705 hartree
Grimme's Delta G correction:	+0.407175 hartree

-0.37040	0.17531	2.06217
0.47981	0.71447	1.02417
1.97578	0.49923	1.13475
2.71151	0.53849	-0.06816
3.68520	1.65817	-0.29855
3.59822	2.66619	0.84209
2.58030	3.04661	0.96174
4.23770	3.51138	0.58498
3.93663	2.25474	1.79158
3.28588	2.38180	-1.58426
2.24847	2.71499	-1.51650
3.39618	1.74029	-2.45434
3.92702	3.25713	-1.70833
5.10037	1.10117	-0.37574
5.36362	0.60499	0.56071
5.80321	1.92158	-0.53814
5.19958	0.39347	-1.19692
2.52327	0.40034	2.20629
-1.75307	0.02935	2.13051
-2.04757	-0.67190	3.30660
-0.84806	-0.93569	3.93921
	-0.37040 0.47981 1.97578 2.71151 3.68520 3.59822 2.58030 4.23770 3.93663 3.28588 2.24847 3.39618 3.92702 5.10037 5.36362 5.80321 5.19958 2.52327 -1.75307 -2.04757 -0.84806	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Ν	0.14572	-0.43259	3.18222
Η	-2.45915	0.37329	1.39430
Н	-3.02496	-0.96109	3.65793
Η	-0.64169	-1.43313	4.87342
Н	1.12840	-0.40346	3.40343
Ν	0.14430	1.40606	0.00323
С	-1.15275	1.89516	-0.17053
С	-1.62662	2.94764	0.61062
С	-1.96406	1.37886	-1.17469
С	-3.24131	1.88265	-1.35932
С	-3.73319	2.92697	-0.58340
С	-2.89639	3.45228	0.39866
Η	-3.24959	4.27126	1.01733
Η	-0.99429	3.35685	1.38999
Н	-3.86882	1.45147	-2.13307
С	-5.09989	3.49397	-0.81811
Η	-1.59687	0.56678	-1.78815
Н	-5.75943	2.75957	-1.28388
Η	-5.05764	4.36365	-1.48151
Η	-5.56117	3.82071	0.11616
С	2.53454	-0.44926	-1.00244
0	3.15544	-0.48452	-2.04520
С	1.59728	-1.58570	-0.64458
С	0.36052	-1.68138	-1.49657
Η	1.30652	-1.58052	0.40637
Η	2.19016	-2.49743	-0.77951
С	0.29362	-1.12249	-2.77143
С	-0.76350	-2.37456	-1.04660
С	-1.91543	-2.48131	-1.81072
С	-1.95606	-1.90776	-3.07002
С	-0.84463	-1.23436	-3.55212
Η	1.16219	-0.60092	-3.15138
Br	-0.75463	-3.24558	0.63580
Η	-2.76864	-3.01910	-1.41815
Η	-2.85416	-1.99395	-3.67018
Η	-0.86168	-0.78711	-4.53881

Maleimide 2i: 4'-(2-Bromophenyl)-1'-(tert-butyl)-1H,1'H-[2,3'-bipyrrole]-2',5'-

dione

SCF energy:	-3528.832924 hartree
Zero-point correction:	+0.316641 hartree
Enthalpy correction:	+0.338459 hartree
Free energy correction:	+0.265289 hartree
Truhlar's Delta G correction:	+0.269946 hartree
Grimme's Delta G correction:	+0.269308 hartree

С	-2.06006	3.55347	-0.99147
С	-0.88371	4.22153	-0.69712
Ν	0.07195	3.30513	-0.45564
С	-1.78828	2.18244	-0.91956
С	-0.44430	2.03898	-0.58274
Н	-2.47954	1.37389	-1.09254
С	0.36637	0.88523	-0.39990
С	0.06430	-0.42980	-0.44442
С	1.84877	1.00199	-0.13991

0	2.44925	2.04756	-0.01761
0	1.44088	-2.39240	-0.30663
С	1.31632	-1.19436	-0.27606
Ν	2.36329	-0.27259	-0.07436
С	-1.21484	-1.10748	-0.65399
С	-1.40336	-1.87099	-1.80682
С	-2.59817	-2.52244	-2.05353
С	-3.63413	-2.43201	-1.13641
С	-3.46583	-1.70310	0.02918
С	-2.26327	-1.05576	0.26621
Н	-0.58822	-1.94017	-2.51700
Н	-2.71934	-3.10180	-2.96076
Η	-4.57509	-2.93752	-1.31883
Н	-4.25885	-1.64156	0.76319
Br	-2.06550	-0.12879	1.89910
Η	1.04594	3.45523	-0.23245
С	3.76363	-0.70646	0.16556
С	4.69286	0.48200	0.37903
С	4.24348	-1.49012	-1.05425
С	3.79176	-1.57783	1.41965
Η	4.73339	1.13734	-0.48936
Η	5.69211	0.07775	0.55434
Н	4.40693	1.07969	1.24312
Η	3.44146	-1.00981	2.28442
Н	4.81884	-1.89337	1.61409
Η	3.17233	-2.46526	1.30404
Η	4.21759	-0.85886	-1.94548
Η	3.63124	-2.37364	-1.22587
Η	5.27576	-1.80810	-0.89408
Н	-3.00534	4.01535	-1.22724
Н	-0.67375	5.27787	-0.64492

Copper-Proline Complex

SCF energy:	-2040.485357 hartree
Zero-point correction:	+0.134957 hartree
Enthalpy correction:	+0.144503 hartree
Free energy correction:	+0.099381 hartree
Truhlar's Delta G correction:	+0.100910 hartree
Grimme's Delta G correction:	+0.100607 hartree

С	1.02329	-1.81773	-0.27337	
С	2.05837	-0.84260	-0.81628	
Ν	0.15610	-1.00766	0.63470	
Η	1.50448	-2.61196	0.30431	
Η	0.42997	-2.28759	-1.05789	
С	0.78723	0.34872	0.78031	
С	2.22340	0.15081	0.32306	
Η	2.83005	-0.28390	1.12423	
Н	2.66047	1.10043	0.02243	
Н	1.67080	-0.32787	-1.69967	
Η	2.98311	-1.34597	-1.10023	
С	0.08756	1.50952	-0.00957	
Н	0.71910	0.64608	1.82998	
0	0.75563	2.51612	-0.15014	
0	-1.12501	1.34549	-0.39521	
Cu	-1.66036	-0.46104	-0.03694	

Cu-Substrate Complex 6

SCF energy:	-5569.345045 hartree
Zero-point correction:	+0.452212 hartree
Enthalpy correction:	+0.484607 hartree
Free energy correction:	+0.386110 hartree
Truhlar's Delta G correction:	+0.395200 hartree
Grimme's Delta G correction:	+0.393968 hartree

С	-0.78098	-2.18171	3.28776
С	-1.41501	-0.96707	3.40781
Ν	-0.77846	-0.05950	2.57673
С	0.28512	-2.02532	2.38305
С	0.30412	-0.70969	1.96554
Н	0.96309	-2.79292	2.04506
С	1.14613	0.01215	1.07292
С	1.97775	-0.40790	0.09814
С	1.25130	1.50943	1.16716
0	0.62648	2.19339	1.94938
0	3.54276	0.80481	-1.27220
С	2.68589	0.78874	-0.42797
Ν	2.17506	1.92217	0.23415
С	2.24672	-1.74192	-0.42821
С	3.57183	-2.18651	-0.47664
С	3.89513	-3.44528	-0.94545
С	2.89208	-4.29015	-1.39644
С	1.57454	-3.86534	-1.38915
С	1.25582	-2.60025	-0.91822
Η	4.35130	-1.52022	-0.12926
Η	4.92980	-3.76525	-0.96103
Н	3.13197	-5.27930	-1.76806
Н	0.78568	-4.50633	-1.76132
Br	-0.56015	-2.08732	-1.01062
С	2.67648	3.29551	-0.04442
С	4.15830	3.34888	0.31898
С	1.92877	4.34021	0.77442
С	2.46896	3.60075	-1.52651
Н	4.29887	3.12553	1.37896
Η	4.53914	4.35472	0.13156
Η	4.73949	2.64456	-0.27414
Η	3.00858	2.90169	-2.16190
Η	2.83051	4.60953	-1.73463
Η	1.40742	3.56625	-1.78185
Η	2.06844	4.20696	1.84541
Н	0.85925	4.33855	0.56796
Н	2.33073	5.31500	0.49117
Η	-1.08066	-3.09427	3.77724
Н	-2.23210	-0.65512	4.03786
Cu	-2.15116	-0.18811	1.10989
0	-3.52621	-0.92746	-0.00420
Ν	-2.01783	1.30476	-0.48051
С	-3.43569	1.27627	-0.89140
С	-1.61876	2.69475	-0.71520
С	-2.38171	3.15380	-1.97612
С	-3.48608	2.09628	-2.17143

С	-3.97558	-0.16022	-0.93764	
0	-4.77448	-0.46564	-1.80075	
Η	-1.51151	0.72575	-1.14948	
Η	-0.53492	2.76466	-0.81108	
Η	-1.91044	3.28502	0.15696	
Η	-1.71882	3.19718	-2.84269	
Η	-2.79128	4.15622	-1.83816	
Η	-3.27685	1.44258	-3.02081	
Η	-4.47054	2.52957	-2.34228	
Η	-3.99519	1.79551	-0.10118	
Η	-0.68390	0.94011	2.75448	

Deprotonated Cu-Substrate Complex 7

-5568.890495 hartree
+0.438713 hartree
+0.470953 hartree
+0.371833 hartree
+0.381820 hartree
+0.380000 hartree

С	0.43501	4.56004	-0.68099
С	-0.70216	3.78302	-0.40734
Ν	-0.37889	2.51015	-0.16088
С	1.51369	3.69968	-0.59910
С	0.99642	2.42134	-0.26966
Н	2.55595	3.92724	-0.74055
С	1.74700	1.25424	-0.00661
С	1.44132	0.01742	0.50351
С	3.23498	1.22870	-0.29643
0	3.90306	2.09850	-0.80804
0	2.80440	-1.81494	1.23313
С	2.67618	-0.75171	0.67043
Ν	3.72982	0.00663	0.11618
С	0.19956	-0.53872	1.03720
С	-0.52440	0.14714	2.02338
С	-1.64601	-0.40042	2.62407
С	-2.07115	-1.67010	2.26475
С	-1.39160	-2.36936	1.27789
С	-0.28600	-1.79692	0.66582
Η	-0.17355	1.12747	2.32078
Н	-2.20769	0.18094	3.34268
Η	-2.95275	-2.10251	2.72285
Η	-1.72771	-3.34920	0.96192
Br	0.47555	-2.73988	-0.79206
С	5.15181	-0.36034	-0.02989
С	5.52630	-0.29718	-1.51185
С	5.43148	-1.77508	0.46552
С	6.00285	0.61569	0.78225
Η	6.57639	-0.57551	-1.63243
Η	5.37764	0.70244	-1.91548
Η	4.91744	-1.00351	-2.08114
Η	5.86065	1.63915	0.43871
Η	7.05904	0.35304	0.68058
Η	5.73553	0.55538	1.83984
Η	6.49188	-1.97286	0.28577
Н	4.84163	-2.51886	-0.06850

Н	5.22492	-1.88953	1.52745
Н	0.45321	5.61754	-0.90037
Н	-1.73641	4.09817	-0.37456
Cu	-1.79566	1.22408	-0.03118
0	-3.58419	1.46478	1.14157
Ν	-2.93780	-0.27325	-0.81586
С	-4.32876	0.19445	-0.68978
С	-2.92214	-0.99584	-2.08648
С	-4.27677	-1.73045	-2.15685
С	-5.17458	-0.98950	-1.14221
С	-4.56107	0.77975	0.71667
0	-5.63336	0.54876	1.27316
Н	-2.79599	-0.96384	-0.07747
Н	-2.05486	-1.65499	-2.13830
Н	-2.83574	-0.26112	-2.89130
Н	-4.15915	-2.78204	-1.88317
Н	-4.68585	-1.70908	-3.16990
Η	-5.40851	-1.60888	-0.27371
Н	-6.12695	-0.67152	-1.56700
Н	-4.44219	1.02320	-1.40073

Transition State Oxidative Addition TS1

-5568.879720 hartree
+0.437825 hartree
+0.469146 hartree
+0.373933 hartree
+0.382119 hartree
+0.380725 hartree
$139.2 \ i \text{cm}^{-1}$

С	0.42390	-2.39869	3.23832
С	1.24925	-1.36544	2.77060
Ν	0.62003	-0.62399	1.84936
С	-0.77607	-2.28090	2.54456
С	-0.63522	-1.16284	1.69829
Н	-1.66361	-2.88513	2.63988
С	-1.62252	-0.53685	0.89904
С	-1.70318	0.72857	0.40045
С	-2.89732	-1.23844	0.51909
0	-3.19547	-2.38769	0.75295
0	-3.44743	1.91477	-0.74318
С	-3.00701	0.90308	-0.24878
Ν	-3.68837	-0.33409	-0.17068
С	-0.78432	1.85632	0.54892
С	-1.20210	3.00374	1.21996
С	-0.35999	4.08905	1.40071
С	0.93352	4.04961	0.89998
С	1.37669	2.94146	0.19769
С	0.52529	1.85319	0.05764
Η	-2.21355	3.02652	1.60854
Η	-0.71565	4.96479	1.93136
Η	1.60621	4.88817	1.04240
Η	2.38301	2.88784	-0.19541
С	-5.00223	-0.70372	-0.73115
С	-4.80869	-1.84683	-1.72864
С	-5.66166	0.46023	-1.46247

С	-5.92141	-1.13788	0.41095
Н	-5.77543	-2.12613	-2.15538
Н	-4.37129	-2.71982	-1.24729
Н	-4.15448	-1.52640	-2.54278
Н	-5.50653	-1.99047	0.94604
Н	-6.89887	-1.41538	0.00798
Н	-6.06250	-0.31261	1.11295
Н	-6.61761	0.09544	-1.84827
Н	-5.05930	0.81468	-2.29723
Н	-5.84771	1.30732	-0.80486
Н	0.67215	-3.12652	3.99758
Н	2.27036	-1.13822	3.05111
Cu	1.59502	0.17170	0.27701
0	3.52249	0.87061	0.53836
Ν	2.65545	-1.65156	-0.11447
С	4.07876	-1.31137	-0.28247
С	2.20801	-2.47008	-1.25861
С	3.43793	-2.63656	-2.14845
С	4.27940	-1.42069	-1.78848
С	4.47183	0.08003	0.25103
0	5.67785	0.30242	0.31869
Н	2.48926	-2.12994	0.76179
Н	1.41568	-1.93791	-1.79398
Н	1.79305	-3.42104	-0.91713
Н	3.17594	-2.68865	-3.20763
Н	3.97932	-3.55261	-1.89003
Н	3.87642	-0.52399	-2.27013
Η	5.33345	-1.50575	-2.04832
Η	4.72021	-2.04527	0.22027
Br	0.73513	0.80053	-1.84194

Intermediate Copper Complex 8

SCF energy:	-5568.892340 hartree
Zero-point correction:	+0.439984 hartree
Enthalpy correction:	+0.471502 hartree
Free energy correction:	+0.376463 hartree
Truhlar's Delta G correction:	+0.384124 hartree
Grimme's Delta G correction:	+0.382933 hartree

С	0.67685	-1.74005	3.51626
С	1.45434	-0.82478	2.80453
Ν	0.72018	-0.28641	1.81520
С	-0.58130	-1.76656	2.90710
С	-0.53424	-0.84107	1.85676
Н	-1.44847	-2.34016	3.19247
С	-1.56925	-0.36922	1.00609
С	-1.69725	0.82847	0.37564
С	-2.80517	-1.16229	0.73264
0	-3.05761	-2.27564	1.13257
0	-3.48969	1.76990	-0.92920
С	-3.00959	0.85504	-0.30546
Ν	-3.62915	-0.39097	-0.07597
С	-0.80843	1.97642	0.43680
С	-1.32721	3.27415	0.55469
С	-0.49181	4.36290	0.72052
С	0.88423	4.18681	0.77230

С	1.43141	2.91785	0.62895
С	0.57667	1.85427	0.43810
Н	-2.40099	3.40574	0.52370
Н	-0.91857	5.35490	0.81949
Н	1.54333	5.03746	0.91002
Н	2.50185	2.75140	0.64552
С	-4.92222	-0.88948	-0.58605
С	-4.67009	-2.15539	-1.40622
С	-5.61622	0.12843	-1.48412
С	-5.83642	-1.19071	0.60154
Н	-5.61928	-2.52962	-1.79779
Н	-4.20913	-2.93359	-0.80051
Н	-4.01562	-1.93015	-2.25133
Н	-5.39526	-1.94062	1.25617
Н	-6.79760	-1.56226	0.23731
Н	-6.01773	-0.27958	1.17661
Н	-6.54774	-0.33053	-1.82624
Н	-5.01401	0.38632	-2.35377
Н	-5.85236	1.05086	-0.95706
Н	0.99276	-2.30096	4.38378
Н	2.49036	-0.54379	2.92809
Cu	1.44975	0.20569	0.10984
0	3.45142	0.67014	0.68158
Ν	2.29262	-1.66011	-0.09369
С	3.75991	-1.52700	-0.17863
С	1.84982	-2.54356	-1.19392
С	2.99833	-2.54872	-2.21271
С	4.00284	-1.52831	-1.68020
С	4.29950	-0.25489	0.50047
0	5.49671	-0.24765	0.76938
Η	2.02993	-2.05290	0.80436
Η	0.92755	-2.15083	-1.62129
Η	1.65268	-3.54737	-0.80636
Η	2.64203	-2.28518	-3.20939
Η	3.45102	-3.54249	-2.26755
Η	3.77474	-0.53644	-2.07524
Η	5.03929	-1.76840	-1.91450
Η	4.24519	-2.39609	0.28110
Br	1.07494	0.62268	-2.17277

Transition State Reductive Elimination TS2

SCF energy:	-5568.887846 hartree
Zero-point correction:	+0.439106 hartree
Enthalpy correction:	+0.470217 hartree
Free energy correction:	+0.376083 hartree
Truhlar's Delta G correction:	+0.383323 hartree
Grimme's Delta G correction:	+0.382401 hartree
Imaginary Frequency:	196.6 <i>i</i> cm ⁻¹

С	1.11371	-1.42009	3.28035
С	1.67969	-0.38773	2.54008
Ν	0.81044	-0.02022	1.57583
С	-0.14672	-1.69275	2.73434
С	-0.33236	-0.78936	1.68786
Η	-0.87870	-2.41084	3.06790
С	-1.48161	-0.43542	0.94329

