Bioinspired Synthesis and biological evaluation of ent-Protulactones

A and B

Changxu Liang ^{a, b}, Chao Hu ^a, Pengpeng Nie ^{a, b}, Yuanfang Liu ^{a, b}, Jun Liu ^{a, b, c *}, Yuguo Du ^{a, b, c}

^a State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;

^b School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;

^c Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, Shandong Province, China

Contents

1.	Copies of NMR Spectra	.S3
2.	Comparison of ¹ H NMR and ¹³ C NMR data of Protulactones A and B	.S24
3.	In vitro Cytotoxicity of Protulactones A $(1')$ and B $(2')$ and their derivatives	S28

Figure 1. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 8

Figure 2. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 8

Figure 3. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 7

Figure 4. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 7

Figure 5. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 7a

Figure 6. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 7a

Figure 7. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 7b

Figure 8. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 7b

Figure 9. ¹H-¹H COSY (400 MHz, CDCl₃) spectrum of 7b

Figure 10. NOESY (400 MHz, CDCl₃) spectrum of 7b

Figure 11. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 12

Figure 12. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 12

Figure 14. ¹³C NMR (100 MHz, CD₃OD) spectrum of compound 5a

Figure 15. ¹H NMR (400 MHz, CD₃OD) spectrum of compound 5

Figure 16. ¹³C NMR (100 MHz, CD₃OD) spectrum of compound 5

Figure 17. ¹H NMR (400 MHz, CD₃OD) spectrum of (–)-protulactone A (1')

Figure 18. 13 C NMR (100 MHz, CD₃OD) spectrum of (–)-protulactone A (1')

Figure 19. ¹H NMR (400 MHz, CD₃OD) spectrum of compound 14

Figure 20. ¹³C NMR (100 MHz, CD₃OD) spectrum of compound 14

Figure 21. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 15

Figure 22. ¹H NMR (100 MHz, CDCl₃) spectrum of compound 15

Figure 27. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 16

Figure 28. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 16

Figure 29. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 17

Figure 30. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 17

Figure 31. ¹H NMR (400 MHz, CD₃OD) spectrum of compound 6

Figure 32. ¹³C NMR (100 MHz, CD₃OD) spectrum of compound 6

Figure 33. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 19

Figure 34. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 19

Figure 35. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 20

Figure 36. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 20

Figure 37. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 21

Figure 38. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 21

Figure 39. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 22

Figure 40. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 22

Figure 41. ¹H NMR (400 MHz, CDCl₃ with 15µL CD₃OD) spectrum of (+)-protulactone B (2')

Figure 42. ¹³C NMR (100 MHz, CDCl₃ with 15µL CD₃OD) spectrum of (+)-protulactone B (2')

Figure 43. ¹H NMR (400 MHz, CDCl₃) spectrum of (+)-protulactone B (2')

Figure 44. ¹³C NMR (100 MHz, CDCl₃) spectrum of (+)-protulactone B (2')

Figure 45. ¹H-¹H COSY (400 MHz, CDCl₃) spectrum of (+)-protulactone B (2')

2. Comparison of ¹H and ¹³C NMR data of Protulactone A and B

No ¹ H-natural ^{<i>a</i>}		¹ H-synthetic (Gracza) ^b ;	¹ H-synthetic (our work) ^c	$\Delta_{\delta} = \delta_a - \delta_c$
1	-	-	-	
	2.84 (1H, dd, 18.3, 4.8)	2.89-2.80 (m, 1H)	2.84 (1H, dd, 18.2, 4.8)	0
2	2.52 (1H, br d, 18.3)	2.52 (dd, J = 18.1, 0.8 Hz, 1H)	2.57-2.47 (1H, m)	-
3	4.76 (1H, m)			
4	4.77 (1H, m)	4.82–4.77 (m, 2H)	4.82-4.74 (2H, m)	-
5	4.32 (1H, br d, 4.8)	4.33 (d, J = 4.7 Hz, 1H)	4.33 (1H, d, 4.8)	-0.01
6	3.79 (1H, dd, 4.8, 4.0)	3.80 (dd, J = 4.7, 4.0 Hz, 1H)	3.79 (1H, dd, 4.8, 4.0)	0
7	5.07 (1H, dq, 4.0, 6.6)	5.07 (dq, J = 4.0, 6.6 Hz, 1H)	5.07 (1H, dq, 4.0, 6.6)	0
8	1.24 (3H, d, 6.6)	1.25 (d, J = 6.6 Hz, 3H)	1.24 (3H, d, 6.6)	0
1'	-	-	-	-
2'	1.99 (3H, s)	2.00 (s, 3H)	1.99 (3H, s)	0

Table 1. Comparison of ¹H NMR data of natural and synthetic (-)-protulactone A (1')

^a Spectra were recorded at 400 MHz (¹H NMR) in CD₃OD.²

^b Spectra were recorded at 300 MHz (¹H NMR) in CD₃OD.⁴

^c Spectra were recorded at 400 MHz (¹H NMR) in CD₃OD.

