Electronic Supplementary Information (ESI)

Picolinamide-assisted ortho-C-H functionalization of pyrenylglycine derivatives using aryl iodides

Arup Dalal, Subhankar Bodak and Srinivasarao Arulananda Babu*

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, India, 140306. E-mail: sababu@iisermohali.ac.in.

Contents

X-ray structure and brief crystal data of compounds $6 \mathbf{r}$ $=$ pages 2-3

Copies of NMR spectra (proton, carbon and fluorine NMR) of compounds = pages 4-388
Copies of absorption and preliminary emission spectral data, and integrated fluorescence intensity vs absorbance plots = pages 389-410

Experimental Procedures $=$ pages 411-412

The unit cell contains two molecules

Ellipsoid probability $=50 \%$

X-ray structure of compound 6 r
CCDC 2294407

Ellipsoid probability = 50 \%

X-ray structure one of the molecule
The unit cell contains two molecules,

Brief crystal data of compound $\mathbf{6 r}$

CCDC 2294407

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) exp_603
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report
Datablock: exp_603

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0056 \mathrm{~A}$	Wavelength=0.71073
Cell:	$\mathrm{a}=9.6137$ (19)	$\mathrm{b}=18.354$ (3) $\mathrm{c}=18.491$ (3)
	alpha=61.325(17)	beta=89.722(15) gamma=89.850(15)
Temperature:	293 K	
	Calculated	Reported
Volume	2862.5(10)	2862.5(10)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	C34 H28 Br N3 O2	C34 H28 Br N3 O2
Sum formula	C34 H28 Br N3 O2	C34 H28 Br N3 O2
Mr	590.49	590.50
Dx,g cm-3	1.370	1.370
Z	4	4
Mu (mm-1)	1.472	1.472
F000	1216.0	1216.0
F000'	1215.28	
h, k, lmax	14,27,28	14,26,27
Nref	21108	17050
Tmin, Tmax	0.484,0.555	0.579,1.000
Tmin'	0.474	
```Correction method= # Reported T Limits: Tmin=0.579 Tmax=1.000 AbsCorr = MULTI-SCAN```		
Data completene	ss $=0.808$	Theta $(\max )=32.723$

$R($ reflections $)=0.0597(8340) \quad$ wR2 (reflections $)=$

[^0]wR2 (reflections) $=$ 0.2088(17050)







3d


00	$\infty$	$\infty \times \infty$	$\cdots \infty$
जu゙w	＋	NヘNN゙ー	은ㅇㅇㅅㅇㅇㅇㅇ
$\stackrel{\text { ® }}{\circ}$	＋	－	
।		1111	11
		1	11




SpinWorks 4: AD-2267-A



	1	1	1	6	
PPM	160	120	80	40	0

SpinWorks 4: AD-2267-A



	1	1	1	1	1		1	71
PPM	190	180	170	160	150	140	130	120




4a





4a

		\|	\|	\|	1	I		1
PPM	9.6	9.4	9.2	9.0	8.8	8.6	9	8.4

SpinWorks 4: AD-1821
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 19



4a


## 




PROTON CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 19



4a


## SpinWorks 4: AD-1821

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 19






4a

PPM	148	144	140	136	132	128	124







4b
$\infty \infty \infty$



$$
11111111111111
$$

$\infty$ VVV
○ 0 ioio

~ $\stackrel{\text { N }}{\boldsymbol{\sim}} \boldsymbol{+}$








	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{心} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \text { ó } \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & 0 \end{aligned}$	
	1	1 1	1	1	1	17
PPM	7.6	7.2	6.8	6.4	6.0	

SpinWorks 4: AD 1872
C13CPD256 CDCI3/opt/topspin3.5pl2/nmrdata nmrsu 34




PPM	160	120	80	40	18





	1	1	1	1	1	1	1	1	120
PPM	148	144	140	136	132	128	124	120	

SpinWorks 4: AD 1875RE
PROTON CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 4


### 1.2917



4c


60	06
NN	$\mapsto \vdash$
6	のの
wo	คャ
ON	$\bigcirc$


$\infty \times \infty$	$\infty \times \infty$
טنی\％	$\omega \omega$
ソののト	
ャめッ゚	ベィ
－OVO	N＋6

