Spirocyclization and Michael addition of 3-benzylidene succinimides: Route to spirocyclopentapyrrolidine-tetraones and benzylidene N-arylpyrrolidine-diones

Pooja Dahiya, Anoop Yadav and Rama Krishna Peddinti*
Department of Chemistry, Indian Institute of Technology Roorkee
Roorkee-247 667, Uttarakhand, India

SUPPORTING INFORMATION

Table of contents

General information S2
NMR studies of compounds $\mathbf{3 c}$, 50 S2-S9
General procedures S9-S10
General procedure for the synthesis of 1a-1d S9-S10
General procedure for the synthesis of $\mathbf{2 a}-\mathbf{2 f}$ S10
General procedure for the synthesis of $\mathbf{4 a}-\mathbf{4 d}$ S10
Characterization data of $\mathbf{3 a}-\mathbf{3 r}$ and $\mathbf{5 a - 5 r}$ S10-S26
Copies of NMR spectra of $\mathbf{3 a}-\mathbf{3 r}$ and $\mathbf{5 a - 5 r}$ S27-S68
${ }^{1} \mathrm{H}$ NMR data table for characteristic protons of $\mathbf{3 a}-\mathbf{3 r}$ S69
${ }^{1} \mathrm{H}$ NMR data table for characteristic protons of $\mathbf{5 a - 5 r}$ S69
The ORTEP plot and crystallographic data for compound 31 S70
The ORTEP plot and crystallographic data for compound $5 \mathbf{5}$ S71

General information:

Unless otherwise noted, chemicals were purchased from commercial suppliers at the highest purity grade available and were used without further purification. The 2-hydroxy-2-(2-oxo-2-phenylethyl)-1H-indene$1,3(2 H)$-diones $\mathbf{1 a}-\mathbf{1 d}$ and 3-benzylidene succinimides $\mathbf{2 a}-\mathbf{2 f}$ and (E)-4-benzylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-ones 4a-4d were synthesized by literature methods. Thin layer chromatography was performed on pre-coated 0.25 mm silica gel plates $\left(60 \mathrm{~F}_{254}\right)$ using UV light as visualizing agent. Silica gel (100-200 mesh) was used for column chromatography. NMR spectra were recorded in CDCl_{3} and using TMS as an internal standard on 500 MHz instrument. Chemical shifts (δ) were reported as parts per million (ppm) in δ scale downfield from TMS. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$ spectra were referenced to CDCl_{3} (77.0 ppm, the middle peak). Coupling constants were expressed in Hz . The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=\operatorname{triplet}, \mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet. High-resolution mass spectra (HRMS) were obtained on a Xevo XS QTOF mass spectrometer (ESI-MS).

NMR studies of compounds 3 c and 5o:

The structures of spiro compounds $\mathbf{3 a - 3 p}$ were established by NMR and HRMS spectral analysis. Further to gain a deeper understanding, the structure of the product $\mathbf{3 c}$ was corroborated by 2 D NMR such as COSY, NOESY, HMBC, HSQC. From 2D experiments, the stereochemical correlation between H_{a}, H_{b}, H_{c} and H_{d} was established. In $\mathbf{3 c}, \mathrm{H}_{\mathrm{a}}$ and H_{c} protons appear as doublets at 4.77 and 4.58 ppm while H_{b} and H_{d} appear as doublet of doublet at 3.96 and 4.56 ppm , respectively. We performed the 2D NMR experiments to know the spatial correlation between protons $H_{a}, H_{b}, H_{c}, H_{d}$ from which we found that H_{a} and H_{b} are in same plane and H_{c} and H_{d} is in opposite plane w.r.t. $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$ protons.

Figure S1: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3 c}$

Figure S2: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of $\mathbf{3 c}$

Figure S3: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of 3c

$$
\mathrm{fl}(\mathrm{ppm})
$$

Figure S4: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of $\mathbf{3 c}$

The COSY experiment of $\mathbf{3 c}$ revealed that proton H_{b} at 3.96 ppm is correlated with protons $\mathrm{H}_{\mathrm{d}}, \mathrm{H}_{\mathrm{a}}$ at 4.56 and 4.77 , respectively, while the proton H_{d} at 4.54 ppm is showing correlation with protons $\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{a}}$ at 3.96, 4.58 and 4.77 ppm , respectively.

The HSQC experiment of $\mathbf{3 c}$ revealed connectivity between proton H_{a} at 4.77 ppm and carbon C_{a} having chemical shift at 56.6 ppm . Similarly, it disclosed that the proton H_{b} at 3.96 ppm is directly bonded to carbon C_{b} at 56.9 ppm and the proton H_{c} at 4.58 ppm is connected directly to carbon C_{c} having chemical shift at 46.8 ppm while the proton H_{d} at 4.56 ppm is directly bonded to carbon C_{d} of chemical shift 48.4 ppm .

NOESY experiment of $\mathbf{3 c}$ revealed that H_{a} at 4.77 ppm is connected weakly with H_{b} at 3.96 ppm while the H_{c} at 4.58 ppm is connected very weakly with H_{d} at 4.56 ppm . The HMBC experiment revealed the correlation between H_{a} at 4.77 ppm with four carbonyl groups at 176.7, 174.6 and 195.2, 199.6 ppm and numerous carbon centres that exist nearby. Thus, the H_{b} at 3.96 ppm shows correlation with four carbonyl groups at 176.7, 174.6 and $195.2,199.6 \mathrm{ppm}$, the H_{c} at 4.58 ppm shows correlation with three carbonyl groups at $174.6,176.7,195.2 \mathrm{ppm}$ while the H_{d} at 4.56 ppm shows correlation with three carbonyl groups at $174.6,176.7$ and 195.2 ppm .

We also performed two-dimensional experiments for $\mathbf{5 0}$. HSQC spectrum of $\mathbf{5 0}$ showed connectivity between the proton H_{a} at 4.73 ppm to the carbon C_{a} bound directly to it at 49.3 ppm and correlation between H_{b} at 4.64 ppm and C_{b} at 43.4 ppm . The HMBC spectral studies of $\mathbf{5 o}$ showed the correlation of H_{a} having resonance at 4.73 ppm with two carbonyls $\mathrm{C}_{\mathrm{a}}{ }^{\prime}$ and $\mathrm{C}_{\mathrm{b}}{ }^{\prime}$ resonating at 179.9 and 168.4 ppm . The NOESY spectrum of $\mathbf{5 0}$ indicated that H_{a} and H_{b} are on opposite side i.e., trans as H_{a} proton showing its correlation with OH proton and H_{b} proton is showing its correlation with H_{c} proton. This confirmed that both H_{a} and H_{b} protons are in opposite direction.

Figure S5: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{5 0}$

Figure S6: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of 50

50

Figure S7: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of $\mathbf{5 o}$

Figure S8: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of $\mathbf{5 0}$

General procedures:

General procedure for the synthesis of indanediones 1a-1d:
Ninhydrin (10 mmol), acetophenone (10 mmol) were dissolved in 20 mL glacial acetic acid in a 100 mL RB flask, and the reaction mixture was refluxed for 1 hour. After completion of the reaction, as checked by

TLC, the contents were diluted with EtOAc and washed with brine solution. The organic layer was collected, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by evaporation. The crude material was purified by column chromatography on silica gel ($25 \% \mathrm{EtOAc} /$ hexanes) to obtain pure indanedione 1.

Synthesis of benzylidene succinimides 2a-2f:

A solution of an N-arylmaleimide (10 mmol) and triphenylphosphine (10 mmol) in ethanol (60 mL) was stirred at room temperature for 30 min . To the reaction mixture was added an aromatic aldehyde (10 mmol), and the reaction mixture was kept on stirring at room temperature for overnight, and the solid product was isolated by filtration and dried under vacuum.

General procedure for the synthesis of arylidene pyrazolidinones 4a-4d:

Arylaldehyde (10 mmol), pyrazolone (10 mmol) and $\mathrm{MgO}(0.20 \mathrm{~g}, 5 \mathrm{mmol})$ were dissolved in 80 mL of acetonitrile in a 150 mL RB and the contents were stirred at reflux temperature. After completion of the reaction, as checked by TLC, the reaction mixture was concentrated and the residue was dissolved in ethyl acetate and washed with brine solution. The organic layer was collected, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting crude mixture was subjected to column chromatography on silica gel ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to obtain pure arylidene pyrazolidinones 4.

Characterization data:

(3aS,4S,6S,6aR)-4-Benzoyl-2,6-diphenyl-3a,4,6,6a-tetrahydro-1 H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3a)

Yield: 106 mg (81%) as white solid; $\mathrm{mp}: 229-231^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.74(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=12.8,7.5,2 \mathrm{H}), 7.59-7.52(\mathrm{~m}$,
$2 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{ddd}, J=12.8,7.3,1.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}$, $2 \mathrm{H}), 7.04$ (ddd, $J=8.3,7.6,3.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.84\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.66-4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.55(\mathrm{dd}, J$ $\left.=11.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 3.99\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 199.64,199.62$, $196.8,176.7,174.7,142.3,141.4,136.1,135.9,135.4,133.5,132.5,131.7,130.2,129.24,129.23,128.82$, $128.81,128.7,128.6,128.55,128.50,128.4,128.2,126.51,126.50,126.49,122.9,122.8,70.0,57.0,56.7$, 48.4, 46.6 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]{ }^{+}: 526.1649$; found: 526.1657.
(3aS,4S,6S,6aR)-4-Benzoyl-6-(4-methoxyphenyl)-2-phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclo-penta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3b)

Yield: $106 \mathrm{mg}(76 \%)$ as white solid; $\mathrm{mp}: 195-197{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.59$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.29(\mathrm{~s}$, $1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.83\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.64(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{c}}\right), 4.51\left(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 3.97\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.64(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz): $\delta 199.7$, 196.7, 176.7, 174.7, 159.3, 142.3, 141.4, 136.0, 135.9, 135.3, 133.3, 129.3, 129.1, 128.7, $128.6,128.4,126.4,124.4,122.9,122.7,113.9,69.9,56.6,56.5,55.0,48.6,46.4 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 556.1755$; found: 556.1756 .

(3aS,4S,6S,6aR)-4-(4-Fluorobenzoyl)-2,6-diphenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]-pyrrole-5,2'-indene]-1, $1^{\prime}, 3,3$ '(2H)-tetraone (3c)

Yield: $99 \mathrm{mg}(73 \%)$ as white solid; $\mathrm{mp}: 218-220^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.86(\mathrm{dd}, J=9.2,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-4.87(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=8.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, $7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.81-4.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.58\left(\mathrm{dd}, J=3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.56$ $\left(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 3.99-3.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 199.6,199.5,195.2$,
$176.7,174.6,166.9,164.9,142.3,141.3,136.1,135.5,132.3,132.2,131.8,131.7,131.6,129.2,128.8$, $128.6,128.4,128.25,128.22,126.49,126.47,126.46,123.0,122.9,115.8,115.6,70.0,56.9,56.6,48.4$, 46.7 ppm .
${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -103.58 (1F) ppm.
HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 544.1555$; found: 544.1557 .
(3aS,4S,6S,6aR)-4-(4-Fluorobenzoyl)-6-(4-methoxyphenyl)-2-phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3d)

Yield: $102 \mathrm{mg}(71 \%)$ as white solid; $\mathrm{mp}: 202-204{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{t}, J=$ $7.7,2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.76\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.54\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 452-4.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right)$, $3.93\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.60(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 199.8,199.7,195.2,176.8$, $174.6,166.9,164.9,159.4,142.4,141.4,136.1,135.5,132.3,132.2,131.7,131.7,131.6,129.4,129.25$, $129.23,128.7,126.4,124.3,123.0,122.9,115.8,115.6,114.0,69.9,56.5,56.4,55.1,48.7,46.6 \mathrm{ppm}$.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): - 103.63 (1F) ppm.
HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 574.1660$; found: 574.1668.

(3aS,4S,6S,6aR)-4-(4-Methylbenzoyl)-2,6-diphenyl-3a,4,6,6a-tetrahydro-1H-

 spiro[cyclopenta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3e)Yield: $98 \mathrm{mg}(73 \%)$ as white solid; $\mathrm{mp}: 158-160^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.68(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=1.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.65(\mathrm{~m}, 1 \mathrm{H})$, 7.63 (ddd, $J=7.2,1.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}$, $J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.37$ $(\mathrm{m}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=1.1,1 \mathrm{H}), 7.13(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=2.9,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.62-4.58(\mathrm{~m}$,
$\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.55\left(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 3.98\left(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz): $\delta 199.7$, 199.5, 196.3, 176.7, 174.8, 144.5, 142.4, 141.4, 135.9, 135.3, 133.4, 132.5, 131.7, 129.2, $129.2,129.2,129.19,129.15,129.0,128.7,128.6,128.36,128.30,126.5,126.5,122.9,122.8,69.9,65.9$, $56.8,56.7,48.4,46.7,21.6 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]+: 540.1805$; found: 540.1815.
(3aR,4S,6S,6aS)-4-(4-Methoxyphenyl)-6-(4-methylbenzoyl)-2-phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3f)

Yield: $102 \mathrm{mg}(72 \%)$ as white solid; $\mathrm{mp}: 232-234{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.67(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40$ (dt, $J=3.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{q}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 4 \mathrm{H}), 6.59(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.79\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.58\left(\mathrm{dd}, J=9.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 4.5(\mathrm{dd}, J=11.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ $\left(\mathrm{d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 2.27(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 199.89,199.80$, $196.2,176.7,174.88,174.86,159.3,144.5,142.5,141.4,136.0,135.3,133.4,131.7,129.5,129.4,129.2$, $129.1,129.0,128.7,126.50,124.57,122.98,122.90,114.0,69.9,56.6,56.4,55.1,48.7,46.7,21.6 \mathrm{ppm}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]+: 570.1911$; found: 570.1934 .
(3aS,4S,6S,6aR)-4-(4-Bromobenzoyl)-2,6-diphenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]-pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3g)

Yield: $98 \mathrm{mg}(64 \%)$ as white solid; $\mathrm{mp}: 222-224^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=11.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}$, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{a}}\right), 4.54\left(\mathrm{dd}, J=12.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.17\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 3.93\left(\mathrm{dd}, J=10.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right)$ ppm; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 198.9,198.8,195.5,175.5,173.9,142.6,140.9,138.4,136.7,135.8$, 134.7, 131.7, 131.6, 129.6, 129.2, 129.1, 129.0, 128.9, 128.0, 127.7, 126.9, 123.7, 123.6, 64.1, 63.2, 51.5,
50.8, 50.3 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}:$604.0754; found: 604.0750.
(3aS,4S,6S,6aR)-4-(4-Bromobenzoyl)-6-(4-methoxyphenyl)-2-phenyl-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3h)

Yield: $100 \mathrm{mg}(63 \%)$ as white solid; $\mathrm{mp}: 216-218{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.68(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 3 \mathrm{H}), 7.62(\mathrm{dd}, J=7.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.42(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.75\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right)$, $4.54\left(\mathrm{dd}, J=9.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.48\left(\mathrm{dd}, J=11.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 3.93\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.61$ (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 199.8,199.7,196.1,176.7,174.6,159.4,142.4,141.4,136.3$, $136.2,135.5,134.7,132.2,131.8,131.6,130.3,129.8,129.4,129.2,128.9,128.8,126.5,126.4,126.4$, $126.47,126.45,126.44,126.43,126.42,124.3,124.2,123.0,122.9,114.0,69.9,56.6,56.4,55.1,48.6,46.5$ ppm.

HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}: 656.0679$; found: 656.0685.
(3aS,4S,6S,6aR)-4-benzoyl-2,6-bis(4-methoxyphenyl)-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1, $1^{\prime}, 3,3^{\prime}(2 H)$-tetraone (3i)

Yield: $109 \mathrm{mg}(75 \%)$ as white solid; $\mathrm{mp}: 129-131{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dt}, J=7.5,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=8.5,7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.29-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.98(\mathrm{~m}$, $1 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.56(\mathrm{~m}, 1 \mathrm{H}), 4.79\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.59(\mathrm{dd}, J=$ $\left.9.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.46\left(\mathrm{dd}, J=11.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 3.93\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.61$ $(\mathrm{s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 199.8,196.9,177.0,175.0,159.5,159.3,142.3,141.4,136.08$, $136.04,135.4,133.4,129.47,129.45,129.43,129.40,128.87,128.82,128.7,128.5,128.48,128.44,127.78$, $127.76,127.74,127.71,127.69,127.67,124.4,124.3,122.97,122.8,114.56,114.53,114.51,114.48$, $114.46,114.05,114.03,114.00,113.97,113.95,69.9,56.6,56.5,55.6,55.59,55.56,55.15,55.12,48.6$,
46.4 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 586.1866$; found: 586.1848 .
(3aS,4S,6S,6aR)-4-(4-bromobenzoyl)-2,6-bis(4-methoxyphenyl)-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3j)

Yield: $110 \mathrm{mg}(67 \%)$ as white solid; $\mathrm{mp}: 214-216^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.68(\mathrm{dd}, J=6.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.57$ $(\mathrm{m}, 2 \mathrm{H}), 4.73\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.50\left(\mathrm{dd}, J=9.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.45\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 3.91$ $\left(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 199.8,199.7,196.1$, $176.9,174.8,159.6,159.3,142.4,141.3,136.2,135.5,134.6,131.83,131.81,130.46,130.41,130.3,129.43$, $129.41,129.3,128.91,127.7,124.28,124.22,123.0,122.9,114.57,114.54,114.51,114.0,69.9,56.6,56.4$, 55.6, 55.1, 48.6, 46.5 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{NO}_{7} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 664.0971$; found: 664.0955 .

(3aS,4S,6R,6aR)-4-Benzoyl-6-(furan-2-yl)-2-(p-tolyl)-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]-pyrrole-5,2'-indene]-1, $\mathbf{1}^{\prime}, 3,3^{\prime}(2 H)$-tetraone (3 k)

Yield: 104 mg (79%) as white solid; mp : $225-227^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (dd, $J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=7.4,4.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=10.5,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.25-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 6.90(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ $\left(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.58\left(\mathrm{dd}, J=9.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.36\left(\mathrm{dd}, J=11.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 4.10(\mathrm{~d}, J=$ $\left.11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 198.7,198.6,196.4,176.3,174.6,148.0$, $142.5,141.9,141.4,138.9,136.0,135.9,135.4,133.5,129.93,129.92,129.90,128.9,128.8,128.5,126.31$, $126.30,123.2,123.0,110.4,109.3,68.2,56.2,49.6,48.2,46.7,21.3 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 530.1598$; found: 530.1614 .
(3aS,4S,6R,6aS)-4-Benzoyl-6-(thiophen-2-yl)-2-(p-tolyl)-3a,4,6,6a-tetrahydro-1H-spiro[cyclo-penta[c]pyrrole-5,2'-indene]-1, $\mathbf{1}^{\prime}, 3,3^{\prime}(2 H)$-tetraone (31)

Yield: $110 \mathrm{mg}(81 \%)$ as white solid; mp : $275-277^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.73-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ $(\mathrm{m}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=4.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.86(\mathrm{~m}, 1 \mathrm{H})$, $6.68(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.77\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.58\left(\mathrm{dd}, J=9.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.41(\mathrm{dd}, J$ $\left.=11.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 4.27\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ 199.29, 199.26, 196.4, 176.40, 174.44, 142.5, 141.6, 138.8, 136.1, 136.0, 135.5, 135.3, 133.6, 129.8, 129.0, $128.82,128.81,128.5,127.4,126.9,126.29,126.28,126.27,125.4,123.1,123.0,69.6,56.4,51.8,50.5$, 46.6, 21.3 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 546.1370 ; found: 546.1378.
(3aS,4S,6R,6aR)-4-(4-Fluorobenzoyl)-6-(furan-2-yl)-2-(p-tolyl)-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta $[c]$ pyrrole-5, 2^{\prime}-indene $]-1,1^{\prime}, 3,3^{\prime}(2 H)$-tetraone (3 m)

Yield: $103 \mathrm{mg}(75 \%)$ as white solid; mp : 200-202 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.82-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.7,7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=2.6,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.54-4.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.37(\mathrm{dd}, J=$ $\left.11.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 4.08\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 198.7$, $198.6,194.88,194.86,176.4,174.5,167.0,165.0,147.8,142.5,141.9,141.3,139.0,136.1,135.6,131.8$, 131.7, 129.97, 129.96, 128.8, 126.2, 123.2, 123.0, 115.8, 115.6, 110.5, 109.4, 68.2, 56.0, 49.5, 48.2, 46.8, 21.3 ppm .
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): - 103.40 (1F) ppm.
HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 548.1504$; found: 548.1529.
(3aS,4S,6R,6aS)-4-(4-Fluorobenzoyl)-6-(thiophen-2-yl)-2-(p-tolyl)-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3n)

Yield: $110 \mathrm{mg}(78 \%)$ as white solid; mp : 208-210 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.81(\mathrm{dd}, J=8.5,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.69(\mathrm{~m}, 1 \mathrm{H}), 4.75\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.53(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.47-4.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 4.27\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right):$ $\delta 199.29,199.26,194.9,176.4,174.3,142.5,141.5,138.9,136.3,135.6,135.2,131.8,131.7,129.9,128.9$, $127.4,126.9,126.3,126.2,125.4,123.17,123.13,115.8,115.6,69.6,56.3,51.7,50.5,46.7,21.3 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{NFO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 564.1275$; found: 564.1282.
(3aR,4R,6S,6aS)-4-(Furan-2-yl)-6-(4-methylbenzoyl)-2-(p-tolyl)-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (30)

Yield: $110 \mathrm{mg}(81 \%)$ as white solid; $\mathrm{mp}: 247-249{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 7.78-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{dt}, J=7.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (dd, $J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.4,0.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dt}, J=3.3,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.07(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.54\left(\mathrm{dd}, J=9.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.37$ $\left(\mathrm{dd}, J=11.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 4.09\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 198.8,198.7,195.8,176.3,174.7,148.1,144.7,142.4,142.0,141.3,138.9,135.9,135.3$, $133.3,129.9,129.2,129.0,128.9,126.31,126.30,126.29,126.28,123.2,123.0,110.5,109.2,68.1,56.1$, 49.4, 48.3, 46.9, 21.6, 21.3 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 544.1755$; found: 544.1757.
(3aS,4S,6R,6aS)-4-(4-Methylbenzoyl)-6-(thiophen-2-yl)-2-(p-tolyl)-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3p)

Yield: $116 \mathrm{mg}(82 \%)$ as white solid; $\mathrm{mp}: 245-247{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=8.5,0.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 1 \mathrm{H})$, $6.70(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz} 1 \mathrm{H}), 4.76\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.55\left(\mathrm{dd}, J=9.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.44(\mathrm{dd}, J=$ $\left.11.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 4.09\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta 199.3,199.2,195.8,176.3,174.5,144.7,142.6,141.6,138.8,136.2,136.1,135.48,135.41,133.3$, $129.9,129.89,129.86,129.5,129.2,129.0,128.9,128.5,127.3,126.9,126.2,125.3,124.2,123.1,123.0$, $69.6,56.3,51.6,50.5,46.7,21.6,21.3 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 560.1526$; found: 560.1530 .
(3aS,4S,6R,6aR)-4-(4-Bromobenzoyl)-6-(furan-2-yl)-2-(p-tolyl)-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1, 1',3,3'(2H)-tetraone (3q)

Yield: $110 \mathrm{mg}(73 \%)$ as white solid; $\mathrm{mp}: 233-235^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 7.78(\mathrm{dd}, J=8.5,0.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.29-$ $7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1,2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3,2 \mathrm{H}), 6.90(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.50\left(\mathrm{dd}, J=9.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.35$ $\left(\mathrm{dd}, J=11.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 4.06\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta 198.6,195.7,176.3,174.4,147.7,142.5,141.9,141.3,139.0,136.1,135.5,134.6,131.8,130.3,129.9$, $129.0,128.8,126.27,126.26,123.3,123.0,110.5,109.4,68.2,56.1,49.5,48.2,46.7,21.3 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 608.0703$; found: 608.0705.
(3aS,4S,6R,6aS)-4-(4-Bromobenzoyl)-6-(thiophen-2-yl)-2-(p-tolyl)-3a,4,6,6a-tetrahydro-1H-spiro[cyclopenta[c]pyrrole-5,2'-indene]-1,1',3,3'(2H)-tetraone (3r)

Yield: $118 \mathrm{mg}(76 \%)$ as white solid; $\mathrm{mp}: 156-158^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 7.97(\mathrm{dd}, J=6.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.79$ (m, 1H), 7.74-7.71 (m, 2H), $7.33(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.27(\mathrm{t}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.23$
$(\mathrm{d}, J=2.0,1 \mathrm{H}), 7.21(\mathrm{~d}, J=1.8,1 \mathrm{H}), 7.13(\mathrm{dd}, J=5.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=5.1$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92\left(\mathrm{dd}, J=11.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.72\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.16(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$, H_{d}), 3.93-3.89 (m, 1H, Hb), $2.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 198.6,198.4,195.0,175.1$, $173.9,142.4,141.7,141.0,139.0,136.7,135.9,134.8,131.8,129.9,129.6,129.3,129.0,127.5,126.76$, $126.71,124.7,123.7,123.6,64.7,63.3,52.0,49.8,46.0,21.3 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{SNO}_{5} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$: 624.0475; found: 624.0388.
(Z)-3-Benzylidene-4-((3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)(phenyl)methyl)-1-phenylpyrrolidine-2,5-dione (5a)

Yield: $107 \mathrm{mg}(82 \%)$ as white solid; $\mathrm{mp}: 110-112^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.98(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-$ $7.65(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{dd}, J=6.5,2.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.62-6.59(\mathrm{~m}, 2 \mathrm{H}), 4.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 1.74(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta 180.0,168.9,150.5,147.4,139.1,138.1,137.1,132.7,131.27,130.7,129.6,129.2,129.1,128.7,128.6$, $128.5,127.8,127.2,126.3,125.6,121.8,115.0,98.7,77.2,76.7,49.0,41.8,12.6 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 548.1945$; found: 548.1952.
(Z)-3-Benzylidene-4-((2-methoxyphenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)-1-phenylpyrrolidine-2,5-dione (5b)

Yield: $108 \mathrm{mg}(78 \%)$ as white solid; $\mathrm{mp}: 104-106^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=6.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.71(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.63(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 180.3,169.3,156.6,150.7,147.2$, $139.2,134.8,133.4,131.3,130.9,130.6,130.5,129.4,129.1,129.0,128.8,127.9,126.4,126.3,125.6$, $121.7,120.8,110.0,100.1,54.8,49.5,35.0,12.5 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 556.2231$; found: 556.2257.

(Z)-3-(4-Methoxybenzylidene)-4-((2-methoxyphenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)-1-phenylpyrrolidine-2,5-dione (5c)

Yield: $112 \mathrm{mg}(77 \%)$ as white solid; $\mathrm{mp}: 195-197^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.64$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 180.5,169.5$, $161.6,156.7,150.9,147.4,139.1,134.7,132.6,131.3,131.0,129.1,128.9,128.8,128.7,126.5,126.4$, $126.0,125.7,124.8,121.7,120.8,119.0,115.0,114.3,110.0,100.2,55.6,54.9,49.4,34.5,12.6 \mathrm{ppm}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 608.2156$; found: 608.2162.

(Z)-3-(2,6-Dimethoxybenzylidene)-1-(3,5-dimethylphenyl)-4-((2-methoxyphenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)pyrrolidine-2,5-dione (5d)

Yield: 111 mg (69\%) as white solid; $\mathrm{mp}: 210-212{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.13(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (t, J=7.9 Hz, 2H), 7.25-7.20 (m, 2H), 7.15-7.12 (m, 1H), 7.05 (d, J=2.7 Hz, 1H), 7.00 (dd, J=9.0, 2.9 $\mathrm{Hz}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}$, H_{a}), $4.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 180.6,169.4,156.8,153.6,152.9,150.5,147.3,139.2,138.9,131.4,130.8,130.2,128.8$, $128.5,128.1,126.7,125.6,124.1,122.8,121.8,120.6,118.4,113.7,112.6,110.0,100.6,55.8,55.5,54.7$, 49.6, 34.9, 21.1, 12.2 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 666.2575$; found: 666.2576.
(Z)-3-(4-Methoxybenzylidene)-4-((3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)(phenyl)methyl)-1-phenylpyrrolidine-2,5-dione (5e)

Yield: $111 \mathrm{mg}(80 \%)$ as white solid; $\mathrm{mp}: 178-180^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.93-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=6.3,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{dd}, J=6.3,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 180.1,169.2,162.1,150.6,147.5,139.1,138.2,136.7,133.0,132.2$, $130.8,129.1,128.8,128.6,128.6,127.8,126.5,126.3,125.7,125.3,123.9,121.7,115.2,114.7,98.8,55.6$, 49.0, 41.5, 12.8 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 556.2231$; found: 556.2031.
(Z)-3-((2,5-Dimethoxyphenyl) (3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)-4-(4-methoxybenzylidene)-1-phenylpyrrolidine-2,5-dione (5f)

Yield: $125 \mathrm{mg}(81 \%)$ as white solid; $\mathrm{mp}: 188-190{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{td}, J=4.8,2.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.72$ (qd, $J=8.7,5.6 \mathrm{~Hz}, 6 \mathrm{H}), 5.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 180.5,169.5,161.5,153.5,150.8,150.6,147.4,139.1,134.9,132.6$, 131.1, 129.0, 128.9, 128.8, 127.7, 126.4, 126.0, 125.6, 124.5, 121.7, 117.4, 115.0, 113.2, 110.9, 100.0, 55.7, $55.5,55.3,49.3,34.6,12.7 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 638.2262$; found: 638.2265.
(Z)-3-Benzylidene-4-((3-bromophenyl) (3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)-methyl)-1-phenylpyrrolidine-2,5-dione (5g)

Yield: 130 mg (86%) as white solid; $\mathrm{mp}: 126-128^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.64(\mathrm{~d}, J=4.3,2 \mathrm{H})$, $7.53(\mathrm{~d}, J=4.5,2 \mathrm{H}), 7.46(\mathrm{t}, J=7.7,3 \mathrm{H}), 7.40(\mathrm{~d}, J=10.7,4 \mathrm{H}), 7.28(\mathrm{~d}, J=7.1,2 \mathrm{H}), 7.12(\mathrm{t}, J=7.8,1 \mathrm{H})$, $7.04(\mathrm{~d}, J=7.7,1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.4,2 \mathrm{H}), 4.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 1.74(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 179.7,168.6,150.4,147.4,140.6,138.9,137.6,132.5,131.4,131.3,131.1,130.8,130.6$, $130.2,129.7$, 129.3, 128.8, 127.2, 126.5, 126.2, 125.8, 122.8, 121.8, 98.1, 48.7, 41.2, 12.7 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 604.1230$; found: 604.1271.
(Z)-3-(Furan-2-ylmethylene)-4-((3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)(phenyl)-methyl)-1-phenylpyrrolidine-2,5-dione (5h)

Yield: $106 \mathrm{mg}(82 \%)$ as white solid; $\mathrm{mp}: 198-200^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.44$ (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{dd}, J=10.8,5.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=3.1$, $1 \mathrm{H}), 6.61(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.55(\mathrm{~m}, 2 \mathrm{H}), 4.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 1.91(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 180.1,168.7,150.3,149.9,147.6,147.3,139.2,138.3,130.7,129.13,129.10$, $128.8,128.6,128.6,127.7,126.3,125.6,124.4,122.4,121.8,119.3,115.0,114.9,113.4,99.4,77.3,77.0$, $76.8,49.6,43.8,12.8 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 538.1737; found: 538.1740.
(Z)-3-(Furan-2-ylmethylene)-4-((3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)(phenyl)-methyl)-1-(p-tolyl)pyrrolidine-2,5-dione (5i)

Yield: $105 \mathrm{mg}(80 \%)$ as white solid; $\mathrm{mp}: 101-103{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~m}, 1 \mathrm{H})$, $6.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta 180.2,168.8,150.4,150.0,147.6,147.2,139.28,139.21,138.4,129.7,128.7,128.66,128.61$, $128.0,127.7,126.1,125.6,124.5,122.2,121.8,119.2,113.3,99.5,49.6,43.7,21.2,12.8 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 552.1894; found: 552.1899.
(Z)-3-((3-Methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)(phenyl)methyl)-4-(thiophen-2-

ylmethylene)-1-(p-tolyl)pyrrolidine-2,5-dione (5j)

Yield: $117 \mathrm{mg}(86 \%)$ as white solid; $\mathrm{mp}: 117-119^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=7.9,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.61(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{b}}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 179.8,168.8,150.4,147.7$, 139.3, 139.1, $138.2,136.6,134.5,132.8,129.8,129.79$ 129.0, 128.9, 128.8, 128.75, 128.71, 128.3, 128.0, 127.8, 126.2, $126.1,125.6,124.5,121.8,115.0,99.0,48.7,42.6,21.2,13.0 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 546.1846$; found: 546.1694.
(Z)-3-(Furan-2-ylmethylene)-4-((2-methoxyphenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)-1-phenylpyrrolidine-2,5-dione(5k)

Yield: $106 \mathrm{mg}(78 \%)$ as white solid; $\mathrm{mp}: 110-112{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.45$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.59(\mathrm{~m}, 3 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{a}}\right), 4.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.64(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 180.5,169.0,156.7$, $150.6,150.5,147.4,146.6,139.2,131.3,130.9,129.0,128.9,128.8,128.7,126.8,126.3,125.6,125.5$, $121.7,120.8,120.3,119.0,117.8,115.0,113.0,109.9,100.9,54.8,50.0,36.4,12.7 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 568.1843$; found: 568.1849.
(Z)-3-(Furan-2-ylmethylene)-4-((2-methoxyphenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)-1-(p-tolyl)pyrrolidine-2,5-dione (51)

Yield: $116 \mathrm{mg}(83 \%)$ as white solid; $\mathrm{mp}: 102-104{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}$,
$J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=3.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 180.5$, $169.1,156.7,150.6,150.5,147.4,146.4,139.3,139.0,131.3,129.7,128.7,128.6,128.3,126.8,126.1$, $125.7,125.4,121.6,120.8,120.1,117.6,113.0,109.9,100.8,54.8,50.0,36.3,21.1,12.6 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 560.2180$; found: 560.2183.

(Z)-3-((2,5-Dimethoxyphenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)-4-(furan-2-ylmethylene)-1-phenylpyrrolidine-2,5-dione (5m)

Yield: $109 \mathrm{mg}(76 \%)$ as white solid; $\mathrm{mp}: 101-103{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.44$ (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 5 \mathrm{H}), 6.61-6.59(\mathrm{~m}, 1 \mathrm{H}), 5.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}$, 3 H), 1.95 ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 180.5,169.0,153.6,150.8,150.4,147.5,146.6,139.2$, $131.0,129.0,128.9,128.7,127.9,126.3,125.5,125.2,121.7,120.5,117.8,117.3,113.1,113.0,110.8$, $100.7,55.7,55.2,49.9,36.4,12.7 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 598.1949$; found: 598.1952.
(Z)-3-((2,5-Dimethoxyphenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)-4-(furan-2-ylmethylene)-1-(p-tolyl)pyrrolidine-2,5-dione (5n)

Yield: $106 \mathrm{mg}(72 \%)$ as white solid; $\mathrm{mp}: 102-104{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.61-6.56(\mathrm{~m}, 3 \mathrm{H}), 5.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H})$,
 $139.2,139.1,129.7,128.7,128.3,127.9,126.1,125.5,125.3,121.8,120.4,117.7,117.3,113.1,113.0$, $110.8,100.7,55.7,55.2,49.9,36.3,21.2,12.7$ ppm.

HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 590.2286$; found: 590.2114.
(Z)-3-((3-Bromophenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)-4-(furan-2-ylmethylene)-1-phenylpyrrolidine-2,5-dione (50)

Yield: $123 \mathrm{mg}(83 \%)$ as white solid; $\mathrm{mp}: 168-170{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (s, 1H), $7.46(\mathrm{t}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=7.6,1.7,2 \mathrm{H}), 6.66(\mathrm{dd}, J=3.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.64\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 1.91(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 179.9,168.4,150.2,149.8$, $147.49,147.45,140.8,139.0,131.3,130.9,130.6,130.2,129.2,128.8,127.3,126.1,125.7,123.7,122.8$, $122.7,121.8,119.7,114.9,113.5,98.7,49.3,43.4,12.9 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}: 616.0842$; found: 616.0846.

(Z)-3-((3-Bromophenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)-4-(furan-2-ylmethylene)-1-(p-tolyl)pyrrolidine-2,5-dione (5p)

Yield: $120 \mathrm{mg}(79 \%)$ as white solid; $\mathrm{mp}: 116-118{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ $(\mathrm{s}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}$, $1 \mathrm{H}), 7.03(\mathrm{dd}, J=9.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.64\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ $180.1,168.6,150.4,149.9,147.6,147.4,141.0,139.4,139.1,131.4,131.0,130.3,129.9,128.94,128.93$, $128.9,128.8,128.1,127.4,126.0,125.8,123.9,122.9,122.6,121.9,119.7,113.5,98.9,49.4,43.4,21.3$, 13.0 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}:$608.1179; found: 608.0943.
(Z)-3-((3-Bromophenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)-4-(thiophen-2-ylmethylene)-1-(p-tolyl)pyrrolidine-2,5-dione (5q)

Yield: 133 mg (85%) as white solid; $\mathrm{mp}: 138-140{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.31-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.66\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta 179.6,168.6,150.4,147.7,140.8,139.5,139.1,136.5,134.8,133.1,131.6,131.2,130.3,129.9$, $129.5,129.1,128.94,128.93,128.91,128.8,128.0,127.5,126.0,125.8,123.9,122.9,121.9,98.4,48.5$, 42.3, 21.3, 13.1 ppm .

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 624.0951$; found: 624.0746.

(Z)-3-(Furan-2-ylmethylene)-4-((3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)(thiophen-2-yl)methyl)-1-(p-tolyl)pyrrolidine-2,5-dione (5r)

Yield: $87 \mathrm{mg}(65 \%)$ as white solid; $\mathrm{mp}: 120-122{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 11.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.44$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{a}}\right), 4.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 180.0,168.8,149.99$, 149.96, 147.4, 147.2, 141.6, 139.3, 139.1, 129.8, 128.7, 128.3, 127.1, 126.5, 126.1, 125.6, 124.8, 124.2, $122.6,121.8,119.4,113.4,99.8,49.7,39.0,21.2,12.7 \mathrm{ppm}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{SN}_{3} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 558.1458$; found: 558.1464.

3a

3a

3g

3m

5h

Table S1: ${ }^{1} \mathrm{H}$ NMR data table for characteristic protons of $\mathbf{3 a - 3 r}$

Compound	$\mathrm{Ha}_{\text {a }}$	$\mathbf{H}_{\text {b }}$	H_{c}	$\mathrm{H}_{\text {d }}$
3a	4.84	3.99	4.65	4.55
3b	4.83	3.97	4.64	4.51
3c	4.81-4.78	3.99-3.95	4.58	4.56
3d	4.76	3.60	4.54	4.52-4.40
3 e	4.82	3.98	4.62-4.58	4.55
3 f	4.79	3.95	4.58	4.50
3g	4.75	3.93	4.54	4.17
3h	4.75	3.93	4.54	4.48
3 i	4.79	3.93	4.59	4.46
3j	4.73	3.91	4.50	4.45
3k	4.76	4.10	4.58	4.36
31	4.77	4.27	4.58	4.41
3m	4.72	4.08	4.54-4.50	4.37
3n	4.75	4.27	4.53	4.47-4.42
30	4.74	4.09	4.54	4.37
3p	4.76	4.09	4.55	4.44
3q	4.69	4.06	4.50	4.35
3r	4.92	3.93-3.89	4.72	4.16

Table S2: ${ }^{1} \mathrm{H}$ NMR data table for characteristic protons of $\mathbf{5 a - 5 r}$

Compound	$\mathbf{H}_{\mathbf{a}}$	$\mathbf{H}_{\mathbf{b}}$	$\mathbf{O H}$
$\mathbf{5 a}$	4.76	4.56	11.68
$\mathbf{5 b}$	5.13	4.71	11.57
$\mathbf{5 c}$	5.19	4.64	11.76
$\mathbf{5 d}$	4.96	4.76	11.53
$\mathbf{5 e}$	4.68	4.60	11.80
$\mathbf{5 f}$	5.17	4.65	11.68
$\mathbf{5 g}$	4.76	4.57	11.65
$\mathbf{5 h}$	4.70	4.67	11.70
$\mathbf{5 i}$	4.70	4.67	11.73
$\mathbf{5 j}$	4.70	4.61	11.66
$\mathbf{5 k}$	5.22	4.69	11.57
$\mathbf{5 l}$	5.22	4.68	11.59
$\mathbf{5 m}$	5.21	4.68	11.53
$\mathbf{5 n}$	5.20	4.67	11.58
$\mathbf{5 o}$	4.73	4.64	11.61
$\mathbf{5 p}$	4.64	4.58	11.64
$\mathbf{5 q}$	4.66	4.61	11.61
$\mathbf{5 r}$	4.88	4.69	11.73

Note: The chemical shift values are in ppm.

Formula	$\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}$
Formula Wt.	544.6010
Crystal color	Colorless
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
$\mathrm{a}(\AA)$	$10.988(2)$
$\mathrm{b}(\AA)$	$11.648(2)$
$\mathrm{c}(\AA)$	$12.588(3)$
$\alpha(\mathrm{deg})$	$114.144(6)$
$\beta(\mathrm{deg})$	$108.931(7)$
$\mathrm{c}(\mathrm{deg})$	$92.315(7)$

Figure S9: ORTEP plot of the crystal structure of $\mathbf{3 1}$

Formula	$\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Br}$
Formula Wt.	594.44
Crystal color	Colorless
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
$\mathrm{a}(\AA)$	$12.80(14)$
$\mathrm{b}(\AA)$	$12.93(15)$
$\mathrm{c}(\AA)$	$18.3(2)$
$\alpha(\mathrm{deg})$	$101.19(14)$
$\beta(\mathrm{deg})$	$94.84(15)$
$\mathrm{c}(\mathrm{deg})$	$107.4(2)$
$V\left(\AA^{3}\right)$	$2802(54)$

Figure S10: ORTEP plot of the crystal structure of $\mathbf{5 0}$

