Supporting Information for

Controlled oligomeric guest stacking by cucurbiturils in water

Fengbo Liu, Amine Kriat, Roselyne Rosas, David Bergé-Lefranc, Didier Gigmes, Simon Pascal, Olivier Siri, Simin Liu, Anthony Kermagoret, David Bardelang

Table of Contents

- Experimental procedures
 1/ Chemical compounds --- S2
 2/ NMR Measurements --- S2
 3/ ITC measurements --- S2
 4/ Absorption and fluorescence spectroscopies -------------------------------------- S2

- Additional data
 5/ 1H NMR spectrum of T-VPI --- S3
 6/ 1H NMR spectrum of VPI-N --- S4
 7/ NMR and ITC study of VPI-N dimerization -- S5
 8/ 1H NMR titration of T-VPI with CB[8] -- S7
 9/ 1H NMR titration of VPI-N with CB[8] -- S7
 10/ Preparation and NMR spectra of CB[8]$_2$ ● T-VPI$_2$ --------------------------- S8
 11/ Preparation and NMR spectra of CB[8]$_2$ ● VPI-N$_2$ --------------------------- S9
 12/ Preparation and NMR spectra of T-VPI with CB[10] ----------------------------- S11
 13/ Preparation and NMR spectra of CB[10]$_2$ ● VPI-N$_3$ ------------------------- S12
 14/ ITC study of VPI-N with CB[8] -- S15
 15/ Competition NMR for the determination of binding constants ------------------ S16
 16/ UV-visible and fluorescence spectra --- S20
 17/ Preparation and NMR spectra of CB[8]$_2$ ● T-VPI$_2$ ● Ag$^{+2}$ -------------- S22
 18/ Preparation and NMR spectra of CB[8]$_2$ ● VPI-N$_2$ ● Ag$^{+2}$ -------------- S23
 19/ Preparation and NMR spectra of CB[8]$_2$ ● VPI-N$^+2$ ----------------------- S24
 20/ Preparation and NMR spectra of CB[8]$_2$ ● T-VPI$_2$ with TFA --------------- S25
 21/ Preparation and NMR spectra of CB[10]$_2$ ● VPI-N$^+3$ ----------------------- S26
 22/ References --- S28
Experimental Procedures

1/ Chemical compounds. T-VPI and VPI-N were obtained following previously described procedures.[1] D$_2$O, TFA (deuterated trifluoroacetic acid) and DCl in D$_2$O (3.5%) were purchased from commercial sources (Aldrich, Acros, ABCR or TCI) and used without further purification. HPLC grade water (purchased from Sigma-Aldrich) was used as deionized water. CB[8] was prepared according to a previous paper.[2] CB[10] was obtained following a previously described procedure.[3] Di-tolyl viologen (TVT) was obtained from a previously reported procedure.[4]

2/ NMR measurements. NMR measurements were recorded on Bruker AVL 300, 400 and 500 spectrometers (1H-NMR 300.13, 400.13 MHz and 13C-NMR 100.60, and 125.75 MHz). When using D$_2$O as the solvent (internal reference, 4.75 ppm) a watergate sequence (water suppress) was applied if necessary. Acetone was also used as internal reference for D$_2$O solutions (ref 2.22 ppm).[5] Splitting patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet. 2D NMR spectra (COSY and ROESY) were recorded using standard Bruker sequences. ROESY spectra for the CB[8]•T-VPI$_2$ complex was not attempted owing to large signals in the aromatic region usually affording spectra with no cross-peaks. Similarly, the ROESY of the CB[10]•VPI-N$_3$ complex was not recorded for the same reason, but ROESY was obtained for this complex in acidic conditions (sharper peaks compared to neutral conditions, see Figure S33).

3/ ITC measurements. Isothermal Titration Calorimetry (ITC) was performed on a Malvern MicroCal PEAQ-ITC at 25 °C. A 1 mM stock solution of VPI-N (syringe) was diluted in HPLC grade water (cell) for investigating dimer formation. Results were analyzed using the Malvern MicroCal PEAQ-ITC Analysis Software 1.1.0.1262 considering the dissociation model. For T-VPI (1 mM, syringe), titrations were performed with CB[8] solutions at 40 μM in HPLC grade water (cell). For VPI-N (1 mM, syringe), titrations were performed with CB[8] solutions at 40 μM in HPLC grade water (cell). Results were analyzed using the Malvern MicroCal PEAQ-ITC Analysis Software 1.1.0.1262 considering the one set of sites binding model. The reduced Chi square value [(kJ/mol)2] for each titration is indicated hereafter: VPI-N dilution: 0.036, T-VPI with CB[8]: 0.353, VPI-N with CB[8]: 0.385.

