Supplementary Information

Visible Light-Enabled Synthesis of Phosphorylated Indolizine and Pyridoindole Derivatives via HAT-Mediated Radical Cascade Cyclization

Kunrong Shen,^{*a*} Chuan Feng,^{*a*} Yilei Liu,^{*a*} Dong Yi,^{*a*} Peng Lin,^{*a*} Huifang Li,^{*a*} Yimou Gong,^{*a*} Siping Wei,^{**a*}, Qiang Fu^{**a*} and Zhijie Zhang^{**a*, *b*}

^{a.} Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.

^{b.} State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China.

*E-mail: zzj30@swmu.edu.cn; fuqiang@swmu.edu.cn; swei1225@swmu.edu.cn.

Contents

1. General information	S1
2. Synthesis of starting materials	S3
3. Reaction optimization	S4
4. Experimental procedures	S5
4.1 Typical experimental procedures	S5
4.2 Scaled up reaction	S5
4.3 The application of the reaction in structural modification	S6
4.4 The derivatization of products	S6
5. Characterization data for substrates and products	
6. Mechanistic studies	S36
6.1 Radical inhibition experiments	S36
6.2 The detection of intermediates with LC-HRMS analysis	S36
6.3 Control experiments	S38
6.4 Cyclic voltammetry test	S39
6.5 The plausible reaction pathway	S41
7. Supplementary references	S43
8. Copies of NMR spectra for synthesized compounds	S44

1. General information

All reagents and starting materials, unless otherwise noted, were purchased from Bidepharm, Innochem, J&K Scientific, Macklin, Leyan, Aladdin and Adamas-beta® Chemical companies as reagent grade and used without further purification. Anhydrous solvents (including MeCN, CH₂Cl₂, DCE, DMF, THF, Water < 0.005%) were purchased from Innochem and J&K Scientific, and used as received. ¹H NMR, ¹³C NMR, ¹⁹F NMR, and ³¹P NMR spectra were obtained with a Bruker AV II-400 spectrometer (1H: 400 MHz, 13C: 101 MHz, 19F: 376 MHz, 31P: 162 MHz). The chemical shifts of ¹H NMR spectra were reported using either tetramethylsilane ($\delta = 0.00$ ppm) or residual solvent signal of CD₃OD (δ = 3.31 ppm) as internal reference. The chemical shifts of ¹³C NMR spectra were reported using solvent signal of CDCl₃ ($\delta = 77.16$ ppm) or CD₃OD ($\delta = 49.00$ ppm) as internal reference. The chemical shifts (δ) were expressed in ppm and J values were given in Hz. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t =triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, and br = broad. TLC was performed using commercially prepared silica gel plates (GF254) and visualized under UV light 254 nm. Flash column chromatography was performed on silica gel (100-200 mesh). All mixed solvent eluents are reported as v/v solutions. The blue LEDs (460 nm) were purchased from LY&OY' STAR. Mass analysis data were acquired on a SCIEX UPLC (EXion) – QTOF (X500R) and Agilent Technologies UPLC (1290)-QTOF (6550). Melting points were measured using a Hanon MP470 apparatus.

4DPAIPN

4CzIPN

3DPAFIPN

3DPA2FBN

3CzCIIPN

Figure S1. The structures of photocatalysts in reaction conditions optimization

2. Synthesis of starting materials

The starting materials **1a-1z** were synthesized following the reported procedures.^{1, 2}

The starting materials 4a-4h were synthesized following the reported procedures.²

3. Reaction optimization

Table S1.	Optimization	of the Reaction	Conditions. ^{<i>a</i>}
-----------	--------------	-----------------	---------------------------------

O Ph	+ 0 HP(OEt) ₂ -	Photocatalyst, additive Base, CH ₃ CN/H ₂ O Blue LEDs (30 W), Ar, rt	→ O Ph	N P(OEt) ₂
1a	2a			3aa
Entry	Photocatalyst	Additive	Base	Yield (%)
1	4DPAIPN	TBHP	Cs_2CO_3	48
2	4DPAIPN	BPO	Cs_2CO_3	ND
3	4DPAIPN	LPO	Cs_2CO_3	28
4	4DPAIPN	DCP	Cs_2CO_3	57
5	4DPAIPN	DTBP	NaHCO ₃	22
6	4DPAIPN	DTBP	DABCO	ND
7^b	4DPAIPN	DTBP	Cs ₂ CO ₃	41

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), photocatalyst (2 mol%), additive (0.3 mmol), base (0.4 mmol), CH₃CN (2 mL), H₂O (10 μ L), blue LEDs (30 W), argon atmosphere, rt, 12 h. ND: Not detected. The yield was determined by ¹H NMR spectroscopy using dibromomethane as an internal standard. Isolated yield is based on **1a**. ^{*b*} H₂O (0 μ L).

4. Experimental procedures

4.1 Typical experimental procedures

An oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with 4DPAIPN (2 mol%) and Cs₂CO₃ (0.4 mmol, 2.0 eq.). The tube was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, dry MeCN (2 mL), H₂O (10 μ L), the substrate **1** or **4** (0.2 mmol, 1.0 eq.), **2** (0.4 mmol, 2 eq.) and DTBP (0.3 mmol, 1.5 eq.) were added under Ar flow. The tube was placed approximately 2 cm from blue LEDs and stirred at room temperature for 12 h. After completion, the mixture was filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography on silica gel with PE/EtOAc as eluent to afford the desired product **3** or **5**.

4.2 Scaled up reaction

An oven-dried Schlenk tube (100 mL) equipped with a stirring bar was charged with 4DPAIPN (70.1 mg, 0.088 mmol) and Cs₂CO₃ (2.87 g, 8.8 mmol). The tube was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, dry MeCN (44 mL), H₂O (220 μ L), the substrate 1a (1.06 g, 4.4 mmol), 2a (1.13 g, 8.8 mmol) and DTBP (965.1 mg, 6.6 mmol) were added under Ar flow. The tube was placed approximately 2 cm from blue LEDs and stirred at room temperature for 12 h. After completion, the mixture was filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography on silica gel with PE/EtOAc (1:2) as eluent to afford the desired product 3aa (888.2 mg, 54% yield).

4.3 The application of the reaction in structural modification

An oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with 4DPAIPN (3.2 mg, 2 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol). The tube was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, dry MeCN (2 mL), H₂O (10 μ L), the substrate **6a** (47.9 mg, 0.2 mmol), diethyl phosphite **2** (55.2 mg, 0.4 mmol) and DTBP (43.9 mg, 0.3 mmol) were added under Ar flow. The tube was placed approximately 2 cm from blue LEDs and stirred at room temperature for 12 h. After completion, the mixture was filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography on silica gel with PE/EtOAc (1:2) as eluent to afford the desired product **7aa** (49.6 mg, 54% yield).

4.4 The derivatization of products

An oven-dried two-necked flask (25 mL) equipped with a stirring bar was charged with **3aa** (187.9 mg, 0.5 mmol). The flask was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, dry CH_2Cl_2 (1.8 mL), TMSBr (225.6 mg, 1.5 mmol) were added under Ar flow. The resulting mixture was stirred at room temperature under Ar atmosphere for 3 h. Then, the mixture was concentrated *in vacuo*. The resulting residue was dissolved in MeOH and stirred at room temperature for 1 h. After completion, the mixture was concentrated *in vacuo* and purified by flash column chromatography on silica gel with $CH_2Cl_2/MeOH$ (20:1) as eluent to afford the desired product **8aa** (45.9 mg, 29% yield).

An oven-dried two-necked flask (50 mL) equipped with a stirring bar was charged with **3aa** (187.9 mg, 0.5 mmol) and Lawesson's reagent (409.1 mg, 1.0 mmol). The flask was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, toluene (22.7 mL), HMPA (0.2 mL) were added under Ar flow. The resulting mixture was refluxed under Ar atmosphere for 2.5 h. After completion, the mixture was concentrated *in vacuo*. The resulting residue was purified by flash column chromatography on silica gel with PE/EtOAc as eluent to afford the desired product **9aa** (131.9 mg, 73% yield).

5. Characterization data for substrates and products

(1-(1-(pent-4-en-1-yl)-1*H*-pyrrol-2-yl)(*p*-tolyl) methanone (1d)

Yellow liquid, 158.9 mg, 45% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 – 7.68 (m, 2H), 7.28 – 7.21 (m, 2H), 6.99 – 6.93 (m, 1H), 6.73 (dd, *J* = 4.0, 1.7 Hz, 1H), 6.15 (dd, *J* = 4.0, 2.5 Hz, 1H), 5.82 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.09 – 4.97 (m, 2H), 4.43

- 4.37 (m, 2H), 2.42 (s, 3H), 2.14 - 2.06 (m, 2H), 1.97 - 1.88 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 186.1, 142.0, 137.8, 137.5, 130.6, 130.0, 129.5, 128.8, 123.2, 115.4, 108.1, 49.0, 30.9, 30.9, 21.7.

HRMS (ESI) calcd for C₁₇H₂₀NO[M+H]⁺: 254.1539. Found: 254.1544.

(1-(pent-4-en-1-yl)-1*H*-pyrrol-2-yl)(4-propylphenyl)methanone (1e)

Yellow liquid, 522.6 mg, 93% yield.

1H NMR (400 MHz, Chloroform-*d*) δ 7.76 – 7.70 (m, 2H), 7.28 – 7.22 (m, 2H), 6.95 (t, *J* = 2.1 Hz, 1H), 6.74 (dd, *J* = 4.0, 1.7 Hz, 1H), 6.15 (dd, *J* = 4.1, 2.5 Hz, 1H), 5.82 (ddt, *J* = 16.9, 10.2, 6.5 Hz, 1H), 5.08 – 4.96 (m, 2H), 4.40 (t, *J* = 7.2 Hz, 2H), 2.65 (t, *J* = 7.6 Hz, 2H), 2.14 – 2.06 (m, 2H), 1.97

-1.88 (m, 2H), 1.73 - 1.61 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 186.1, 146.7, 137.8, 137.8, 130.5, 130.0, 129.5, 128.2, 123.2, 115.4, 108.1, 49.0, 38.1, 30.88, 30.86, 24.5, 13.9.

HRMS (ESI) calcd for C₁₉H₂₄NO[M+H]⁺: 282.1852. Found: 282.1859.

(4-(tert-butyl) phenyl)(1-(pent-4-en-1-yl)-1H-pyrrol-2-yl)methanone (1f)

Yellow liquid, 156.1mg, 26% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 – 7.71 (m, 2H), 7.48 – 7.43 (m, 2H), 6.96 (t, *J* = 2.1 Hz, 1H), 6.76 (dd, *J* = 4.0, 1.7 Hz, 1H), 6.15 (dd, *J* = 4.0, 2.5 Hz, 1H), 5.81 (ddt, *J* = 16.9, 10.2, 6.5 Hz, 1H), 5.08 – 4.96 (m, 2H), 4.40 (t, *J* = 7.2 Hz, 2H), 2.14 – 2.05 (m, 2H), 1.97 – 1.87 (m, 2H),

1.36 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 186.0, 155.0, 137.8, 137.4, 130.5, 130.0, 129.3, 125.1, 123.3, 115.4, 108.1, 49.0, 35.1, 31.3, 30.9, 30.8.

HRMS (ESI) calcd for C₂₀H₂₅NNaO[M+Na]⁺: 318.1828. Found: 318.1834.

(4-(benzyloxy) phenyl)(1-(pent-4-en-1-yl)-1*H*-pyrrol-2-yl)methanone (1g)

Yellow liquid, 240.8 mg, 99% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.84 – 7.79 (m, 2H), 7.46 – 7.36 (m, 4H), 7.36 – 7.30 (m, 1H), 7.04 – 6.98 (m, 2H), 6.94 (t, *J* = 2.1 Hz,

1H), 6.72 (dd, J = 4.0, 1.7 Hz, 1H), 6.14 (dd, J = 4.0, 2.5 Hz, 1H), 5.81

(ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.12 (s, 2H), 5.07 – 4.96 (m, 2H), 4.41 – 4.35 (m, 2H), 2.12 – 2.05 (m, 2H), 1.95 – 1.87 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.1, 161.7, 137.8, 136.5, 133.0, 131.6, 130.3, 130.0, 128.8, 128.3, 127.6, 122.7, 115.4, 114.3, 108.0, 70.2, 48.9, 30.9 (overlap).

HRMS (ESI) calcd for C₂₃H₂₄NO₂[M+H]⁺: 346.1802. Found: 346.1801.