 NNNNに実

 1 $111 \pi ा$


4c




4c


|  | 160 | 1 | 80 | 40 |
| :--- | :---: | :---: | :---: | :---: | :---: |





$\infty \infty \infty \infty$
－

$1 \perp 11111||\mid 1111111$
$\cdots$
$\omega$
0
0



4d


SpinWorks 4: AD-1873 RE
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 47



4d




4d



SpinWorks 4: AD-1873 RE
C13CPD256 CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 47



4d


	1	1	1	\|	1	1	1	1
PPM	132	130	128	126	124	122	120	11827



		$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{-}{8} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{8}}{\stackrel{\rightharpoonup}{\omega}}$		$\begin{aligned} & \infty \\ & \text { जै } \\ & \ldots \\ & \hline \end{aligned}$	28
	†		-				-	寿
PPM	12		8			4	0	


$4 e$



VVい wiw $\infty \times$ Noか

$4 e$

	$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{\sim}{\bullet} \end{aligned}$	$\stackrel{\text { N }}{\underset{\sim}{N}}$
	1	
PPM	8.2	8.0



SpinWorks 4: AD 2267 RE
PROTON CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 51


$4 e$


$4 e$






PPM	160	150	140	33	120	130





	1	1	1	T	1	T	1	1	1	1		1
PPM	60	56	52	48	44	40	36	32	28	24	34	20



$4 f$


PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 55

## $\begin{array}{ll}\infty & \infty \\ i & y_{4} \\ 0 & \end{array}$







SpinWorks 4: SUB 62
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 55





4f

	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & 0 \end{aligned}$					$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & 0 \end{aligned}$		
	1	1	1	1	1	1	1	38
PPM	6.6	6.4	6.2	6.0	5.8	5.6	5.4	

SpinWorks 4: SUB 62
PROTON CDCI3/opt/topspin3.5pl2/nmrdata nmrsu 55


4f



$4 f$

¢̈\％\％	WトロトトO
－	¢ ¢－
＋V	


|  | 1 | 1 | 1 | 4 | 40 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PPM | 160 | 120 | 80 | 40 | 0 |

C13CPD CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 55



4f


								41
PPM	134	132	130	128	126	124	122	41

## SpinWorks 4: SUB 62

C13CPD CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 55

$\square$	N
$\stackrel{\sim}{\omega}$	$\infty$
$\infty$	$\checkmark$




	1	1	1	1	1	1	I	1
PPM	54	50	46	42	38	34	30	426



4 g

ットローローロ

 ○Vのwwura








SpinWorks 4: AD-2252
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 2

vivev
iniwi
ouncu give $\omega \sigma \square=$ $1 /$






PROTON CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 2



$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\rightharpoonup}{\square}$	
$\bigcirc$	$\sigma$	
$\infty$	$\pm$	
$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{+} \end{aligned}$	oㅇ	    



|  | 1 | 1 | 1 | 4 | 48 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PPM | 160 | 120 |  | 80 | 40 | 0 |







4h





4h



$6.2137 —$
6.2440


4h



4h




4h

ワワワワワーワワワに NNNNNNNシミシ か○○ゃ

$11111 \mid 1$
｜｜｜｜｜｜｜
 00000000000000000000 ㅇㅇㅇㅇㅇㅇㅇㅇㅇNㅇ№の

।



4h




4h


$\stackrel{\sim}{N}$	NNT
-i¢	気砍
!	1



4h


## SpinWorks 4: AD 1789

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 35


6a


SpinWorks 4：AD 1789
PROTON CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 35




$1111|1| 1|1111|$
111 －－－11

いいいいいい vivviv Vのजロ un ○oworo

いいいVいいVVい $\omega \omega \omega \dot{\omega} \omega \omega \dot{\omega} \omega$


 •｣｣｣｣｣ ｜｜｜｜｜｜｜


6a


C13CPD CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 35




6a


	1	1	1	1	1	1
PPM	160	120	80	40	80	

SpinWorks 4: AD 1789
C13CPD CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 35



6a


PPM	148	144	140	136	132	128	124	120	116	112

4.0128


6b


SpinWorks 4: AD 1851 RE
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 13



6b




6b

28.


					64
PPM	160	120	80	40	4


$\stackrel{\rightharpoonup}{+}$	$\stackrel{\rightharpoonup}{\omega}$
$\underset{\sim}{\omega}$	$\stackrel{+}{ \pm}$
$\underset{+}{+}$	




6b


	1	\|	\|	1		
PPM	140	136	132	128	124	6520

SpinWorks 4: AD 1813
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 23


6c

		$\begin{aligned} & \text { : wo } \\ & \text { No vi } \\ & \text { No Kig } \end{aligned}$		$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{+}{\circ}}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \hline- \end{aligned}$			$\begin{aligned} & \circ \\ & \text { 운 } \end{aligned}$	
					-				
PPM	10	8		6		4	2		0

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 23

$\infty \times \infty \times \infty$	$\infty$	$\infty$	$\infty \times 0$	$\infty$	$\infty$	$\infty$	$\infty$	$\bigcirc 0 \times \infty \times \infty$
जنй	ir	$\pm$	NNN	N	$\stackrel{\sim}{\square}$	$\dagger$	$\stackrel{-}{-}$	$\bigcirc \circ^{\circ} 0^{\circ} 0^{\circ}$
$\infty \times \infty$	-	$V$	WNN	$\bigcirc$	$\omega$	$\stackrel{\square}{\square}$	-	OGUAWN
	$\bigcirc$	$\checkmark$	$\bigcirc$	¢	$\stackrel{\ominus}{\sim}$	$\bigcirc$	$\stackrel{\bigcirc}{\sim}$	いOルGNa
$\left.\begin{array}{lllll\|} 1 & 1 & 1 & 1 & 1 \\ 1 I I I \end{array}\|1\| \right\rvert\,$								Mrrrel



6c


(1)




6c





6c

SpinWorks 4: AD 1813
SpinWorks 4: AD 1813
C13CPD CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 23



6c



	1	1	1	1	1	1	1	
PPM	148	144	140	136	132	128	124	$120^{\circ}$








6d

$\infty \infty \infty \infty \infty \infty \infty$ जuvinuvin $00000 \cup \cup V$ かソのロかーローN


6d


 LMMMM1












6d



 -YO0000NvoのuMuMamN




6d


											77	
PPM	162	158	154	150	146	142	138	134	130	126	122	118

## ${ }^{19}$ F NMR $\left(\sim 376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



PPM	0	-40	-80	1	1	1	-200

##    <br> 


$6 e$






6 e





			1			
PPM	7.78	7.76	7.74	7.72	81	7.70


5.5393

$6 e$

		$\begin{aligned} & \stackrel{+}{\circ} \\ & \stackrel{+}{+} \\ & \hline \end{aligned}$			$\begin{aligned} & \stackrel{+}{\circ} \\ & + \\ & \hline \end{aligned}$	
						82
PPM	7.2	6.8	6.4	6.0	5.6	

## SpinWorks 4：SUB－45

C13CPD256 CDCl3／opt／topspin3．5pl2／nmrdata nmrsu 18

$\stackrel{\rightharpoonup}{\bullet}$	$\mapsto \quad$－	
$\bigcirc$	$\sigma$ の	
$\checkmark$	$\bigcirc \omega$	
$\infty$	$\omega \infty$	
$\checkmark$	$\pm \omega$	
$\infty$	の $\infty$	


ソVV	ט	NN
VVの	－－	$\infty$
い○う	$\cdots \infty$	$\square \infty$
NOA	UJ	$\downarrow$
$1$		，



6e


	｜				83
PPM	160	120	80	40	





	\|	-	1	\|		
PPM	160	150	140	130		120



$6 f$


$\infty \infty \infty \infty \infty \infty \infty \infty \infty \infty \infty$


1111111111
$V V v V V$
VVVVV VNV VNけ







C13CPD256 CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 58

N

$6 f$

				\|	88
PPM	160	120	80	40	





		1						80	1
PPM	148	144	140	136	132	128	124	89	120



$6 g$




		$\begin{aligned} & \stackrel{-}{\circ} \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O } \\ & \text { O } \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \mapsto \end{aligned}$	
									90
PPM	12			8			4	0	

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 13
$\infty \infty \quad \infty$



6 g

$\circ$
0
0
0