4/ Absorption and fluorescence spectroscopies. UV-visible absorption spectra were recorded in spectrophotometric grade water (ca. 10$^{-5}$ M) on a VARIAN CARY 50 SCAN spectrophotometer at room temperature with a 300 nm/min scan rate. Emission spectra were measured using a Horiba-Jobin Yvon Fluorolog-3 spectrofluorimeter equipped with a three-slit double-grating excitation and a spectrograph emission mono-chromator with dispersions of 2.1 nm.mm$^{-1}$ (1200 grooves per mm). A 450 W xenon continuous wave lamp provided excitation. The luminescence of diluted solutions was detected at right angle using 10 mm quartz cuvettes. Excitation: the luminescence of diluted solutions was detected at right angle using 10 mm quartz cuvettes. Fluorescence quantum yields Φ were measured in diluted absolute ethanol solution with an optical density lower than 0.1 using the following equation:

$$\Phi = \left(\frac{A_\lambda}{n^2 \cdot D_\lambda}\right) \left(\frac{n^2_\lambda \cdot D_\lambda}{A_\lambda}\right)$$

where A is the absorbance at the excitation wavelength (λ), n the refractive index and D the integrated intensity. "r" and "x" stand for reference and sample. The fluorescence quantum yields were measured relative to anthracene in ethanol ($\Phi = 27\%$). Excitation of reference and sample compounds was performed at the same wavelength, ie. 290 nm for T-VPI and 310 nm for VPI-N and T-V-T.
Additional data

1H NMR spectrum of T-VPI

1H NMR (300 MHz, D$_2$O) δ 9.38 (d, $J = 7.1$ Hz, 2H, H$_5$), 9.32 (d, $J = 7.1$ Hz, 2H, H$_2$), 8.74 (d, $J = 7.0$ Hz, 2H, H$_4$), 8.69 (d, $J = 7.0$ Hz, 2H, H$_3$), 8.31 (d, $J = 8.8$ Hz, 2H, H$_7$), 7.96 (d, $J = 8.8$ Hz, 2H, H$_6$), 7.68 (dd, $J = 5.8$, 2.8 Hz, 4H, overlapped signals of H$_y$ and H$_8$), 7.57 (d, $J = 8.2$ Hz, 2H, H$_x$), 7.32 (dd, $J = 6.1$, 3.2 Hz, 2H, H$_9$), 2.47 (s, 3H, H$_1$).

Figure S1. 1H NMR spectrum (300 MHz, D$_2$O, 298 K, 1 M) of compound T-VPI.
1H NMR spectrum of VPI-N

1H NMR (500 MHz, D$_2$O) δ 8.95 (d, J = 5.0 Hz, 2H, H5), 8.76 (d, J = 5.9 Hz, 2H, H2), 8.19 (d, J = 5.0 Hz, 2H, H4), 8.13 (d, J = 5.6 Hz, 2H, H3), 8.08 (d, J = 8.0 Hz, 2H, H7), 7.90 (br s, 2H, H8), 7.73 (br s, 2H, H9 or H10), 7.67 (d, J = 8.2 Hz, 2H, H6), 7.18 (m, 2H, H9 or H10), 4.31 (s, 3H, H1).

Figure S2. 1H NMR spectrum (300 MHz, D$_2$O, 298 K, 0.33 M) of compound VPI-N.
7/ NMR and ITC study of VPI-N dimerization

Figure S3. 1H NMR spectra of VPI-N alone in D$_2$O (top) and in the presence of TFA (bottom).

Figure S4. DOSY NMR spectra (500 MHz, D$_2$O, 300 K) of VPI-N in D$_2$O (top) and in the presence of deuterated-TFA (bottom).
Figure S5. Evolution of the chemical shift of the 1H NMR signal of proton H5 in D$_2$O (500 MHz, 300 K) as a function of VPI-N concentration (in mol.L$^{-1}$).

<table>
<thead>
<tr>
<th>Concentration (M)</th>
<th>Chemical shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000039</td>
<td>9.235</td>
</tr>
<tr>
<td>0.000048</td>
<td>9.175</td>
</tr>
<tr>
<td>0.000077</td>
<td>9.13</td>
</tr>
<tr>
<td>0.000113</td>
<td>9.108</td>
</tr>
<tr>
<td>0.00018</td>
<td>9.036</td>
</tr>
<tr>
<td>0.000333</td>
<td>8.952</td>
</tr>
<tr>
<td>0.00057</td>
<td>8.874</td>
</tr>
<tr>
<td>0.00075</td>
<td>8.834</td>
</tr>
<tr>
<td>0.001</td>
<td>8.806</td>
</tr>
<tr>
<td>0.002</td>
<td>8.658</td>
</tr>
<tr>
<td>0.003</td>
<td>8.646</td>
</tr>
<tr>
<td>0.004</td>
<td>8.585</td>
</tr>
</tbody>
</table>

Figure S6. ITC thermogram corresponding to the dilution of a 1 mM solution of VPI-N in water.
8/ 1H NMR titration of T-VPI with CB[8]

Figure S7. 1H NMR (500 MHz, D$_2$O, 298 K, 0.45 mM) of compound CB[8]₂•T-VPI₂.

9/ 1H NMR titration of VPI-N with CB[8]

Figure S8. 1H NMR (500 MHz, D$_2$O, 298 K, 0.45 mM) of compound CB[8]₂•VPI-N₂.
Preparation and NMR spectra of CB[8]•T-VPI₂

A 0.45 mM solution of CB[8]•T-VPI₂ was prepared from a mixture of 0.84 mg of solid CB[8] (6.3 × 10⁻⁷ mol, 1.2 equiv.), 263 µL of a 2 mM stock solution of T-VPI (5.3 × 10⁻⁷ mol in D₂O and 370 µL of D₂O. Acetone was used as internal reference (2.22 ppm).

According to the integral value of signals H5 (9.19 ppm, I = 4.00) and the integral value of CB[8] protons (5.83-5.69 ppm, I = 44.20), a CB[8]/T-VPI ratio of 2.76/2 is determined.

\[^{1}\text{H} \text{NMR (500 MHz, D}_2\text{O) \delta 9.19 \text{ (br s, 4H, H5), 9.05 (br s, 4H, H2), 8.38 (br s, 8H, overlapped signals of H6 and H7), 8.01 (br s, 4H, Hx), 7.68 (br s, 4H, Hx), 7.22 (s, 4H, H4), 7.11 (s, 4H, H3), 6.69 (s, 4H, H8 or H9), 6.21 (s, 4H, H8 or H9), 5.83 – 5.69 (m, 32H, CB[8]), 5.52 (s, 32H, CB[8]), 4.17 (app t, } J = 37.3 \text{ Hz, 32H, CB[8]), 2.59 (br s, 6H, H1), 2.22 \text{ (acetone, ref).}\]

Figure S9. \[^{1}\text{H} \text{NMR (500 MHz, D}_2\text{O, 298 K, 0.45 mM) of compound CB[8]•T-VPI₂.}\]

Figure S10. COSY NMR (500 MHz, D₂O, 298 K, 0.45 mM) of compound CB[8]•T-VPI₂.
Preparation and NMR spectra of CB[8]_2•VPI-N₂

A 0.45 mM solution of CB[8]_2•VPI-N₂ was prepared from a mixture of 0.74 mg of solid CB[8] (5.6 × 10⁻⁷ mol, 1.2 equiv.), 115 µL of a 4 mM stock solution of VPI-N (4.6 × 10⁻⁷ mol) in D₂O and 440 µL of D₂O. Acetone was used as internal reference (2.22 ppm).

According to the integral value of signals H5 (8.90 ppm, I = 4.00) and the integral value of CB[8] protons (5.75 ppm, I = 37.82), a CB[8]/VPI-N ratio of 2.36/2 is determined.

^1H NMR (500 MHz, D₂O) δ 8.90 (d, J = 5.9 Hz, 4H, H5), 8.68 (d, J = 6.3 Hz, 4H, H2), 8.39 (d, J = 8.4 Hz, 4H, H6 or H7), 8.32 (d, J = 8.4 Hz, 4H, H6 or H7), 7.19 (s, 4H, H8), 6.91 (br s, 8H, overlapped signals of H9 and H10), 6.82 (d, J = 6.1 Hz, 4H, H4), 6.65 (d, J = 6.2 Hz, 4H, H3), 5.75 (dd, J = 26.9, 15.4 Hz, 32H, CB[8]), 5.49 (s, 32H, CB[8]), 4.60 (s, H1), 4.19 (dd, J = 15.4, 6.3 Hz, 32H, CB[8]), 2.22 (acetone, ref).

Figure S11. ^1H NMR spectrum (500 MHz, D₂O, 298 K, 0.45 mM) of compound CB[8]_2•VPI-N₂.
Figure S12. COSY NMR (300 MHz, D$_2$O, 298 K, 0.45 mM) of compound CB[8]$_2$•VPI-N$_2$.

Figure S13. ROESY NMR (500 MHz, D$_2$O, 298 K, 0.45 mM, mixing time: 400 ms) of compound CB[8]$_2$•VPI-N$_2$.
12/ Preparation and NMR spectra of T-VPI with CB[10]

A solution of T-VPI with CB[10] was prepared from a mixture of 0.47 mg of solid CB[10] (2.7 × 10^{-7} mol, 1.1 equiv.), 125 µL of a 2 mM stock solution of T-VPI (2.5 × 10^{-7} mol) in D$_2$O and 400 µL of D$_2$O.

1H NMR (500 MHz, D$_2$O, 298 K, Figure S12) δ 5.8 (br s, CB[10]), 5.5 (br s, CB[10]), 4.1 (br s, CB[10]).

1H NMR (500 MHz, D$_2$O, 340 K, Figure S13) δ 8.86 (br s), 8.14 (br m), 7.81 (br s), 7.61 (br s), 7.48 – 7.16 (br m), 6.78 (br s), 5.80 (app d, $J = 15.0$ Hz, CB[10]), 5.50 (s, CB[10]), 4.26 – 4.20 (m, CB[10]), 2.35 (br s, H1).

![Diagram with chemical structures and NMR spectra](image)

Figure S14. 1H NMR spectrum (500 MHz, D$_2$O, 298 K, 0.5 mM) of T-VPI with CB[10].

![Diagram with chemical structures and NMR spectra](image)

Figure S15. 1H NMR spectrum (500 MHz, D$_2$O, 340 K, 0.5 mM) of T-VPI with CB[10].
A 0.17 mM solution of CB[10]₂•VPI-N₃ was prepared from a mixture of 0.46 mg of solid CB[10] (2.8 × 10⁻⁷ mol, 1.0 equiv.), 68 µL of a 4 mM stock solution of VPI-N (2.8 × 10⁻⁷ mol) in D₂O and 500 µL of D₂O. Acetone was used as internal reference (2.22 ppm).

³H NMR (300 MHz, 298 K, D₂O) δ 8.66 (d, J = 6.6 Hz, 4H, H₅a), 8.61 (d, J = 6.4 Hz, 4H, H₂a), 8.45-8.38 (m, 2H, H₅b), 8.23 (d, J = 5.0 Hz, 2H, H₂b), 8.15 (d, J = 8.7 Hz, 4H, H₇a), 8.15-8.06 (m, 40H, CB₁₀), 7.81-7.92 (m, 6H, H₇b and H₆a), 7.49 (d, J = 5.0 Hz, 2H, H₆b), 6.95-7.15 (br m), 6.94-6.80 (br m), 5.78 (app ddd, J = 17.9, 17.0, 10.7 Hz, 40H, CB₁₀), 5.50 (app d, 40H, CB₁₀), 4.53 (br s, H₁a), 4.47 (br s, H₁b), 4.30-4.06 (m, 40H, CB₁₀), 2.22 (acetone, ref). Signals H₃a-b, H₄a-b, H₈a-b, H₉a-b and H₁₀a-b were not identified on the ³H NMR spectrum at 298 K (300 or 500 MHz).

According to the integral value of signals H₅a + H₅b (8.67 ppm, I = 3.78 and 8.33 ppm, I = 1.93) and the integral value of CB₁₀ protons (5.92-5.69 ppm, I = 40.00), a CB₁₀/VPI-N ratio of 2.1/3 is determined.

³H NMR (500 MHz, 340 K, D₂O) δ 8.67 (d, J = 6.3 Hz, 4H, H₅a), 8.52 (d, J = 6.1 Hz, 4H, H₂a), 8.33 (d, J = 5.9 Hz, 2H, H₅b), 8.18 (d, J = 8.4 Hz, 4H, H₂b), 8.14 (d, J = 6.3 Hz, 2H, H₂b), 7.87 (two d, J = 11.6, 8.7 Hz, 6H, overlapped signals of H₇b and H₆a), 7.54 (d, J = 8.4 Hz, 2H, H₆b), 7.08 (d, J = 6.2 Hz, 4H, H₄a), 7.00 (d, J = 6.2 Hz, 4H, H₃a), 6.88 (d, J = 8.5 Hz, 4H, H₉a), 6.79 (d, J = 6.0 Hz, 2H, H₄b), 6.74 (d, J = 6.2 Hz, 2H, H₃b), 6.59 (s, 4H, H₁₀a), 5.92 – 5.69 (m, 40H, CB₁₀), 5.59 – 5.40 (m, 40H, CB₁₀), 4.53 (br s, H₁a), 4.43 (br s, H₁b), 4.18 (app ddd, J = 39.1, 19.6, 11.9 Hz, 40H, CB₁₀), 2.22 (acetone, ref). Signals H₈a, H₈b, H₉b and H₁₀b were not identified on the ³H NMR spectrum at 340 K (500 MHz).

Figure S16. ¹H NMR spectrum (300 MHz, D₂O, 298 K, 0.17 mM) of CB₁₀₂•VPI-N₃.
Figure S17. 1H NMR spectra (500 MHz, D$_2$O, 300-365 K, 0.17 mM, ref. acetone 2.22 ppm) of CB[10]$_2$•VPI-N$_3$.

Figure S18. 1H NMR (500 MHz, D$_2$O, 340 K, 0.17 mM, ref. acetone 2.22 ppm) of CB[10]$_2$•VPI-N$_3$.
Figure S19. COSY NMR (500 MHz, D$_2$O, 340 K, 0.17 mM) of CB[10]$_2$·VPI-N$_3$.
Figure S20. ITC thermogram corresponding to a solution of VPI-N titrated with CB[8] in water.
15/ Competition NMR for the determination of binding constants

The binding constants corresponding to the formation of CB[8]$_2$•T-VPI$_2$ and CB[8]$_2$•VPI-N$_2$ were evaluated using 1H NMR in the presence of a competitor guest, following the procedure of Macartney and co-workers,$^{[6]}$ expended to CB[8] 2:2 complexes.$^{[7]}$ The NMR spectra were collected at 298 K on a Bruker AC500 (64 scans) from 1 mM solutions of T-VPI or VPI-N in the presence of 1 equiv. of CB[8] and 1 equiv. of competitor in D$_2$O (Figures S28 to S31). The first competitor guest was 1-adamantylamine•HCl (Ad). The binding constant correspond to formation of the CB[8]•Ad complex ($8.19 \pm (1.75) \times 10^{8}$ M$^{-1}$, R1 and Eq1) was reported in the literature.$^{[8]}$ The chemical shifts of the free Ad and CB[8]•Ad were determined in D$_2$O from 1 mM solutions (Figure S29). The limiting chemical shift values, $\Delta \delta_{\text{lim}}$, for Ad and CB[8]•Ad were measured according to the chemical shifts of CH protons (Table S1). Then, 1H NMR spectra of a mixture of T-VPI (1 equiv.), with CB[8] (1 equiv.) and Ad (1 equiv.) were recorded to determine the chemical shifts of CH protons of Ad (Table S2, R3 and Eq3). Chemical resonances for free and complexed Ad suggest fast exchange on the NMR timescale (Figure S29). Following the method of Macartney et al,$^{[6]}$ the binding constant corresponding to the formation of the complex from CB[8] and T-VPI was calculated from the chemical shifts of the competitive spectra and $\Delta \delta_{\text{lim}}$ (Table S1) and considering equation Eq4.

On the other hand, since 1-adamantylamine•HCl (Ad) presents a too low CB[8] binding constant compared to VPI-N, we used memantine (3,5-dimethyladamantylamine•HCl, diMeAd) as competitor to evaluate the binding constant for CB[8]$_2$•VPI-N$_2$ (Figures S30-31). The binding constant of CB[8] toward diMeAd$_2$ is 4.3×10^{11} M$^{-1}$.$^{[8]}$ Because the 1H NMR signals of free/complexed VPI-N/diMeAd were not clear in the aromatic and aliphatic regions (Figure S30), we evaluated the CB[8]$_2$•VPI-N$_2$ binding constant from the integral values of the CB[8] at 5.540 and 5.490 ppm, assigned to CB[8]•diMeAd and CB[8]$_2$•VPI-N$_2$, respectively (Figure S31). The results are presented in (Table S2).

Preparation of the Ad/T-VPI/CB[8] competition solution (Figures S28-29):
A solution of Ad/T-VPI/CB[8] was prepared from a mixture of 0.81 mg of solid CB[8] (6.1 × 10^{-7} mol, 1 equiv.), 304 µL of a 2 mM solution of T-VPI (6.1 × 10^{-7} mol, 1 equiv.) in D$_2$O, 122 µL of a 5 mM solution of Ad in D$_2$O (6.1 × 10^{-7} mol) and 200 µL of D$_2$O. Acetone was used as internal reference (2.22 ppm).

Preparation of the diMeAd/VPI-N/CB[8] competition solution (Figures S30-31):
A solution of diMeAd/VPI-N/CB[8] was prepared from a mixture of 0.54 mg of solid CB[8] (4.1 × 10^{-7} mol, 1 equiv.), 102 µL of a 4 mM stock solution of VPI-N (4.1 × 10^{-7} mol, 1 equiv.) in D$_2$O, 82 µL of a 5 mM solution of diMeAd in D$_2$O (4.1 × 10^{-7} mol) and 250 µL of D$_2$O. Acetone was used as internal reference (2.22 ppm).

Table S1. 1H NMR results considering the Ad/T-VPI competition toward CB[8].

<table>
<thead>
<tr>
<th>Ratios of Ad/T-VPI/CB[8]a</th>
<th>δ_{CH} (Figure S29)b</th>
<th>$\Delta \delta$</th>
<th>% of free guest competitor</th>
<th>Calculated binding constant K_ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/0/0</td>
<td>2.134 ppmc</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>1/0/1</td>
<td>1.645 ppmc</td>
<td>$\Delta \delta_{\text{lim}} = 0.489$ ppm</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1/1/1</td>
<td>2.049 ppmc</td>
<td>$\Delta \delta_{\text{exp}} = 0.085$ ppm</td>
<td>17</td>
<td>2.3×10^{23} M$^{-3}$</td>
</tr>
</tbody>
</table>

a 1 mM solution in D$_2$O; b Chemical shift determined from NMR spectra of Figure S29 and using acetone (2.220 ppm) as internal reference; c $\Delta \delta_{\text{lim}}$ determined from for Ad and CB[8]•Ad spectra; d calculated from Eq4.
Equilibrium reactions:

R1 $\text{Ad} + \text{CB}[8] = \text{Ad} \cdot \text{CB}[8] \quad (K_{\text{a-Ad}} = 8.19 \times 10^8 \text{ M}^{-1})$

$$\text{Eq1 } K_{\text{a-Ad}} = \frac{[\text{Ad} \cdot \text{CB}[8]]}{[\text{Ad}][\text{CB}[8]]}$$

R2 $2\text{T-VPI} + 2\text{CB}[8] = \text{T-VPI} \cdot \text{CB}[8]_2$

$$\text{Eq2 } K_{\text{a-T-VPI}_2 \cdot \text{CB}[8]_2} = \frac{[\text{T-VPI}_2 \cdot \text{CB}[8]_2]}{[\text{T-VPI}]^2[\text{CB}[8]]^2}$$

R3 $\text{Ad} \cdot \text{CB}[8] + \text{T-VPI} = \text{Ad} + 0.5 \text{T-VPI}_2 \cdot \text{CB}[8]_2$

$$\text{Eq3 } K_{\text{a-competition}} = \frac{\sqrt{[\text{T-VPI}_2 \cdot \text{CB}[8]_2][\text{Ad}][\text{T-VPI}]}}{[\text{Ad} \cdot \text{CB}[8]][\text{T-VPI}]^2} = \frac{\sqrt{K_a - \text{T-VPI}_2 \cdot \text{CB}[8]_2}}{K_a - \text{Ad}}$$

$$\text{Eq4 } K_{\text{a-T-VPI}_2 \cdot \text{CB}[8]_2} = \frac{K_a - \text{Ad} \cdot \sqrt{[\text{T-VPI}_2 \cdot \text{CB}[8]_2][\text{Ad}]}}{[\text{Ad} \cdot \text{CB}[8]][\text{T-VPI}]}^2$$

Table S2. 1H NMR results considering the diMeAd/VPI-N competition toward CB[8].

<table>
<thead>
<tr>
<th>Ratios of diMeAd/VPI-N/CB[8]a</th>
<th>$\delta_{\text{CB}[8]}$</th>
<th>Integral values</th>
<th>% of complex</th>
<th>Calculated binding constant K_ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/1 CB[8]•diMeAd</td>
<td>5.540 ppm</td>
<td>16.11 Hc</td>
<td>73%</td>
<td></td>
</tr>
<tr>
<td>CB[8]$_2$•VPI-N$_2$</td>
<td>5.490 ppm</td>
<td>6.03 Hc</td>
<td>27%</td>
<td>6.4×10^{24} M$^{-3}$</td>
</tr>
<tr>
<td>0/1/1 CB[8]$_2$•VPI-N$_2$</td>
<td>5.490 ppmb</td>
<td>32 H</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>1/0/1 CB[8]•diMeAd</td>
<td>5.540 ppmb</td>
<td>16 H</td>
<td>100%</td>
<td>4.3×10^{11} M$^{-1}$$^[8]$</td>
</tr>
</tbody>
</table>

a 1 mM solution in D$_2$O; b Chemical shift determined from NMR spectra of Figure S31 and using acetone (2.220 ppm) as internal reference; c Integral values based on -CH$_3$ signals of diMeAd in the competition solution; d calculated from Eq4.
Figure S21. 1H NMR spectrum (500 MHz, D$_2$O, 298 K) of a mixture of 1 equiv. of T-VPI, 1 equiv. of CB[8] and 1 equiv. of 1-adamantylamine•HCl (Ad).

a. CB[8]$_2$•T-VPI$_2$ + 1 equiv Ad

b. CB[8]•Ad

c. Free Ad

Figure S22. 1H NMR spectra (500 MHz, D$_2$O, 298 K, zoom of 0.9-3 ppm region) of: a. a mixture of T-VPI/CB[8]/Ad (1 equiv.), b. of a mixture of 1.2 equiv. of CB[8] and 1 equiv. of 1-adamantylamine•HCl (Ad), and c. 1-adamantylamine•HCl (Ad, 1 mM) in D$_2$O.
Figure S23. 1H NMR spectrum (500 MHz, D$_2$O, 298 K) of a mixture of 1 equiv. of VPI-N, 1 equiv. of CB[8] and 1 equiv. of diMeAd (1 mM).

Figure S24. 1H NMR spectra (500 MHz, D$_2$O, 298 K, zoom of 2-6.2 ppm region) of: a. VPI-N/CB[8]/diMeAd (1 mM), b. CB[8]$_2$•VPI-N$_2$ and c. CB[8]•diMeAd (1 mM).
16/ UV-visible and fluorescence spectra