4-(1-(pent-4-en-1-yl)-1*H*-pyrrole-2-carbonyl)benzonitrile (1h)

Yellow liquid, 158.8 mg, 60% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.82 (m, 2H), 7.77 – 7.72 (m, 2H), 7.06 – 7.01 (m, 1H), 6.68 (dd, *J* = 4.1, 1.7 Hz, 1H), 6.19 (dd, *J* = 4.1, 2.5 Hz, 1H), 5.83 (ddt, *J* = 16.9, 10.2, 6.5 Hz, 1H), 5.10 – 4.99 (m, 2H), 4.45 – 4.37 (m, 2H), 2.15 – 2.08 (m, 2H), 1.98 – 1.88 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 183.9, 144.1, 137.6, 132.07, 132.06, 129.6, 129.1, 124.3, 118.4, 115.6, 114.7, 108.9, 49.3, 30.8, 30.7.

HRMS (ESI) calcd for C₁₇H₁₇N₂O[M+H]⁺: 265.1335. Found: 265.1339.

(4-fluorophenyl) (1-(pent-4-en-1-yl)-1*H*-pyrrol-2-yl)methanone (1i)

Yellow liquid, 96.7 mg, 38% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.85 – 7.79 (m, 2H), 7.16 – 7.09 (m, 2H), 7.01 – 6.96 (m, 1H), 6.71 (dd, *J* = 4.0, 1.7 Hz, 1H), 6.17 (dd, *J* = 4.1, 2.5 Hz, 1H), 5.82 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.08 – 4.98 (m, 2H), 4.44

- 4.36 (m, 2H), 2.14 - 2.07 (m, 2H), 1.97 - 1.88 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 184.7, 164.9 (d, *J* = 252.0 Hz), 137.7, 136.5 (d, *J* = 2.9 Hz), 131.7 (d, *J* = 8.8 Hz), 131.0, 129.7, 123.4, 115.5, 115.2 (d, *J* = 21.7 Hz), 108.4, 49.1, 30.9, 30.8.
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.2.

HRMS (ESI) calcd for C₁₆H₁₇FNO[M+H]⁺: 258.1289. Found: 258.1297.

(1-(pent-4-en-1-yl)-1*H*-pyrrol-2-yl) (*m*-tolyl)methanone (1j)

Yellow liquid, 308.6 mg, 61% yield.

¹**H NMR** (400 MHz, Chloroform-d) δ 7.63 – 7.53 (m, 2H), 7.36 – 7.27 (m, 2H), 6.96 (t, J = 2.1 Hz, 1H), 6.73 (dd, J = 4.0, 1.7 Hz, 1H), 6.15 (dd,

J = 4.1, 2.5 Hz, 1H), 5.82 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.09 – 4.97 (m, 2H), 4.44 – 4.37 (m, 2H), 2.41 (s, 3H), 2.14 – 2.06 (m, 2H), 1.97 – 1.88 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 186.4, 140.3, 137.9, 137.8, 132.2, 130.7, 130.0, 129.8, 127.9, 126.5, 123.5, 115.4, 108.1, 49.1, 30.85, 30.82, 21.5.

HRMS (ESI) calcd for C₁₇H₁₉NNaO[M+Na]⁺: 276.1359. Found: 276.1361.

(3-methoxyphenyl)(1-(pent-4-en-1-yl)-1*H*-pyrrol-2-yl)methanone (1k)

Yellow liquid, 102.2 mg, 76% yield. ¹**H NMR** (400 MHz, Chloroform-d) δ 7.39 – 7.31 (m, 3H), 7.09 – 7.05

(m, 1H), 7.00 – 6.95 (m, 1H), 6.77 (dd, J = 4.1, 1.7 Hz, 1H), 6.16 (dd, J = 4.0, 2.5 Hz, 1H), 5.82 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.09 – 4.98 (m, 2H), 4.45 – 4.36 (m, 2H),

3.85 (s, 3H), 2.15 – 2.08 (m, 2H), 1.97 – 1.89 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.9, 159.5, 141.6, 137.8, 131.0, 129.8, 129.1, 123.7, 122.0,

117.9, 115.5, 113.8, 108.3, 55.5, 49.1, 30.9, 30.8.

HRMS (ESI) calcd for C₁₇H₂₀NO₂[M+H]⁺: 270.1489. Found: 270.1495.

(3-chlorophenyl)(1-(pent-4-en-1-yl)-1H-pyrrol-2-yl)methanone (11)

Yellow liquid, 130.9 mg, 48% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.76 (t, *J* = 1.9 Hz, 1H), 7.68 –

7.63 (m, 1H), 7.52 – 7.46 (m, 1H), 7.38 (t, *J* = 7.8 Hz, 1H), 6.99 (t, *J* =

2.1 Hz, 1H), 6.73 (dd, *J* = 4.1, 1.7 Hz, 1H), 6.17 (dd, *J* = 4.1, 2.5 Hz, 1H), 5.82 (ddt, *J* = 16.9, 10.2, 6.5 Hz, 1H), 5.09 – 4.98 (m, 2H), 4.44 – 4.36 (m, 2H), 2.14 – 2.07 (m, 2H), 1.96 – 1.88 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 184.4, 141.9, 137.7, 134.3, 131.4, 131.3, 129.5, 129.4, 129.3,

127.3, 123.9, 115.5, 108.6, 49.2, 30.82, 30.76.

HRMS (ESI) calcd for C₁₆H₁₇ClNO[M+H]⁺: 274.0993. Found: 274.0992.

(1-(pent-4-en-1-yl)-1*H*-pyrrol-2-yl)(3-(trifluoromethyl)phenyl)methanone (1m)

Yellow liquid, 612.3 mg, 99% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.05 (s, 1H), 7.96 (d, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.02 (t, *J*

= 2.1 Hz, 1H), 6.71 (dd, *J* = 4.1, 1.7 Hz, 1H), 6.19 (dd, *J* = 4.1, 2.5 Hz, 1H), 5.83 (ddt, *J* = 16.9, 10.2, 6.5 Hz, 1H), 5.10 – 4.99 (m, 2H), 4.45 – 4.39 (m, 2H), 2.16 – 2.09 (m, 2H), 1.99 – 1.90 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 184.3, 140.9, 137.6, 132.4 (m), 131.7, 130.7 (q, *J* = 32.7 Hz), 129.3, 128.7, 127.8 (q, *J* = 3.7 Hz), 126.0 (q, *J* = 3.9 Hz), 124.01, 123.95 (q, *J* = 272.5 Hz), 115.5, 108.7, 49.2, 30.8, 30.7.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ –62.7.

HRMS (ESI) calcd for C₁₇H₁₇F₃NO[M+H]⁺: 308.1257. Found: 308.1260.

(3,4-dimethoxyphenyl)(1-(pent-4-en-1-yl)-1*H*-pyrrol-2-yl)methanone (1n)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.48 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.43 (d, *J* = 2.0 Hz, 1H), 6.97 (dd, *J* = 2.5, 1.7 Hz, 1H), 6.90 (d, *J* = 8.3 Hz, 1H), 6.76 (dd, *J* = 4.0, 1.7 Hz, 1H), 6.16 (dd, *J* = 4.0, 2.5 Hz,

1H), 5.82 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.08 – 4.97 (m, 2H), 4.42 – 4.36 (m, 2H), 3.95 (s, 3H), 3.94 (s, 3H), 2.14 – 2.07 (m, 2H), 1.97 – 1.89 (m, 2H).

Yellow liquid, 167.4 mg, 56% yield.

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.0, 152.2, 148.8, 137.7, 132.8, 130.3, 129.9, 123.8, 122.6, 115.4, 111.9, 109.8, 108.0, 56.1, 56.0, 48.9, 30.9 (overlap).

HRMS (ESI) calcd for C₁₈H₂₂NO₃[M+H]⁺: 300.1594. Found: 300.1600.

(1-(pent-4-en-1-yl)-1*H*-pyrrol-3-yl)(phenyl)methanone (10)

Yellow liquid, 225.7 mg, 94% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.84 – 7.78 (m, 2H), 7.51 – 7.46 (m, 1H), 7.45 – 7.39 (m, 2H), 7.19 (t, *J* = 2.0 Hz, 1H), 6.67 (dd, *J* = 3.0, 1.7 Hz, 1H), 6.65 (t, *J* = 2.5 Hz, 1H), 5.74 (ddt, *J* = 16.9, 10.3, 6.6 Hz, 1H), 5.06 – 4.97 (m, 2H),

3.87 (t, *J* = 7.1 Hz, 2H), 2.07 – 1.99 (m, 2H), 1.89 – 1.80 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 190.4, 140.1, 136.8, 131.1, 128.7, 128.0, 127.8, 124.2, 122.1, 115.9, 110.8, 49.2, 30.3, 30.0.

HRMS (ESI) calcd for C₁₆H₁₇NNaO[M+Na]⁺: 262.1202. Found: 262.1207.

ethyl 4-methyl-1-(pent-4-en-1-yl)-1*H*-pyrrole-3-carboxylate (1v)

Yellow liquid, 367.3 mg, 83% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.21 (d, *J* = 2.5 Hz, 1H), 6.37 (dd, *J* = 2.4, 1.1 Hz, 1H), 5.76 (ddt, *J* = 16.9, 10.3, 6.6 Hz, 1H), 5.07 – 4.99 (m, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.79 (t, *J* = 7.0 Hz, 2H), 2.25 (d, *J* = 1.1 Hz, 3H), 2.07

- 1.99 (m, 2H), 1.87 - 1.79 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.4, 137.0, 126.6, 121.5, 120.2, 115.8, 114.1, 59.2, 49.1, 30.5, 30.1, 14.6, 11.8.

HRMS (ESI) calcd for C₁₃H₂₀NO₂[M+H]⁺: 222.1489. Found: 222.1497.

[1,1'-biphenyl]-4-yl(1-(but-3-en-1-yl)-1*H*-pyrrol-2-yl)methanone (1x)

Yellow liquid, 189.9 mg, 63% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.91 – 7.85 (m, 2H), 7.69 – 7.61 (m, 4H), 7.49 – 7.43 (m, 2H), 7.40 – 7.34 (m, 1H), 6.96 (t, *J* = 2.1 Hz, 1H), 6.79 (dd, *J* = 4.0, 1.7 Hz, 1H), 6.16 (dd, *J* = 4.0, 2.5 Hz, 1H), 5.80 (ddt, *J* = 17.1,

10.2, 6.9 Hz, 1H), 5.10 – 5.01 (m, 2H), 4.48 (t, *J* = 7.1 Hz, 2H), 2.62 – 2.54 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.7, 144.2, 140.3, 138.9, 134.7, 130.8, 129.91, 129.87, 129.0, 128.0, 127.3, 126.8, 123.4, 117.4, 108.2, 49.1, 36.1.

HRMS (ESI) calcd for C₂₁H₂₀NO[M+H]⁺: 302.1539. Found: 302.1549.

(1-(but-3-en-1-yl)-1*H*-pyrrol-2-yl) (3,4-dimethoxyphenyl) methanone (1y)

Yellow liquid, 112.7 mg, 56% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.48 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.43 (d, *J* = 2.0 Hz, 1H), 6.95 (dd, *J* = 2.6, 1.4 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 6.77 – 6.73 (m, 1H), 6.18 – 6.12 (m, 1H), 5.86 – 5.74 (m, 1H),

5.10 – 5.00 (m, 2H), 4.44 (t, *J* = 7.2 Hz, 2H), 3.95 (d, *J* = 1.7 Hz, 3H), 3.94 (d, *J* = 1.3 Hz, 3H), 2.61 – 2.53 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 185.1, 152.1, 148.7, 134.7, 132.7, 130.3, 129.9, 123.8, 122.5, 117.3, 111.8, 109.8, 107.9, 56.1, 56.0, 48.9, 36.1.

HRMS (ESI) calcd for C₁₇H₁₉NNaO₃[M+Na]⁺: 308.1257. Found: 308.1265.

methyl 4-methyl-1-(pent-4-en-1-yl)-1*H*-indole-3-carboxylate (4b)

Green liquid, 106.7 mg, 69% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (s, 1H), 7.22 – 7.12 (m, 2H), 7.05
– 7.00 (m, 1H), 5.79 (ddt, J = 16.9, 10.3, 6.5 Hz, 1H), 5.09 – 5.03 (m, 2H),
4.12 (t, J = 7.0 Hz, 2H), 3.85 (s, 3H), 2.86 (s, 3H), 2.12 – 2.05 (m, 2H), 2.01 –

1.89 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.2, 137.3, 137.0, 135.5, 132.9, 125.6, 124.0, 123.0, 116.2, 107.8, 107.7, 51.2, 46.3, 30.8, 28.8, 22.6.

HRMS (ESI) calcd for C₁₆H₁₉NNaO₂[M+Na]⁺: 280.1308. Found: 280.1316.

Green liquid, 127.3 mg, 97% yield.

methyl 5-fluoro-1-(pent-4-en-1-yl)-1*H*-indole-3-carboxylate (4d)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 – 7.78 (m, 2H), 7.27 (dd, *J* = 8.5, 4.7 Hz, 1H), 7.01 (td, *J* = 9.0, 2.6 Hz, 1H), 5.78 (ddt, *J* = 17.6, 9.8, 6.5 Hz, 1H), 5.09 – 5.02 (m, 2H), 4.13 (t, *J* = 7.0 Hz, 2H), 3.90 (s, 3H), 2.11 –

2.03 (m, 2H), 2.00 – 1.92 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.3, 159.3 (d, *J* = 237.2 Hz), 136.8, 135.4, 133.1, 127.5 (d, *J* = 11.0 Hz), 116.3, 111.3 (d, *J* = 26.5 Hz), 110.9 (d, *J* = 9.9 Hz), 107.14 (d, *J* = 4.5 Hz), 107.13 (d, *J* = 24.9 Hz), 51.2, 46.5, 30.7, 28.9.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ –121.8.

HRMS (ESI) calcd for C₁₅H₁₇FNO₂[M+H]⁺: 262.1238. Found: 262.1239.

methyl 1-(but-3-en-1-yl)-5-fluoro-1H-indole-3-carboxylate (4g)

Yellow solid, 131.6 mg, 53% yield, m.p. = 68.8 – 69.4 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.76 – 7.69 (m, 2H), 7.16 (dd, *J* = 9.0, 4.2 Hz, 1H), 6.91 (td, *J* = 9.0, 2.6 Hz, 1H), 5.63 (ddt, *J* = 17.1, 10.4, 6.8 Hz, 1H), 4.99 – 4.90 (m, 2H), 4.06 (t, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 2.51 – 2.43 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.2, 159.3 (d, *J* = 237.0 Hz), 135.4, 133.6, 132.9, 127.4 (d, *J* = 11.1 Hz), 118.4, 111.2 (d, *J* = 26.6 Hz), 110.8 (d, *J* = 9.8 Hz), 107.02 (d, *J* = 24.9 Hz), 106.97 (d, *J* = 4.5 Hz), 51.1, 46.8, 34.1.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ –121.8.

HRMS (ESI) calcd for C₁₄H₁₅FNO₂[M+H]⁺: 248.1081. Found: 248.1085.

4-(2,2-difluorobenzo[d][1,3]dioxol-4-yl)-1-(pent-4-en-1-yl)-1H-pyrrole-3-carbonitrile (6a)

White solid, 631.3 mg, 99% yield, m.p. = 58.2 – 59.2 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.24 (d, *J* = 2.3 Hz, 1H), 7.19 – 7.09 (m, 2H), 6.96 (dd, *J* = 8.0, 1.1 Hz, 1H), 5.78 (ddt, *J* = 17.9, 9.6, 6.6 Hz, 1H), 5.13 – 5.03 (m, 2H), 3.96 (t, *J*

= 7.1 Hz, 2H), 2.13 – 2.05 (m, 2H), 1.98 – 1.89 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 143.9, 139.8, 136.5, 131.5 (t, *J* = 254.8 Hz), 129.6, 124.2, 122.5, 121.3, 118.6, 116.64, 116.62, 116.59, 107.8, 91.1, 49.9, 30.4, 30.0.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ –49.4.

HRMS (ESI) calcd for C₁₇H₁₄F₂N₂NaO₂[M+Na]⁺: 339.0916. Found: 339.0917.

diethyl ((3-benzoyl-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3aa)

Yellow liquid, 54.3 mg, 72% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.80 – 7.72 (m, 2H), 7.54 – 7.49 (m, 1H), 7.47 – 7.40 (m, 2H), 6.71 (d, *J* = 4.2 Hz, 1H), 6.07 (dd, *J* = 4.3, 0.9 Hz, 1H), 4.64 (dt, *J* = 14.1, 4.8 Hz, 1H), 4.34 –

4.25 (m, 1H), 4.20 – 4.09 (m, 4H), 3.39 – 3.27 (m, 1H), 2.41 – 2.28 (m, 2H), 2.18 – 2.08 (m, 1H), 2.04 – 1.93 (m, 2H), 1.70 – 1.60 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.7, 142.3 (d, *J* = 21.0 Hz), 140.4, 131.2, 129.7, 129.1, 128.1, 123.3, 106.3, 61.9 (d, *J* = 6.5 Hz), 61.7 (d, *J* = 6.7 Hz), 46.2, 31.8 (d, *J* = 139.8 Hz), 30.2 (d, *J* = 2.5 Hz), 26.8 (d, *J* = 3.2 Hz), 22.3, 16.6 (d, *J* = 6.3 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.4.

HRMS (ESI) calcd for C₂₀H₂₇NO₄P[M+H]⁺: 376.1672. Found: 376.1672.

diethyl ((5-benzoyl-2,3-dihydro-1*H*-pyrrolizin-1-yl) methyl) phosphonate (3ba)

Yellow liquid, 55.7 mg, 77% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.84 – 7.77 (m, 2H), 7.56 – 7.48 (m, 1H), 7.49 – 7.41 (m, 2H), 6.81 (d, *J* = 4.0 Hz, 1H), 6.02 (d, *J* = 4.0 Hz, 1H), 4.60 (ddd, *J* = 12.4, 8.7, 3.7 Hz, 1H), 4.30 (dt,

J = 12.2, 7.8 Hz, 1H), 4.23 – 4.08 (m, 4H), 3.61 – 3.49 (m, 1H), 2.94 – 2.81 (m, 1H), 2.46 – 2.23 (m, 2H), 2.05 – 1.91 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.0, 148.5 (d, *J* = 18.9 Hz), 139.5, 131.4, 128.9, 128.2, 126.8, 125.1, 101.9, 62.0 (d, *J* = 6.6 Hz), 61.8 (d, *J* = 6.6 Hz), 47.7, 35.5 (d, *J* = 5.3 Hz), 32.3 (d, *J* = 3.9 Hz), 30.5 (d, *J* = 140.9 Hz), 16.6 (d, *J* = 6.0 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 28.8.

HRMS (ESI) calcd for C₁₉H₂₅NO₄P [M+H]⁺: 362.1516. Found: 362.1521.

diethyl ((3-benzoyl-6,7,8,9-tetrahydro-5*H*-pyrrolo[1,2-*a*]azepin-9-yl)methyl) phosphonate (3ca)

Yellow liquid, 26.7 mg, 34% yield.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.76 (m, 2H), 7.56 – 7.47 (m, 1H), 7.45 – 7.40 (m, 2H), 6.57 (d, *J* = 4.1 Hz, 1H), 5.96 (d, *J* = 4.1 Hz, 1H), 4.16 – 4.06 (m, 4H), 3.38 – 3.24 (m, 1H), 2.41 – 2.28

(m, 1H), 2.27 – 2.06 (m, 2H), 2.04 – 1.89 (m, 2H), 1.85 – 1.72 (m, 2H), 1.69 – 1.56 (m, 1H), 1.57 – 1.39 (m, 2H), 1.36 – 1.30 (m, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 186.2, 148.4 (d, *J* = 18.8 Hz), 140.4, 131.4, 130.8, 129.5, 128.1, 123.0, 105.7, 61.9 (d, *J* = 6.6 Hz), 61.8 (d, *J* = 6.6 Hz), 46.2, 33.4 (d, *J* = 2.6 Hz), 31.1 (d, *J* = 129.5 Hz), 29.4, 28.5, 22.8, 16.6 (d, *J* = 6.0 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 30.0.

HRMS (ESI) calcd for C₂₁H₂₈NNaO₄P[M+Na]⁺: 412.1648. Found: 412.1655.

diethyl ((3-(4-methylbenzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3da)

Brown liquid, 58.7 mg, 75% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 7.9 Hz, 2H), 7.23 (d, *J* = 7.8 Hz, 2H), 6.71 (d, *J* = 4.2 Hz, 1H), 6.06 (d, *J* = 4.2 Hz, 1H), 4.61 (dt, *J* = 14.1, 4.8 Hz, 1H), 4.29 (ddd, *J* = 14.5, 10.1, 4.9 Hz, 1H), 4.19 – 4.08 (m, 4H), 3.38 – 3.25 (m, 1H), 2.42 (s,

3H), 2.39 – 2.28 (m, 2H), 2.17 – 2.07 (m, 1H), 2.04 – 1.92 (m, 2H), 1.70 – 1.60 (m, 1H), 1.35 (t, J = 7.1 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.6, 142.0 (d, J = 21.1 Hz), 141.7, 137.7, 129.8, 129.4, 128.8, 122.9, 106.2, 61.9 (d, J = 6.7 Hz), 61.8 (d, J = 6.6 Hz), 46.2, 31.9 (d, J = 139.8 Hz), 30.3 (d, J = 2.5 Hz), 26.9 (d, J = 3.2 Hz), 22.3, 21.6, 16.6 (d, J = 6.1 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.4.

HRMS (ESI) calcd for C₂₁H₂₈NNaO₄P[M+Na]⁺: 412.1648. Found: 412.1653.

diethyl ((3-(4-propylbenzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3ea)

Yellow liquid, 56.2 mg, 58% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 – 7.66 (m, 2H), 7.27 – 7.20 (m, 2H), 6.72 (d, *J* = 4.2 Hz, 1H), 6.06 (d, *J* = 4.2 Hz, 1H), 4.61 (dt, *J* = 14.0, 4.8 Hz, 1H), 4.29 (ddd, *J* = 14.5, 10.1, 4.9 Hz, 1H), 4.19 – 4.08 (m, 4H), 3.40 – 3.25 (m, 1H), 2.69 – 2.60 (m, 2H), 2.40 – 2.28 (m, 2H), 2.18 – 2.06 (m, 1H), 2.04 – 1.90 (m,

2H), 1.71 – 1.62 (m, 3H), 1.35 (t, *J* = 7.1 Hz, 6H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.7, 146.5, 142.0 (d, J = 21.1 Hz), 137.9, 129.9, 129.4, 128.2, 123.0, 106.2, 61.9 (d, J = 6.6 Hz), 61.8 (d, J = 6.6 Hz), 46.2, 38.1, 31.9 (d, J = 139.7 Hz), 30.3 (d, J = 2.5 Hz), 27.0 (d, J = 3.3 Hz), 24.5, 22.3, 16.6 (d, J = 6.2 Hz), 13.9.

³¹**P** NMR (162 MHz, Chloroform-*d*) δ 29.4.

HRMS (ESI) calcd for $C_{23}H_{32}NNaO_4P[M+Na]^+$: 440.1961. Found: 440.1964.

diethyl ((3-(4-(tert-butyl) benzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3fa)

Yellow liquid, 51.8 mg, 57% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.76 – 7.68 (m, 2H), 7.48 – 7.42 (m, 2H), 6.74 (d, *J* = 4.2 Hz, 1H), 6.06 (d, *J* = 4.2 Hz, 1H), 4.62 (dt, *J* = 14.0, 4.8 Hz, 1H), 4.29 (ddd, *J* = 14.5, 10.0, 4.9 Hz, 1H), 4.20 – 4.08 (m, 4H), 3.40 – 3.25 (m, 1H), 2.41 – 2.28 (m,

2H), 2.17 – 2.08 (m, 1H), 2.05 – 1.87 (m, 2H), 1.70 – 1.60 (m, 1H), 1.39 – 1.31 (m, 15H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.6, 154.8, 142.0 (d, *J* = 21.2 Hz), 137.7, 129.9, 129.2, 125.1, 123.0, 106.2, 61.9 (d, *J* = 6.4 Hz), 61.8 (d, *J* = 6.6 Hz), 46.2, 35.1, 31.9 (d, *J* = 139.8 Hz), 31.4, 30.3 (d, *J* = 2.4 Hz), 27.0 (d, *J* = 3.0 Hz), 22.4, 16.6 (d, *J* = 5.9 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 29.4.

HRMS (ESI) calcd for C₂₄H₃₄NNaO₄P[M+Na]⁺: 454.2118. Found: 454.2119.

diethyl ((3-(4-(benzyloxy) benzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) Phosphonate (3ga)

Yellow liquid, 68.4 mg, 67% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.81 – 7.75 (m, 2H), 7.46 – 7.38 (m, 4H), 7.37 – 7.32 (m, 1H), 7.04 – 6.98 (m, 2H), 6.71 (d, J = 4.2 Hz, 1H), 6.06 (dd, J = 4.2, 0.9 Hz, 1H), 5.13 (s, 2H), 4.59

4.20 – 4.09 (m, 4H), 3.39 – 3.25 (m, 1H), 2.40 – 2.28 (m, 2H), 2.16 – 2.07 (m, 1H), 2.04 – 1.86 (m, 2H), 1.69 – 1.59 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 184.7, 161.5, 141.8 (d, J = 21.3 Hz), 136.6, 133.2, 131.4, 129.8, 128.8, 128.3, 127.6, 122.4, 114.2, 106.0, 70.2, 61.9 (d, J = 6.5 Hz), 61.7 (d, J = 6.6 Hz), 46.1, 31.9 (d, J = 139.7 Hz), 30.3 (d, J = 2.5 Hz), 27.0 (d, J = 2.8 Hz), 22.4, 16.6 (d, J = 6.2 Hz).
³¹P NMR (162 MHz, Chloroform-*d*) δ 29.5.

HRMS (ESI) calcd for C₂₇H₃₂NNaO₅P[M+Na]⁺: 504.1910. Found: 504.1912.

diethyl ((3-(4-cyanobenzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3ha)

Yellow liquid, 33.5mg, 42% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.85 – 7.78 (m, 2H), 7.77 – 7.70 (m, 2H), 6.64 (d, *J* = 4.2 Hz, 1H), 6.10 (d, *J* = 4.3 Hz, 1H), 4.63 (dt, *J* = 14.2, 4.9 Hz, 1H), 4.29 (ddd, *J* = 14.5, 10.0, 5.0 Hz, 1H), 4.20 – 4.08 (m, 4H), 3.38 – 3.27 (m, 1H), 2.38 – 2.27 (m,

2H), 2.19 – 2.10 (m, 1H), 2.04 – 1.88 (m, 2H), 1.72 – 1.63 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.4, 144.4, 143.7 (d, *J* = 20.7 Hz), 132.1, 129.5, 129.1, 124.0, 118.5, 114.5, 107.2, 62.0 (d, *J* = 6.7 Hz), 61.8 (d, *J* = 6.6 Hz), 46.4, 31.8 (d, *J* = 140.2 Hz), 30.3 (d, *J* = 2.4 Hz), 26.7 (d, *J* = 3.4 Hz), 22.2, 16.6 (d, *J* = 5.9 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.1.

HRMS (ESI) calcd for C₂₁H₂₅N₂NaO₄P[M+Na]+ :423.1444. Found: 423.1451.

diethyl ((3-(4-fluorobenzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3ia)

Yellow liquid, 43.9 mg, 56% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.83 – 7.74 (m, 2H), 7.15 – 7.07 (m, 2H), 6.68 (d, *J* = 4.2 Hz, 1H), 6.08 (d, *J* = 4.2 Hz, 1H), 4.61 (dt, *J* = 14.1, 4.8 Hz, 1H), 4.28 (ddd, *J* = 14.5, 10.1, 4.9 Hz, 1H), 4.20 – 4.09 (m, 4H), 3.40 – 3.25 (m, 1H), 2.40 – 2.27 (m,

2H), 2.17 - 2.09 (m, 1H), 2.05 - 1.91 (m, 2H), 1.71 - 1.60 (m, 1H), 1.36 (t, J = 7.1 Hz, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 184.2, 164.7 (d, J = 251.6 Hz), 142.5 (d, J = 21.1 Hz), 136.6 (d, J = 3.2 Hz), 131.5 (d, J = 8.8 Hz), 129.5, 123.1, 115.1 (d, J = 21.6 Hz), 106.4, 61.9 (d, J = 6.6Hz), 61.8 (d, J = 6.7 Hz), 46.2, 31.9 (d, J = 139.9 Hz), 30.3 (d, J = 2.5 Hz), 26.9 (d, J = 3.3 Hz), 22.3, 16.6 (d, J = 6.0 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ –108.6.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.3.

HRMS (ESI) calcd for C₂₀H₂₅FNNaO₄P[M+Na]⁺: 416.1397. Found: 416.1400.

diethyl ((3-(3-methylbenzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3ja)

Yellow liquid, 63.0 mg, 71% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 – 7.51 (m, 2H), 7.35 – 7.27 (m, 2H), 6.71 (d, *J* = 4.2 Hz, 1H), 6.06 (d, *J* = 4.2 Hz, 1H), 4.63 (dt, *J* = 14.1, 4.8 Hz, 1H), 4.29 (ddd, *J* = 14.5, 10.1, 4.9 Hz, 1H), 4.20 – 4.09 (m, 4H), 3.40 – 3.25 (m, 1H), 2.40 (s,

3H), 2.39 – 2.29 (m, 2H), 2.17 – 2.08 (m, 1H), 2.06 – 1.92 (m, 2H), 1.71 – 1.60 (m, 1H), 1.35 (t, J = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 185.9, 142.2 (d, *J* = 21.1 Hz), 140.5, 137.8, 131.9, 129.8, 129.7, 127.9, 126.4, 123.2, 106.2, 61.9 (d, *J* = 6.6 Hz), 61.7 (d, *J* = 6.6 Hz), 46.2, 31.9 (d, *J* = 139.8 Hz), 30.3 (d, *J* = 2.5 Hz), 26.9 (d, *J* = 3.2 Hz), 22.3, 21.5, 16.6 (d, *J* = 5.6 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.4.

HRMS (ESI) calcd for C₂₁H₂₈NNaO₄P[M+Na]⁺ : 412.1648. Found: 412.1651.

diethyl ((3-(3-methoxybenzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3ka)

Yellow liquid, 52.5 mg, 65% yield.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.32 (m, 2H), 7.31 – 7.28 (m, 1H), 7.09 – 7.02 (m, 1H), 6.74 (d, *J* = 4.2 Hz,

1H),
$$6.07$$
 ($a, J = 4.2$ HZ, 1H), 4.63 ($at, J = 14.1, 4.8$ HZ, 1H),

4.29 (ddd, *J* = 14.5, 10.1, 4.9 Hz, 1H), 4.20 − 4.09 (m, 4H), 3.84 (s, 3H), 3.40 − 3.25 (m, 1H), 2.40 − 2.28 (m, 2H), 2.17 − 2.09 (m, 1H), 2.05 − 1.87 (m, 2H), 1.71 − 1.60 (m, 1H), 1.35 (t, *J* = 7.0 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.4, 159.4, 142.4 (d, J = 21.0 Hz), 141.8, 129.7, 129.0,
123.3, 121.8, 117.5, 113.8, 106.4, 62.0 (d, J = 6.6 Hz), 61.8 (d, J = 6.5 Hz), 55.5, 46.2, 31.9 (d, J = 139.8 Hz), 30.3 (d, J = 2.4 Hz), 26.9 (d, J = 3.1 Hz), 22.3, 16.6 (d, J = 6.0 Hz).

³¹**P** NMR (162 MHz, Chloroform-*d*) δ 29.4.

HRMS (ESI) calcd for C₂₁H₂₈NNaO₅P[M+Na]⁺ : 428.1597. Found: 428.1601.

diethyl ((3-(3-chlorobenzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3la)

Brown liquid, 30.9 mg, 38% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.77 – 7.71 (m, 1H), 7.70 – 7.56 (m, 1H), 7.51 – 7.42 (m, 1H), 7.41 – 7.34 (m, 1H), 6.70 (d, *J* = 4.1 Hz, 1H), 6.09 (d, *J* = 4.2 Hz, 1H), 4.62 (ddt, *J* = 14.0, 9.7, 4.9 Hz, 1H), 4.28 (ddd, *J* = 14.4, 10.0, 5.1 Hz, 1H),

4.19 – 4.08 (m, 4H), 3.39 – 3.27 (m, 1H), 2.39 – 2.27 (m, 2H), 2.17 – 2.08 (m, 1H), 2.04 – 1.88 (m, 2H), 1.72 – 1.61 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 183.9, 143.0 (d, *J* = 20.9 Hz), 142.2, 134.2, 131.1, 129.5, 129.2, 128.1, 127.2, 123.6, 106.7, 62.0 (d, *J* = 6.4 Hz), 61.8 (d, *J* = 6.7 Hz), 46.3, 31.9 (d, *J* = 140.1 Hz), 30.3 (d, *J* = 2.6 Hz), 26.8 (d, *J* = 3.2 Hz), 22.2, 16.6 (d, *J* = 6.0 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.2.

HRMS (ESI) calcd for C₂₀H₂₅ClNNaO₄P[M+Na]⁺: 432.1102. Found: 432.1103.

diethyl ((3-(3-(trifluoromethyl)benzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl)

phosphonate (3ma)

Brown liquid, 36.7 mg, 41% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.06 – 7.98 (m, 1H), 7.96 – 7.89 (m, 1H), 7.82 – 7.73 (m, 1H), 7.60 – 7.54 (m, 1H), 6.67 (d, *J* = 4.2 Hz, 1H), 6.10 (d, *J* = 4.2 Hz, 1H), 4.63

(dt, *J* = 14.2, 4.9 Hz, 1H), 4.30 (ddd, *J* = 14.5, 10.0, 5.0 Hz, 1H), 4.20 – 4.08 (m, 4H), 3.42 – 3.27 (m, 1H), 2.39 – 2.28 (m, 2H), 2.19 – 2.08 (m, 1H), 2.05 – 1.93 (m, 2H), 1.72 – 1.62 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 183.9, 143.2 (d, *J* = 20.9 Hz), 141.1, 132.3, 130.6 (q, *J* = 32.5 Hz), 129.2, 128.8, 127.7 (q, *J* = 3.5 Hz), 126.0 (q, *J* = 3.7 Hz), 124.0 (q, *J* = 298.5 Hz), 123.7, 106.9, 62.0 (d, *J* = 6.6 Hz), 61.8 (d, *J* = 6.7 Hz), 46.3, 31.8 (d, *J* = 140.1 Hz), 30.3 (d, *J* = 2.4 Hz), 26.8 (d, *J* = 3.1 Hz), 22.2, 16.6 (d, *J* = 5.8 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ –62.7.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.2.

HRMS (ESI) calcd for C₂₁H₂₅F₃NNaO₄P[M+Na]⁺: 466.1366. Found: 466.1363.

diethyl ((3-(3,4-dimethoxybenzoyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3na)

Yellow liquid, 60.0 mg, 67% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.45 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.40 (d, *J* = 2.0 Hz, 1H), 6.90 (d, *J* = 8.3 Hz, 1H), 6.74 (d, *J* = 4.1 Hz, 1H), 6.08 (d, *J* = 4.1 Hz, 1H), 4.58 (dt, *J* = 14.0, 4.8 Hz, 1H), 4.28 (ddd, *J* = 14.4, 10.1, 4.9 Hz, 1H),

4.20 – 4.09 (m, 4H), 3.95 (s, 3H), 3.93 (s, 3H), 3.40 – 3.26 (m, 1H), 2.41 – 2.30 (m, 2H), 2.17 – 2.08 (m, 1H), 2.05 – 1.86 (m, 2H), 1.71 – 1.60 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 184.5, 151.9, 148.6, 141.8 (d, *J* = 21.2 Hz), 132.9, 129.6, 123.5, 122.3, 111.9, 109.8, 106.0, 61.8 (d, *J* = 6.6 Hz), 61.7 (d, *J* = 6.6 Hz), 56.04, 55.98, 46.0, 31.8 (d, *J* = 139.6 Hz), 30.2 (d, *J* = 2.5 Hz), 26.9 (d, *J* = 3.1 Hz), 22.3, 16.5 (d, *J* = 6.0 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.4.

HRMS (ESI) calcd for C₂₂H₃₀NNaO₆P[M+Na]⁺ : 458.1703. Found: 458.1711.

diethyl ((1-benzoyl-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (30a)

Yellow liquid, 61.8 mg, 82% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.70 (m, 2H), 7.51 – 7.46 (m, 1H), 7.45 – 7.38 (m, 2H), 6.46 (d, *J* = 3.1 Hz, 1H), 6.37 (d, *J* = 3.1 Hz, 1H), 4.29 – 4.10 (m, 4H), 4.09 – 4.02 (m, 1H), 4.02 – 3.84 (m, 2H), 2.68 (ddd, *J* = 19.1, 15.2, 3.0 Hz, 1H), 2.49 – 2.41 (m, 1H), 2.18

- 2.09 (m, 1H), 2.08 - 1.99 (m, 1H), 1.98 - 1.89 (m, 2H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 191.6, 141.1, 140.6 (d, J = 23.1 Hz), 130.9, 128.9, 128.0, 119.4, 118.4, 113.2, 62.0 (d, J = 6.6 Hz), 61.6 (d, J = 6.3 Hz), 46.0, 29.0 (d, J = 134.4 Hz), 28.6 (d, J = 1.5 Hz) 24.4, 18.9, 16.63 (d, J = 6.0 Hz), 16.55 (d, J = 6.3 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.5.