No	¹³ C-natural ^a	¹³ C-synthetic (Gracza) ^b	¹³ C-synthetic (our work) ^c	$\Delta_{\delta} = \delta_b - \delta_c$
1	176.6 (s)	177.5	177.5	0
2	35.7 (t)	37.0	37.0	0
3	77.8 (d)	79.1	79.2	-0.1
4	90.9 (d)	92.2	92.3	-0.1
5	75.3 (d)	76.6	76.6	0
6	88.8 (d)	90.1	90.2	-0.1
7	69.3 (d)	70.6	70.6	0
8	14.9 (q)	16.3	16.3	0
1'	171.0 (s)	172.1	172.1	0
2'	19.7 (q)	21.0	21.0	0

 Table 2. Comparison of ¹³C NMR data of natural and synthetic (-)-protulactone A (1')

^a Spectra were recorded at 100 MHz (¹³C NMR) in CD₃OD.²

^b Spectra were recorded at 75 MHz (¹³C NMR) in CD₃OD.⁴

^c Spectra were recorded at 100 MHz (¹³C NMR) in CD₃OD.

No	¹ H-natural ^a	¹ H-synthetic (our work) ^b	¹ H-synthetic (our work) ^c	$\Delta_{\delta} = \delta_{a} - \delta_{c}$
1	-	-	-	-
2	2.92 (1H, dd, 18.6, 1.1)	2.96 (1H, dd, 19.4, 1.6)	2.93 (1H, dd, 19.2, 0.8)	-0.01
2	2.85 (1H, dd, 18.6, 4.7)	2.86 (1H, dd, 19.4, 5.0)	2.85 (1H, dd, 19.2, 4.6)	0
3	4.12 (1H, m)	4.14(211 m)	4 17 4 05 (2H m)	
4	4.09 (1H, m)	4.14 (211, III <i>)</i>	4.17-4.05 (211, 111)	-
5	4.70 (1H, ddd, 4.6, 2.3, 2.3)	4.73(1H, ddd, 4.8, 2.4, 2.4)	4.71 (1H, ddd, 4.6, 2.2, 2.2)	-0.01
6	4.97 (1H, dd, 10.1, 2.3)	4.96 (1H, dd, 10.0, 2.6)	4.96 (1H, dd, 10.0, 2.6)	+0.01
7	3.78 (1H, dq, 6.0, 10.1)	3.79 (1H, dq, 6.0, 10.0)	3.78 (1H, dq, 5.8, 10.6)	0
8	1.22 (3H, d, 6.0)	1.22 (3H, d, 6.0)	1.22 (3H, d, 6.0)	0
1'	-	-	-	-
2'	2.07 (3H, s)	2.07 (3H, s)	2.07 (3H, s)	0

Table 3. Comparison of ¹H NMR data of natural and synthetic (+)-protulactone B (2')

 a Spectra were recorded at 400 MHz (^1H NMR) in CDCl_3 with drops of CD_3OD.^2

^b Spectra were recorded at 400 MHz (¹H NMR) in CDCl₃.

 c Spectra were recorded at 400 MHz (^1H NMR) in CDCl_3 with 15 μL CD_3OD.

No	¹³ C-Natural ^a	¹³ C-Our work ^b	¹³ C-Our work ^c	$\Delta_{\delta} = \delta_{a} - \delta_{c}$
1	168.6	167.8	168.5	+0.1
2	35.3	35.3	35.3	0
3	69.5	69.9	69.6	-0.1
4	65.4	66.1	65.5	-0.1
5	75.0	74.8	75.0	0
6	71.1	70.9	71.1	0
7	64.5	65.0	64.6	-0.1
8	17.8	18.1	17.8	0
1'	170.7	170.4	170.6	+0.1
2'	21.0	21.1	21.0	0

 Table 4. Comparison of ¹³C NMR data of natural and synthetic (+)-protulactone B (2')

 $^{\rm a}$ Spectra were recorded at 100 MHz ($^{\rm 13}C$ NMR) in CDCl_3 with drops of CD_3OD.^2

^b Spectra were recorded at 100 MHz (¹³C NMR) in CDCl₃.

 c Spectra were recorded at 100 MHz (^{13}C NMR) in CDCl3 with 15 μL CD3OD.

Compounds		MCF-7 (x±s) ª	Capan-2(x±s) ^b
OAc رور ع	30 µM	5.22%±5.27%	-3.44%±0.43%
O O OH	10 µM	0.38%±3.08%	-8.60%±1.22%
(-)-Protulactone A, (1')	3 μΜ	1.57%±3.03%	-5.74%±0.95%
0. OH	30 µM	13.87%±5.93%	-0.32%±2.85%
O O' OH	10 µM	13.76%±5.22%	-6.79%±5.41%
3	3 μΜ	2.71%±2.32%	-4.14%±2.43%
Q. OAc	30 µM	17.42%±1.48%	-5.70%±3.15%
O O OAc	10 µM	9.64%±2.37%	-7.11%±1.58%
13	3 μΜ	2.16%±6.06%	-5.99%±0.86%
но	30 µM	-4.28%±8.70%	-3.86%±3.98%
Me Y O	10 µM	7.13%±4.62%	-7.39%±2.32%
OAc (+)-Protulactone B, (2')	3 μΜ	-4.98%±3.63%	-4.56%±1.68%
но	30 µM	4.61%±6.56%	-7.90%±2.22%
MeO	10 µM	2.54%±1.21%	-9.62%±0.92%
HÕ 4	3 μΜ	-1.56%±3.88%	-13.00%±2.43%
AcO	30 µM	11.32%±3.62%	-5.77%±4.20%
Me	10 µM	5.22%±4.36%	-8.00%±1.13%
OAc 17	3 μΜ	-3.41%±7.70%	-9.43%±3.48%

Table 5. In vitro Cytotoxicity of protulactones A (1') and B (2') and their derivatives

^a Mcf-7 was provided by Cell Culture Center at the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences.

^b Capan-2 was purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA).