Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Genome-driven discovery of new serrawettin W2 analogues from *Serratia fonticola* DSM 4576

Haolin Qiu^a, Yang Xiao^a, Ling Shen^a, Tao Han^a, Qiang He^c, Aiying Li^d, Peng Zhang^a and

Xiaofeng Cai^{a,b}

^aSchool of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.

^bState Key Laboratory of Dao-di Herbs, Beijing 100700, P. R. China.

^cXianning Public Inspection Center of Hubei Province, Xianning 437000, P. R. China.

^dHelmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P.R. China.

*Corresponding authors.

E-mail: caixiaofeng@hust.edu.cn

Contents

Table S1 A domain specificity prediction of sefA.	1
Table S2 HRESIMS data of natural and synthetic compounds.	1
Table S3 Bacterial strains used in this study.	1
Table S4 Primers used in this study	1
Table S5 Plasmids used in this study	2
Table S6 ¹ H (400 MHz) and ¹³ C (100 MHz) NMR data for 1 in DMSO- d_6 (δ in ppr	n)2
Table S7 ¹ H (400 MHz) and ¹³ C (100 MHz) NMR data for 2 in DMSO- d_6 (δ in ppr	n)3
Table S8 ¹ H (400 MHz) and ¹³ C (100 MHz) NMR data for 3 in DMSO- d_6 (δ in ppr	n)4
Table S9 ¹ H (400 MHz) and ¹³ C (100 MHz) NMR data for 4 in DMSO- d_6 (δ in ppr	n)5
Fig. S1 Alignment of sefA and other similar BGCs.	6
Fig. S2 Molecular network	7
Fig. S3 ¹ H- ¹ H COSY and key ¹ H- ¹³ C HMBC correlations of compounds 1-4	8
Fig. S4 MS/MS spectra and fragmentation pathways with proposed fragmentation	agment
structures for 1	9
Fig. S5 MS/MS spectra and fragmentation pathways with proposed fragmentation	agment
structures for 2	10
Fig. S6 MS/MS spectra and fragmentation pathways with proposed fragmentation	agment
structures for 3	11
Fig. S7 MS/MS spectra and fragmentation pathways with proposed fragmentation	agment
structures for 4	12
Fig S8 MS/MS spectra of other nodes from the molecular network	14
Fig. S9 Configuration determination of amino acids in 1-4 using the Marfey's m	nethod.
	16
Fig. S10 ¹ H NMR (400 MHz, DMSO- d_6) spectrum of sefopeptides A (1)	17
Fig. S11 ¹³ C NMR (100 MHz, DMSO- d_6) spectrum of sefopeptides A (1)	18
Fig. S12 DEPT-135 (100 MHz, DMSO-d ₆) spectrum of sefopeptides A (1)	19
Fig. S13 HSQC (DMSO- d_6) spectrum of sefopeptides A (1)	20
Fig. S14 1 H- 13 C HMBC (DMSO- d_{6}) spectrum of sefopeptides A (1)	21
Fig. S15 ¹ H- ¹ H COSY (DMSO- <i>d</i> ₆) spectrum of sefopeptides A (1).	22
Fig. S16 ¹ H NMR (400 MHz, DMSO-d ₆) spectrum of sefopeptides B (2)	23
Fig. S17 ¹³ C NMR (100 MHz, DMSO- d_6) spectrum of sefopeptides B (2)	24
Fig. S18 DEPT-135 (100 MHz, DMSO-d ₆) spectrum of sefopeptides B (2)	25
Fig. S19 HSQC (DMSO-d ₆) spectrum of sefopeptides B (2)	26
Fig. S20 ¹ H- ¹³ C HMBC (DMSO- <i>d</i> ₆) spectrum of sefopeptides B (2)	27
Fig. S21 ¹ H- ¹ H COSY (DMSO- <i>d</i> ₆) spectrum of sefopeptides B (2)	28
Fig. S22 ¹ H NMR (400 MHz, DMSO-d ₆) spectrum of sefopeptides C (3)	29
Fig. S23 ¹³ C NMR (100 MHz, DMSO-d ₆) spectrum of sefopeptides C (3)	30
Fig. S24 DEPT-135 (100 MHz, DMSO-d ₆) spectrum of sefopeptides C (3)	31
Fig. S25 HSQC (DMSO-d ₆) spectrum of sefopeptides C (3)	32
Fig. S26 ¹ H- ¹³ C HMBC (DMSO- <i>d</i> ₆) spectrum of sefopeptides C (3)	33
Fig. S27 ¹ H- ¹ H COSY (DMSO- <i>d</i> ₆) spectrum of sefopeptides C (3)	34
Fig. S28 ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) spectrum of sefopeptides D (4)	35

