Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Three Rare Nor-sesquiterpenoids with Lipid-Lowering Activity from

Belamcanda chinensis

Yunhua Qianshi^{a,b,c‡}, Lei Huang^{b,c‡}, Jun Jin^{b,c}, Yanmei Li^{b,c}, Yanan Li^{b,c}, Xiaojiang Hao^{b,c,d*}, and Chunmao Yuan^{b,c*}

^a School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
^b State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
^c Key Laboratory of Chemistry for Natural Products of Guizhou Province, and Chinese Academy of Sciences, Guiyang 550014, People's Republic of China
^d State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

[‡]*These authors contributed equally.*

**Corresponding author*. Tel: +86 851 3804492; fax: +86 851 3804492. E-mail address: haoxj@mail.kib.ac.cn (Xiao-Jiang Hao); yuanchunmao01@126.com (Chun-Mao Yuan).

CONTENT

1.	Spectra of physico-chemical properties of 1	4
	Figure S1. ¹ H NMR (600 MHz, CDCl ₃) spectrum of 1	4
	Figure S2. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 1	4
	Figure S3. HSQC spectrum of 1 (CDCl ₃)	5
	Figure S4. HMBC spectrum of 1 (CDCl ₃)	5
	Figure S5. ¹ H- ¹ H COSY spectrum of 1 (CDCl ₃)	6
	Figure S6. NOESY spectrum of 1 (CDCl ₃)	6
	Figure S7. HR-ESI-MS spectrum of 1	7
	Figure S8. UV spectrum of 1	7
	Figure S9. IR spectrum of 1	8
2.	Spectra of physico-chemical properties of 2	9
	Figure S10. ¹ H NMR (600 MHz, CDCl ₃) spectrum of 2	9
	Figure S11. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 2	9
	Figure S12. HSQC spectrum of 2 (CDCl ₃)	.10
	Figure S13. HMBC spectrum of 2 (CDCl ₃)	.10
	Figure S14. ¹ H- ¹ H COSY spectrum of 2 (CDCl ₃)	.11
	Figure S15. NOESY spectrum of 2 (CDCl ₃)	.11
	Figure S16. HR-ESI-MS spectrum of 2	.12
	Figure S17. UV spectrum of 2	.12
	Figure S18. IR spectrum of 2	.13
	Figure S19. Chiral analysis of 2	.13
	Figure S20. Optical purity analysis of (+)-2 and (-)-2.	.14
3.	Spectra of physico-chemical properties of 3	.15
	Figure S21. ¹ H NMR (600 MHz, CDCl ₃) spectrum of 3	.15
	Figure S22. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 3	.15
	Figure S23. HSQC spectrum of 3 (CDCl ₃)	.16
	Figure S24. HMBC spectrum of 3 (CDCl ₃)	.16
	Figure S25. ¹ H- ¹ H COSY spectrum of 3 (CDCl ₃)	.17
	Figure S26. NOESY spectrum of 3 (CDCl ₃)	.17
	Figure S27. HR-ESI-MS spectrum of 3	.18
	Figure S28. UV spectrum of 3	.18
	Figure S29. IR spectrum of 3	.19
	Figure S30. Chiral analysis of 3	.19
4.	Spectra of physico-chemical properties of 4	.20
	Figure S31. ¹ H NMR (600 MHz, CDCl ₃) spectrum of 4	.20
	Figure S32. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 4	.20
	Figure S33. HSQC spectrum of 4 (CDCl ₃)	.21
	Figure S34. HMBC spectrum of 4 (CDCl ₃)	.21
	Figure S35. ¹ H- ¹ H COSY spectrum of 4 (CDCl ₃)	.22
	Figure S36. NOESY spectrum of 4 (CDCl ₃)	.22
	Figure S37. HR-ESI-MS spectrum of 4	.23
	Figure S38. UV spectrum of 4	.23