Table S3. Summary of the optical properties in water solution.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{abs} [nm] (ε [M$^{-1}$ cm$^{-1}$])</th>
<th>λ_{em} [nm]</th>
<th>Φ [%]a</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-VPI</td>
<td>344 (16000), 295 (22500), 247 (16900)</td>
<td>378</td>
<td>0.88</td>
</tr>
<tr>
<td>T-VPI + CB[8] (1:1)</td>
<td>378 (12900), 300 (19200), 246 (15500)</td>
<td>381</td>
<td>0.65</td>
</tr>
<tr>
<td>T-VPI + CB[10] (2:1)</td>
<td>360 (15200), 296 (21500), 245 (16700)</td>
<td>381</td>
<td>0.68</td>
</tr>
<tr>
<td>T-VPI + CB[10] (1:1)</td>
<td>371 (14800), 299 (19400), 245 (15400)</td>
<td>385</td>
<td>0.47</td>
</tr>
<tr>
<td>VPI-N</td>
<td>343 (19400), 273 (44500), 221 (38900)</td>
<td>424</td>
<td>0.45</td>
</tr>
<tr>
<td>VPI-N + CB[8] (1:1)</td>
<td>365 (13900), 274 (32500)</td>
<td>415</td>
<td>0.36</td>
</tr>
<tr>
<td>VPI-N + CB[10] (1:1)</td>
<td>359 (14700), 275 (33000)</td>
<td>422</td>
<td>0.11</td>
</tr>
<tr>
<td>T-V-T</td>
<td>338 (18100), 252 (14500)</td>
<td>528</td>
<td>\sim1.3b</td>
</tr>
</tbody>
</table>

a Fluorescence quantum yields in deionized water, relative to anthracene in ethanol ($\Phi = 27\%$). Excitation of reference and sample compounds was performed at the same wavelength, i.e. 290 nm for T-VPI and 310 nm for VPI-N and T-V-T.

b Slightly underestimated value due to the recording conditions.

Figure S25. Electronic absorption (left) and normalized emission (right) spectra of compounds T-VPI (purple), VPI-N (orange) and T-V-T (green) in water solution (ca. 10$^{-5}$ M).
Figure S26. Electronic absorption (left column) and emission (right column) spectra of T-VPI or VPI-N in the presence of CB[8] or CB[10] in water (10⁻⁵ M).
17/ Preparation and NMR spectra of CB[8]₂•T-VPI₂•Ag⁺₂

A 0.45 mM solution of CB[8]₂•T-VPI₂•Ag⁺₂ was prepared from a mixture of 0.64 mg of solid CB[8] (4.8 × 10⁻⁷ mol, 1.2 equiv.), 200 µL of a 2 mM stock solution of T-VPI (4 × 10⁻⁷ mol) in D₂O, 40 µL of a 0.2 M solution of AgNO₃ (8.0 × 10⁻⁶ mol) and 300 µL of D₂O. Acetone was used as internal reference (2.22 ppm).

¹H NMR (500 MHz, D₂O) δ 9.37 (d, J = 5.8 Hz, 4H, H₅), 9.07 (s, 4H, H₂), 8.47 (d, J = 7.6 Hz, 4H, H₇ or H₆), 8.17 (s, 4H, H₇ or H₆), 7.98 (d, J = 7.5 Hz, 4H, H₄y or H₄x), 7.68 (d, J = 7.5 Hz, 4H, H₄y or H₄x), 7.40 (s, 4H, H₄), 7.18 (br s, 4H, H₃), 6.67 (br s, 4H, H₈ or H₉), 6.38 (s, 4H, H₈ or H₉), 5.92 – 5.66 (m, 32H, CB[8]), 5.55 (s, 32H, CB[8]), 4.25 (dd, J = 15.3, 9.1 Hz, 32H, CB[8]), 2.57 (s, 6H, H₁), 2.22 (acetone, ref).

Figure S27. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 0.45 mM) of CB[8]₂•T-VPI₂•Ag⁺₂.

Figure S28. COSY NMR (500 MHz, D₂O, 298 K, 0.45 mM) of CB[8]₂•T-VPI₂•Ag⁺₂.
To 500 µL of a 0.45 mM solution of CB[8]$_2$•VPI-N$_2$ were added 50 µL of a 0.2 M solution of AgNO$_3$ (10$^{-5}$ mol) in D$_2$O. Acetone was used as internal reference (2.22 ppm).

1H NMR (500 MHz, D$_2$O) δ 8.94 (d, J = 5.3 Hz, 4H, H5), 8.75 (d, J = 6.3 Hz, 4H, H2), 8.48 (d, J = 8.4 Hz, 4H, H6 or H7), 8.31 (d, J = 8.6 Hz, 4H, H6 or H7), 7.16 (br s, 4H, H8 or H9 or H10), 6.93 (br s, 8H, H8, H9 or H10), 6.83 (d, J = 4.6 Hz, 4H, H4), 6.69 (d, J = 6.3 Hz, 4H, H3), 5.73 (app dt, J = 43.3, 21.6 Hz, 32H, CB[8]), 5.52 (d, J = 24.6 Hz, 32H, CB[8]), 4.64 (br s, H1), 4.20 (d, J = 15.4 Hz, 32H, CB[8]), 2.22 (acetone, ref).

Figure S29. 1H NMR spectrum (500 MHz, D$_2$O, 298 K, 0.45 mM) of CB[8]$_2$•VPI-N$_2$•Ag$^+$.

Figure S30. COSY NMR (500 MHz, D$_2$O, 298 K, 0.45 mM) of CB[8]$_2$•VPI-N$_2$•Ag$^+$.
Preparation and NMR spectra of CB[8]•VPI-N-H+2

A 0.45 mM solution of CB[8]•VPI-N-H+2 was prepared from a mixture of 0.61 mg of solid CB[8] (4.6 × 10⁻⁷ mol, 1.2 equiv.), 95 µL of a 4 mM stock solution of VPI-N (3.8 × 10⁻⁷ mol) in D₂O, 20 µL of a 0.2 M solution of TFA (4.0 × 10⁻⁶ mol) and 360 µL of D₂O. Acetone was used as internal reference (2.22 ppm).

¹H NMR (500 MHz, D₂O) δ 8.95 (d, J = 6.4 Hz, 4H, H5), 8.81 (d, J = 6.3 Hz, 4H, H2), 8.49 (d, J = 8.6 Hz, 4H, H6 or H7), 8.39 (d, J = 8.6 Hz, 4H, H6 or H7), 7.32 (s, 4H, H8), 6.97 (two d, J = 6.3 Hz, 8H, H9 and H10), 6.87 (d, J = 6.5 Hz, 4H, H4), 6.75 (d, J = 6.4 Hz, 4H, H3), 5.76 (app dd, J = 29.5, 15.4 Hz, 32H, CB[8]), 5.50 (br s, 32H, CB[8]), 4.65 (br s, H1), 4.22 (d, J = 15.3 Hz, 32H, CB[8]), 2.22 (acetone, ref).

Figure S31. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 0.45 mM) of CB[8]•VPI-N-H+2.

Figure S32. COSY NMR (500 MHz, D₂O, 298 K, 0.45 mM) of CB[8]•VPI-N-H+2.
20/ Preparation and NMR spectra of CB[8] • T-VPI with TFA

A solution of T-VPI/CB[8]/TFA was prepared from a mixture of 0.66 mg of solid CB[8] (5.0 × 10^{-7} mol, 1.2 equiv.), 205 µL of a 2 mM stock solution of T-VPI (4.1 × 10^{-7} mol, 1 equiv.) in D$_2$O, 20 µL of a 0.2 M solution of TFA in D$_2$O (4.0 × 10^{-6} mol) and 280 µL of D$_2$O. Acetone was used as internal reference (2.22 ppm).

![NMR spectrum image]

Figure S33. 1H NMR spectrum (500 MHz, D$_2$O, 298 K, 1 mM) of 1 equiv. of T-VPI, with 1.2 equiv. of CB[8] and 10 mM of TFA.
To 500 µL of a 0.17 mM solution of CB[10]$_2$•VPI-N$_3$ were added 10 µL of a 0.2 M solution of TFA in D$_2$O (2×10^{-6} mol, 12 equiv.). Acetone was used as internal reference (2.22 ppm).

1H NMR (500 MHz, D$_2$O) δ 9.13 (br s, 2H, H$_2$b), 8.94 (d, $J = 6.1$ Hz, 4H, H$_2$a), 8.36 (br s, 4H, H$_5$a), 8.27 (d, $J = 8.4$ Hz, 4H, H$_7$a), 8.07 (br s, 2H, H$_7$b), 7.94 (br s, 2H, H$_8$a), 7.84 (d, $J = 7.8$ Hz, 4H, H$_6$a), 7.74 (br s, 2H, H$_8$b), 7.64 (br s, 2H, H$_3$b), 7.43 (br s, 4H, H$_3$a), 7.36 (s, 4H, H$_8$a), 7.28 (br s, 2H, H$_6$b), 7.16 (m, 6H, overlapped signals of H$_4$a and H$_9$a), 6.97 (m, 6H, overlapped signals of H$_4$b and H$_9$b), 6.48 (m, 4H, H$_10$a), 6.30 (br s, 2H, H$_10$b), 5.91 – 5.69 (m, 48H, CB[10]), 5.52 (d, $J = 33.7$ Hz, 43H, CB[10]), 4.61 (br s, H$_1$a-b), 4.20 (ddd, $J = 23.3$, 15.2, 7.4 Hz, 49H, CB[10]), 2.22 (acetone, ref).

Figure S34. 1H NMR spectrum (500 MHz, D$_2$O, 300 K, 0.17 mM, full a., zoom b.) of CB[10]$_2$•VPI-N-H$_3^+$ recorded after 5 days.
Figure S35. COSY NMR (500 MHz, D$_2$O, 300 K, 0.17 mM) of CB[10]$_2$•VPI-N-H$^+$_3.

Figure S36. ROESY NMR (500 MHz, D$_2$O, 300 K, 0.17 mM, mixing time: 400 ms) of CB[10]$_2$•VPI-N-H$^+$_3.
22/ References