С	-1.76335	0.78508	0.41362
С	-2.65910	-1.31583	0.72975
0	-2.78356	-2.46433	1.08819
0	-3.75184	1.65530	-0.63051
С	-3.13209	0.74318	-0.14097
Ν	-3.61119	-0.57221	0.03859
С	-0.92746	1.95037	0.53520
С	-1.44175	3.25289	0.60393
С	-0.61508	4.32366	0.88220
С	0.74582	4.12643	1.10212
С	1.29621	2.85821	1.01137
С	0.45716	1.81378	0.66938
Н	-2.50322	3.39400	0.44793
Н	-1.03446	5.32143	0.94386
Н	1.39151	4.96860	1.32629
Н	2.35987	2.68000	1.12360
С	-4.89742	-1.15337	-0.39729
С	-4.60965	-2.35873	-1.29352
С	-5.73381	-0.15968	-1.19562
С	-5.68999	-1.57770	0.83873
Н	-5.55425	-2.78996	-1.63396
Н	-4.04663	-3.12343	-0.76164
Н	-4.03948	-2.04571	-2.17104
Н	-5.14094	-2.31557	1.42192
Н	-6.64412	-2.01232	0.53012
Н	-5.89750	-0.70958	1.46881
Н	-6.64218	-0.68318	-1.50536
Н	-5.21333	0.19033	-2.08601
Н	-6.01367	0.71224	-0.60802
Η	1.57730	-1.91299	4.12225
Н	2.65255	0.07410	2.60331
Cu	1.39342	0.40122	-0.19582
0	3.52894	0.88425	0.28797
Ν	2.40299	-1.25548	-0.82477
С	3.57909	-1.45146	0.02802
С	1.90567	-2.60692	-1.07466
С	3.16952	-3.49268	-1.17677
С	4.31193	-2.61606	-0.61891
С	4.30647	-0.11927	0.27143
0	5.51773	-0.15199	0.47082
Н	2.71072	-0.85657	-1.71113
Η	1.27917	-2.61519	-1.96695
Н	1.28745	-2.90212	-0.22332
Η	3.36275	-3.78786	-2.21062
Н	3.04297	-4.41125	-0.59951
Η	4.95548	-2.23798	-1.41728
Н	4.95391	-3.14204	0.08694
Η	3.19465	-1.77091	1.00589
Br	0.80903	0.98976	-2.43081

Final Product **3i**

SCF energy:	-954.749448 hartree
Zero-point correction:	+0.305416 hartree
Enthalpy correction:	+0.324269 hartree
Free energy correction:	+0.260095 hartree
Truhlar's Delta G correction:	+0.262205 hartree
Grimme's Delta G correction:	+0.262106 hartree

Cartesian Coordinates

С	2.63044	3.32149	-0.00048
С	3.30139	2.11772	-0.00026
Ν	2.38322	1.11096	0.00021
С	1.25235	3.05978	-0.00019
С	1.10492	1.68587	0.00015
Н	0.43787	3.76498	-0.00016
С	0.02121	0.79703	0.00004
С	0.18821	-0.54593	-0.00014
С	-1.43201	1.09580	0.00014
0	-1.94369	2.18721	0.00033
0	-1.38895	-2.36142	-0.00049
С	-1.15209	-1.18027	-0.00046
Ν	-2.09227	-0.13360	-0.00005
С	1.48528	-1.13937	-0.00006
С	1.70917	-2.52344	-0.00021
С	2.98925	-3.02794	-0.00008
С	4.07867	-2.15805	0.00032
С	3.88856	-0.79232	0.00047
С	2.59815	-0.26633	0.00023
Η	0.84711	-3.17742	-0.00043
Η	3.14979	-4.09908	-0.00022
Η	5.08797	-2.55230	0.00048
Η	4.74644	-0.13372	0.00088
С	-3.57528	-0.22414	0.00007
С	-4.05660	-1.66978	0.00003
С	-4.10275	0.46330	-1.25802
С	-4.10253	0.46314	1.25835
Η	-3.72616	-2.21651	-0.88141
Η	-5.14843	-1.64030	0.00020
Н	-3.72591	-2.21662	0.88132
Н	-3.71888	-0.03519	2.15151
Н	-3.82036	1.51406	1.28896
Н	-5.19228	0.39604	1.27443
Н	-3.82059	1.51423	-1.28852
Н	-5.19250	0.39621	-1.27393
Н	-3.71924	-0.03489	-2.15132
Η	3.10256	4.29151	-0.00085
Н	4.35907	1.92181	-0.00033

Auxiliary Material: Carbonate Ion

SCF energy:	-263.871431 hartree
Zero-point correction:	+0.013981 hartree
Enthalpy correction:	+0.018107 hartree
Free energy correction:	-0.011565 hartree
Truhlar's Delta G correction:	-0.011565 hartree
Grimme's Delta G correction:	-0.011565 hartree