Figure S39. IR spectrum of 4
5. ECD spectra calculation of 1
(1) DFT-optimized structures for low-energy conformers for 1 (1a-1d)25
(2) Four stable conformers of optimized geometries of 1 at the B3LYP/6-311+G (d, p) level in
the gas phase25
Table S1. Important imaginary frequencies, energy (a. u.), and Boltzmann distributions of the
optimized 1 at the B3LYP/6-311+G (d, p) level in MeOH25
Table S2. The Cartesian coordinates for the lowest-energy conformer of 1a in the ECD
calculations
Table S3. The Cartesian coordinates for the lowest-energy conformer of 1b in the ECD
calculations
Table S4. The Cartesian coordinates for the lowest-energy conformer of 1c in the ECD
calculations
Table S5. The Cartesian coordinates for the lowest-energy conformer of 1d in the ECD
calculations
6. ECD spectra calculation of 2
(1) DFT-optimized structures for low-energy conformers for 2 (2a-2d)30
(2) Four stable conformers of optimized geometries of 2 at the B3LYP/6-311+G (d, p) level in
the gas phase
Table S6. Important imaginary frequencies, energy (a. u.), and Boltzmann distributions of the
optimized 2 at the B3LYP/6-311+G (d, p) level in MeOH
Table S7. The Cartesian coordinates for the lowest-energy conformer of 2a in the ECD
calculations
Table S8. The Cartesian coordinates for the lowest-energy conformer of 2b in the ECD
calculations
Table S9. The Cartesian coordinates for the lowest-energy conformer of 2c in the ECD
calculations
calculations

Figure S2. ¹³C NMR (150 MHz, CDCl₃) spectrum of 1

Figure S4. HMBC spectrum of 1 (CDCl₃)

Figure S6. NOESY spectrum of 1 (CDCl₃)

Figure S8. UV spectrum of 1

Figure S9. IR spectrum of 1

Figure S11. ¹³C NMR (150 MHz, CDCl₃) spectrum of 2

Figure S13. HMBC spectrum of 2 (CDCl₃)

Figure S15. NOESY spectrum of 2 (CDCl₃)

Figure S17. UV spectrum of 2

Figure S19. Chiral analysis of 2

Figure S20. Optical purity analysis of (+)-2 and (-)-2. (A) The levoisomer of 2 using chiral column analysis; (B) The dextroisomer of 2 using chiral column analysis.

Figure S24. HMBC spectrum of 3 (CDCl₃)

Figure S28. UV spectrum of 3

Figure S30. Chiral analysis of 3

Figure S34. HMBC spectrum of 4 (CDCl₃)

Figure S38. UV spectrum of 4

Figure S39. IR spectrum of 4

5. ECD spectra calculation of 1

(1) DFT-optimized structures for low-energy conformers for 1 (1a-1d)

Conf. 1a

Conf. 1c

Conf. 1d

(2) Four stable conformers of optimized geometries of **1** at the B3LYP/6-311+G (d, p) level in the gas phase.

Table S1. Important imaginary frequencies, energy (a. u.), and Boltzmann distributions

of the optimized	at the B3LYP/ $6-311+G$	(d, p) level in MeOH.
------------------	-------------------------	-----------------------

Conformers	Imaginary frequencies	Energy (a. u.)	Ratio
1 a	0	-657.920919	16.21%
1b	0	-657.919746	14.75%
1c	0	-657.920354	52.35%
1d	0	-657.920756	16.70%

Atoms	X	Y	Ζ
С	1.28585	0.67856	-0.22623
С	2.72865	0.10972	-0.37988
С	2.59914	-1.42905	-0.26733
С	1.1059	-1.73763	-0.06359
С	0.56367	-0.41217	0.58669
С	-0.93097	-0.38716	0.65064
С	-1.77289	0.19453	-0.21262
С	-3.25207	0.08516	-0.0396
0	-3.75461	-0.58491	0.8412
С	-4.09757	0.86572	-1.02737
С	1.25913	2.09541	0.30718
С	1.88213	3.12592	-0.60436
С	0.74097	2.4414	1.48621
С	0.8382	-2.99431	0.76098
0	0.56213	-1.88925	-1.38065
Н	0.84358	0.68626	-1.22925
Н	3.18085	0.41714	-1.3244
Н	3.36356	0.50214	0.41987
Н	3.17818	-1.81006	0.57769
Н	2.94542	-1.95074	-1.16114
Н	0.94879	-0.40153	1.61482
Н	-1.39432	-0.94657	1.46238
Н	-1.40834	0.7961	-1.04006
Н	-5.1547	0.7111	-0.81674
Н	-3.86574	1.93445	-0.96719
Н	-3.87967	0.55284	-2.05415
Н	2.94291	2.91879	-0.78133
Н	1.39759	3.12513	-1.58782
Н	1.80284	4.13276	-0.1901
Н	0.75952	3.47162	1.82863
Н	0.27147	1.72808	2.15382
Н	1.30668	-3.85749	0.28205
Н	1.23519	-2.9051	1.77641
Н	-0.23388	-3.20012	0.83614
Н	-0.40087	-1.92805	-1.30838

Table S2. The Cartesian coordinates for the lowest-energy conformer of 1a in the ECD calculations.

