Supporting Information

Synthesis of tricyclic oxazinoindolones via Pd-catalyzed intramolecular addition of carboxylic acids to alkynes

Subhamoy Mukhopadhyay, Bhavya Khaitan, Shikha Gandhi*

Department of Chemical Sciences, Indian Institute of Science Education and Research

Berhampur 760010, India

sgandhi@iiserbpr.ac.in

Table of Contents

1	General Information:	S2
2	Structures of the ligands used during optimization study (Table 1, in manuscript)	S3
3	Optimization of the reaction conditions for the synthesis of 2a	S3
4	General procedures of intermediate substrate synthesis:	S4
	4.1 General Procedure A: Esterification of 1H-indole-2-carboxylic acid	S4
	3.2 General Procedure B: N-alkylation of ethyl 1H-indole-2-carboxylate	S5
	3.2.1 Preparation of S3a: ethyl 1-(prop-2-yn-1-yl)-1H-indole-2-carboxylate	S5
	3.2.2 Preparation of S3b: ethyl 5-methoxy-1-(prop-2-yn-1-yl)-1H-indole-2-carboxylate	S6
	3.2.3 Preparation of S3d: ethyl 5-methyl-1-(prop-2-yn-1-yl)-1H-indole-2-carboxylate	S6
	3.2.4 Preparation of S3e: ethyl 5-chloro-1-(prop-2-yn-1-yl)-1H-indole-2-carboxylate	S6
5	General procedure C: Synthesis of final substrate molecule (1a-1z)	S7
	4.1 General Procedure C 1(a-h, k-n, s-w) :	S7
	4.2 General Procedure C 1(i, q, r, x, z) :	S8
	4.3 General Procedure C 1(j, o, p, y) :	S9
6	Spectral data of final substrates:	S9
7	General procedure for the Palladium catalysed intramolecular cyclization of N-a	lkylated
iı	ndole 2- carboxylic acid:	S20
8	Procedure for the Large-Scale Reaction:	S20
9	Characterisation data of final compounds:	S21

10	Procedure for the Synthetic Transformation Reaction of 2p:	S31
11	Mechanistic insights	S32
12	X-ray Crystallographic information of the product 2a	S33
13	Crystal Data of 2a:	S34
14	References:	S38
15	NMR spectral data of starting materials:	S39
16	NMR spectral data of final products:	S67

1 General Information:

The spectra for ¹H and ¹³C were obtained using a Bruker AVANCE NEO Ascend 400 MHz FT-NMR. Proton magnetic resonance (¹H NMR) spectra were recorded at 400 MHz. Carbon magnetic resonance (¹³C NMR) spectra were recorded at 101 MHz. The ¹H and ¹³C spectra were recorded in CDCl₃ and DMSO at 297 K, and the chemical shifts (δ) are depicted in parts per million (ppm). Data for 1H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, td = triplet of doublets, ddd= doublet of doublets, qd = quartet of doublets). Splitting patterns that could not be interpreted are designated as multiplet (m). Coupling constant (J) are measured in Hertz (Hz). Data for ¹³C NMR spectra were reported in a similar pattern, as singlet peaks in the ¹³C NMR spectra were reported only with their chemical shifts. For ¹H NMR, the chemical shifts were calibrated in reference to tetramethylsilane (0 ppm), or the residual undeuterated solvents (CDCl₃, 7.26 ppm or DMSO, 2.50 ppm). Data of the ¹³C NMR spectra were calibrated in reference to the deuterated solvents (CDCl₃, 77.1 ppm or DMSO, 39.5 ppm). High resolution mass spectra (HRMS) were measured on a Xevo G2-XS QTOF Quadrupole Time of Flight Mass Spectrometer Waters instrument with an ESI ion source. X-ray crystallography was performed on a Rigaku XtaLab Supernova instrument. Unless otherwise specified, all commercial chemicals were used in their received form. Solvents were either dried and kept over molecular sieves (4 Å) after being distilled using CaH2 or dried solvents were purchased commercially and used as such. Reactions above room temperature were carried out in aluminium metal block. Using TLC Silica gel 60 F254 from Merck, thin layer chromatography (TLC) was carried out, and the results were observed using UV light and PMA stain. Silica gel with a mesh size of 100-200 was used for the silica gel column chromatography (Merck).

2 Structures of the ligands used during optimization study (Table 1, in manuscript)

Figure S1. Structures of the ligands used during optimization study

3 Optimization of the reaction conditions for the synthesis of 2a

Table S1: Optimization of the catalysts in different solvents

Entry	Catalyst	Ligand	Solvent	Temp(°C)	Yield (%) ^a
1	Pd(PPh ₃) ₄	$P(^{n}Bu)_{3}$	Acetonitrile	80	10
2	$Pd(PPh_3)_4$	$P(^{n}Bu)_{3}$	Tetrahydrofuran	70	0
3	$Pd(PPh_3)_4$	$P(^{n}Bu)_{3}$	1,4 dioxane	100	0
4	$Pd(PPh_3)_4$	$P(^{n}Bu)_{3}$	Toluene	105	85
5	Pd(PPh ₃) ₄	$P(^{n}Bu)_{3}$	Chlorobenzene	130	0
6 ^b	[Pd(allyl)Cl] ₂	$P(^{n}Bu)_{3}$	Toluene	105	61
7 ^c	AgOTf	-	DCE	80	10
8^d	Cu(OTf) ₂	-	DCE	80	<5
9 ^{<i>df</i>}	TfOH	-	Chlorobenzene	120	0
10 ^{ef}	K_2CO_3	-	DMF	90	0
11^g	Pd(PPh ₃) ₄	$P(^{n}Bu)_{3}$	Toluene	105	33

Reaction conditions: 1a (0.1 mmol), catalyst (5 mol %), ligand (10 mol %) and solvent (300 μ L) were heated in a schlenk tube for 9 h under Ar atmosphere. ^{*a*}Isolated yield. ^{*b*}20 mol % ligand ^{*c*}10 mol % catalyst. ^{*d*}2 eq. of TfOH were used. ^{*e*}3 eq. of K₂CO₃ were used. ^{*f*}48 h. ^{*g*}O₂ atmosphere

Table S2: Optimization of the catalyst loading

Reaction conditions: **1a** (0.1 mmol), Pd(PPh₃)₄, P(^{*n*}Bu)₃ and toluene (300 μ L) were heated at 105 °C in a schlenk tube under Ar atmosphere. ^{*a*}Isolated yield.

4 General procedures of intermediate substrate synthesis:

4.1 General Procedure A: Esterification of 1H-indole-2-carboxylic acid

Scheme S1

According to literature procedure¹, substrate **S2** was prepared from 1H-indole-2-carboxylic acid.

3.2 General Procedure B: N-alkylation of ethyl 1H-indole-2-carboxylate

Scheme S2

A 50 ml round bottom flask was charged with a solution of **S2** (1 eq) in dry DMF (1ml/ mmol) and NaH (1.5 eq) under constant stirring at 0 °C. After 30 mins, propargyl bromide (1.1 eq) diluted in 1:3 ratio with dry DMF was added to the stirring solution over a 15 min period. After completion of reaction as indicated by TLC, the reaction mixture was quenched with distilled water and the residue was extracted with EtOAc (2×30 mL). The combined organic layers were washed with brine solution, dried over sodium sulphate and then concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (5% Ethyl acetate in Hexane) to afford **S3(a, b, d, e)** as solids.

3.2.1 Preparation of S3a: *ethyl 1-(prop-2-yn-1-yl)-1H-indole-2-carboxylate*

The compound was synthesized by general procedure B, **S3a**, white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* =8.4 Hz, 1H), 7.31 (dd, *J* = 8.4, 7.0 Hz 1H), 7.26 (d, *J* = 0.7 Hz, 1H), 7.10 (dd, *J* = 8.0, 7.0 Hz, 1H), 5.35 (d, *J* = 2.5 Hz, 2H), 4.31 (q, *J* = 7.1 Hz, 2H), 2.17 (t, *J* = 2.5 Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 162.0, 139.0, 127.0, 126.3, 125.5, 122.8, 121.2, 111.4, 110.5, 78.8, 72.0, 60.8, 33.9, 14.3. The physical and spectral data are well in agreement with the literature data².

3.2.2 Preparation of S3b: *ethyl* 5-*methoxy*-1-(*prop*-2-*yn*-1-*yl*)-1H-*indole*-2-*carboxylate*

The compound was synthesized by general procedure B, **S3b**, white solid. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.37$ (dd, J = 9.8, 0.9 Hz, 1H), 7.23 (d, J = 0.9 Hz, 1H), 7.05 (dq, J = 5.3, 2.5 Hz, 2H), 5.38 (d, J = 2.5 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 2.25 (t, J = 2.5 Hz, 1H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C{¹H} **NMR** (101 MHz, CDCl₃) $\delta = 161.9$, 155.0, 134.4, 127.1, 126.5, 116.8, 111.4, 110.8, 102.8, 78.8, 71.9, 60.7, 55.6, 33.9, 14.3. The physical and spectral data are well in agreement with the literature data³.

3.2.3 Preparation of S3d: *ethyl* 5-*methyl*-1-(*prop*-2-*yn*-1-*yl*)-1H-*indole*-2-*carboxylate*

The compound was synthesized by general procedure B, **S3d**, white solid. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.45$ (dt, J = 1.6, 0.9 Hz, 1H), 7.38 (dt, J = 8.6, 0.9 Hz, 1H), 7.26 (d, J = 0.9 Hz, 1H), 7.24 – 7.20 (m, 1H), 5.41 (d, J = 2.5 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 2.46 (d, J = 0.9 Hz, 3H), 2.24 (t, J = 2.5 Hz, 1H), 1.42 (t, J = 7.1 Hz, 3H); ¹³C{¹H} **NMR** (101 MHz, CDCl₃) $\delta = 162.0, 137.4, 130.4, 127.3, 126.8, 126.4, 122.0, 110.9, 110.2, 78.8, 71.8, 60.7, 33.8, 21.3, 14.3. The physical and spectral data are well in agreement with the literature data³.$

3.2.4 Preparation of S3e: *ethyl* 5-*chloro-1-(prop-2-yn-1-yl)-1H-indole-2-carboxylate*

The compound was synthesized by general procedure B, **S3e**, white solid, **MP**: 130-134°C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, J = 2.0 Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 7.30 (dd, J = 9.2, 2.0 Hz, 1H), 7.22 (s, 1H), 5.39 (d, J = 2.4 Hz, 2H), 4.38 (q, J = 6.8 Hz, 2H), 2.25 (t, J = 10.2 Hz, 1H), 7.22 (s, 1H), 5.39 (d, J = 2.4 Hz, 2H), 4.38 (q, J = 6.8 Hz, 2H), 2.25 (t, J = 10.2 Hz, 1H), 7.22 (s, 1H), 5.39 (d, J = 2.4 Hz, 2H), 4.38 (q, J = 6.8 Hz, 2H), 2.25 (t, J = 10.2 Hz, 1H), 7.22 (s, 1H), 5.39 (d, J = 2.4 Hz, 2H), 4.38 (q, J = 6.8 Hz, 2H), 2.25 (t, J = 10.2 Hz, 1H), 7.22 (s, 1H), 5.39 (d, J = 2.4 Hz, 2H), 4.38 (q, J = 6.8 Hz, 2H), 2.25 (t, J = 10.2 Hz, 1H), 7.22 (s, 1H), 5.39 (d, J = 2.4 Hz, 2H), 4.38 (q, J = 6.8 Hz, 2H), 2.25 (t, J = 10.2 Hz, 1H), 7.22 (s, 1H), 5.39 (d, J = 2.4 Hz, 2H), 4.38 (q, J = 6.8 Hz, 2H), 2.25 (t, J = 10.2 Hz, 1H), 7.22 (s, 1H), 5.39 (d, J = 2.4 Hz, 2H), 4.38 (q, J = 6.8 Hz, 2H), 2.25 (t, J = 10.2 Hz, 1H), 7.22 (s, 1H), 7 2.4 Hz, 1H), 1.40 (t, J = 7.2 Hz, 3H); ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 161.6, 137.1, 128.0, 127.1, 126.8, 125.8, 121.8, 111.7, 110.6, 78.3, 72.4, 61.0, 34.0, 14.3. **HRMS** (ESI) calculated for [M+H]⁺ (C₁₄H₁₃NO₂Cl) *m/z* 262.0630, found 262.0619

5 General procedure C: Synthesis of final substrate molecule (1a-1z)

4.1 General Procedure C 1(a-h, k-n, s-w) :

An oven-dried round bottom flask with a magnetic stir bar was charged with **S3(a, b, d, e)** (1.0 eq), degassed (for 30 min) triethylamine (3 ml/mmol), bis(triphenylphosphine)palladium dichloride (0.01 eq), copper iodide (0.02 eq) and aryl iodide (1.1 eq). The reaction mixture was stirred at 50 °C for 12 h. After completion of reaction as indicated by TLC, the reaction mixture was filtered with celite pad and concentrated under reduced pressure. Then the crude mixture was passed through flash column chromatography (Hexane/Ethyl acetate, 20/1). Following solvent evaporation under reduced pressure, the compound was redissolved in a mixture of MeOH-H₂O (MeOH: H₂O=3:1) (3ml/mmol). Then it was refluxed under constant stirring for 24 h after the addition of K₂CO₃ (3 eq) into it. After checking TLC, solvent was evaporated under reduced pressure. The reaction medium was made acidic by adding 1N HCl solution and extracted with EtOAc (3×30 mL). The collected organic layers were dried with anhydrous Na₂SO₄ after washing with brine solution. Then the crude residue was purified by silica gel column chromatography (2-5% DCM in methanol) to afford **1(a-h, k-n, s-w**) as solids.

4.2 General Procedure C 1(i, q, r, x, z) :

Scheme S4

A 50 mL round bottom flask was charged with a solution of **S2(c,f)** (1 eq) in dry DMF(1ml/ mmol) and NaH (1.5 eq) under constant stirring at 0 °C. After 30 mins, substituted propargyl bromide (1.1 eq) diluted in 1:3 ratio with dry DMF was added to the stirring solution over a 15 min period. After completion of reaction as indicated by TLC, the reaction mixture was quenched with distilled water and the residue was extracted with EtOAc (2×30 mL). The combined organic layers were washed with brine solution, dried over sodium sulphate, and then concentrated under reduced pressure. The crude residue was passed through silica gel flash column chromatography (Hexane/Ethyl acetate, 20/1). Following solvent evaporation, the compound was redissolved in a mixture of MeOH-H₂O (MeOH: H₂O=3:1) (3ml/mmol). Then it was refluxed under constant stirring for 24 h after the addition of K₂CO₃ (3 eq) into it. After checking TLC, solvent was evaporated under reduced pressure. The reaction medium was made acidic by adding 1N HCl solution and extracted with EtOAc (3 × 30 mL). The collected organic layers were dried with anhydrous Na₂SO₄ after washing with brine solution. Then the crude residue was purified by silica gel column chromatography (2-5% DCM in methanol) to afford **1(i, q, r, x, z)** as solids.

4.3 General Procedure C 1(j, o, p, y) :

Scheme S5

A 100 mL round bottom flask was charged with a solution of S3(a, b, d, e) (1 eq) in MeOH-H₂O (MeOH: H₂O=3:1) (3 ml/ mmol) and 3 eq of K₂CO₃. Then it was refluxed for 24 h under constant stirring. After completion of reaction as indicated by TLC, solvent was evaporated under reduced pressure. The reaction medium was made acidic by adding 1N HCl solution and extracted with EtOAc (3 × 30 mL). The collected organic layers were dried with anhydrous Na₂SO₄ after washing with brine solution. Then the crude residue was purified by silica gel column chromatography (2-5% DCM in methanol) to afford 1(j, o, p, y) as solids.

6 Spectral data of final substrates:

1-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1a): White solid, 210 mg, 76%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 176-178°C; ¹H NMR (400 MHz, DMSO): δ 13.13 (s, 1H), 7.72 (dd, J = 8.5, 4.8 Hz, 2H), 7.40 (dd, J = 7.8, 7.5 Hz, 1H), 7.35-7.31 (m, 5H), 7.30 (s, 1H), 7.18 (dd, J = 7.7, 7.2 Hz, 1H), 5.74 (s, 2H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 162.8, 138.6, 131.4, 128.7, 128.6, 127.5, 125.7, 125.1, 122.4, 121.7, 120.9, 111.1, 110.7, 85.5, 82.8, 34.1.; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₄NO₂) m/z 276.1020, found 276.1037.

1-(3-(4-fluorophenyl)prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1b): White solid, 250 mg, 85%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 189-191°C; ¹H NMR (400 MHz, DMSO): δ 13.16 (s, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.42- 7.36 (m, 3H), 7.32 (s, 1H), 7.20-7.13 (m, 3H), 5.75 (s, 2H). ¹³C{¹H} NMR (101 MHz, DMSO): δ 162.8, 162.3 (d, J = 248.4 Hz), 138.6, 133.8 (d, J = 8.1 Hz), 127.6, 125.7, 125.1, 122.4, 120.9, 118.2 (d, J = 3.0 Hz), 115.8 (d, J = 21.2 Hz), 111.1, 110.7, 85.3, 81.8, 34.1; ¹⁹F NMR (376 MHz, DMSO): δ -110.6; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₃NO₂F) m/z 294.0926, found 294.0926.

1-(3-(4-chlorophenyl)prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1c): White solid, 227 mg, 73%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 192-194°C; ¹H NMR (400 MHz, DMSO): δ 7.73 (d, J = 8.0 Hz, 2H), 7.43 – 7.34 (m, 5H), 7.31 (s, 1H), 7.19 (dd, J = 7.7, 7.4 Hz, 1H), 5.75 (s, 2H) ; ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.2, 139.0, 133.9, 133.6, 129.3, 128.0, 126.1, 125.6, 122.9, 121.4, 121.1, 111.6, 111.2, 87.2, 82.1, 34.6; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₃NClO₂) m/z 310.0630, found 310.0625.

1-(3-(3-bromophenyl)prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1d): White solid, 240 mg, 68%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 194-196°C; ¹H NMR (400 MHz, DMSO): δ 13.16 (s, 1H), 7.73 (d, *J* = 8.0 Hz,

2H), 7.60 – 7.50 (m, 2H), 7.41 (dd, J = 7.7, 7.6 Hz, 1H), 7.37-7.26 (m, 3H), 7.19 (dd, J = 7.3, 7.3 Hz, 1H), 5.77 (s, 2H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.9, 139.8, 134.8, 132.9, 131.9, 131.6, 128.7, 126.9, 126.3, 125.1, 123.6, 122.7, 122.1, 112.3, 112.0, 88.3, 82.4, 35.3. HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₃NO₂Br) m/z 354.0125, found 354.0139.