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 13


ソVVVVVVNV




6 g


SpinWorks 4: AD 1946
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 13



6 g


$6 g$




6 g


	\|	1	1	1	95
PPM	160	120	80	40	




6 g


	1	,						
PPM	148	144	140	136	132	128	124	6




6h


		$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	ゃ wo $\omega$ -$\stackrel{i}{\circ}$-i uncon	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\underset{\sim}{\omega}}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{+} \end{aligned}$		$\begin{aligned} & \circ \\ & \text { i } \\ & \text { O } \end{aligned}$	
			1				1	97
PPM	12		8			4	0	




م

$1|11111| 11$
॥ 1 11 | | ॥ा


6h


vvvuv	VVVVV	のos
Vvviv	¢iwiwiN	wis
VGuw－	$\bigcirc \infty$	WN
¢Vの®O	○サ¢	जN
$\left.\right\|_{\| \| 1} ^{1} 1 d$		







		1	1	1	
PPM	160	120	80	40	100





PPM	148	144	140	136	132	128	1201

$$
\begin{aligned}
& \downarrow|1|
\end{aligned}
$$


$6 i$

$\infty \infty \infty$


$\infty \infty \infty$


|| $\|$


VソンVV V $\omega \omega \omega \omega \omega$ i obudgh ee

$6 i$
$\qquad$
$\qquad$
$\qquad$
N



ソソơ	MG
+ob	N
11	


$6 i$

				1	4
PPM	160	120	80	40	

## SpinWorks 4：AD 1899

C13CPD256 CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 7


$6 i$


SpinWorks 4：AD－1814
PROTON CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 14
wの
$\downarrow \mid 11111111$
｜il｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜


6j

$\infty \infty \infty$
Múgin

$1 \mid$





vVvNvN Viviv ソのルー

•1」1
｜｜\｜


 のソ जw心at


6j


C13CPD CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 47




6j




6j


								109
PPM	148	144	140	136	132	128	124	120




## SpinWorks 4: AD-1957

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 6





VVVVン, VVvivi Moviصgin



6k


SpinWorks 4: AD-1957
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 6



		$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{8}{\omega}}$					$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	112
	1			,				
PPM	6.6	6.4	6.2	6.0	5.8	5.6	5.4	5.2




C13CPD CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 18

24.011
28.483
33.941



	,	1	1	1	114
PPM	160	120	80	40	

C13CPD CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 18



6k


		1	1	1	1	1	1		T
PPM	148	144	140	136	132	128	124	115	120





 NNமトゥトゥ○○○○○○ம
 vuobonorswouvo




61


PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 24





－	மமமம
$\cdots$ Viv	门＂
$\infty$ oun	$\stackrel{\square}{\square}$
¢ ${ }^{\text {a }}$	$\bigcirc \cup \infty$
ャのロの	－wけト
111	11
If	1






C13CPD256 CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 8


	1	1	1	\|	120	T
PPM	160	120	80	40		




61

								1
PPM	148	144	140	136	132	128	124	120


	ャワート
NЮ戸戸	जu゙vis
－¢ Vu	wNOO
U0\％N	voNの
－GロN	＋Oルの
11	11
III	


जu゙vio さ○NO



6m



$\infty \infty \infty \infty$ जルப் जル GOCO 心N
G\＆AN GN


11
I｜




11111111111
॥111 11


6m


1
｜1｜｜｜

いいいVいいいV －


－1 11

## 

7.1091
7.1295


6 m


6 m



C13CPD256 CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 18


VV	$\sigma$
Vvo	$\omega$
wov	$\square$
$0 \infty$	$\square$
$\infty$ ¢	$\omega$



6 m


					7
PPM	160	120	80	40	127


$148.308-$
$149.721-$
141.054 -




6 m


	1	I	\|	1	1	
PPM	160	150	140	130	120	128



 のートーのNGし

1.2191


6n


		$\begin{aligned} & \circ \\ & \text { ó } \\ & \text { ob } \end{aligned}$		－		$\begin{aligned} & \circ \\ & \stackrel{0}{\infty} \\ & \stackrel{\sim}{\omega} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 아 } \\ & \stackrel{\circ}{\circ} \mathrm{O} \\ & 08 \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{0}{\sim} \\ & \stackrel{\sim}{u} \\ & \hline \end{aligned}$	
	1								－ 1	
PPM	12			8				4	0	129




6n
$\infty \infty \infty \infty \infty$ NNNべゥ



VVVVVv	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	VVVNVV	$\checkmark$	$\checkmark$	$v$
$\cdots \cdots$	in	－	$\stackrel{\square}{+}$	－	wiwiwis	N	N	N
va virum	$\sigma$	＋	$\infty$	$\stackrel{\rightharpoonup}{\bullet}$	－0ソソのけ	$\infty$	$\omega$	$\stackrel{+}{\bullet}$
$\omega 6+0$ ¢ю	－	N	$\square$	－	－ $0 \times+$－	$\omega$	N	N
のज ¢んமo	O	$\omega$	$\square$	$\cdots$	$\checkmark \cup+\checkmark \omega \infty$	$\omega$	$\omega$	$\sigma$
$1111$					成			



6n




6n


C13CPD256 CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 14



6n

｣

28.500

	1	1	1	1		
PPM	160	120	80	40	133	0




6n


### 6.4332



60




PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 22


VVVVNVV VVNVV




11111
1111


60


PROTON CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 22

NVVVVVV	$\checkmark$	いいいV
－	N	$0^{\circ} 0^{\circ}$
$\bigcirc 000 \infty$	$\infty$	OUPA
以○ャ¢	$\omega$	＋6ソN
	の	の¢ルV
$1 / 1 / 11111$		lol





60




60


	\|	1	1	1	39
PPM	160	120	80	40	139


$\begin{array}{cc}\stackrel{\rightharpoonup}{+} & \stackrel{\rightharpoonup}{+} \\ \stackrel{\rightharpoonup}{\circ} & \stackrel{\omega}{\omega} \\ \stackrel{\sim}{*} & \stackrel{0}{\sim}\end{array}$	
	)





	\|	1	1	\|	1	\|	1	1	140
PPM	148	144	140	136	132	128	124	120	$116^{140}$

## $\because$ $\vdots$ $\vdots$ $\square$



6p


SpinWorks 4：SUB－47 RE
PROTON CDCl3／opt／topspin3．5pl2／nmrdata nmrsu 32

$\infty \times \infty$		$\infty \times \infty \times \infty$
ún	NNNN゙	$\cdots \mapsto \sim \bigcirc \bigcirc \bigcirc \circ \circ^{\circ}$
$\infty$	Nッ○○○	ANOVG＋wNo
von		
1	1111	



いソソVVVVVV wiwiwiwiw
 の○のかか○ンのの
111111111
$\|\|\| \mid$｜


6p

$\begin{aligned} & N \\ & \omega \\ & 0 \end{aligned}$		$\begin{aligned} & \omega \\ & \underset{\sim}{v} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\infty}{\sim} \end{aligned}$			$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\underset{y}{u}}$		$\stackrel{\text { N }}{\mathrm{Y}}$
	｜	T	－	1	I	1	1	
PPM	8.4	8.2	8.0	7.8	7.6		7.4	142




6p

				1	
PPM	160	120	80	40	143




6p


								144	
PPM	148	144	140	136	132	128	124		120

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 18


$6 q$




SpinWorks 4: SUB-48RE
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 18



6q

V
당
on

111111



$6 q$



$6 q$

C13CPD CDCl3/opt/topspin3.5pl2/nmrdata nmrsu 7


$6 q$


FAmpox





		$\stackrel{\stackrel{-}{-}}{\stackrel{-}{6}}$	Whrr O vioo inio ow on ancu	$\begin{aligned} & \circ \\ & \stackrel{\circ}{6} \\ & 6 \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\sim}{\infty}}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	
				,			1	151
PPM	12		8			4	0	151



$\infty \times 0$	$\infty$	cosocosococosococos
טن்	जن	NNNN゙ャレ○○○○○
$\infty^{\infty} \infty \infty$	$\omega 0$	－NNO＋NOQのम WN
¢プ	$\stackrel{\square}{\circ}$	
$1$		






NらかゅさかけN

11111


SpinWorks 4: AD 2136 RE
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 7



6 r



$6 r$

	1				1	
PPM	200	160	120	80	40	105

SpinWorks 4: AD-2136-RE
C13CPD256 CDCI3/opt/topspin3.5pl2/nmrdata nmrsu 40




6 r

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 40



6s


$\infty$	$\infty$	$\infty \times \infty$	¢ $0 \times \infty \times \infty$	VソVVVい	$\checkmark$	VVVV	$\checkmark$		
	जن	NNNNN		$\cdots$ VVV	in	－	N		
$\infty \times$	$\omega \stackrel{ }{ }$	－WNNO	－ャャのあかんN	¢Vのソかん	N	$\bigcirc \infty$	$\infty$		
ロம	$\infty$	○மNO	リーツのル○の心ソ	－VNON6	の	Noun	$\omega$		
$\stackrel{\rightharpoonup}{\square}$	$\omega$	$\omega \rightarrow$ ¢	のwornのov	$\omega ⿴ 囗 十$	$\sigma$	Nown	$\bigcirc$		
， 1		$\frac{111}{11 \mid}$	1111111	$\\|_{\\|}$		｜｜			



6s



6s



$6 s$

PPM	160	120	80	40	0



6s


whamphay








6t



6t


VVVVVい VV，VV かソンVVン जロのペーN

し！！！




$6 t$


VソVVいいいい

○OQ000

－
1111



C13CPD256 CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 1


$6 t$

	+	\|	1		165
PPM	160	120	80	40	


9	宮茴
$\stackrel{\text {－}}{\bullet}$	





 $1111111|1| 1111111$

$\stackrel{\sim}{\oplus} \stackrel{\sim}{\oplus}$ 10
0
0
0
$\stackrel{\oplus}{\oplus}$ ソ

$6 t$






6


PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 56


ホVVンVVV

 o 1


6


SpinWorks 4：AD－2114RE
PROTON CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 56




6u


SpinWorks 4: AD-2114RE
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 56





6




$\stackrel{\rightharpoonup}{\bullet}$	$\mapsto$	$\stackrel{ }{\bullet}$	$\stackrel{ }{ }$
$\stackrel{\square}{+}$	$\stackrel{+}{+}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{+}{\square}$
6	$\infty$	$\stackrel{\square}{\bullet}$	$\bigcirc$
$\square$	$\omega$	0	$\pm$
6	$\longmapsto$	$\checkmark$	$\bigcirc$
$\checkmark$	$\mapsto$	0	$\pm$




6u





$\infty \infty \infty$ जivicio GNNO
OANN


 11




SpinWorks 4: AD 2071
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 16




C13CPD CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 16


VVV	Mu
ソの	-1.
- ${ }^{\circ}$	No
$\mapsto \infty$	-N
$0 \times 0$	$\checkmark 0$



$6 v$


	1	1	1	1	177
PPM	160	120	80	40	0




6 v





6w


		$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & \stackrel{8}{4} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\mathrm{o}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$				$\begin{aligned} & \circ \\ & \text { óg } \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{n} \end{aligned}$			$\begin{aligned} & \stackrel{0}{\omega} \\ & \stackrel{\sim}{\circ} \end{aligned}$
	1								1	I	179
PPM	11					7			5	3	1




VV， نivin のサN －ソ

VVVVVVVVVい




6w

$\begin{gathered} \stackrel{N}{\sigma} \\ \underset{\sim}{2} \end{gathered}$		$\begin{aligned} & \stackrel{A}{i n} \\ & \underset{\omega}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{\infty}} \\ & \dot{\circ} \end{aligned}$		$\begin{aligned} & \text { on } \\ & \underset{\sim}{\sim} \end{aligned}$		$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\sim}$	$\begin{aligned} & \stackrel{\rightharpoonup}{i} \\ & \stackrel{i}{\sim} \end{aligned}$
PPM	8.4	8.2		8.0	7.8	7.6			4180

SpinWorks 4: AD-1858



6 w



ソソ\%	MG
coin	Nơ





SpinWorks 4：AD－1858
C13CPD256 CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 12

$\mapsto$	$\stackrel{\rightharpoonup}{\bullet}$	மคமャ
$\stackrel{+}{6}$	$\stackrel{+}{\infty}$	＋号号号
$\sigma$	N	Vのu
$\omega$	$\infty$	$\stackrel{\text { ®ロの }}{ }$
$\mapsto$	$\square$	$\omega \omega \infty$









6x


$\qquad$

$\stackrel{-}{\circ}$
$\circ$
ㅇ
은

0	6
	0
0	0


0
$i$
$i$
6

60
勺曰
G1
Gज


6x

$\infty \infty \infty \infty \infty$
जūuivin

$11111 \mid$

# $\infty \infty \infty$ 




$111|1| 1|1|$ | $\circ$ |
| :--- |