Atoms	X	Y	Z
С	-1.49137	0.56472	0.29855
С	-2.83321	-0.20007	0.04314
С	-2.43709	-1.63129	-0.38555
С	-0.93571	-1.76785	-0.0717
С	-0.40541	-0.33359	-0.3484
С	0.97715	-0.10116	0.17288
С	2.05475	0.14925	-0.58002
С	3.43262	0.36157	-0.07493
0	4.33916	0.56472	-0.86165
С	3.69137	0.32259	1.42303
С	-1.54871	2.0182	-0.12343
С	-2.47524	2.87355	0.70747
С	-0.8591	2.53539	-1.14062
С	-0.22927	-2.8626	-0.86304
0	-0.74514	-1.97987	1.34011
Н	-1.30989	0.54294	1.37934
Н	-3.45336	-0.20314	0.94134
Н	-3.41209	0.2928	-0.74175
Н	-2.60219	-1.77463	-1.45782
Н	-3.0137	-2.40735	0.12768
Н	-0.41692	-0.20016	-1.43581
Н	1.07713	-0.17268	1.25249
Н	1.97755	0.21473	-1.66329
Н	4.75208	0.49597	1.5981
Н	3.11145	1.08939	1.94476
Н	3.40979	-0.64405	1.85059
Н	-3.50395	2.49766	0.68035
Н	-2.1709	2.87044	1.76066
Н	-2.48804	3.90938	0.36331
Н	-0.95103	3.58436	-1.40513
Н	-0.1701	1.95479	-1.74176
Н	-0.66932	-3.84176	-0.64231
Н	-0.31409	-2.70057	-1.94101
Н	0.83025	-2.90249	-0.60288
Н	-1.07948	-2.85669	1.56113

Table S3. The Cartesian coordinates for the lowest-energy conformer of 1b in the ECD calculations.

Atoms	X	Y	Z
С	-1.42592	0.70903	0.4483
С	-2.86071	0.18198	0.14297
С	-2.69814	-1.29506	-0.29147
С	-1.2145	-1.65322	-0.0597
С	-0.49841	-0.29683	-0.29497
С	0.92216	-0.26101	0.16619
С	1.9772	-0.00761	-0.61762
С	3.39222	0.04119	-0.17623
0	4.26997	0.26633	-0.98913
С	3.72334	-0.18878	1.28976
С	-1.21027	2.17191	0.12337
С	-1.17789	2.58323	-1.32838
С	-1.06033	3.0683	1.10043
С	-0.70424	-2.79141	-0.93691
0	-0.99135	-1.96637	1.32813
Н	-1.2436	0.57017	1.51641
Н	-3.49358	0.28936	1.02573
Н	-3.33448	0.76664	-0.64907
Н	-2.94773	-1.41995	-1.34962
Н	-3.34747	-1.9774	0.26566
Н	-0.53747	-0.10007	-1.37228
Н	1.0672	-0.4626	1.22393
Н	1.84975	0.18712	-1.68052
Н	4.8024	-0.11931	1.41865
Н	3.23691	0.55649	1.92571
Н	3.38384	-1.17296	1.62528
Н	-0.27601	2.21143	-1.8263
Н	-2.03238	2.18928	-1.88875
Н	-1.18448	3.66957	-1.43294
Н	-0.92818	4.12611	0.89381
Н	-1.06335	2.77705	2.14654
Н	-1.26956	-3.71032	-0.74394
Н	-0.80829	-2.55976	-2.00041
Н	0.34862	-2.99336	-0.72979
Н	-1.43814	-2.79751	1.52553

Table S4. The Cartesian coordinates for the lowest-energy conformer of 1c in the ECD calculations.

Atoms	X	Y	Z
С	-1.56161	0.53185	0.23372
С	-2.83069	-0.26753	-0.15826
С	-2.41046	-1.75308	-0.10805
С	-0.86922	-1.79081	0.01849
С	-0.42342	-0.33163	-0.35206
С	0.94188	0.01304	0.15366
С	2.05815	0.05125	-0.58527
С	3.41879	0.37484	-0.08904
0	4.36104	0.34841	-0.85851
С	3.61333	0.74162	1.37382
С	-1.6209	1.99468	-0.15153
С	-2.63913	2.81152	0.60778
С	-0.85413	2.54877	-1.09196
С	-0.20646	-2.86171	-0.84154
0	-0.59788	-2.04849	1.40854
Н	-1.46743	0.47349	1.32695
Н	-3.67485	-0.05226	0.49966
Н	-3.13321	0.01741	-1.17101
Н	-2.74072	-2.29087	-0.99975
Н	-2.8281	-2.27247	0.7559
Н	-0.43795	-0.25858	-1.4463
Н	1.00183	0.23386	1.21772
Н	2.02648	-0.15711	-1.65265
Н	3.01912	1.61896	1.6448
Н	3.30826	-0.07483	2.03522
Н	4.6673	0.9576	1.54131
Н	-3.65755	2.44699	0.43571
Н	-2.46545	2.75158	1.68841
Н	-2.60872	3.86376	0.31896
Н	-0.9452	3.60134	-1.34258
Н	-0.1055	1.99261	-1.64292
Н	-0.56127	-3.85157	-0.5436
Н	-0.42996	-2.72091	-1.90249
Н	0.88263	-2.8427	-0.72807
Н	0.34818	-2.21252	1.5059