HRMS (ESI) calcd for C₂₀H₂₆NNaO₄P[M+Na]⁺: 398.1492. Found: 398.1490.

diethyl ((3-acetyl-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3pa)

Yellow liquid, 36.3 mg, 56% yield. ¹**H** NMR (400 MHz, Chloroform-*d*) δ 6.94 (d, *J* = 4.2 Hz, 1H), 6.04 (d, J = 4.2 Hz, 1H), 4.57 (dt, J = 14.2, 4.9 Hz, 1H), 4.20 -4.06 (m, 5H), 3.33 - 3.19 (m, 1H), 2.39 (s, 3H), 2.36 - 2.22 (m, 2H), 2.12 - 2.01 (m, 1H), 2.00 -

1.81 (m, 2H), 1.66 – 1.52 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-d) δ 188.0, 141.5 (d, J = 21.0 Hz), 130.0, 119.9, 106.0, 61.9 (d, J = 6.6 Hz), 61.7 (d, J = 6.7 Hz), 46.3, 31.8 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (d, J = 2.5 Hz), 27.2, 26.7 (d, J = 140.0 Hz), 30.2 (

= 3.0 Hz), 22.1, 16.6 (d, *J* = 5.8 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.4.

HRMS (ESI) calcd for C₁₅H₂₄NNaO₄P[M+Na]⁺: 336.1335. Found: 336.1344.

diethyl ((3-cyano-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3qa)

Yellow liquid, 14.2 mg, 22% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.76 (d, *J* = 4.1 Hz, 1H), 6.02 (d, J = 4.1 Hz, 1H), 4.19 - 4.09 (m, 5H), 3.92 (ddd, J = 12.4, 10.1,

4.9 Hz, 1H), 3.30 – 3.16 (m, 1H), 2.37 – 2.23 (m, 2H), 2.18 – 2.10 (m, 1H), 2.02 – 1.87 (m, 2H), 1.67 – 1.57 (m, 1H), 1.34 (t, *J* = 7.0 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 139.0 (d, *J* = 21.0 Hz), 119.7, 114.2, 106.3, 102.3, 62.0 (d, J = 6.7 Hz), 61.8 (d, J = 6.7 Hz), 44.6, 31.6 (d, J = 140.4 Hz), 29.9 (d, J = 2.6 Hz), 27.3 (d, J = 3.5Hz), 21.8, 16.6 (d, *J* = 6.2 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.0.

HRMS (ESI) calcd for C₁₄H₂₁N₂NaO₃P[M+Na]⁺: 319.1182. Found: 319.1187.

diethyl ((1-acetyl-5,6,7,8-tetrahydroindolizin-8-yl)methyl)phosphonate (3ra)

Yellow liquid, 46.6 mg, 73% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 6.51 (d, *J* = 3.1 Hz, 1H), 6.45 (d, *J* = 3.1 Hz, 1H), 4.29 – 4.07 (m, 4H), 4.05 – 3.99 (m, 1H), 3.89 – 3.79 (m, 2H), 2.57 – 2.41 (m, 2H), 2.39 (s, 3H), 2.16 – 2.00 (m, 1H), 1.96 –

1.86 (m, 2H), 1.86 – 1.77 (m, 1H), 1.38 (t, *J* = 7.0 Hz, 3H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 194.2, 139.0 (d, *J* = 23.2 Hz), 119.6, 119.5, 111.0, 62.0 (d, *J* = 6.6 Hz), 61.6 (d, *J* = 6.3 Hz), 46.0, 28.5 (d, *J* = 134.4 Hz), 28.4, 28.2, 24.0, 18.6, 16.7 (d, *J* = 6.2 Hz), 16.6 (d, *J* = 6.2 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.5.

HRMS (ESI) calcd for C₁₅H₂₄NNaO₄P[M+Na]⁺: 336.1335. Found: 336.1338.

methyl 8-((diethoxyphosphoryl)methyl)-5,6,7,8-tetrahydroindolizine-1- carboxylate (3sa)

Yellow liquid, 45.3 mg, 67% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.56 (d, *J* = 3.0 Hz, 1H), 6.44 (d, *J* = 3.0 Hz, 1H), 4.23 – 4.09 (m, 4H), 4.01 (ddd, *J* = 12.6, 5.7, 2.6 Hz, 1H), 3.87 – 3.82 (m, 1H), 3.79 (s, 3H), 2.51 – 2.37 (m, 2H), 2.06 – 1.97

(m, 1H), 1.95 – 1.79 (m, 4H), 1.37 (t, *J* = 7.3 Hz, 3H), 1.33 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.2, 139.2 (d, *J* = 23.0 Hz), 119.8, 110.5, 110.3, 61.8 (d, *J* = 6.5 Hz), 61.6 (d, *J* = 6.5 Hz), 50.9, 45.9, 29.7 (d, *J* = 134.9 Hz), 27.9 (d, *J* = 1.6 Hz), 24.2, 18.7, 16.65 (d, *J* = 6.5 Hz), 16.58 (d, *J* = 6.6 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.6.

HRMS (ESI) calcd for $C_{15}H_{24}NNaO_5P[M+Na]^+$: 352.1284. Found: 352.1290.

ethyl 8-((diethoxyphosphoryl)methyl)-2-methyl-5,6,7,8-tetrahydroindolizine-3-carboxylate (3ta)

Yellow liquid, 45.5 mg, 62% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 5.86 (s, 1H), 4.47 (dt, *J* = 13.8, 4.9 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 4.18 – 4.01 (m, 5H),

3.21 (qd, *J* = 10.7, 9.6, 4.4 Hz, 1H), 2.30 (s, 3H), 2.37 – 2.20 (m, 2H), 2.10 – 2.02 (m, 1H), 1.97 – 1.80 (m, 2H), 1.61 – 1.50 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 162.2, 138.7 (d, *J* = 21.7 Hz), 129.8, 118.6, 108.4, 61.8 (d, *J* = 6.6 Hz), 61.7 (d, *J* = 6.7 Hz), 59.4, 45.8, 31.8 (d, *J* = 139.3 Hz), 30.0 (d, *J* = 2.4 Hz), 27.0 (d, *J* = 3.0 Hz), 22.4, 16.6 (d, *J* = 6.0 Hz), 14.6, 14.5.

³¹**P** NMR (162 MHz, Chloroform-*d*) δ 29.7.

HRMS (ESI) calcd for C₁₇H₂₈NNaO₅P[M+Na]⁺: 380.1597. Found: 380.1599.

methyl 2-chloro-8-((diethoxyphosphoryl)methyl)-5,6,7,8-tetrahydroindolizine-3-carboxylate (3ua)

Yellow liquid, 43.5 mg, 60% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 6.05 (d, *J* = 1.0 Hz, 1H),

4.45 (dt, *J* = 13.8, 4.9 Hz, 1H), 4.20 – 4.01 (m, 5H), 3.85 (s, 3H),

3.27 – 3.13 (m, 1H), 2.30 – 2.18 (m, 2H), 2.12 – 2.03 (m, 1H), 1.98 – 1.85 (m, 2H), 1.64 – 1.54 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 161.2, 138.8 (d, *J* = 21.2 Hz), 120.8, 117.4, 107.9, 61.9 (d, *J* = 6.5 Hz), 61.8 (d, *J* = 6.6 Hz), 51.2, 46.2, 31.7 (d, *J* = 140.2 Hz), 29.9 (d, *J* = 2.4 Hz), 26.6 (d, *J* = 3.4 Hz), 22.1, 16.6 (d, *J* = 6.1 Hz).

³¹**P** NMR (162 MHz, Chloroform-*d*) δ 29.0.

HRMS (ESI) calcd for C₁₅H₂₃ClNNaO₅P[M+Na]⁺: 386.0895. Found: 386.0895.

ethyl 8-((diethoxyphosphoryl)methyl)-2-methyl-5,6,7,8-tetrahydroindolizine-1-carboxylate (3va)

Yellow liquid, 40.1 mg, 53% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 6.25 (s, 1H), 4.28 (q, J = 7.2 Hz, 2H), 4.21 – 4.01 (m, 5H), 3.97 – 3.82 (m, 2H), 3.75 (td, J = 12.0, 5.0 Hz, 1H), 2.50 – 2.35 (m, 2H), 2.21 (s, 3H), 2.09 – 1.93 (m, 1H),

1.92 – 1.74 (m, 2H), 1.38 – 1.31 (m, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.4, 139.5 (d, *J* = 23.1 Hz), 121.8, 118.8, 109.3, 61.7 (d, *J* = 6.6 Hz), 61.5 (d, *J* = 6.5 Hz), 59.2, 45.5, 29.7 (d, *J* = 134.3 Hz), 28.2, 24.1, 18.4, 16.61 (d, *J* = 5.5 Hz), 16.55 (d, *J* = 5.7 Hz), 14.7, 12.6.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.6.

HRMS (ESI) calcd for C₁₇H₂₈NNaO₅P[M+Na]⁺: 380.1597. Found: 380.1600.

diethyl ((5-(4-methylbenzoyl)-2,3-dihydro-1*H*-pyrrolizin-1-yl)methyl) phosphonate (3wa)

Yellow liquid, 37.5 mg, 62% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.75 – 7.70 (m, 2H), 7.25 (d, *J* = 7.9 Hz, 2H), 6.80 (d, *J* = 4.0 Hz, 1H), 6.01 (d, *J* = 4.3 Hz,

1H), 4.58 (ddd, J = 12.4, 8.6, 3.7 Hz, 1H), 4.28 (dt, J = 12.2, 7.8

Hz, 1H), 4.22 – 4.08 (m, 4H), 3.62 – 3.47 (m, 1H), 2.93 – 2.79 (m, 1H), 2.42 (s, 3H), 2.40 – 2.23 (m, 2H), 2.02 – 1.90 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 184.9, 148.3 (d, J = 18.8 Hz), 141.9, 136.8, 129.1, 128.9, 126.9, 124.7, 101.7, 62.0 (d, J = 6.6 Hz), 61.9 (d, J = 6.7 Hz), 47.7, 35.5 (d, J = 5.3 Hz), 32.3 (d, J = 4.0 Hz), 30.6 (d, J = 140.8 Hz), 21.6, 16.6 (d, J = 6.0 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 28.8.

HRMS (ESI) calcd for C₂₀H₂₆NNaO₄P[M+Na]⁺: 398.1492. Found: 398.1493.

diethyl ((5-([1,1'-biphenyl]-4-carbonyl)-2,3-dihydro-1*H*-pyrrolizin-1-yl) methyl)

phosphonate (3xa)

Brown liquid, 52.7 mg, 60% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 – 7.85 (m, 2H), 7.69 – 7.62 (m, 4H), 7.50 – 7.44 (m, 2H), 7.41 – 7.36 (m, 1H), 6.87 (d, *J* = 4.0 Hz, 1H), 6.04 (d, *J* = 4.0 Hz, 1H), 4.61 (ddd, *J* = 12.3, 8.7, 3.7 Hz, 1H), 4.31 (dt, *J* = 12.2, 7.8 Hz, 1H), 4.22 – 4.10 (m, 4H),

3.63 – 3.49 (m, 1H), 2.93 – 2.83 (m, 1H), 2.45 – 2.25 (m, 2H), 2.03 – 1.92 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 184.5, 148.6 (d, *J* = 18.7 Hz), 144.2, 140.4, 138.3, 129.6, 129.0, 128.0, 127.4, 127.0, 126.9, 125.0, 101.9, 62.0 (d, *J* = 6.6 Hz), 61.9 (d, *J* = 6.7 Hz), 47.8, 35.5 (d, *J* = 5.5 Hz), 32.4 (d, *J* = 3.9 Hz), 30.6 (d, *J* = 140.9 Hz), 16.6 (d, *J* = 6.0 Hz).

³¹**P** NMR (162 MHz, Chloroform-*d*) δ 28.8.

HRMS (ESI) calcd for C₂₅H₂₈NNaO₄P[M+Na]⁺: 460.1648. Found: 460.1650.

diethyl ((5-(3,4-dimethoxybenzoyl)-2,3-dihydro-1*H*-pyrrolizin-1-yl)methyl) phosphonate (3ya)

Yellow liquid, 52.7 mg, 63% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.43 (d, *J* = 2.0 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.84 (d, *J* = 3.9 Hz, 1H), 6.03 (d, *J* = 3.9 Hz, 1H), 4.57 (ddd, *J* = 12.3, 8.7, 3.7 Hz, 1H), 4.28 (dt, *J* = 12.2, 7.8 Hz, 1H),

4.21 – 4.10 (m, 4H), 3.95 (s, 3H), 3.93 (s, 3H), 3.62 – 3.48 (m, 1H), 2.92 – 2.81 (m, 1H), 2.43 – 2.24 (m, 2H), 2.02 – 1.91 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 183.9, 152.1, 148.8, 148.1 (d, J = 18.6 Hz), 132.1, 126.8, 124.3, 123.2, 111.8, 110.1, 101.7, 61.9 (d, J = 6.6 Hz), 61.8 (d, J = 6.6 Hz), 56.1, 56.0, 47.6, 35.5 (d, J = 5.4 Hz), 32.3 (d, J = 4.0 Hz), 30.6 (d, J = 140.9 Hz), 16.6 (d, J = 6.0 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 28.8.