1-(3-(p-tolyl)prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1e): White solid, 210 mg, 73%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 171-174°C; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.5 Hz, 1H), 7.53 (s, 1H), 7.44 (dd, J = 7.7, 7.7 Hz, 1H), 7.27-7.20 (m, 3H), 7.04 (d, J = 8.0 Hz, 2H), 5.67 (s, 2H), 2.30 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 166.3, 139.7, 138.5, 131.7, 128.9, 126.2, 126.0, 125.7, 123.0, 121.2, 119.4, 113.5, 111.0, 84.0, 83.2, 34.8, 21.4; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₆NO₂) m/z 290.1176, found 290.1195.

1-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1f): White solid, 195 mg, 64%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 170-172°C; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.52 (s, 1H), 7.44 (dd, *J* = 7.9, 7.5 Hz, 1H), 7.30 (d, *J* = 8.8 Hz, 2H), 7.22 (dd, *J* = 7.6, 7.5 Hz, 1H), 6.77 (d, *J* = 8.8 Hz, 2H), 5.66 (s, 2H), 3.76 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 166.2, 159.6, 139.7, 133.3, 126.1, 126.0, 125.7, 123.0, 121.2, 114.6, 113.8, 113.5, 111.0, 83.8, 82.5, 55.2, 34.8; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₆NO₃) m/z 306.1125, found 306.1158.

1-(3-(3,5-dimethylphenyl)prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1g): White solid, 210 mg, 70% purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 217-219°C; ¹H NMR (400 MHz, DMSO): δ 13.10 (s, 1H), δ 7.71 (dd, J =8.4, 3.2 Hz, 2H), 7.40 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.30 (d, J = 0.8 Hz, 1H), 7.18 (dt, J =8.0, 8.0, 0.8 Hz, 1H), 6.97 (s, 1H), 6.95 (s, 2H), 5.72 (s, 2H), 2.19 (s, 6H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.2, 139.0, 138.3, 130.8, 129.4, 128.0, 126.1, 125.5, 122.9, 121.9, 121.3, 111.6, 111.2, 85.3, 83.4, 34.5, 20.9; HRMS (ESI) calculated for [M+H]⁺ (C₂₀H₁₈NO₂) m/z 304.1332 , found 304.1350.

1-(3-(3-chloro-4-methylphenyl) prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (**1h**): White solid, 230 mg, 71%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 185-187°C; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.53 (s, 1H), 7.45 (dd, *J* = 8.1, 7.3 Hz, 1H), 7.35 (s, 1H), 7.23 (dd, *J* = 7.7, 7.5 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 5.67 (s, 2H), 2.32 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 166.1, 139.6, 136.7, 134.0, 132.0, 130.6, 129.9, 126.2, 125.6, 123.1, 121.4, 121.3, 113.6, 110.8, 84.4, 82.6, 34.7, 20.0; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₅NO₂Cl) m/z 324.0786, found 324.0814.

1-(but-2-yn-1-yl)-1H-indole-2-carboxylic acid (1i): White solid, 130 mg, 61%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 167-169°C; ¹H NMR (400 MHz, DMSO): δ 7.69 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.36 (dd, *J* = 8.0, 7.2 Hz, 1H), 7.26 (s, 1H), 7.16 (dd, *J* = 7.5, 7.5 Hz, 1H), 5.43 (s, 2H), 1.71 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 162.8, 138.5, 127.5, 125.6, 124.9, 122.4, 120.8, 111.1, 110.5, 79.3, 75.2, 33.6, 3.0; HRMS (ESI) calculated for [M+H]⁺ (C₁₃H₁₂NO₂) m/z 214.0864, found 214.0859.

1-(prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1j): White solid, 168 mg, 84%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 190-192°C; ¹H NMR (400 MHz, DMSO): δ 13.08 (s, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.37 (dd, *J* = 8.0, 7.4 Hz, 1H), 7.28 (s, 1H), 7.16 (dd, *J* = 7.7, 7.3 Hz, 1H), 5.48 (d, *J* = 2.4 Hz, 2H), 3.28 (t, *J* = 4.5 Hz, 1H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.2, 139.0, 127.9, 126.1, 125.5, 122.8, 121.3, 111.5, 111.2, 80.2, 74.8, 33.8; HRMS (ESI) calculated for [M+H]⁺ (C₁₂H₁₀NO₂) m/z 200.0708, found 200.0726.

1-(3-([1,1'-biphenyl]-4-yl)prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1k): White solid, 306 mg, 87%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 249-251°C; ¹H NMR (400 MHz, DMSO): δ 13.16 (s, 1H), 7.74 (dd, *J* = 8.9, 8.4 Hz, 2H), 7.66-7.61 (m, 4H), 7.48-7.41 (m, 5H), 7.40-7.36 (m, 1H), 7.33 (s, 1H), 7.19 (dd, *J* = 7.5, 7.4 Hz, 1H), 5.78 (s, 1H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.3, 140.7, 139.5, 139.1, 132.5, 129.5, 128.3, 128.0, 127.3, 127.2, 127.0, 126.2, 125.6, 122.9, 121.4, 121.2, 111.6, 111.2, 86.8, 83.1, 34.7; HRMS (ESI) calculated for [M+H]⁺ (C₂₄H₁₈NO₂) m/z 352.1332, found 352.1349.

1-(3-(thiophen-2-yl)prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (11): Greyish-white solid, 205 mg, 73%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 209-211°C; ¹H NMR (400 MHz, DMSO): δ 13.12 (s, 1H), 7.71 (dd, *J* = 4.9, 3.0 Hz, 2H), 7.56 (d, *J* = 5.1 Hz, 1H), 7.39 (dd, *J* = 8.0, 7.6 Hz, 1H), 7.31 (s, 1H), 7.24 (d, *J* = 3.5 Hz, 1H), 7.17 (dd, *J* = 7.6, 7.5 Hz, 1H), 7.02 (dd, *J* = 5.2, 3.8 Hz, 1H), 5.76 (s, 2H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.2, 139.0, 133.2, 129.1, 128.02, 126.1, 125.6, 122.9, 121.7, 121.4, 111.5, 111.3, 90.0, 76.5, 34.8; HRMS (ESI) calculated for [M+H]⁺ (C₁₆H₁₂NO₂S) m/z 282.0584, found 282.0597.

5-methyl-1-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1m): White solid, 219 mg, 75%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 233-235°C; ¹H NMR (400 MHz, DMSO): δ 13.07 (s, 1H), δ 7.61 (d, J = 8.8 Hz, 1H), 7.48 (s, 1H), 7.35-7.31 (m, 5H), 7.23 (dd, J = 8.8, 1.6 Hz, 1H), 7.20 (s, 1H), 5.71 (s, 2H), 2.40 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.3, 137.6, 131.8, 130.2, 129.2, 129.1, 127.9, 127.4, 126.4, 122.2, 122.1, 111.3, 110.7, 86.1, 83.2, 34.6, 21.4; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₆NO₂) m/z 290.1176, found 290.1209.

5-methoxy-1-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1n): White solid, 240 mg, 79%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 200-202°C; ¹H NMR (400 MHz, DMSO): δ 13.06 (s, 1H), 7.64 (d, *J* = 9.2 Hz, 1H), 7.35-7.32 (m, 5H), 7.20 (s, 1H), 7.18 (d, *J* = 2.4 Hz, 1H), 7.05 (dd, *J* = 9.2, 2.4 Hz, 1H),

5.71 (s, 2H), 3.78 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.2, 154.9, 134.5, 131.8, 129.2, 129.1, 128.2, 126.5, 122.2, 116.8, 112.6, 110.8, 103.1, 86.1, 83.2, 55.8, 34.6; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₆NO₃) m/z 306.1125, found 306.1151.

5-methyl-1-(prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1o): White solid, 167 mg, 78%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 208-211°C; ¹H NMR (400 MHz, DMSO): δ 7.52 (d, *J* = 8.8 Hz, 1H), 7.47 (s, 1H), 7.24-7.11 (m, 2H), 5.45 (s, 2H), 3.20 (s, 1H), 2.39 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.2, 137.6, 130.1, 127.9, 127.3, 126.3, 122.0, 111.2, 110.7, 80.2, 74.7, 33.8, 21.4; HRMS (ESI) calculated for [M+H]⁺ (C₁₃H₁₂NO₂) m/z 214.0864, found 214.0859.

5-methoxy-1-(prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1p): White solid, 195 mg, 85%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 213-215°C; ¹H NMR (400 MHz, DMSO): δ 13.02 (s, 1H), δ 7.54 (d, J = 8.8 Hz, 1H), 7.17 (d, J = 7.2 Hz, 2H), 7.03 (d, J = 9.2 Hz, 1H), 5.45 (s, 2H), 3.78 (s, 3H), 3.21 (s, 1H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.1, 154.9, 134.4, 128.1, 126.5, 116.7, 112.5, 110.8, 103.1, 80.3, 74.7, 55.8, 33.9; HRMS (ESI) calculated for [M+H]⁺ (C₁₃H₁₂NO₃) m/z 230.0813, found 230.0810.

6-methoxy-1-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1q): White solid, 205 mg, 67%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1

to 20:1); MP: 178-180°C; ¹H NMR (400 MHz, DMSO): δ 12.87 (s, 1H), 7.59 (d, J = 8.8 Hz, 1H), 7.37-7.33 (m, 5H), 7.24 (s, 1H), 7.23 (s, 1H), 6.83 (d, J = 8.8 Hz, 1H), 5.72 (s, 2H), 3.86 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.2, 158.8, 140.3, 131.9, 129.1, 126.8, 123.7, 122.3, 120.2, 112.6, 111.8, 93.8, 86.1, 83.2, 55.9, 34.6; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₆NO₃) m/z 306.1125, found 306.1145.

1-(but-2-yn-1-yl)-5-methoxy-1H-indole-2-carboxylic acid (1r): White solid, 144 mg, 59%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 207-210°C; ¹H NMR (400 MHz, DMSO): δ 12.97 (s, 1H), 7.50 (d, *J* = 9.2 Hz, 1H), 7.15-7.12 (m, 2H), 7.00 (dd, *J* = 8.8, 2.0 Hz, 1H), 5.39 (s, 2H), 3.78 (s, 3H), 1.70 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.2, 154.8, 134.4, 128.1, 126.4, 116.6, 112.5, 110.5, 103.0, 79.6, 75.7, 55.8, 34.1, 3.4; HRMS (ESI) calculated for [M+H]⁺ (C₁₄H₁₄NO₃) m/z 244.0969, found 244.0981.

5-methyl-1-(3-(p-tolyl)prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1s): White solid, 235 mg, 77%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 215-218°C; ¹H NMR (400 MHz, DMSO): δ 12.99 (s, 1H), 7.61 (d, *J* = 8.8 Hz, 1H), 7.48 (s, 1H), 7.24-7.19 (m, 4H), 7.14 (s, 1H), 7.12 (s, 1H), 5.69 (s, 2H), 2.40 (s, 3H), 2.27 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.3, 138.9, 131.7, 130.1, 129.7, 127.9, 127.4, 126.6, 126.3, 122.1, 119.2, 111.3, 110.7, 85.4, 83.3, 34.6, 21.4, 21.4; HRMS (ESI) calculated for [M+H]⁺ (C₂₀H₁₈NO₂) m/z 304.1332, found 304.1338.

1-(3-(4-fluorophenyl)prop-2-yn-1-yl)-5-methyl-1H-indole-2-carboxylic acid (1t): White solid, 258 mg, 84%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 212-214°C; ¹H NMR (400 MHz, DMSO): δ 13.06 (s, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.48 (s, 1H), 7.42-7.37 (m, 2H), 7.25 – 7.14 (m, 4H), 5.70 (s, 2H), 2.40 (s, 3H); ¹³C {¹H} NMR (101 MHz, DMSO): δ 163.3, 162.4 (d, J = 248.5 Hz), 137.6, 134.2 (d, J = 8.5 Hz), 130.2, 127.9, 127.4, 126.4, 122.1, 118.7 (d, J = 3.5 Hz), 116.3 (d, J = 22.3 Hz), 111.3, 110.7, 85.8, 82.2, 34.5, 21.4; ¹⁹F NMR (376 MHz, DMSO): δ -110.6; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₅NO₂F) m/z 308.1082, found 308.1115.

1-(3-(3-bromophenyl)prop-2-yn-1-yl)-5-methyl-1H-indole-2-carboxylic acid (1u): White solid, 283 mg, 77%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 210-212°C; ¹H NMR (400 MHz, DMSO): δ 13.06 (s, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.53 (s, 1H), 7.49 (s, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.25-7.20 (m, 2H), 5.72 (s, 2H), 2.40 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.3, 137.6, 134.0, 132.2, 131.2, 130.9, 130.2, 127.9, 127.4, 126.4, 124.4, 122.1, 122.0, 111.3, 110.8, 87.7, 81.6, 34.5, 21.4; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₅NO₂Br) m/z 368.0281, found 368.0273.

1-(3-(4-chlorophenyl)prop-2-yn-1-yl)-5-methyl-1H-indole-2-carboxylic acid (1v): White solid, 233 mg, 72%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 201-203°C; ¹H NMR (400 MHz, DMSO): δ 13.10 (s, 1H), δ 7.61 (d, J = 8.4 Hz, 1H), 7.48 (s, 1H), 7.41-7.33 (m, 4H), 7.24-7.19 (m, 2H), 5.71 (s, 2H), 2.39 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.3, 137.6, 133.9, 133.6, 130.2, 129.2, 127.9, 127.4, 126.4, 122.1, 121.1, 111.3, 110.7, 87.3, 82.0, 34.6, 21.4; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₅NO₂Cl) m/z 324.0786, found 324.0793.

5-chloro-1-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1w): White solid, 214 mg, 69%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 228-230°C; ¹H NMR (400 MHz, DMSO): δ 7.87 – 7.83 (m, 2H), 7.47 (dd, J = 8.8, 2.0 Hz, 1H), 7.42-7.38 (m, 5H), 7.34 (s, 1H), 5.81 (s, 2H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 162.9, 137.4, 131.9, 129.5, 129.2, 129.1, 127.1, 125.9, 125.6, 122.1, 121.9, 113.4, 110.6, 85.7, 83.5, 34.8; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₃NO₂Cl) m/z 310.0630, found 310.0652.

5-bromo-1-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxylic acid (**1**x): White solid, 198 mg, 56%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 229-231°C; ¹H NMR (400 MHz, DMSO): δ 13.28 (s, 1H), 7.95 (s, 1H), 7.74 (d, *J* = 8.8 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.36-7.32 (m, 5H), 7.28 (s, 1H), 5.75 (s, 2H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 162.9, 137.6, 131.9, 129.3, 129.2, 129.1, 128.0, 127.9, 125.0, 122.1, 113.8, 110.5, 85.6, 83.5, 34.8; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₃NO₂Br) m/z 354.0125, found 354.0146.

5-*chloro-1-(prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (Iy):* White solid, 171 mg, 73%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 199-200°C; ¹H NMR (400 MHz, DMSO): δ 7.77 (s, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.37 (d, J = 8.8 Hz, 1H), 7.22 (s, 1H), 5.52 (s, 2H), 3.25 (s, 1H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 163.1, 137.2, 130.3, 127.2, 125.8, 125.2, 121.8, 113.3, 110.1, 80.0, 75.0, 34.0; HRMS (ESI) calculated for [M+H]⁺ (C₁₂H₉NO₂Cl) m/z 234.0318, found 234.0342.

5-bromo-1-(prop-2-yn-1-yl)-1H-indole-2-carboxylic acid (1z): White solid, 171 mg, 73%; purified by column chromatography (silica gel 100-200 mesh, DCM/MeOH = 50:1 to 20:1); MP: 232-234°C; ¹H NMR (400 MHz, DMSO): δ 7.91 (s, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 7.24 (s, 1H), 5.48 (s, 2H), 3.25 (s, 1H); ¹³C{¹H} NMR (101 MHz, DMSO): δ 162.9, 137.6, 129.3, 127.9, 127.8, 125.0, 113.8, 113.7, 110.4, 79.9, 75.1, 34.1; HRMS (ESI) calculated for [M+H]⁺ (C₁₂H₉NO₂Br) m/z 277.9813, found 277.9841.

7 General procedure for the Palladium catalysed intramolecular cyclization of N-alkylated indole 2- carboxylic acid:

An oven dried 10 mL schlenk tube was charged with N-alkylated indole-2-carboxylic acid **1** (0.1 mmol), Pd(PPh₃)₄ (0.005 mmol), P(^{*n*}Bu)₃ (0.01 mmol) and toluene (300 μ L) under Ar atmosphere. Then the schlenk tube was sealed with septum, and it was left to stir for 9 h at 105 °C. After 9 h of stirring, the reaction mixture was allowed to cool to room temperature before diluting with ethyl acetate and transferred to a round bottom flask. Then it was concentrated under reduced pressure and the crude mixture was purified by flash chromatography (silica gel, Hexane/EtOAc = 20:3 to 20:4) to give pure solid product **2**.

8 **Procedure for the Large-Scale Reaction:**

An oven dried 10 mL schlenk tube was charged with N-alkylated indole-2-carboxylic acid **1a** (1 mmol), Pd(PPh₃)₄ (0.05 mmol), P(^{*n*}Bu)₃ (0.1 mmol) and toluene (1 mL) under Ar atmosphere. Then the schlenk tube was sealed with septum, and it was left to stir for 9 h at 105 °C. After 9 h of stirring, the reaction mixture was allowed to cool to room temperature before diluting with ethyl acetate and transferred to a round bottom flask. Then it was concentrated under reduced pressure and the crude mixture was purified by flash chromatography (silica gel, Hexane/EtOAc = 20:3 to 20:4) to give pure solid product **2a** (180 mg, 65%) as a white solid.

9 Characterisation data of final compounds:

(*Z*)-3-benzylidene-3,4-dihydro-1*H*-[1,4] oxazino[4,3-a] indol-1-one (**2a**). White solid, 23 mg, 85%; MP: 168-170 °C; column chromatography (Hexane/EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.81-7.75 (m, 3H), 7.54 (s, 1H), 7.46 (d, *J* = 7.2 Hz,1H), 7.44 – 7.38 (m, 3H), 7.34-7.29 (m, 1H), 7.26 (dd, *J* = 8, 6.7 Hz, 1H), 5.9 (s, 1H), 4.98 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.9, 141.1, 136.6, 133.7, 132.7, 130.2, 129.5, 128.1, 126.5, 123.4, 122.1, 121.8, 113.2, 111.0, 110.0, 43.8; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₄NO₂) m/z 276.1020, found 276.1021.

(Z)-3-(4-fluorobenzylidene)-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2b). White solid, 26 mg, 88%; MP: 169-171°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.79 – 7.70 (m, 3H), 7.52 (s, 1H), 7.45 (dd, J = 7.6 Hz, J = 7.4 Hz, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.25-7.21 (m, 1H), 7.07 (dd, J = 8.7, 8.7 Hz, 2H), 5.94 (s, 1H), 4.98 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 162.3 (d, J = 249.5 Hz), 155.7, 140.7, 136.0, 131.2 (d, J = 8.2 Hz), 128.8 (d, J = 3.5 Hz), 127.1, 126.5, 123.5, 122.0, 121.8, 115.6 (d, J = 21.6 Hz), 112.0, 111.1, 110.0, 43.7; ¹⁹F NMR (376 MHz, DMSO): δ -112.6; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₃NO₂F) m/z 294.0926, found 294.0936.

(*Z*)-3-(4-chlorobenzylidene)-3,4-dihydro-1*H*-[1,4]oxazino[4,3-a]indol-1-one (2c). White solid, 27 mg, 83%; MP: 205-208°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 0.7 Hz, 1H), 7.45 (ddd, *J* = 7.6, 7.6, 1.0 Hz, 1H), 7.41-7.33 (m, 3H), 7.25-7.21(m, 1H), 5.93 (s, 1H), 4.99 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.6, 141.6, 136.6, 133.8, 131.1, 130.7, 128.8, 127.2, 126.6, 123.5, 121.9, 111.9, 111.2, 110.0, 43.7; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₃NO₂Cl) m/z 310.0630, found 310.0617.

(*Z*)-3-(3-bromobenzylidene)-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2d). White solid, 29 mg, 81%; MP: 180-182°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.80-7.75 (m, 3H), 7.54 (s, 1H), 7.48-7.37 (m, 3H), 7.29-7.27 (m, 1H), 7.25-7.22 (m, 1H), 5.89 (s, 1H), 4.99 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.3, 142.3, 136.6, 134.7, 132.2, 130.9, 130.1, 127.9, 127.2, 126.6, 123.5, 122.5, 121.9, 111.6, 111.3, 110.0, 43.7; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₃NO₂Br) m/z 354.0125, found 354.0156.

(Z)-3-(4-methylbenzylidene)-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2e). White solid, 18.5 mg, 64%; MP: 173-175°C: column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.52 (s, 1H), 7.44 (d, J = 6.9 Hz, 1H), 7.41-7.37 (m, 1H), 7.24 – 7.17 (m, 3H), 5.95 (s, 1H), 4.98 (s, 2H), 2.36 (s, 4H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 156.0, 140.3, 138.1, 136.5, 129.8,

129.4, 129.3, 127.1, 126.4, 123.4, 122.2, 121.7, 113.2, 110.9, 110.0, 43.8, 21.3; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₆NO₂) m/z 290.1176, found 290.1185.

(*Z*)-3-(4-methoxybenzylidene)-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (**2f**). White solid, 19.5 mg, 64%; MP: 158-160°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.51 (s, 1H), 7.47 – 7.41 (m, 1H), 7.41-7.36 (m, 1H), 7.23 (dd, *J* = 7.1, 7.0 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 2H), 5.92 (s, 1H), 4.97 (s, 2H), 3.83 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 159.3, 156.1, 139.4, 136.5, 130.9, 127.1, 126.4, 125.4, 123.4, 122.3, 121.7, 114.0, 112.8, 110.8, 110.0, 55.3, 43.8; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₆NO₃) m/z 306.1125, found 306.1143.

(Z)-3-(3,5-dimethylbenzylidene)-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2g). White solid, 17.5 mg, 58%; MP: 187-189°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.80- 7.73 (m, 1H), 7.52 (s, 1H), 7.48 – 7.34 (m, 4H), 7.25 – 7.21 (m, 1H), 6.95 (s, 1H), 5.91 (s, 1H), 4.98 (s, 2H), 2.35 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.9, 140.7, 138.0, 136.5, 132.5, 129.9, 127.3, 127.2, 126.4, 123.4, 122.2, 121.7, 113.5, 110.8, 110.0, 43.9, 21.4; HRMS (ESI) calculated for [M+H]⁺ (C₂₀H₁₈NO₂) m/z 304.1332, found 304.1327.

(*Z*)-*3*-(*3*-chloro-4-methylbenzylidene)-*3*,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (**2h**). White solid, 24 mg, 74%; MP: 178-180°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.0 Hz, 1H), 7.66 – 7.62 (m, 2H), 7.53 (s, 1H), 7.45 (dt, *J* = 8.4, 1.2 Hz, 1H), 7.41-7.37 (m 1H), 7.26 – 7.22 (m, 2H), 5.88 (s, 1H), 4.98 (s, 2H), 2.38 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.5, 141.5, 136.6, 135.9, 134.4, 131.8, 131.1, 129.7, 127.6, 127.2, 126.5, 123.4, 121.9, 121.8, 111.8, 111.1, 110.0, 43.7, 19.9; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₅NO₂Cl) m/z 324.0786, found 324.0803.

(*Z*)-3-ethylidene-3,4-dihydro-1*H*-[1,4]oxazino[4,3-a]indol-1-one (2*i*). White solid, 12 mg, 55%; MP: 142-144°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 7.6 Hz, 1H), 7.47 (s, 1H), 7.44-7.39 (m, 1H), 7.34 (d, *J* = 8.8 Hz, 1H), 7.21 (dd, *J* = 7.5, 7.4 Hz, 1H), 5.20 (q, *J* = 6.8 Hz, 1H), 4.81 (s, 2H), 1.82 (d, *J* = 5.6 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 156.8, 141.8, 136.4, 127.1, 126.2, 123.3, 122.7, 121.6, 110.4, 110.0, 109.7, 43.1, 9.9.; HRMS (ESI) calculated for [M+H]⁺ (C₁₃H₁₂NO₂) m/z 214.0864, found 214.0882. The NMR data matched with the literature.⁵

3-methylene-3,4-dihydro-1H-[1,4] oxazino[4,3-a] indol-1-one (2j). White solid, 16 mg, 82%; MP: 170-173°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.49 (s, 1H), 7.46-7.40 (m, 1H), 7.38-7.33 (m, 1H), 7.23 (dd, *J* = 7.7,7.6 Hz, 1H), 5.10 (s, 1H), 4.89 (s, 2H), 4.82 (s, 1H); ¹³C {¹H} NMR (101 MHz,

CDCl₃): δ 156.2, 148.6, 136.6, 127.2, 126.4, 123.4, 122.0, 121.8, 110.8, 110.0, 98.8, 42.5; HRMS (ESI) calculated for [M+H]⁺ (C₁₂H₁₀NO₂) m/z 200.0708, found 200.0699.

(*Z*)-3-([1,1'-biphenyl]-4-ylmethylene)-3,4-dihydro-1H-[1,4] oxazino[4,3-a] indol-1-one (2**k**). White solid, 24 mg, 70%; MP: 248-251°C; column chromatography (Hexane/EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.78 (d, *J* = 8.2 Hz, 1H), 7.64 – 7.60 (m, 4H), 7.54 (s, 1H), 7.48 – 7. 43(m, 3H), 7.41 (s, 1H), 7.39 – 7.35 (m, 1H), 7.25(dd, *J* = 7.1,7.0 Hz, 1H), 6.01 (s, 1H), 5.01 (s, 2H); ¹³C {¹H} NMR (101 MHz, CDCl₃): δ 155.8, 141.2, 140.7, 140.5, 136.6, 131.7, 129.9, 128.8, 127.5, 127.2, 127.0, 126.5, 123.5, 122.1, 121.8, 112.8, 111.0, 110.0, 43.8; HRMS (ESI) calculated for [M+H]⁺ (C₂₄H₁₈NO₂) m/z 352.1332, found 352.1355.

(*Z*)-3-(thiophen-2-ylmethylene)-3,4-dihydro-1H-[1,4] oxazino[4,3-a] indol-1-one (21). White solid, 22 mg, 78%; MP: 228-230°C; column chromatography (Hexane/EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.2 Hz, 1H), 7.40 (s, 1H), 7.34 – 7.28 (m, 1H), 7.27-7.22 (m, 2H), 7.15-7.09 (m, 2 H), 6.91 (dd, *J* = 4.8, 3.6 Hz, 1H), 6.16 (s, 1H), 4.85 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.5, 139.0, 136.5, 134.9, 128.3, 127.6, 127.2, 126.7, 126.5, 123.5, 122.1, 121.8, 111.1, 110.0, 107.4, 43.1; HRMS (ESI) calculated for [M+H]⁺ (C₁₆H₁₂NO₂S) m/z 282.0584, found 282.0601.

(*Z*)-3-benzylidene-8-methyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2m). White solid, 24 mg, 84%; MP: 148-150°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 7.6 Hz, 2H), 7.51 (s, 1H), 7.41 (s, 1H), 7.37 (dd, *J* = 7.4, 7.4 Hz, 2H), 7.30-7.26 (m, 2H), 7.25-7.23 (m, 1H), 5.94 (s, 1H), 4.93 (s, 2H), 2.45 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 156.0, 141.3, 135.3, 132.8, 131.4, 129.6, 128.7, 128.7, 128.1, 127.5, 122.7, 122.1, 113.1, 110.5, 109.8, 43.9, 21.5; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₆NO₂) m/z 290.1176, found 290.1179.

(*Z*)-3-benzylidene-8-methoxy-3,4-dihydro-1*H*-[1,4]oxazino[4,3-a]indol-1-one (2n). White solid, 27.5 mg, 90%; MP: 139-141°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.2 Hz, 2H), 7.42 (s, 1H), 7.39 (dd, *J* = 7.7,7.6 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.14-7.10 (m, 2H), 5.96 (s, 1H), 4.96 (s, 2H), 3.87 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.80, 155.40, 141.14, 132.72, 132.18, 129.50, 128.63, 128.05, 127.61, 122.29, 118.71, 113.08, 110.99, 110.28, 102.74, 55.69, 43.93; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₆NO₃) m/z 306.1125, found 306.1118.

8-methyl-3-methylene-3,4-dihydro-1H-[1,4] oxazino[4,3-a] indol-1-one (20). White solid, 18 mg, 84%; MP: 160-162°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.44 (s, 1H), 7.31 (s, 1H), 7.19 - 7.16 (m, 2H), 5.00 (s, 1H), 4.77 (s, 2H), 4.72 (s, 1H), 2.38 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 156.2, 148.7, 135.2, 131.2, 128.5, 127.4, 122.5, 122.0, 110.2, 109.6, 98.6, 42.5, 21.4; HRMS (ESI) calculated for [M+H]⁺ (C₁₃H₁₂NO₂) m/z 214.0864, found 214.0886.

8-methoxy-3-methylene-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (**2p**). White solid, 19.5 mg, 86%; MP: 151-153°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.31 (s, 1H), 7.17 (d, *J* = 9.6 Hz, 1H), 7.04 - 7.00 (m, 2H), 5.01 (s, 1H), 4.77 (s, 2H), 4.72 (s, 1H), 3.78 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 156.1, 155.4, 148.7, 132.2, 127.6, 122.2, 118.6, 110.9, 110.1, 102.7, 98.6, 55.7, 42.5; HRMS (ESI) calculated for [M+H]⁺ (C₁₃H₁₂NO₃) m/z 230.0813, found 230.0822.

(*Z*)-3-benzylidene-7-methoxy-3,4-dihydro-1*H*-[1,4] oxazino[4,3-a] indol-1-one (2*q*). White solid, 23 mg, 76%; MP: 137-139°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.8 Hz, 2H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.46 (s, 1H), 7.38 (dd, *J* = 7.6, 7.5 Hz, 2H), 7.29 (dd, *J* = 7.4, 7.2 Hz, 1H), 6.89 (d, *J* = 8.8 Hz, 1H), 6.73 (s, 1H), 5.95 (s, 1H), 4.92 (s, 2H), 3.92 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 159.8, 155.7, 141.2, 137.7, 132.7, 129.4, 128.6, 128.0, 124.3, 121.6, 120.9, 113.6, 112.9, 111.6, 91.5, 55.6, 43.8; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₆NO₃) m/z 306.1125, found 306.1136.

(*Z*)-3-ethylidene-8-methoxy-3, 4-dihydro-1*H*-[1,4]oxazino[4,3-a]indol-1-one (2*r*). White solid, 16 mg, 67%; MP: 126-129°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.37 (s, 1H), 7.24 (d, *J* = 8.8 Hz, 1H), 7.12 – 7.06 (m, 2H), 5.17 (q, *J* = 6.8 Hz, 1H), 4.77 (s, 2H), 3.86 (s, 3H), 1.82 (d, *J* = 6.8 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 156.8, 155.4, 141.9, 132.1, 127.6, 123.0, 118.5, 111.0, 109.8, 109.7, 102.8, 55.8, 43.3, 10.0; HRMS (ESI) calculated for [M+H]⁺ (C₁₄H₁₄NO₃) m/z 244.0969, found 244.0981.

(*Z*)-8-methyl-3-(4-methylbenzylidene)-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2s). White solid, 22.5 mg, 74%; MP: 155-157°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.0 Hz, 2H), 7.45 (s, 1H), 7.34 (s, 1H), 7.20-7.18 (m, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 5.84 (s, 1H), 4.85 (s, 2H), 2.38 (s, 3H), 2.28 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 156.1, 140.5, 138.0, 135.1, 131.2, 129.9, 129.4, 129.3, 128.5, 127.4, 122.5, 122.1, 113.0, 110.3, 109.7, 43.8, 21.4, 21.3; HRMS (ESI) calculated for [M+H]⁺ (C₂₀H₁₈NO₂) m/z 304.1332, found 304.1329.

(Z)-3-(4-fluorobenzylidene)-8-methyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2t). White solid, 29 mg, 93%; MP: 157-159°C; column chromatography (Hexane /EtOAc = 20:3

to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.72 (dd, J = 5.9, 5.7 Hz, 2H), 7.53 (s, 1H), 7.43 (s, 1H), 7.28-7.26 (m, 2H), 7.07 (dd, J = 8.6, 8.6 Hz, 2H), 5.91 (s, 1H), 4.94 (s, 2H), 2.47 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 162.2 (d, J = 249.5 Hz), 155.8, 140.9, 135.1, 131.3, 131.2 (d, J = 8.1 Hz), 128.9 (d, J = 3.4 Hz), 128.6, 127.4, 122.6, 121.9, 115.6 (d, J = 21.5 Hz), 111.8, 110.5, 109.7, 43.7, 21.4; ¹⁹F NMR (376 MHz, CDCl₃): δ -112.7; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₅NO₂F) m/z 308.1082, found 308.1106.

(*Z*)-3-(3-bromobenzylidene)-8-methyl-3,4-dihydro-1H-[1,4] oxazino[4,3-a] indol-1-one (2**u**). White solid, 27 mg, 74%; MP: 171-173°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.79-7.74 (m, 2H), 7.52 (s, 1H), 7.42 (s, 1H), 7.40 (d, *J*= 8.3 Hz, 1H), 7.27-7.25 (m, 2H), 7.25-7.21 (m, 1H), 5.85 (s, 1H), 4.94 (s, 2H), 2.45 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.4, 142.4, 135.2, 134.8, 132.2, 132.0, 131.4, 130.9, 130.2, 128.7, 127.9, 127.5, 122.6, 121.7, 111.4, 110.7, 109.7, 43.7, 21.4; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₅NO₂Br) m/z 368.0281, found 368.0300.

(*Z*)-3-(4-chlorobenzylidene)-8-methyl-3,4-dihydro-1H-[1,4] oxazino[4,3-a] indol-1-one (**2v**). White solid, 28.5 mg, 88%; MP: 189-191°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 7.6 Hz, 2H), 7.45 (s, 1H), 7.35 (s, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.20-7.17 (m, 2H), 5.82 (s, 1H), 4.86 (s, 2H), 2.39 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.7, 141.8, 135.3, 133.8, 131.5, 131.3, 130.8, 128.9, 128.8, 127.5, 122.7, 121.9, 111.8, 110.7, 109.8, 43.8, 21.5; HRMS (ESI) calculated for [M+H]⁺ (C₁₉H₁₅NO₂Cl) m/z 324.0786, found 324.0804.

(*Z*)-3-benzylidene-8-chloro-3,4-dihydro-1H-[1,4] oxazino[4,3-a] indol-1-one (2w). White solid, 19 mg, 61%; MP: 146-148°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.76-7.71 (m, 3H), 7.44 (s, 1H), 7.42-7.36 (m, 3H), 7.34 – 7.29 (m, 2H), 5.98 (s, 1H), 4.98 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.4, 140.5, 134.8, 132.4, 129.5, 128.6, 128.2, 127.9, 127.5, 127.0, 123.2, 122.5, 113.6, 111.2, 110.1, 43.9; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₃NO₂Cl) m/z 310.0630, found 310.0647.

(Z)-3-benzylidene-8-bromo-3,4-dihydro-1H-[1,4] oxazino[4,3-a] indol-1-one (2x). White solid, 27 mg, 79%; MP: 180-182°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.84 (s, 1H), 7.66 (d, *J* = 7.5 Hz, 2H), 7.45 (dd, *J* = 8.8, 1.5 Hz, 1H), 7.36 (s, 1H), 7.31 (dd, *J* = 7.6, 7.2 Hz, 2H), 7.25-7.21 (m, 1H), 7.20 7.17 (m, 1H), 5.98 (s, 1H), 4.97 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.4, 140.5, 135.0, 132.4, 129.5, 129.5, 128.7, 128.5, 128.2, 125.7, 123.1, 115.0, 113.7, 111.5, 110.0, 43.9; HRMS (ESI) calculated for [M+H]⁺ (C₁₈H₁₃NO₂Br) m/z 354.0125, found 354.0160.

8-*chloro-3-methylene-3*,4-*dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2y)*. White solid, 12 mg, 55%; MP: 153-156°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.69 (s, 1H), 7.37-7.31 (m, 2H), 7.23 (d, *J* =8.8 1H), 5.08 (s, 1H), 4.84 (s, 2H), 4.80 (s, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 155.8, 148.2, 134.8, 127.9, 127.6,

127.0, 122.5, 111.1, 110.0, 99.2, 77.3, 42.6; HRMS (ESI) calculated for [M+H]⁺ (C₁₂H₉NO₂Cl) m/z 234.0318, found 234.0307.

8-bromo-3-methylene-3,4-dihydro-1H-1,4]oxazino[4,3-a]indol-1-one(2z). White solid, 20.5 mg, 77%; MP: 162-164°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.81 (s, 1H), 7.42 (d, *J* = 8.8 Hz, 1H), 7.31 (s, 1H), 7.16 (d, *J* = 8.8 Hz, 1 H), 5.04 (s, 1H), 4.79 (s, 2H), 4.76 (s, 1H); ¹³C {¹H} NMR (101 MHz, CDCl₃): δ 155.7, 148.2, 135.0, 129.4, 128.6, 125.7, 123.0, 115.0, 111.5, 109.8, 99.3, 42.6; HRMS (ESI) calculated for [M+H]⁺ (C₁₂H₉NO₂Br) m/z 277.9813, found 277.9832.

10 Procedure for the Synthetic Transformation Reaction of 2p:

An oven dried 10 mL round bottom flask was charged with 8-methoxy-3-methylene-3,4dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (**2p**) (0.1 mmol), Pd/C (0.01 mmol) and MeOH (1 mL) under Ar atmosphere . Subsequently, the flask was subjected to three cycles of backfilling with hydrogen gas (H₂). The reaction was stirred at room temperature under H₂ atmosphere for 12 h. After completion of reaction as indicated by TLC , solvent was evaporated under reduced pressure and the crude mixture was purified by flash chromatography (silica gel, Hexane/EtOAc = 20:3 to 20:4) to give pure solid product 3 (14.5 mg, 63 %) as a white solid. *8-methoxy-3-methyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (3)*. White solid, 14.5 mg, 63%; MP: 169-171°C; column chromatography (Hexane /EtOAc = 20:3 to 20:4); ¹H NMR (400 MHz, CDCl₃): δ 7.34 (s, 1H), 7.22 (d, *J* = 9.2 Hz, 1H), 7.12 – 7.05 (m, 2H), 4.96-4.87 (m, 1H), 4.31 (dd, *J* = 12.7, 3.2 Hz, 1H), 3.95 (dd, *J* = 12.7, 10.4 Hz, 1H), 3.86 (s, 3H), 1.60 (d, *J* = 6.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 159.8, 155.2, 132.1, 127.4, 123.4, 118.1, 110.8, 109.3, 102.7, 74.3, 55.7, 45.7, 18.4.; HRMS (ESI) calculated for [M+H]⁺ (C₁₃H₁₄NO₃) m/z 232.0969; found 232.0952.

11 Mechanistic insights

Detection of intermediate using HRMS: An oven dried 10 mL schlenk tube was charged with N-alkylated indole-2-carboxylic acid 1 (0.05 mmol), Pd(PPh₃)₄ (0.05 mmol), P(^{*n*}Bu)₃ (0.1 mmol) and toluene (150 μ L) under Ar atmosphere. Then the schlenk tube was sealed with septum, and it was left to stir for 1 h at 105 °C. After 1 h of stirring, the crude reaction mixture was injected in the HRMS instrument. HRMS (ESI) calculated for [M+H]⁺ (C₄₂H₆₈NO₂P₂Pd) m/z 786.3740; found 786.3751.

12 X-ray Crystallographic information of the product 2a

Crystal (**2a**) suitable for X-ray crystallography was obtained from recrystallization of the solid in DCM and hexane combination using vapour phase diffusion method at room temperature.

Figure S3. Crystal structure of product 2a

Figure S4. ORTEP view of **2a** with thermal ellipsoids drawn at 50% probability level.

13 Crystal Data of 2a:

Table 53 Crystal data and stru	cture refinement for sJp-smc-pm_au
Identification code	sJp-smc-pm_auto
Empirical formula	$C_{18}H_{13}NO_2$
Formula weight	275.309
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P21/n
a/Å	7.4846(2)
b/Å	6.6085(2)
c/Å	27.8900(8)
α/°	90
β/°	96.294(2)
$\gamma/^{\circ}$	90
Volume/Å ³	1371.18(7)
Z	4
$\rho_{calc}g/cm^3$	1.334
μ/mm^{-1}	0.702
F(000)	577.9
Crystal size/mm ³	$0.32 \times 0.29 \times 0.16$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	11.98 to 158.54
Index ranges	$-9 \le h \le 9, -8 \le k \le 7, -35 \le l \le 35$
Reflections collected	11916
Independent reflections	2932 [$R_{int} = 0.0467, R_{sigma} = 0.0410$]
Data/restraints/parameters	2932/0/190
Goodness-of-fit on F ²	1.149
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0648, wR_2 = 0.1493$
Final R indexes [all data]	$R_1 = 0.0698, wR_2 = 0.1518$
Largest diff. peak/hole / e Å ⁻³	0.44/-0.31

Table S3 Crystal data and structure refinement for sJp-smc-pm_auto.

Table S4 Fractional Atomic Coordinates (×10 ⁴) and	Equivalent Isot	tropic Displacement
Parameters ($Å^2 \times 10^3$) for sJp-smc-pm_auto. U _{eq} is	defined as 1/3	of the trace of the
orthogonalised U _I tensor.		

Atom	x	у	Z	U(eq)
O2	6964(2)	7433(3)	3769.6(6)	27.5(4)
01	6200(2)	10108(3)	4179.3(7)	32.4(4)
N1	7554(2)	5155(3)	4603.9(7)	21.8(4)
C1	6647(3)	8330(4)	4192.7(9)	26.2(5)
C9	7497(3)	3436(4)	6016.5(9)	32.9(6)
C3	8197(3)	4343(4)	4171.2(8)	24.0(5)
C14	5853(3)	3968(5)	2464.6(9)	34.2(6)
C6	6993(3)	5799(4)	5364.0(8)	23.1(5)
C8	6898(3)	5302(4)	5855.3(9)	29.4(5)
C11	8298(3)	2450(4)	5227.1(9)	25.1(5)
C17	4090(4)	7657(5)	2363.9(10)	40.1(7)
C2	6876(3)	7086(4)	4623.5(8)	23.4(5)
C16	4207(4)	6437(6)	1962.5(10)	46.3(8)
C12	6657(3)	4384 (4)	3329.8(9)	26.5(5)
C15	5087(4)	4605(6)	2014.1(10)	44.3(8)
C13	5775(3)	5192(4)	2869.8(8)	27.3(5)
C10	8195(3)	2032(4)	5708.7(9)	31.0(6)
C7	7673(3)	4344(3)	5057.8(8)	20.7(5)
C18	4880(3)	7048(4)	2813.7(9)	31.8(6)
C4	7206(3)	5333(4)	3738.3(9)	23.7(5)
C5	6503(3)	7529(4)	5083.8(9)	25.6(5)

Table S5 Anisotropic Displacement Parameters (Å2×103) for sJp-smc-pm_auto. The
Anisotropic displacement factor exponent takes the form:
 $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atom	U ₁₁	U_{22}	U 33	U_{12}	U ₁₃	U 23
O2	33.0(9)	22.2(8)	26.8(8)	-2.8(7)	1.4(7)	0.3(7)
01	39.7(10)	17.7(8)	38.8(10)	-2.6(7)	0.6(8)	-1.8(7)
N1	19.0(9)	21.9(10)	23.7(9)	-2.0(7)	-0.7(7)	0.3(8)
C1	25.6(11)	23.0(12)	29.3(12)	-7.2(9)	-0.2(9)	-4.8(10)
C9	26.1(12)	45.6(16)	25.6(12)	-12.8(11)	-3.2(9)	5.0(11)
C3	23.4(11)	22.8(11)	25.6(11)	-0.7(9)	1.3(9)	-1.8(9)
C14	25.6(12)	45.7(16)	31.0(13)	2.8(11)	1.9(10)	-8.0(12)
C6	15.0(9)	26.9(12)	26.6(11)	-4.0(9)	-1.7(8)	-4.9(9)
C8	20.1(11)	40.9(15)	26.7(12)	-8.4(10)	1.2(9)	-6.8(11)
C11	20.0(10)	24.1(12)	29.6(12)	-3.5(9)	-4.2(9)	1.9(9)
C17	28.3(13)	51.4(18)	40.0(15)	6.6(13)	1.0(11)	7.7(13)
C2	20.0(10)	20.2(11)	29.4(12)	-3.5(9)	-0.8(9)	-2.8(9)
C16	32.8(14)	79(2)	25.7(13)	6.7(15)	-3.1(11)	4.8(14)
C12	22.6(11)	28.1(12)	28.4(12)	-0.5(9)	0.8(9)	-2.1(10)
C15	32.9(14)	71(2)	27.6(13)	3.0(14)	-3.1(11)	-12.8(14)
C13	18.3(10)	38.9(14)	24.3(11)	-2.3(10)	0.7(8)	-2.1(10)
C10	28.2(12)	31.1(13)	31.3(13)	-7.7(10)	-7.8(10)	9.1(11)
C7	15.4(9)	21.9(11)	23.5(11)	-5.3(8)	-3.2(8)	0.9(9)
C18	23.7(11)	42.0(15)	29.4(13)	1.1(11)	2.0(10)	-2.2(11)
C4	20.1(10)	21.5(11)	29.0(12)	-3.3(9)	-0.2(9)	-0.0(9)
C5	19.9(10)	26.1(12)	30.0(12)	-2.7(9)	-0.4(9)	-6.6(10)

Table S6 Bond Lengths for sJp-smc-pm_auto.

Tuble bo Dona Dengens for syp sine pin_auto.							
Atom Atom		Length/Å	Aton	nAtom	Length/Å		
O2	C1	1.364(3)	C6	C8	1.419(3)		
O2	C4	1.404(3)	C6	C7	1.417(3)		
01	C1	1.221(3)	C6	C5	1.410(3)		
N1	C3	1.450(3)	C11	C10	1.382(3)		
N1	C2	1.377(3)	C11	C7	1.400(3)		
N1	C7	1.369(3)	C17	C16	1.390(4)		
C1	C2	1.450(3)	C17	C18	1.387(4)		
C9	C8	1.371(4)	C2	C5	1.375(3)		
C9	C10	1.403(4)	C16	C15	1.378(5)		
C3	C4	1.496(3)	C12	C13	1.477(3)		
C14	C15	1.388(4)	C12	C4	1.326(3)		
C14	C13	1.396(4)	C13	C18	1.398(4)		
Table	S7]	Bond	Angles	for sJ	p-smc-j	om_au	to.
-------	-------------	------	--------	--------	---------	-------	-----
						_	

Atom Atom Atom		Atom	Angle/°	Atom Atom Atom		n Atom	Angle/°
C4	O2	C1	121.25(19)	C5	C2	N1	110.4(2)
C2	N1	C3	122.23(19)	C5	C2	C1	129.4(2)
C7	N1	C3	129.1(2)	C15	C16	C17	119.8(3)
C7	N1	C2	108.24(19)	C4	C12	C13	130.0(2)
01	C1	O2	117.7(2)	C16	C15	C14	120.4(3)
C2	C1	O2	117.0(2)	C12	C13	C14	116.1(2)
C2	C1	01	125.3(2)	C18	C13	C14	118.7(2)
C10	C9	C8	121.6(2)	C18	C13	C12	125.3(2)
C4	C3	N1	109.25(19)	C11	C10	C9	121.8(2)
C13	C14	C15	120.5(3)	C6	C7	N1	107.5(2)
C7	C6	C8	119.0(2)	C11	C7	N1	130.3(2)
C5	C6	C8	133.3(2)	C11	C7	C6	122.2(2)
C5	C6	C7	107.7(2)	C13	C18	C17	120.5(3)
C6	C8	C9	118.4(2)	C3	C4	O2	116.0(2)
C7	C11	C10	117.0(2)	C12	C4	O2	119.4(2)
C18	C17	C16	120.2(3)	C12	C4	C3	124.5(2)
C1	C2	N1	120.2(2)	C2	C5	C6	106.1(2)

Table S8 Torsion Angles for sJp-smc-pm_auto.