Table S5. The Cartesian coordinates for the lowest-energy conformer of 1d in the ECD calculations.

6. ECD spectra calculation of 2

(1) DFT-optimized structures for low-energy conformers for 2 (2a-2d)

Conf. 2c

Conf. 2d

(2) Four stable conformers of optimized geometries of **2** at the B3LYP/6-311+G (d, p) level in the gas phase.

Table S6. Important imaginary frequencies, energy (a. u.), and Boltzmann distributions of the optimized **2** at the B3LYP/6-311+G (d, p) level in MeOH.

Conformers	Imaginary frequencies	Energy (a. u.)	Ratio
2a	0	-697.270223	89.51%
2b	0	-697.270727	0.00%
2c	0	-697.269360	5.25%
2d	0	-697.269634	5.24%

Atoms	X	Y	Z
С	-0.54061	1.26852	-0.7088
С	-1.52921	0.72819	0.02082
С	-2.59185	-0.06718	-0.55452
С	-3.62133	-0.66448	0.09026
С	-4.5784	-1.42023	-0.739
Н	-4.35309	-1.42491	-1.82887
0	-5.54904	-2.00564	-0.30985
С	-3.89478	-0.63834	1.56599
С	0.58453	2.12456	-0.16984
0	0.40331	2.42073	1.21924
С	1.93699	1.38478	-0.26988
С	0.65056	3.43752	-0.97135
С	2.04408	0.1104	0.58483
С	3.42758	-0.47756	0.53711
С	3.82062	-1.65816	0.04415
С	5.27119	-2.07283	0.09185
С	2.90572	-2.67952	-0.58389
Н	-0.5212	1.10104	-1.78563
Н	-1.52084	0.88732	1.09446
Н	-2.54976	-0.19383	-1.63698
Н	-3.13989	-0.09044	2.12903
Н	-4.87142	-0.18757	1.76527
Н	-3.94763	-1.65692	1.96033
Н	-0.36653	2.99572	1.30956
Н	2.71461	2.09324	0.03588
Н	2.12948	1.14313	-1.32066
Н	-0.29486	3.98533	-0.89893
Н	1.44728	4.07137	-0.57607
Н	0.84557	3.25521	-2.03147
Н	1.28978	-0.61189	0.26673
Н	1.79898	0.37471	1.6188
Н	4.20046	0.16421	0.96271
Н	5.66169	-2.26828	-0.91427
Н	5.90058	-1.30986	0.5546
Н	5.39884	-3.00349	0.65797
Н	1.86522	-2.35965	-0.63395
Н	2.93635	-3.62323	-0.02631
Н	3.23155	-2.916	-1.60382

Table S7. The Cartesian coordinates for the lowest-energy conformer of **2a** in the ECD calculations.

Atoms	X	V	7
C	-0.73437	1,17382	-0.5934
C	-1.71927	0.5808	0.09814
C	-2.85654	-0.0418	-0.54221
C	-3.90157	-0.66639	0.05016
C	-4.93875	-1.21894	-0.83941
Н	-4.75456	-1.06477	-1.92632
0	-5.93184	-1.80329	-0.4622
С	-4.11655	-0.85599	1.52365
С	0.46699	1.85833	0.00127
0	0.39388	1.69292	1.42306
С	1.77902	1.23871	-0.54333
С	0.41529	3.35955	-0.34245
С	1.97529	-0.24894	-0.20776
С	3.2799	-0.77837	-0.73564
С	4.30239	-1.3142	-0.05813
С	5.5412	-1.79139	-0.77627
С	4.33989	-1.50917	1.43674
Н	-0.77832	1.1957	-1.68161
Н	-1.65187	0.57346	1.17993
Н	-2.86464	0.00237	-1.6322
Н	-3.31429	-0.43373	2.1277
Н	-5.06075	-0.39828	1.83273
Н	-4.20591	-1.91993	1.76107
Н	1.12322	2.18378	1.81915
Н	2.62009	1.81444	-0.13511
Н	1.81705	1.38625	-1.62939
Н	-0.48253	3.80996	0.08448
Н	1.29109	3.87463	0.06759
Н	0.40956	3.52858	-1.42246
Н	1.14912	-0.82092	-0.64873
Н	1.88689	-0.38049	0.87127
Н	3.38913	-0.70332	-1.81882
Н	5.71239	-2.86062	-0.60265
Н	5.47705	-1.63266	-1.85472
Н	6.436	-1.27287	-0.41119
Н	3.44183	-1.15778	1.94393
Н	5.19904	-0.98744	1.87502
Н	4.46658	-2.56949	1.68528

Table S8. The Cartesian coordinates for the lowest-energy conformer of **2b** in the ECD calculations.