HRMS (ESI) calcd for C₂₁H₂₈NNaO₆P[M+Na]⁺: 444.1546. Found: 444.1553.

ethyl 1-((diethoxyphosphoryl) methyl)-6-methyl-2,3-dihydro-1*H*-pyrrolizine-5-carboxylate (3za)

Yellow liquid, 34.1 mg, 50% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 5.80 (s, 1H), 4.37 (ddd, *J* = 12.2, 8.6, 3.7 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.19 – 4.05 (m, 5H), 3.51 – 3.39 (m, 1H), 2.81 – 2.71 (m, 1H), 2.33 (s, 3H), 2.32

- 2.16 (m, 2H), 1.94 - 1.83 (m, 1H), 1.37 - 1.32 (m, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 161.9, 144.5 (d, *J* = 19.3 Hz), 133.5, 115.7, 103.4, 61.9 (d, *J* = 6.3 Hz), 61.8 (d, *J* = 6.5 Hz), 59.5, 47.9, 34.9 (d, *J* = 4.8 Hz), 32.5 (d, *J* = 3.7 Hz), 30.8 (d, *J* = 140.4 Hz), 16.6 (d, *J* = 5.7 Hz), 14.7, 14.2.

³¹**P** NMR (162 MHz, Chloroform-*d*) δ 29.1.

HRMS (ESI) calcd for C₁₆H₂₆NNaO₅P[M+Na]⁺: 366.1441. Found: 366.1444.

diethyl ((10-acetyl-6,7,8,9-tetrahydropyrido[1,2-*a*]indol-9-yl) methyl) phosphonate (5aa)

Yellow liquid, 49.8 mg, 60% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.19 – 8.08 (m, 1H), 7.32 – 7.22 (m, 3H), 4.29 (ddd, *J* = 12.2, 5.7, 1.3 Hz, 1H), 4.26 – 4.09 (m, 5H), 3.93 (s, 3H), 3.87 (td, *J* = 12.0, 5.6 Hz, 1H), 2.60 – 2.46 (m,

2H), 2.31 – 2.15 (m, 1H), 2.16 – 2.04 (m, 2H), 1.94 – 1.84 (m, 1H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.7, 148.4 (d, J = 22.7 Hz), 135.9, 126.7, 122.4, 122.3, 121.6, 109.3, 102.3, 62.0 (d, J = 6.6 Hz), 61.7 (d, J = 6.4 Hz), 50.9, 42.7, 29.9, 28.5 (d, J = 1.7 Hz), 23.6, 17.7, 16.7 (d, J = 6.1 Hz), 16.6 (d, J = 6.2 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.0.

HRMS (ESI) calcd for C₁₉H₂₆NNaO₅P[M+Na]⁺: 402.1441. Found: 402.1430.

methyl 9-((diethoxyphosphoryl)methyl)-1-methyl-6,7,8,9-tetrahydropyrido [1,2-*a*]indole-10carboxylate (5ba)

Yellow liquid, 52.0 mg, 52% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.17 – 7.11 (m, 2H), 7.06 – 6.98 (m, 1H), 4.30 – 4.04 (m, 6H), 3.91 (s, 3H), 3.82 (td, *J* = 12.0, 5.8 Hz, 1H), 2.69 (s, 3H), 2.55 – 2.42 (m, 2H), 2.30 – 2.05 (m, 3H),

1.94 – 1.82 (m, 1H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.35 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.9, 146.8 (d, J = 22.6 Hz), 136.6, 131.8, 125.1, 124.7, 122.4, 107.1, 103.9, 61.9 (d, J = 6.6 Hz), 61.7 (d, J = 6.6 Hz), 51.0, 42.7, 30.0 (d, J = 136.1 Hz), 28.5, 23.8, 22.5, 17.5, 16.7 (d, J = 6.5 Hz), 16.6 (d, J = 6.5 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.1.

HRMS (ESI) calcd for C₂₀H₂₈NNaO₅P[M+Na]⁺: 416.1597. Found: 416.1602.

methyl 9-((diethoxyphosphoryl)methyl)-2-methoxy-6,7,8,9-tetrahydro pyrido[1,2-*a*]indole-10-Carboxylate (5ca)

Yellow liquid, 34.2 mg, 41% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 2.5 Hz, 1H), 7.18 (d, *J* = 8.8 Hz, 1H), 6.88 (dd, *J* = 8.8, 2.5 Hz, 1H), 4.27 - 4.08 (m, 6H), 3.93 (s, 3H), 3.89 (s, 3H), 3.84 (td, *J* =

12.0, 5.6 Hz, 1H), 2.58 – 2.43 (m, 2H), 2.27 – 2.15 (m, 1H), 2.14 – 2.02 (m, 2H), 1.93 – 1.82 (m, 1H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 165.7, 156.2, 148.3 (d, *J* = 22.4 Hz), 131.0, 127.6, 112.2, 110.0, 103.5, 101.9, 61.9 (d, *J* = 6.8 Hz), 61.7 (d, *J* = 6.5 Hz), 55.9, 50.9, 42.7, 29.3 (d, *J* = 136.2 Hz), 28.6 (d, *J* = 1.2 Hz), 23.5, 17.7, 16.7 (d, *J* = 6.4 Hz), 16.6 (d, *J* = 6.4 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.1.

HRMS (ESI) calcd for C₂₀H₂₈NNaO₆P[M+Na]⁺: 432.1546. Found: 432.1552.

Methyl 9-((diethoxyphosphoryl)methyl)-2-fluoro-6,7,8,9-tetrahydropyrido

[1,2-*a*]indole-10-carboxylate (5da)

Yellow liquid, 52.1 mg, 66% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (dd, *J* = 10.0, 2.6 Hz, 1H), 7.19 (dd, *J* = 8.9, 4.3 Hz, 1H), 6.96 (td, *J* = 9.0, 2.6 Hz, 1H), 4.28 - 4.08 (m, 6H), 3.92 (s, 3H), 3.85 (td, *J* = 11.9, 5.5

Hz, 1H), 2.58 – 2.46 (m, 2H), 2.28 – 2.16 (m, 1H), 2.15 – 2.03 (m, 2H), 1.93 – 1.83 (m, 1H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 165.3, 159.6 (d, *J* = 236.6 Hz), 149.5 (d, *J* = 22.5 Hz), 132.4, 127.4 (d, *J* = 11.2 Hz), 110.5 (d, *J* = 26.3 Hz), 110.0 (d, *J* = 9.9 Hz), 107.0 (d, *J* = 25.3 Hz), 102.4 (d, *J* = 4.3 Hz), 62.0 (d, *J* = 6.5 Hz), 61.7 (d, *J* = 6.5 Hz), 50.9, 42.8, 29.1 (d, *J* = 136.5 Hz), 28.5 (d, *J* = 1.5 Hz), 23.4, 17.6, 16.6 (d, *J* = 6.0 Hz), 16.5 (d, *J* = 6.2 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ –121.2.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 28.8.

HRMS (ESI) calcd for C₁₉H₂₅FNNaO₅P[M+Na]⁺: 420.1347. Found: 420.1349.

diethyl ((10-cyano-6,7,8,9-tetrahydropyrido[1,2-*a*]indol-9-yl)methyl) phosphonate (5ea)

Yellow liquid, 34.0 mg, 47% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 – 7.64 (m, 1H), 7.35 – 7.30 (m, 1H), 7.31 – 7.22 (m, 2H), 4.25 – 4.09 (m, 5H), 4.07 – 4.00 (m, 1H), 3.79 – 3.65 (m, 1H), 2.74 – 2.63 (m, 1H), 2.30 – 2.14 (m,

4H), 2.12 – 2.02 (m, 1H), 1.40 (t, *J* = 7.0 Hz, 3H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 148.2 (d, *J* = 21.5 Hz), 135.2, 127.6, 123.2, 122.5, 119.1, 116.4, 109.9, 82.5, 62.2 (d, *J* = 6.7 Hz), 62.0 (d, *J* = 6.5 Hz), 42.8, 30.1 (d, *J* = 138.5 Hz), 29.3 (d, *J* = 2.1 Hz), 25.3 (d, *J* = 1.6 Hz), 19.8, 16.6 (d, *J* = 6.1 Hz), 16.5 (d, *J* = 6.1 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 27.4.

HRMS (ESI) calcd for C₁₈H₂₃N₂NaO₃P[M+Na]⁺: 369.1339. Found: 369.1343.

diethyl ((6,7,8,9-tetrahydropyrido[1,2-*a*]indol-9-yl)methyl)phosphonate (5fa)

Yellow liquid, 38.0 mg, 59% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.58 – 7.50 (m, 1H), 7.29 – 7.23 (m, 1H), 7.19 – 7.13 (m, 1H), 7.12 – 7.06 (m, 1H), 6.31 (s, 1H), 4.24 – 4.07 (m, 5H), 3.88 (td, *J* = 11.1, 5.1 Hz, 1H), 3.47 –

3.34 (m, 1H), 2.56 – 2.38 (m, 2H), 2.27 – 2.17 (m, 1H), 2.10 – 1.97 (m, 2H), 1.69 – 1.57 (m, 1H), 1.36 (td, *J* = 7.1, 1.8 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 140.6 (d, J = 21.7 Hz), 136.5, 128.0, 120.9, 120.0, 119.9, 109.0, 97.4, 61.9 (d, J = 6.6 Hz), 61.7 (d, J = 6.6 Hz), 42.3, 31.6 (d, J = 139.7 Hz), 30.5 (d, J = 2.5 Hz), 28.1 (d, J = 3.0 Hz), 22.3, 16.64 (d, J = 6.1 Hz), 16.63 (d, J = 6.1 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.9.

HRMS (ESI) calcd for C₁₇H₂₄NNaO₃P[M+Na]⁺: 344.1386. Found: 344.1393.

methyl 1-((diethoxyphosphoryl)methyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*] indole-9-carboxylate (5ga)

Yellow liquid, 58.3 mg, 80% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.14 – 8.05 (m, 1H), 7.29 – 7.17 (m, 3H), 4.25 – 4.02 (m, 6H), 4.02 – 3.91 (m, 1H), 3.91 (s, 3H), 2.98 – 2.75 (m, 3H), 2.03 – 1.90 (m, 1H), 1.36 (t, *J* = 7.1 Hz,

3H), 1.29 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.6, 154.4 (d, J = 20.7 Hz), 132.4, 130.9, 122.3, 122.0, 121.8, 110.1, 99.2, 61.9 (d, J = 6.5 Hz), 61.8 (d, J = 6.4 Hz), 50.9, 43.7, 33.8 (d, J = 3.2 Hz), 32.9, 28.6 (d, J = 138.7 Hz), 16.6 (d, J = 6.1 Hz), 16.5 (d, J = 6.1 Hz).

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.1.

HRMS (ESI) calcd for C₁₈H₂₄NNaO₅P[M+Na]⁺: 388.1284. Found: 388.1286.

methyl 1-((diethoxyphosphoryl)methyl)-7-fluoro-2,3-dihydro-1*H*-pyrrolo [1,2-*a*]indole-9carboxylate (5ha)

Yellow liquid, 78.5 mg, 71% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.75 (dd, *J* = 10.1, 2.6 Hz, 1H), 7.17 (dd, *J* = 8.8, 4.4 Hz, 1H), 7.03 – 6.90 (m, 1H), 4.23 – 4.04 (m, 7H), 3.91 (s, 3H), 3.07 – 2.76 (m, 3H), 2.00 (td,

J = 15.8, 10.8 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.0 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 165.3, 159.4 (d, *J* = 236.7 Hz), 155.7 (d, *J* = 20.9 Hz), 131.6 (d, *J* = 11.0 Hz), 129.0, 113.1 (d, *J* = 24.3 Hz), 110.8 (d, *J* = 9.8 Hz), 110.6 (d, *J* = 26.4 Hz), 107.4 (d, *J* = 25.2 Hz), 62.0 (d, *J* = 6.8 Hz), 61.8 (d, *J* = 6.3 Hz), 51.0, 44.1, 34.1 (d, *J* = 3.2 Hz), 32.9, 28.6 (d, *J* = 139.4 Hz), 16.6 (d, *J* = 5.9 Hz), 16.5 (d, *J* = 6.2 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ –121.4.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.0.

HRMS (ESI) calcd for C₁₈H₂₃FNNaO₅P[M+Na]⁺: 406.1190. Found: 406.1194.

dimethyl((3-benzoyl-5,6,7,8-tetrahydroindolizin-8-yl)methyl)phosphonate (3ab)

White solid, 37.7 mg, 54% yield, m.p. = 90.7 – 91.2 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 – 7.73 (m, 2H), 7.54 – 7.49 (m, 1H), 7.46 – 7.41 (m, 2H), 6.71 (d, *J* = 4.2 Hz, 1H), 6.06 (dd, *J* = 4.2, 0.9 Hz, 1H), 4.64 (dt, *J* = 14.1, 4.8 Hz, 1H), 4.30 (ddd, *J* =

14.5, 10.1, 4.9 Hz, 1H), 3.80 (d, *J* = 1.8 Hz, 3H), 3.77 (d, *J* = 1.9 Hz, 3H), 3.38 – 3.27 (m, 1H), 2.42 – 2.28 (m, 2H), 2.18 – 2.09 (m, 1H), 2.06 – 1.88 (m, 2H), 1.71 – 1.57 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.8, 142.1 (d, J = 21.5 Hz), 140.5, 131.3, 129.8, 129.2, 128.1, 123.3, 106.3, 52.7 (d, J = 6.6 Hz), 52.5 (d, J = 6.8 Hz), 46.3, 31.9 (d, J = 142.2 Hz), 30.2, 26.9 (d, J = 3.2 Hz), 22.3.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 32.0.

HRMS (ESI) calcd for C₁₈H₂₃NO₄P[M+H]⁺: 348.1359. Found: 348.1359.

diisopropyl((3-benzoyl-5,6,7,8-tetrahydroindolizin-8-yl)methyl) phosphonate (3ac)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.80 – 7.73 (m, 2H), 7.54 – 7.48 (m, 1H), 7.47 – 7.40 (m, 2H), 6.71 (d, *J* = 4.2 Hz, 1H), 6.07 (d, *J* = 4.2 Hz, 1H), 4.82 – 4.71 (m, 2H), 4.63 (dt, *J* = 14.0, 4.8 Hz,

1H), 4.30 (ddd, *J* = 14.5, 10.0, 5.0 Hz, 1H), 3.36 – 3.24 (m, 1H), 2.38 – 2.25 (m, 2H), 2.18 – 2.09 (m, 1H), 2.00 – 1.88 (m, 2H), 1.71 – 1.61 (m, 1H), 1.40 – 1.31 (m, 12H).

Yellow liquid, 60.7 mg, 75% yield.

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.7, 142.7 (d, *J* = 21.3 Hz), 140.5, 131.2, 129.7, 129.2, 128.1, 123.4, 106.3, 70.5 (d, *J* = 6.8 Hz), 70.4 (d, *J* = 6.9 Hz), 46.3, 33.3 (d, *J* = 141.0 Hz), 30.5 (d, *J* = 2.7 Hz), 26.9 (d, *J* = 3.0 Hz), 24.3 – 24.2 (m), 22.3.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 27.2.

HRMS (ESI) calcd for C₂₂H₃₁NO₄P[M+H]⁺: 404.1985. Found: 404.1989.

dibutyl ((3-benzoyl-5,6,7,8-tetrahydroindolizin-8-yl)methyl)phosphonate (3ad)

Yellow solid, 65.7 mg, 76% yield, m.p. = 57.2 – 57.9 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 – 7.73 (m, 2H), 7.54 – 7.48 (m, 1H), 7.46 – 7.40 (m, 2H), 6.71 (d, *J* = 4.2 Hz, 1H), 6.06 (dd, *J* = 4.2, 0.9 Hz, 1H), 4.63 (dt, *J* = 14.1, 4.8 Hz,

1H), 4.30 (ddd, *J* = 14.5, 10.1, 5.0 Hz, 1H), 4.12 – 4.02 (m, 4H), 3.38 – 3.26 (m, 1H), 2.40 – 2.28 (m, 2H), 2.18 – 2.09 (m, 1H), 2.05 – 1.93 (m, 1H), 1.71 – 1.63 (m, 6H), 1.47 – 1.37 (m, 4H), 0.95 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.7, 142.4 (d, J = 21.3 Hz), 140.5, 131.2, 129.7, 129.2, 128.1, 123.3, 106.3, 65.7 (d, J = 6.7 Hz), 65.5 (d, J = 6.9 Hz), 46.3, 32.8 (d, J = 1.7 Hz), 32.7 (d, J = 1.7 Hz), 31.7 (d, J = 139.8 Hz), 30.3 (d, J = 2.6 Hz), 26.9 (d, J = 2.9 Hz), 22.3, 18.9, 13.8.
³¹P NMR (162 MHz, Chloroform-*d*) δ 29.3.

HRMS (ESI) calcd for C₂₄H₃₄NNaO₄P[M+Na]⁺: 454.2118. Found: 454.2103.

diisobutyl ((3-benzoyl-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3ae)

Yellow liquid, 53.6 mg, 62% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 – 7.72 (m, 2H), 7.53 – 7.48 (m, 1H), 7.46 – 7.40 (m, 2H), 6.71 (d, *J* = 4.2 Hz, 1H), 6.07 (d, *J* = 4.2 Hz, 1H), 4.63 (dt, *J* = 14.1, 4.9 Hz, 1H), 4.31

(ddd, *J* = 14.5, 10.0, 4.9 Hz, 1H), 3.90 – 3.78 (m, 4H), 3.40 – 3.28 (m, 1H), 2.44 – 2.29 (m, 2H), 2.18 – 2.09 (m, 1H), 2.07 – 1.90 (m, 4H), 1.73 – 1.62 (m, 1H), 0.96 (d, *J* = 6.7 Hz, 12H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.7, 142.4 (d, J = 21.1 Hz), 140.5, 131.2, 129.7, 129.1, 128.1, 123.3, 106.3, 71.9 (d, J = 7.0 Hz), 71.7 (d, J = 7.2 Hz), 46.2, 31.6 (d, J = 140.1 Hz), 30.3 (d, J = 2.7 Hz), 29.4 (d, J = 2.4 Hz), 29.3 (d, J = 2.3 Hz), 26.9 (d, J = 2.9 Hz), 22.3, 18.9.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 29.1.

HRMS (ESI) calcd for C₂₄H₃₄NNaO₄P[M+Na]⁺: 454.2118. Found: 454.2122.

di-tert-butyl ((3-benzoyl-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3af)

Yellow liquid, 55.5 mg, 64% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 – 7.72 (m, 2H), 7.55 – 7.46 (m, 1H), 7.47 – 7.38 (m, 2H), 6.71 (d, *J* = 4.1 Hz, 1H), 6.06 (d, *J* = 4.2 Hz, 1H), 4.64 (dt, *J* = 14.1, 4.9 Hz, 1H), 4.30 (ddd, *J* =

14.4, 10.0, 4.9 Hz, 1H), 3.34 – 3.21 (m, 1H), 2.39 – 2.31 (m, 1H), 2.32 – 2.18 (m, 1H), 2.17 – 2.08 (m, 1H), 1.95 – 1.84 (m, 2H), 1.71 – 1.61 (m, 1H), 1.53 (s, 9H), 1.53 (s, 9H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 185.6, 143.3 (d, *J* = 21.2 Hz), 140.6, 131.1, 129.6, 129.1, 128.1, 123.4, 106.3, 82.3 (d, *J* = 9.0 Hz), 82.2 (d, *J* = 8.6 Hz), 46.3, 36.3 (d, *J* = 144.2 Hz), 31.1 (d, *J* = 3.8 Hz), 30.63 (d, *J* = 1.7 Hz), 30.59 (d, *J* = 1.7 Hz), 26.7 (d, *J* = 3.0 Hz), 22.4.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 20.7.

HRMS (ESI) calcd for C₂₄H₃₄NNaO₄P[M+Na]⁺: 454.2118. Found: 454.2124.

dibenzyl ((3-benzoyl-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (3ag)

Green liquid, 45.3 mg, 45% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.75 – 7.71 (m, 2H), 7.52 – 7.47 (m, 1H), 7.44 – 7.39 (m, 2H), 7.38 – 7.31 (m, 10H), 6.66 (d, *J* = 4.2 Hz, 1H), 5.94 (dd, *J* = 4.2, 0.8 Hz,

1H), 5.13 – 5.05 (m, 2H), 5.02 – 4.95 (m, 2H), 4.58 (dt, *J* = 14.0, 4.8 Hz, 1H), 4.24 (ddd, *J* = 14.4, 10.0, 4.9 Hz, 1H), 3.33 – 3.18 (m, 1H), 2.32 (ddd, *J* = 19.5, 15.5, 3.6 Hz, 1H), 2.26 – 2.19 (m, 1H), 2.08 – 1.93 (m, 2H), 1.89 – 1.77 (m, 1H), 1.64 – 1.54 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 185.7, 142.1 (d, *J* = 21.3 Hz), 140.4, 136.3 (d, *J* = 5.8 Hz), 131.2, 129.7, 129.1, 128.8, 128.7 (d, *J* = 1.8 Hz), 128.2 (d, *J* = 2.3 Hz), 128.1, 123.3, 106.3, 67.6 (d, *J* = 6.5 Hz), 67.4 (d, *J* = 6.6 Hz), 46.2, 32.3 (d, *J* = 139.4 Hz), 30.1 (d, *J* = 2.5 Hz), 26.8 (d, *J* = 3.3 Hz), 22.2.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 30.6.

HRMS (ESI) calcd for C₃₀H₃₀NNaO₄P[M+Na]⁺: 522.1805. Found: 522.1821.

ethyl ((3-benzoyl-5,6,7,8-tetrahydroindolizin-8-yl) methyl) (phenyl) phosphinate (3aj)

Yellow liquid, 39.8 mg, 47% yield, dr = 1:1. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.67 (m, 4H), 7.65 – 7.36 (m, 6H), 6.69 (d, *J* = 4.2 Hz, 0.5H), 6.64 (d, *J* = 4.1 Hz, 0.5H), 6.08 (d, *J* = 4.2 Hz, 0.5H), 5.90 (d, *J* = 4.2 Hz, 0.5H), 4.79

- 4.42 (m, 1H), 4.37 - 4.18 (m, 1H), 4.17 - 4.04 (m, 1H), 3.93 - 3.78 (m, 1H), 3.52 - 3.20 (m, 1H), 2.61 - 1.68 (m, 6H), 1.33 - 1.29 (m, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.7, 142.6, 142.4, 140.50, 140.47, 132.61, 132.59, 132.6, 131.7, 131.6, 131.2, 129.7, 129.1, 129.02, 128.99, 128.89, 128.87, 128.1, 123.33, 123.27, 106.5, 106.2, 60.91, 60.85, 46.3, 46.2, 36.3, 35.4, 29.9, 29.8, 29.7, 29.6, 27.3, 27.1, 22.24, 22.21, 16.63, 16.61, 16.56, 16.5.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 42.7, 42.0.

HRMS (ESI) calcd for C₂₄H₂₆NNaO₃P[M+Na]⁺: 430.1543. Found: 430.1548.

diethyl((1-cyano-2-(2,2-difluorobenzo[*d*][1,3]dioxol-4-yl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (7aa)

3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 143.9, 142.3 (d, *J* = 21.5 Hz), 139.9, 131.5 (t, *J* = 254.7 Hz), 124.1, 121.4, 120.9, 118.2, 116.8, 116.7, 107.8, 87.8, 62.2 (d, *J* = 6.8 Hz), 62.0 (d, *J* = 6.6 Hz), 46.2, 30.1 (d, *J* = 137.8 Hz), 28.3 (d, *J* = 2.1 Hz), 25.4, 20.1, 16.6 (d, *J* = 4.3 Hz), 16.5 (d, *J* = 4.2 Hz).
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -49.5.

³¹**P NMR** (162 MHz, Chloroform-*d*) δ 27.6.

HRMS (ESI) calcd for C₂₁H₂₃F₂N₂NaO₅P[M+Na]⁺: 475.1205. Found: 475.1206.

((3-benzoyl-5,6,7,8-tetrahydroindolizin-8-yl)methyl)phosphonic acid (8aa)

Grey solid, 45.9 mg, 29% yield, m.p. = 79.2 − 80.0 °C. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.72 − 7.64 (m, 2H), 7.56 − 7.51 (m, 1H), 7.48 − 7.41 (m, 2H), 6.68 (d, *J* = 4.1 Hz, 1H), 6.16 (d, *J* = 4.2 Hz, 1H), 4.57 (dt, *J* = 14.1, 4.8 Hz, 1H), 4.25 (ddd, *J* = 14.3, 9.8,

4.8 Hz, 1H), 3.36 – 3.24 (m, 1H), 2.44 – 2.25 (m, 2H), 2.18 – 2.08 (m, 1H), 2.02 – 1.84 (m, 2H), 1.74 – 1.62 (m, 1H).

¹³C NMR (101 MHz, Methanol-*d*₄) δ 187.4, 145.3 (d, *J* = 20.6 Hz), 141.7, 132.3, 130.6, 129.9, 129.1, 125.4, 107.9, 47.4, 34.1 (d, *J* = 137.2 Hz), 31.8, 27.8, 23.1.