Cartesian Coordinates

0	0.47615	-1.20828	0.00000
С	0.00000	0.00020	-0.00000
0	0.80849	1.01649	-0.00000
0	-1.28463	0.19163	0.00000

Auxiliary Material: Hydrogen Carbonate Ion

SCF energy:	-264.403717 hartree
Zero-point correction:	+0.026624 hartree
Enthalpy correction:	+0.031063 hartree
Free energy correction:	+0.000886 hartree
Truhlar's Delta G correction:	+0.000886 hartree
Grimme's Delta G correction:	+0.000885 hartree

Cartesian Coordinates

0	1.22350	0.40229	0.00000
С	-0.00000	0.16761	0.00000
0	-0.98471	0.90413	-0.00000
0	-0.31002	-1.22981	-0.00000
Н	0.56986	-1.61857	-0.00000

Auxiliary Material: Water

SCF energy:	-76.396408 hartree
Zero-point correction:	+0.021501 hartree
Enthalpy correction:	+0.025280 hartree
Free energy correction:	+0.003866 hartree
Truhlar's Delta G correction:	+0.003866 hartree
Grimme's Delta G correction:	+0.003866 hartree

Cartesian Coordinates

0	0.00000	0.00000	0.11670
Η	0.00000	0.76161	-0.46679
Η	-0.00000	-0.76161	-0.46679

Auxiliary Material: Bromide Ion

SCF energy:	-2573.653732 hartree
Zero-point correction:	+0.000000 hartree
Enthalpy correction:	+0.002360 hartree
Free energy correction:	-0.016176 hartree
Truhlar's Delta G correction:	-0.016176 hartree
Grimme's Delta G correction:	–0.016176 hartree

Cartesian Coordinates

Br 0.00000 0.00000 0.00000

4. Copies of NMR Spectra

1H-NMR (300 MHz) of 1a in CDCl₃

S28

¹³C-NMR (300 MHz) of **1***a* in CDCl₃

HRMS of 2a (C₂₄H₂₁⁸¹BrN₂O₂ [M+H]⁺ = 451.0866)

1H-NMR (300 MHz) of **2a** in CDCl₃

¹³C-NMR (75 MHz) of **2***a* in CDCl₃

HRMS of **2b** ($C_{22}H_{19}BrN_2O_2[M+H]^+ = 423.0710$)

1H-NMR (300 MHz) of 2b in DMSO- d_6

¹³C-NMR (75 MHz) of 2b in DMSO- d_6

HRMS of 2c (C₂₂H₁₉BrN₂O₂ [M+H]⁺ = 423.0710)

¹H-NMR (300 MHz) of 2c in CDCl₃

S37

S38

HRMS of **2***d* $C_{26}H_{27}^{81}BrN_2O_2 [M+H]^+ = 481.1309$)

¹H-NMR (400 MHz) of 2d in CDCl₃

¹³C-NMR (100 MHz) of **2***d* in CDCl₃

HRMS of 2e (C₂₄H₁₅BrN₂O₂ [M+H]⁺ = 443.0397)

¹H-NMR (300 MHz) of 2e in CDCl₃

¹³C-NMR (75 MHz) of **2***e* in CDCl₃

¹H-NMR (300 MHz) of 2f in CDCl₃

¹³C-NMR (75 MHz) of **2***f* in CDCl₃

¹H-NMR (300 MHz) of **2g** in CDCl₃

¹³C-NMR (75 MHz) of 2g in CDCl₃

HRMS of **2***h* ($C_{20}H_{19}BrN_2O_2 [M+H]^+ = 399.0710$)

¹H-NMR (300 MHz) of 2h in DMSO- d_6

¹³C-NMR (75 MHz) of 2h in DMSO- d_6

HRMS of 2i (C₁₈H₁₇⁸¹BrN₂O₂ [M+H]⁺ = 375.0526)

¹H-NMR (300 MHz) of **2i** in CDCl₃

¹³C-NMR (75 MHz) of **2***i* in CDCl₃

HRMS of 2j (C₁₈H₁₇BrN₂O₂ [M+H]⁺ = 373.0553)

¹H-NMR (300 MHz) of **2***j* in CDCl₃

¹³C-NMR (75 MHz) of **2***j* in CDCl₃

HRMS of **3***a* ($C_{24}H_{20}N_2O_2 [M+H]^+ = 369.1605$)

¹H-NMR (300 MHz) of **3***a* in CDCl₃

¹³C-NMR (75 MHz) of **3***a* in CDCl₃

HRMS of **3b** ($C_{22}H_{18}N_2O_2 [M+H]^+ = 343.1448$)

¹H-NMR (300 MHz) of **3**b in DMSO- d_6

 $^{13}\text{C-NMR}$ (75 MHz) of $\pmb{3b}$ in DMSO- d_6

¹H-NMR (300 MHz) of 3c in CDCl₃

¹³C-NMR (75 MHz) of 3c in DMSO- d_6

¹H-NMR (300 MHz) of **3***d* in CDCl₃

¹³C-NMR (75 MHz) of **3***d* in CDCl₃

HRMS of 3e (C₂₆H₂₆N₂O₂ [M+H]⁺ = 399.2074)

¹H-NMR (400 MHz) of 3e in DMSO- d_6

¹³C-NMR (100 MHz) of 3e in DMSO- d_6

HRMS of **3**f (C₂₄H₁₄N₂O₂ [M+H]⁺ = 363.1135)

¹H-NMR (300 MHz) of 3f in CDCl₃

¹³C-NMR (75 MHz) of **3***f* in CDCl₃

¹H-NMR (300 MHz) of 3g in CDCl₃

¹³C-NMR (75 MHz) of 3g in CDCl₃

¹H-NMR (300 MHz) of **3***h* in CDCl₃

¹³C-NMR (75 MHz) of **3***h* in CDCl₃

¹H-NMR (300 MHz) of **3i** in CDCl₃

¹³C-NMR (75 MHz) of **3***i* in CDCl₃

¹H-NMR (300 MHz) of *3j* in CDCl₃

¹³C-NMR (75 MHz) of *3j* in CDCl₃

HRMS of 3k (C₂₀H₁₈N₂O₂ [M+H]⁺ = 319.1448)

¹H-NMR (300 MHz) of 3k in CDCl₃

¹³C-NMR (75 MHz) of **3***k* in CDCl₃

HRMS of **3**l (C₁₈H₁₆N₂O₂ [M+H]⁺ = 393.1292)

¹H-NMR (300 MHz) of **3***l* in CDCl₃

¹³C-NMR (75 MHz) of **3***l* in CDCl₃

HRMS of 3m (C₁₈H₁₆N₂O₂ [M+H]⁺ = 293.1292)

¹H-NMR (300 MHz) of 3m in CDCl₃

¹³C-NMR (75 MHz) of **3***m* in CDCl₃

5. References

- 1. M. Shiri, M. M. Heravi, V. Zadsirjan, M. Ghiasi, S. A. Shintre, N. A. Koorbanally and T. Singh, J. Iran. Chem. Soc., 2019, 16, 1517– 1526.
- 2. Bruker (2012). Apex2, SADABS (2016/2) and SAINT (Version 8.38A, Bruker 2016). Bruker AXS Inc., Madison, Wisconsin, USA.
- 3. Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination. Acta. Cryst. 2015, A71, 3-8
- 4. E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. W. Kaus, D.
- S. Cerutti, G. Krilov, W. L. Jorgensen, R. Abel and R. A. Friesner, J. Chem. Theory Comput., 2016, 12, 281-296.
- 5. MacroModel, version 9.9; Schrödinger, LCC: New York, 2011.
- 6. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 7. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- 8. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.
- 9. S. Grimme, Chem. Eur. J., 2012, 18, 9955–9964.
- 10. R. F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2011, 115, 14556–14562.
- 11. S. Kozuch, D. Gruzman and J. M. L. Martin, J. Phys. Chem. C, 2010, 114, 20801–20808.
- 12. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.
- 13. Gaussian 16, Revision C.01. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani,
- V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H.
- P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T.
- Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
- Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F.

Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Journal, 2016.

14. (a) F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73–78; (b) F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8, e1327.