ABCD	Angle/°	A B C D	Angle/°
O2C1C2 N1	6.2(2)	C1 C2 C5 C6	-179.4(3)
O2C1C2 C5	- 173.73(19)	C9 C8 C6 C7	1.0(2)
O2C4C3 N1	43.2(2)	C9 C8 C6 C5	179.7(2)
O2C4C12C13	-0.1(3)	C9 C10C11C7	0.0(3)
O1C1C2 N1	-173.6(2)	C3 C4 C12C13	-175.8(2)
O1C1C2 C5	6.5(3)	C14C15C16C17	0.2(4)
N1C3C4 C12	- 140.90(19)	C14C13C12C4	161.0(2)
N1C2C5 C6	0.7(2)	C14C13C18C17	-0.1(3)
N1C7C6 C8	177.54(17)	C6 C7 C11C10	1.1(2)
N1C7C6 C5	-1.47(19)	C17C18C13C12	-179.7(2)
N1C7C11C10	-177.9(2)		

Atom	x	у	Z.	U(eq)
H9	7439(3)	3085(4)	6344.7(9)	39.5(7)
H3a	9502(3)	4601(4)	4177.1(8)	28.9(6)
H3b	7999(3)	2863(4)	4156.2(8)	28.9(6)
H14	6434(3)	2690(5)	2497.4(9)	41.0(7)
H8	6431(3)	6240(4)	6067.7(9)	35.2(7)
H11	8772(3)	1494(4)	5020.0(9)	30.1(6)
H17	3468(4)	8910(5)	2330.0(10)	48.1(8)
H16	3682(4)	6865(6)	1653.6(10)	55.6(10)
H12	6864(3)	2965(4)	3333.6(9)	31.8(6)
H15	5170(4)	3773(6)	1739.6(10)	53.1(9)
H10	8608(3)	759(4)	5834.9(9)	37.2(7)
H18	4812(3)	7899(4)	3085.8(9)	38.1(7)
H5	6015(3)	8754(4)	5191.4(9)	30.7(6)

Table S9 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for sJp-smc-pm_auto.

14 References:

- (1) A. J. Fugard, B. K. Thompson, A. M. Z. Slawin, J. E. Taylor and A. D. Smith, *Org. Lett.*, 2015, **17**, 5824–5827.
- (2) S. Basceken, S. Kaya and M. Balci, J. Org. Chem., 2015, 80, 12552-12561.
- (3) R. Pedrazzani, E. Pinosa, G. Bertuzzi, M. Monari, S. Lauzon, T. Ollevier and M. Bandini, Chem. Commun., 2022, **58**, 8698–8701
- (4) S. Hammoud, E. Anselmi, K. Cherry, J.-C. Kizirian and J. Thibonnet, *European J. Org. Chem.*, 2018, **2018**, 6314–6327.
- (5) S. Taskaya, N. Menges and M. Balci, Beilstein J. Org. Chem., 2015, **11**, 897–905

15 NMR spectral data of starting materials:

<232 532 433 432 428 $\left\{ \sum_{2.19}^{2.19} \right\}$ L134 | ||| CI 0Et S3e 0.98-1.06 1.06 2.13**H** 2.00-<u>■-76.0</u> 3.26.1 7.5 4.5 4.0 f1 (ppm) 5.5 5.0 3.5 .5 9.0 8.5 8.0 7.0 6.5 6.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

¹H NMR of **S3e** (400 MHz, CDCl₃)

¹³C{1H} NMR of **S3e** (101 MHz, CDCl₃)

¹H NMR of **1a** (400 MHz, DMSO)

¹³C{1H} NMR of **1a** (101 MHz, DMSO)

¹H NMR of **1b** (400 MHz, DMSO)

$^{13}\mathrm{C}\{1\mathrm{H}\}$ NMR of $\mathbf{1c}$ (101 MHz, DMSO)

¹³C{1H} NMR of **1d** (101 MHz, DMSO)

$^{13}\mathrm{C}\{1\mathrm{H}\}$ NMR of $\mathbf{1f}$ (101 MHz, DMSO)

¹³C{1H} NMR of **1g** (101 MHz, DMSO)

¹³C{1H} NMR of **1h** (101 MHz, CDCl₃)

$^{13}\mathrm{C}\{1\mathrm{H}\}$ NMR of $1\mathrm{i}$ (101 MHz, DMSO)

14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. fl (ppm)

¹³C{1H} NMR of **1***j* (101 MHz, DMSO)

¹³C{1H} NMR of **1k** (101 MHz, DMSO)

4.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -C f1 (ppm)

$^{13}\mathrm{C}\{1\mathrm{H}\}$ NMR of **1l** (101 MHz, DMSO)

S52

¹³C{1H} NMR of **1m** (101 MHz, DMSO)

¹³C{1H} NMR of **10** (101 MHz, DMSO)

¹³C{1H} NMR of **1p** (101 MHz, DMSO)

¹³C{1H} NMR of **1q** (101 MHz, DMSO)

¹³C{1H} NMR of **1r** (101 MHz, DMSO)

¹³C{1H} NMR of **1s** (101 MHz, DMSO)

S59

¹³C{1H} NMR of **1t** (101 MHz, DMSO)

¹H NMR of **1u** (400 MHz, DMSO)

¹H NMR of 1v (400 MHz, DMSO)

¹H NMR of $\mathbf{1w}$ (101 MHz, DMSO)

100 90 f1 (ppm)

¹H NMR of 1x (400 MHz, DMSO)

$^{13}\mathrm{C}\{1\mathrm{H}\}$ NMR of $\mathbf{1x}$ (101 MHz, DMSO)

¹H NMR of **1y** (400 MHz, DMSO)

¹H NMR of 1z (400 MHz, DMSO)

16 NMR spectral data of final products:

¹H NMR of 2a (400 MHz, CDCl₃)

10 (

¹H NMR of **2b** (400 MHz, CDCl₃)

¹³C{1H} NMR of **2b** (101 MHz, CDCl₃)

¹H NMR of **2c** (400 MHz, CDCl₃)

¹³C{1H} NMR of **2c** (101 MHz, CDCl₃)

7.5

7.0

6.5

6.0

5.5

8.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

4.0 f1 (ppm)

5.0

4.5

¹³C{1H} NMR of **2d** (101 MHz, CDCl₃)

¹³C{1H} NMR of **2e** (101 MHz, CDCl₃)

¹³C{1H} NMR of **2f** (101 MHz, CDCl₃)

 $^{13}\text{C}\{1\text{H}\}$ NMR of **2g** (101 MHz, CDCl₃)

 $^{13}\text{C}\{1\text{H}\}$ NMR of 2h (101 MHz, CDCl₃)

¹³C{1H} NMR of **2j** (101 MHz, CDCl₃)

$^{13}C\{1H\}$ NMR of 2k (101 MHz, CDCl₃)

1.06. 0.98 1.14 2.02 2.02 1.00 1.02-≖ 2.00-5.5 5.0 f1 (ppm) 1.0 10.5 10.0 7.5 6.5 0.0 -0. 9.5 9.0 8.5 8.0 7.0 6.0 4.5 4.0 3.5 2.5 2.0 1.5 1.0 0.5 3.0

¹³C{1H} NMR of **2l** (101 MHz, CDCl₃)

 $^{13}\text{C}\{1\text{H}\}$ NMR of 2m (101 MHz, CDCl₃)

$^{13}\text{C}\{1\text{H}\}$ NMR of 2n (101 MHz, CDCl₃)

¹H NMR of **20** (400 MHz, CDCl₃)

¹³C{1H} NMR of **20** (101 MHz, CDCl₃)

¹³C{1H} NMR of **2q** (101 MHz, CDCl₃)

$^{13}C\{1H\}$ NMR of 2r (101 MHz, CDCl₃)

¹³C{1H} NMR of **2s** (101 MHz, CDCl₃)

¹³C{1H} NMR of **2t** (101 MHz, CDCl₃)

¹H NMR of **2v** (400 MHz, CDCl₃)

¹H NMR of **2w** (400 MHz, CDCl₃)

¹H NMR of **2x** (400 MHz, CDCl₃)

¹³C{1H} NMR of **2x** (101 MHz, CDCl₃)

¹H NMR of **2z** (400 MHz, CDCl₃)

100 90 f1 (ppm)

¹H NMR of **3** (400 MHz, CDCl₃)