³¹**P** NMR (162 MHz, Methanol- d_4) δ 26.8.

HRMS (ESI) calcd for C₁₆H₁₉NO₄P[M+H]⁺: 320.1046. Found: 320.1048.

diethyl ((3-(phenylcarbonothioyl)-5,6,7,8-tetrahydroindolizin-8-yl) methyl) phosphonate (9aa)

Yellow liquid, 131.9 mg, 73% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.52 – 7.43 (m, 2H), 7.36 – 7.30 (m, 1H), 7.26 – 7.19 (m, 2H), 6.49 (d, *J* = 4.3 Hz, 1H), 6.03 (d, *J* = 4.4 Hz, 1H), 4.61 (dt, *J* = 14.1, 4.7 Hz, 1H), 4.34 (ddd, *J* =

14.4, 9.9, 4.8 Hz, 1H), 4.13 – 3.98 (m, 4H), 3.30 – 3.14 (m, 1H), 2.33 – 2.19 (m, 2H), 2.03 (ddt, *J* = 9.5, 6.6, 2.7 Hz, 1H), 1.97 – 1.85 (m, 1H), 1.84 – 1.73 (m, 1H), 1.65 – 1.51 (m, 1H), 1.27 (t, *J* = 7.0 Hz, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 212.6, 149.7, 147.2 (d, *J* = 20.2 Hz), 142.9, 129.8, 129.0, 127.5, 123.4, 107.7, 61.9 (d, *J* = 5.2 Hz), 61.7 (d, *J* = 5.6 Hz), 47.8, 31.7 (d, *J* = 138.0 Hz), 30.8, 26.2, 22.2, 16.5 (d, *J* = 4.1 Hz).

³¹**P** NMR (162 MHz, Chloroform-*d*) δ 28.9.

HRMS (ESI) calcd for C₂₀H₂₆NNaO₃PS[M+Na]⁺: 414.1263. Found: 414.1268.
6. Mechanistic studies

6.1 Radical inhibition experiments

An oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with 4DPAIPN (3.2 mg, 0.004 mmol), Cs₂CO₃ (130.3 mg, 0.4 mmol) and TEMPO (93.8 mg, 0.6 mmol). The tube was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, dry MeCN (2 mL), H₂O (10 μ L), the substrate **1a** (47.9 mg, 0.2 mmol), **2a** (52 μ L, 0.4 mmol) and DTBP (55 μ L, 0.3 mmol) were added under Ar flow. The tube was placed approximately 2 cm from blue LEDs and stirred at room temperature for 12 h. After completion, the desired product **3aa** was not detected.

An oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with 4DPAIPN (3.2 mg, 0.004 mmol), Cs_2CO_3 (130.3 mg, 0.4 mmol) and BHT (88.1 mg, 0.4 mmol). The tube was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, dry MeCN (2 mL), H₂O (10 µL), the substrate **1a** (47.9 mg, 0.2 mmol), **2a** (52 µL, 0.4 mmol) and DTBP (55 µL, 0.3 mmol) were added under Ar flow. The tube was placed approximately 2 cm from blue LEDs and stirred at room temperature for 12 h. After completion, the desired product **3aa** was not detected.

6.2 The detection of intermediates with LC-HRMS analysis

An oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with 4DPAIPN (3.2 mg, 0.004 mmol) and Cs₂CO₃ (130.3 mg, 0.4 mmol). The tube was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, dry MeCN (2 mL), H₂O (10 μ L), the substrate **1a** (47.9 mg, 0.2 mmol), **2a** (52 μ L, 0.4 mmol) and DTBP (55 μ L, 0.3 mmol) were added under Ar flow. The tube was placed approximately 2 cm from 30 W blue LEDs and stirred at room temperature for 3 h. Then, TEMPO (31.3 mg, 0.2 mmol) was added under Ar flow. The tube

was placed approximately 2 cm from 30 W blue LEDs and stirred at room temperature for 0.5 h. After completion, the mixture was filtered and analyzed by LC-HRMS.

The reaction was analyzed using UPLC (ExionLCTM) coupled with QTOF/MS (SCIEX X500R). The mobile phases consisted of (A) 1:1000 (v/v) formic acid: water and (B) acetonitrile. The separation was conducted under the following gradient at a flow rate of 0.3 mL/min: 0 min 5% (B), 1 min 5% (B), 9 min 95% (B), 12 min 95% (B), 12.1 min 5% (B) and 13 min 5% (B). LC-MS analyses were carried out by using the HALO column (C18, 2.1*100 mm, 2.1 μ m). The QTOF/MS settings were as follows: sample size, 5 μ L; ionization mode, electrospray ionization 4000 V; MS1 scan range, 50-1000 m/z. Proposed structures are shown below.

3ta, N.D.

An oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with 4DPAIPN (2 mol%) and Cs_2CO_3 (0.4 mmol, 2.0 eq.). The tube was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, dry MeCN (2 mL), H₂O (10 µL), the substrate **1r**, **4e** or **1t** (0.2 mmol, 1.0 eq.) and **2a** (0.4 mmol, 2 eq.) were added under Ar flow. The tube was placed approximately 2 cm from blue LEDs and stirred at room temperature for 12 h. After completion, the mixture was detected by TLC, the desired product **3ra** was detected in trace, **5ea** and **3ta** were not detected in the conditions without DTBP.

1t

2a

An oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with 4DPAIPN (3.2 mg, 0.004 mmol) and Cs₂CO₃ (130.3 mg, 0.4 mmol). The tube was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, dry MeCN (2 mL), H₂O (10 μ L), **1t** (47.9 mg, 0.2 mmol), **2a** (52 μ L, 0.4 mmol) and 2-benzoylpyrrole (51.4 mg, 0.3 mmol) were added under Ar flow. The tube was placed approximately 2 cm from blue LEDs and stirred at room temperature for 12 h. After completion, the mixture was filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography on silica gel with PE/EtOAc (1:2) as eluent to afford the desired product **3ta** (42.9 mg, 60% yield).

An oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with 4DPAIPN (3.2 mg, 0.004 mmol) and Cs₂CO₃ (130.3 mg, 0.4 mmol). The tube was connected to a vacuum line where it was evacuated and back-filled with Ar for three times. Then, dry MeCN (2 mL), H₂O (10 μ L), **1t** (47.9 mg, 0.2 mmol), **2a** (52 μ L, 0.4 mmol) and benzophenone (54.7 mg, 0.3 mmol) were added under Ar flow. The tube was placed approximately 2 cm from blue LEDs and stirred at room temperature for 12 h. After completion, the mixture was filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography on silica gel to afford the desired product **3ta** (31.0 mg, 43% yield) and byproduct diphenylmethanol (47.9 mg, 87% yield).

6.4 Cyclic voltammetry test

Cyclic voltammetry test was performed in a three-electrode cell under argon at room temperature. All cyclic voltammograms were measured using Ag/Ag^+ (0.01 M AgNO₃ in MeCN) reference electrode, a platinum (Pt) wire counter electrode and a glassy carbon working electrode. The conditions of the experiments were as follows: testing compounds are in solution of 0.1 M

tetrabutylammonium tetrafluoroborate (${}^{n}Bu_{4}NBF_{4}$) in CH₃CN at a scan rate of 2 V/s or 0.2 V/s; Prior to each measurement, solutions were purged with Ar for 10 minutes to ensure the oxygen-free conditions.

Measuring the Fc/Fc⁺ redox couple afforded $E_{1/2} = +0.07$ V vs Ag/Ag⁺ under our experimental conditions. The obtained value was referenced to Ag/Ag⁺ and converted to SCE by adding 0.35 V, providing a value of +0.42 V for the Fc/Fc⁺ couple.³ The reduction half-peak potential of DTBP in MeCN was measured as -1.33 V (vs Ag/Ag⁺), and calculated to -0.98 V (vs SCE). The oxidative peak of **2a** was not observed.

Figure S2. Cyclic voltammetry of DTBP (0.05 M) in CH₃CN (vs Ag/Ag⁺) with $^{n}Bu_{4}NBF_{4}$ (0.1 M) under argon at a glassy carbon electrode at a scan rate of 2 V/s.

Figure S3. Cyclic voltammetry of 2a (0.05 M) in CH₃CN (vs Ag/Ag⁺) with $^{n}Bu_4NBF_4$ (0.1 M) under argon at a glassy carbon electrode at a scan rate of 0.2 V/s.

6.5 The plausible reaction pathway

Figure S4. The proposed major reaction pathway.

Figure S5. The proposed minor reaction pathway.

7. Supplementary references

- 1. M. Milen, T. Foldesi, A. Dancso, G. Simig and B. Volk, *Synlett*, 2015, 26, 2418-2424.
- R. Yang, D. Yi, K. R. Shen, Q. Fu, J. Wei, J. Lu, L. Yang, L. Wang, S. P. Wei and Z. J. Zhang, Org Lett, 2022, 24, 2014-2019.
- 3. H. G. Roth, N. A. Romero and D. A. Nicewicz, *Synlett*, 2016, 27, 714-723.

8. Copies of NMR spectra for synthesized compounds

¹H NMR (400 MHz, CDCl₃) spectrum of **1e**

¹H NMR (400 MHz, CDCl₃) spectrum of **1f**

¹³C NMR (101 MHz, CDCl₃) spectrum of **1f**

¹³C NMR (101 MHz, CDCl₃) spectrum of **1g**

¹³C NMR (101 MHz, CDCl₃) spectrum of **1h**

¹H NMR (400 MHz, CDCl₃) spectrum of **1i**

¹⁹F NMR (376 MHz, CDCl₃) spectrum of **1i**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S63

S64

¹⁹F NMR (376 MHz, CDCl₃) spectrum of **1m**

S68

¹³C NMR (101 MHz, CDCl₃) spectrum of **4d**

¹⁹F NMR (376 MHz, CDCl₃) spectrum of **4d**

-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of **4h**

¹⁹F NMR (376 MHz, CDCl₃) spectrum of **4h**

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) -40 -50 -60 -70 -80 -90

¹³C NMR (101 MHz, CDCl₃) spectrum of **6a**

¹⁹F NMR (376 MHz, CDCl₃) spectrum of **6a**

S88

³¹P NMR (162 MHz, CDCl₃) spectrum of **3aa**

S91

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ba**

— 28.84

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14(f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ca**

— 29.96

35 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -6(f1 (ppm)

S100

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

S103

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -13(f1 (ppm)

S106

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ga**

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ha**

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) spectrum of **3ia**

¹⁹F NMR (376 MHz, CDCl₃) spectrum of **3ia**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14C f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3la**

— 29.19

¹³C NMR (101 MHz, CDCl₃) spectrum of **3ma**

¹⁹F NMR (376 MHz, CDCl₃) spectrum of **3ma**

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ma**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3na**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

S132

³¹P NMR (162 MHz, CDCl₃) spectrum of **30a**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -13 f1 (ppm)

- 29.39

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3pa**

¹³C NMR (101 MHz, CDCl₃) spectrum of **3qa**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3qa**

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ra**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3sa**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ta**

— 29.68

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14C f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ua**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3wa**

S159

³¹P NMR (162 MHz, CDCl₃) spectrum of **3xa**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14(f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ya**

³¹P NMR (162 MHz, CDCl₃) spectrum of **3za**

³¹P NMR (162 MHz, CDCl₃) spectrum of **5aa**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) spectrum of **5ba**

³¹P NMR (162 MHz, CDCl₃) spectrum of **5ba**

— 29.06

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14 f1 (ppm)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) spectrum of **5da**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) spectrum of **5ea**

³¹P NMR (162 MHz, CDCl₃) spectrum of **5ea**

¹³C NMR (101 MHz, CDCl₃) spectrum of **5fa**

³¹P NMR (162 MHz, CDCl₃) spectrum of **5fa**

-- 29.92

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

— 29.13

³¹P NMR (162 MHz, CDCl₃) spectrum of **5ga**

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ab**

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ac**

_

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ad**

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ae**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14 f1 (ppm)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3af**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **3ag**

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

42.7341.99

³¹P NMR (162 MHz, CDCl₃) spectrum of **3aj**

¹⁹F NMR (376 MHz, CDCl₃) spectrum of **7aa**

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃) spectrum of **7aa**

S218

47.36

³¹P NMR (162 MHz, Methanol- d_4) spectrum of **8aa**

-- 26.76

¹³C NMR (101 MHz, CDCl₃) spectrum of **9aa**

— 28.93

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)