Atoms	X	Y	Z
С	0.50873	1.13719	-0.67809
С	1.57869	0.72558	0.02305
С	2.57955	-0.16364	-0.52714
С	3.68615	-0.64726	0.08394
С	4.5483	-1.54284	-0.71083
Н	4.19639	-1.73369	-1.74896
0	5.56957	-2.05281	-0.30402
С	4.13401	-0.37119	1.48978
С	-0.58592	2.08099	-0.2369
0	-0.67435	3.12416	-1.2334
С	-1.96075	1.38751	-0.32745
С	-0.34748	2.71859	1.13454
С	-2.19298	0.21933	0.64569
С	-3.55896	-0.38744	0.47071
С	-3.88111	-1.63185	0.09908
С	-5.32561	-2.052	-0.02344
С	-2.89049	-2.72178	-0.22474
Н	0.38739	0.79412	-1.70546
Н	1.71036	1.06407	1.0459
Н	2.41046	-0.47374	-1.5588
Н	3.46468	0.29924	2.02821
Н	4.21378	-1.30499	2.05365
Н	5.1362	0.06671	1.49047
Н	0.17755	3.57723	-1.26575
Н	-2.08816	1.03878	-1.35686
Н	-2.71866	2.16372	-0.17621
Н	0.58662	3.28861	1.14206
Н	-1.16212	3.41055	1.35609
Н	-0.294	1.9827	1.93972
Н	-2.10537	0.58376	1.67721
Н	-1.40572	-0.52764	0.5211
Н	-4.38135	0.30055	0.67114
Н	-5.55093	-2.89405	0.64209
Н	-6.01161	-1.23825	0.22034
Н	-5.55405	-2.39288	-1.04039
Н	-3.0186	-3.57566	0.4511
Н	-3.05624	-3.10573	-1.23817
Н	-1.85113	-2.40124	-0.15827

Table S9. The Cartesian coordinates for the lowest-energy conformer of **2c** in the ECD calculations.

Atoms	X	Y	Z
С	0.74601	1.09002	-0.64177
С	1.75641	0.57502	0.07916
С	2.88661	-0.09665	-0.52617
С	3.9498	-0.65681	0.09651
С	4.97265	-1.28156	-0.76398
Н	4.76344	-1.22932	-1.85551
0	5.97821	-1.82061	-0.3555
С	4.20286	-0.71299	1.57503
С	-0.46748	1.83826	-0.14105
0	-0.51966	3.09131	-0.85939
С	-1.76106	1.12292	-0.58181
С	-0.45029	2.12335	1.36322
С	-2.01406	-0.25846	0.04501
С	-3.20298	-0.9418	-0.57453
С	-4.3567	-1.30245	-0.00071
С	-5.439	-1.983	-0.80294
С	-4.70514	-1.08937	1.45094
Н	0.77696	1.00544	-1.72797
Н	1.73716	0.65656	1.16132
Н	2.86755	-0.15135	-1.61504
Н	3.41986	-0.23324	2.16167
Н	4.29424	-1.75153	1.90572
Н	5.15704	-0.23588	1.81594
Н	0.29083	3.57879	-0.66575
Н	-1.72989	1.03727	-1.67317
Н	-2.59553	1.79467	-0.35719
Н	0.42586	2.71861	1.63792
Н	-1.34006	2.69639	1.63053
Н	-0.43485	1.21208	1.96519
Н	-2.13708	-0.16212	1.12583
Н	-1.12664	-0.88726	-0.10527
Н	-3.08913	-1.15448	-1.63828
Н	-6.3697	-1.40332	-0.78438
Н	-5.15009	-2.12163	-1.84672
Н	-5.68066	-2.96826	-0.38624
Н	-3.92893	-0.57301	2.01534
Н	-4.89628	-2.04747	1.94878
Н	-5.62816	-0.50538	1.54489

Table S10. The Cartesian coordinates for the lowest-energy conformer of 2d in theECD calculations.