Fig. S29 ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) spectrum of sefopeptides D (4)	36
Fig. S30 DEPT-135 (100 MHz, DMSO- d_6) spectrum of sefopeptides D (4)	37
Fig. S31 HSQC (DMSO- d_6) spectrum of sefopeptides D (4)	
Fig. S32 1 H- 13 C HMBC (DMSO- d_6) spectrum of sefopeptides D (4)	
Fig. S33 1 H- 1 H COSY (DMSO- d_{6}) spectrum of sefopeptides D (4)	40

A	Stachelhaus	most likely aming acid predicted	aming acid detected
domain	sequence	most likely animo acid predicted	
A1	DASTVAAVCK	Туr	Tyr
A2	DAYFLGVTYK	Val	lle
A3	DALFIGCVFK	Leu	Leu
A4	DALFVGGVWK	Val	Phe
A5	DVWHFSLVDK	Ser	Ser

Table S1 A domain specificity prediction of *sefA*.

Table S2 HRESIMS data of natural and synthetic compounds
--

		, ,		
compound	sum formula	calcd. [M + H] ⁺	found [M + H] ⁺	∆ppm
sefopeptide A (1)	$C_{47}H_{71}N_5O_9$	850.5325	850.5326	0.17
sefopeptide B (2)	$C_{45}H_{67}N_5O_9$	822.5012	822.5022	1.27
sefopeptide C (3)	$C_{48}H_{71}N_5O_9$	862.5325	862.5335	1.21
sefopeptide D (4)	$C_{49}H_{73}N_5O_9$	876.5481	876.5470	1.26

Table S3 Bacterial strains used in this study.

	-
strain	genotype
<i>E.coli</i> DH10B	F-mcrA, Δ(mrr-hsdRMS-mcrBC), Φ80lacZΔM15, ΔlacX74, endA1, recA1, deoR, Δ(ara leu)7697, araD139, galU, galK, rpsL, nupG, λ–
E.coli BAP1	BL21(DE3) ΔprpRBCD::T7prom-sfp, T7prom-prpE ¹
Serratia fonticola DSM 4576	wild type

Table S4 Primers used in this study.

primer	sequence (5'-3')	targeting DNA fragment	plasmid
Duet-F	TGCTTAAGTCGAACAGAAA	pCOLA-Duet vector backbone	
Duet-R	GGTATATCTCCTTATTAAAG	(3629 bp)	
	TTTTGTTTAACTTTAATAAGGAGAT		
sef1-F	ATACCATGGCGAATAATATGGAAA	fragment of <i>sefA</i> from	
	GAAT	Serratia fonticola DSM4576 (9678	
sef1-R	GGCGACAGAATGATGCTCAA	bp)	pHL1
sef2-F	CTAAAGGGGTGATGATTGAGC	fragment of <i>sefA</i> from	
sef2-R	AATACGATTACTTTCTGTTCGACTTA AGCATTAGCGGATGTGGCTAATCA	Serratia fonticola DSM4576 (9782 bp)	

plasmid	genotype/description
pCOLA-Duet	3,719 bp, contains T7 promoter, Km ^R
pHL1	22,994bp, <i>sefA</i> from <i>Serratia fonticola</i> DSM 4576 genomic DNA assembled into
	pCOLA-Duet, Km [*]

Table S5 Plasmids used in this study.

Table S6 ¹ H (400 MHz	and ¹³ C	(100 MHz)	NMR data	for 1 ir	n DMSO-d ₆	(δ in	ppm).

Subunit	Position	δ _c , type	δ _H (J [Hz])	Subunit	Position	δ _c , type	δ _H (J [Hz])
(R)-3-	1	168.68, C			28	35.28, CH	1.52, m
Hydroxy-	2a	39.41, CH ₂	2.22, dd (14.1, 3.0)		29	24.69, CH ₂	0.89 <i>,</i> m
tetradecanoic	2b		2.44, overlap		30	10.32, CH₃	0.70, overlap
Acid	3	71.64 <i>,</i> CH	4.94, m		31	14.83, CH₃	0.70, overlap
	4	33.07, CH ₂	1.46, m		32	172.87, C	
	5	24.14, CH ₂	1.23, m	Leu	33		8.68, d (5.7)
	6	29.13, CH ₂	1.23, m		34	52.42 <i>,</i> CH	3.88, overlap
	7	29.04, CH ₂	1.23, m		35	39.08, CH ₂	1.26, m
	8	29.02, CH ₂	1.23, m		36	23.71 <i>,</i> CH	1.23, m
	9	28.93, CH ₂	1.23, m		37	21.45, CH₃	0.70, overlap
	10	28.83, CH ₂	1.23, m		38	22.66, CH₃	0.78, overlap
	11	28.73, CH ₂	1.23, m		39	171.65, C	
	12	31.29, CH₂	1.20, m	Phe	40		8.11, d (5.4)
	13	22.08, CH ₂	1.22, m		41	54.10, CH	4.32, m
	14	13.94, CH₃	0.82, overlap	_	42a	35.35, CH ₂	2.84, t (12.7)
Tyr	15		7.96, overlap		42b		3.22, dd (13.9, 3,9)
	16	53.23, CH	4.62, q (7.5)		43	138.64, C	
	17a	37.55, CH₂	2.64, dd (13.5, 7.3)		44	129.18, CH	7.17, m
	17b		2.75, dd (13.5, 7.1)		45	127.94, CH	7.24, m
	18	127.44, C			46	126.07, CH	7.18, m
	19	130.03, CH	6.92, dd (8.7, 2.6)		47	127.94 <i>,</i> CH	7.24, m
	20	114.74, CH	6.58, dd (8.7, 2.6)		48	129.18, CH	7.17, m
	21	155.73, C			49	170.97, C	
	22	114.74, CH	6.58, dd (8.7, 2.6)	Ser	50		7.44, s
	23	130.03, CH	6.92, dd (8.7, 2.6)		51	56.27 <i>,</i> CH	4.06, q (6.0)
	24		9.12, s		52a	61.18, CH ₂	3.62 <i>,</i> m
	25	171.03, C		_	52b		3.67, m
lle	26		7.99, overlap		53		4.82, t (6.7)
	27	56.94, CH	3.89, overlap		54	169.56, C	

Subunit	Position	δc, type	δ _H (J [Hz])	Subunit	Position	δc, type	δ _H (J [Hz])
(R)-3-	1	168.68, C			27	24.69, CH ₂	0.89, m
Hydroxy-	2a	39.41, CH ₂	2.22, dd (14.1, 3.0)		28	10.32, CH₃	0.70, overlap
dodecanoic	2b		2.44, overlap		29	14.83, CH₃	0.70, overlap
acid	3	71.64 <i>,</i> CH	4.94, m		30	172.87, C	
	4	33.07, CH ₂	1.46, m	Leu	31		8.68, d (5.7)
	5	24.14, CH ₂	1.23, m		32	52.42, CH	3.88, overlap
	6	29.05, CH ₂	1.23, m		33	39.08, CH ₂	1.26, m
	7	28.90, CH ₂	1.23, m		34	23.71, CH	1.23, m
	8	28.83, CH ₂	1.23, m		35	21.45, CH₃	0.70, overlap
	9	28.78, CH ₂	1.23, m		36	22.66, CH₃	0.78, overlap
	10	31.29, CH ₂	1.20, m		37	171.65 <i>,</i> C	
	11	22.08, CH ₂	1.22, m	Phe	38		8.11, d (5.4)
	12	13.94, CH₃	0.82, overlap	_	39	54.10, CH	4.32, m
Tyr	13		7.96, overlap		40a	35.35, CH ₂	2.84, t (12.7)
	14	53.23, CH	4.62 <i>,</i> q (7.5)		40b		3.22, dd (13.9, 3,9)
	15a	37.55, CH₂	2.64, dd (13.5, 7.3)		41	138.64 <i>,</i> C	
	15b		2.75, dd (13.5, 7.1)		42	129.18, CH	7.17, m
	16	127.44, C			43	127.94 <i>,</i> CH	7.24, m
	17	130.03 <i>,</i> CH	6.92, dd (8.7, 2.6)		44	126.07 <i>,</i> CH	7.18, m
	18	114.74 <i>,</i> CH	6.58, dd (8.7, 2.6)		45	127.94 <i>,</i> CH	7.24, m
	19	155.73 <i>,</i> C			46	129.18, CH	7.17, m
	20	114.74, CH	6.58, dd (8.7, 2.6)		47	170.97, C	
	21	130.03, CH	6.92, dd (8.7, 2.6)	Ser	48		7.44, s
	22		9.12, s		49	56.27, CH	4.06, q (6.0)
	23	171.03, C		_	50a	61.18, CH ₂	3.62, m
lle	24		7.99, overlap		50b		3.67, m
	25	56.94 <i>,</i> CH	3.89, overlap		51		4.82, t (6.7)
	26	35.28, CH	1.52, m		52	169.56 <i>,</i> C	

Table S7 ¹H (400 MHz) and ¹³C (100 MHz) NMR data for **2** in DMSO- d_6 (δ in ppm).

Subunit	Position	δc, type	δ _н (J [Hz])	Subunit	Position	δc, type	δ _н (J [Hz])
(3 <i>R,8Z</i>)-3-	1	168.68, C			29	35.28 <i>,</i> CH	1.52, m
Hydroxy-8-	2a	39.41, CH ₂	2.22, dd (14.1, 3.0)		30	24.69, CH ₂	0.89 <i>,</i> m
pentadecenoic	2b		2.44, overlap		31	10.32, CH₃	0.70, overlap
acid	3	71.63 <i>,</i> CH	4.94, m		32	14.83, CH₃	0.70, overlap
	4	33.08, CH ₂	1.46, m		33	172.87, C	
	5	24.07, CH ₂	1.24, m	Leu	34		8.68, d (5.7)
	6	29.17, CH ₂	1.24, m		35	52.42 <i>,</i> CH	3.88, overlap
	7	26.57, CH ₂	1.99, p (6.0)		36	39.08, CH ₂	1.26, m
	8	129.65, CH	5,34, overlap		37	23.71 <i>,</i> CH	1.23, m
	9	129.63, CH	5,34, overlap		38	21.45, CH₃	0.70, overlap
	10	26.57, CH ₂	1.99, p (6.0)		39	22.66, CH₃	0.78, overlap
	11	28.83, CH ₂	1.30, m		40	171.65, C	
	12	28.49, CH ₂	1.24, m	Phe	41		8.11, d (5.4)
	13	30.86, CH ₂	1.23, m		42	54.10, CH	4.32, m
	14	21.98, CH₂	1.24, m		43a	35.35, CH₂	2.84, t (12.7)
	15	13.93, CH₃	0.82, overlap	_	43b		3.22, dd (13.9, 3,9)
Tyr	16		7.96, overlap	_	44	138.64, C	
	17	53.23, CH	4.62, q (7.5)		45	129.18, CH	7.17, m
	18a	37.55, CH₂	2.64, dd (13.5, 7.3)		46	127.94, CH	7.24, m
	18b		2.75, dd (13.5, 7.1)		47	126.07, CH	7.18, m
	19	127.44, C			48	127.94, CH	7.24, m
	20	130.03, CH	6.92, dd (8.7, 2.6)		49	129.18, CH	7.17, m
	21	114.74, CH	6.58, dd (8.7, 2.6)		50	170.97, C	
	22	155.73, C		Ser	51		7.44, s
	23	114.74, CH	6.58, dd (8.7, 2.6)		52	56.27, CH	4.06, q (6.0)
	24	130.03, CH	6.92, dd (8.7, 2.6)		53a	61.18, CH ₂	3.62, m
	25		9.12, s		53b		3.67, m
	26	171.03, C		_	54		4.82, t (6.7)
lle	27		7.99, overlap		55	169.56, C	
	28	56.94, CH	3.89, overlap				

Table S8 ¹H (400 MHz) and ¹³C (100 MHz) NMR data for **3** in DMSO- d_6 (δ in ppm).

Subunit	Position	δc, type	δ _H (J [Hz])	Subunit	Position	δc, type	δ _H (J [Hz])
(3 <i>R</i> ,9 <i>Z</i>)-3-	1	168.68, C			29	56.94, CH	3.89, overlap
Hydroxy-9-	2a	39.41, CH ₂	2.22, dd (14.1, 3.0)		30	35.28, CH	1.52, m
hexadecenoic	2b		2.44, overlap		31	24.69, CH ₂	0.89, m
acid	3	71.64, CH	4.94 <i>,</i> m		32	10.32, CH₃	0.70, overlap
	4	33.09, CH ₂	1.46, m		33	14.83, CH₃	0.70, overlap
	5	24.07, CH ₂	1.23, m		34	172.87, C	
	6	28.28, CH ₂	1.23, m	Leu	35		8.68, d (5.7)
	7	29.12, CH ₂	1.28, m		36	52.42, CH	3.88, overlap
	8	26.58, CH ₂	1.99, p (6.0)		37	39.08, CH ₂	1.26, m
	9	129.63 <i>,</i> CH	5,33, overlap		38	23.71, CH	1.23, m
	10	129.63 <i>,</i> CH	5,33, overlap		39	21.45, CH₃	0.70, overlap
	11	26.61, CH ₂	1.99, p (6.0)		40	22.66, CH₃	0.78, overlap
	12	29.17, CH₂	1.28, m		41	171.65, C	
	13	28.50, CH ₂	1.23, m	Phe	42		8.11, d (5.4)
	14	31.14, CH ₂	1.21, m		43	54.10, CH	4.32, m
	15	22.07, CH₂	1.23, m		44a	35.35, CH ₂	2.84, t (12.7)
	16	13.93, CH₃	0.82, overlap		44b		3.22, dd (13.9, 3,9)
Tyr	17		7.96, overlap	_	45	138.64, C	
	18	53.23, CH	4.62, q (7.5)		46	129.18, CH	7.17, m
	19a	37.55, CH₂	2.64, dd (13.5, 7.3)		47	127.94, CH	7.24, m
	19b		2.75, dd (13.5, 7.1)		48	126.07, CH	7.18, m
	20	127.44, C			49	127.94, CH	7.24, m
	21	130.03 <i>,</i> CH	6.92, dd (8.7, 2.6)		50	129.18, CH	7.17, m
	22	114.74, CH	6.58, dd (8.7, 2.6)		51	170.97, C	
	23	155.73, C		Ser	52		7.44, s
	24	114.74, CH	6.58, dd (8.7, 2.6)		53	56.27, CH	4.06, q (6.0)
	25	130.03 <i>,</i> CH	6.92, dd (8.7, 2.6)		54a	61.18, CH ₂	3.62, m
	26		9.12, s		54b		3.67, m
	27	171.03, C			55		4.82, t (6.7)
lle	28		7.99, overlap	_	56	169.56, C	

Table S9 ¹H (400 MHz) and ¹³C (100 MHz) NMR data for **4** in DMSO- d_6 (δ in ppm).

Fig. S1 Alignment of *sefA* and other similar BGCs. Similarity analysis was ccomplished using antiSMASH².

Fig. S2 Molecular network of the secondary metabolites produced by *E. coli* BAP1 pHL1 and pCOLA-Duet generated using the HRLC-MS/MS data. Nodes are labelled with the corresponding m/z values (detected in the positive mode). The light blue nodes correspond to molecules present in *E. coli* BAP1 pHL1, while red nodes represent those found in *E. coli* BAP1 pCOLA-Duet. A blue-only node signifies its exclusive presence in *E. coli* BAP1 pHL1. The thickness of the lines indicates the strength of the association. sefopeptides A-D (**1-4**) are highlighted with red borders around the nodes.

Fig. S3 ¹H-¹H COSY and key ¹H-¹³C HMBC correlations of compounds 1-4.

Fig. S4 MS/MS spectra and fragmentation pathways with proposed fragment structures for **1**.

2 m/z [M+H]⁺ 822.5022

Fig. S5 MS/MS spectra and fragmentation pathways with proposed fragment structures for **2**.

Fig. S6 MS/MS spectra and fragmentation pathways with proposed fragment structures for **3**.

Fig. S7 MS/MS spectra and fragmentation pathways with proposed fragment structures for **4**.

Fig S8 We selected nodes from the molecular network with molecular weights of 794.471 (A), 836.517 (B), 848.517 (C), and 864.549 (D) for the analysis of their MS/MS spectra. This analysis reveals that these analogues share the same peptide core as sefopeptides A-D but exhibit variations only in the fatty acid chain.

Fig. S9 Configuration determination of amino acids in **1-4** using the Marfey's method. HRLC-MS analysis of hydrolyzed **1-4** and amino acid standards derivatized with L-FDLA. Depicted are EIC traces for Tyrosine (Tyr, m/z 770 [M + H]⁺, di-substituted Marfey's derivatives³), isoleucine (IIe, m/z 426 [M + H]⁺), leucine (Leu, m/z 426 [M + H]⁺), phenylalanine (Phe, m/z 460 [M + H]⁺), and serine (Ser, m/z 400 [M + H]⁺). A minor peak of L-Leu is likely due to racemization of D-Leu during acid hydrolysis⁴.

Fig. S10 ¹H NMR (400 MHz, DMSO- d_6) spectrum of sefopeptides A (1).

Fig. S11 ¹³C NMR (100 MHz, DMSO- d_6) spectrum of sefopeptides A (1).

Fig. S12 DEPT-135 (100 MHz, DMSO-*d*₆) spectrum of sefopeptides A (1).

Fig. S13 HSQC (DMSO- d_6) spectrum of sefopeptides A (1).

Fig. S14 1 H $^{-13}$ C HMBC (DMSO- d_6) spectrum of sefopeptides A (1).

Fig. S15 1 H- 1 H COSY (DMSO- d_{6}) spectrum of sefopeptides A (1).

Fig. S16 ¹H NMR (400 MHz, DMSO- d_6) spectrum of sefopeptides B (2).

Fig. S17 ¹³C NMR (100 MHz, DMSO- d_6) spectrum of sefopeptides B (2).

Fig. S18 DEPT-135 (100 MHz, DMSO-*d*₆) spectrum of sefopeptides B (2).

Fig. S19 HSQC (DMSO- d_6) spectrum of sefopeptides B (2).

Fig. S20 1 H $^{-13}$ C HMBC (DMSO- d_{6}) spectrum of sefopeptides B (2).

Fig. S21 1 H- 1 H COSY (DMSO- d_{6}) spectrum of sefopeptides B (**2**).

Fig. S22 ¹H NMR (400 MHz, DMSO- d_6) spectrum of sefopeptides C (3).

Fig. S23 ¹³C NMR (100 MHz, DMSO- d_6) spectrum of sefopeptides C (**3**).

Fig. S24 DEPT-135 (100 MHz, DMSO-*d*₆) spectrum of sefopeptides C (**3**).

Fig. S25 HSQC (DMSO- d_6) spectrum of sefopeptides C (**3**).

Fig. S26 1 H $^{-13}$ C HMBC (DMSO- d_6) spectrum of sefopeptides C (**3**).

Fig. S27 1 H- 1 H COSY (DMSO- d_{6}) spectrum of sefopeptides C (**3**).

Fig. S28 ¹H NMR (400 MHz, DMSO- d_6) spectrum of sefopeptides D (4).

Fig. S29 ¹³C NMR (100 MHz, DMSO- d_6) spectrum of sefopeptides D (4).

Fig. S30 DEPT-135 (100 MHz, DMSO-d₆) spectrum of sefopeptides D (4).

Fig. S31 HSQC (DMSO- d_6) spectrum of sefopeptides D (4).

Fig. S32 1 H $^{-13}$ C HMBC (DMSO- d_6) spectrum of sefopeptides D (4).

Fig. S33 1 H- 1 H COSY (DMSO- d_{6}) spectrum of sefopeptides D (4).

- 1. B. A. Pfeifer, S. J. Admiraal, H. Gramajo, D. E. Cane and C. Khosla, *Science*, 2001, **291**, 1790-1792.
- K. Blin, S. Shaw, H. E. Augustijn, Z. L. Reitz, F. Biermann, M. Alanjary, A. Fetter, B. R. Terlouw, W. W. Metcalf, E. J. N. Helfrich, G. P. van Wezel, M. H. Medema and T. Weber, *Nucleic Acids Res.*, 2023, **51**, W46-W50.
- 3. R. Bhushan and H. Bruckner, *Amino Acids*, 2004, **27**, 231-247.
- 4. J. M. Manning, *J. Am. Chem. Soc.*, 1970, **92**, 7449-7454.