	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & i \end{aligned}$				$\stackrel{N}{N}$		$\begin{aligned} & \omega \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { N } \end{aligned}$	
								185	
PPM	9.4	9.2	9.0	8.8	8.6	8.4	8.2		8.0



$7.5805-$


$\underset{\substack{\sim \\ \sim \\ \infty \\ \sim \\ \hline}}{ }$



SpinWorks 4: AD-1816
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 28



6x




6x


## SpinWorks 4: AD-1816

C13CPD256 CDCI3/opt/topspin3.5pl2/nmrdata nmrsu 3

	,




6x


PPM	150	146	142	138	134	130	126	122




 NNNに

レレ 1

VVVVNV VVVV vonura ＋wnNob

VVいVいいV
VVNVNV ஸ． คャNロルんいに


1111111
｜｜l｜｜

$6 y$

II｜｜






$6 y$

		1	1	1	193
PPM	160	120	80	40	


122.071





PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 10

4.3860

$6 z$


SpinWorks 4：AD 2081
PROTON CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 10




vovvev
シンシンジ ソンンンざ

• । ।｜
｜｜｜｜｜｜

$6 z$


PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 10
 +OPOMN
-
11 ||



$6 z$



SpinWorks 4: AD 2081
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 10


$6 z$

		$$				$\begin{aligned} & \text { A } \\ & \text { ヘ̂ } \end{aligned}$
			5.6			$4.4{ }^{198}$
PPM	6.4	6.0	5.6	5.2	4.8	4.4



$6 z$


		\|			
PPM	160	120	80	40	199

SpinWorks 4: AD 2081
C13CPD256 CDCI3/opt/topspin3.5pl2/nmrdata nmrsu 10


$6 z$


## SpinWorks 4: AD-1991

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 28



6za


SpinWorks 4: AD-1991
PROTON CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 28

$\infty \infty$ Nivín
 Won
1111



6za
$\qquad$ -


PPM

## 9.6

9.2
8.8


## SpinWorks 4: AD-1991

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 28



6za


SpinWorks 4: AD-1991
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 28



6za




6za


	1	1	1	1	I
PPM	160	120	80	40	0

C13CPD256 CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 28





6za




6zb

.



6zb

			$\stackrel{A}{\infty}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\omega}{\stackrel{\rightharpoonup}{\bullet}} \\ & \stackrel{\sim}{2} \end{aligned}$			$\begin{aligned} & \stackrel{A}{+} \\ & \stackrel{+}{N} \\ & \hline \end{aligned}$		
PPM	8.6	8.4	8.2		8.0	7.8	7.6	7.4	7.2	2087.0




6zb



[^1]





6zc


ROTON CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 53



6zc




6zc





6zc

				1		1
PPM	160	120	80	40	14	0

## SpinWorks 4: AD-2178

C13CPD256 CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 29







PROTON CDCl3／opt／topspin3．5pl2／nmrdata nmrsu 5

$\infty$	$\infty \infty$
טنی	i $\omega$
Vの	$\infty$ の中
WN	の $-\omega$
－	の ルー

$\infty \times \infty \quad \infty \times \infty \times \infty$

॥｜｜｜｜｜

ソンVNンV
VVVVVN

し1 1 ！！

## VVVVN wwwwien い心トソ <br> •1｜।



6zd


SpinWorks 4: AD-1976-Re
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 51






$\begin{aligned} & \text { ㅇ. } \\ & \stackrel{\circ}{\bullet} \end{aligned}$					$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{4} \end{aligned}$			
1	1	1	1	1	1	1	1	1
PPM 3.90	3.80	3.70	3.60	3.50	3.40	3.30	3.20	3.10

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 51
1.2266
0.9233
0.9413
0.9594




6zd




6zd


SpinWorks 4: AD 1976 RE C13CPD256 CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 60





	I	1	1	1	1	1	1	1	221
PPM	150	146	142	138	134	130	126	122	118




6ze






6ze

SpinWorks 4: AD-1927A
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 13

$\sigma \sigma$	תט
+ +	u
WN	$\checkmark$ N
$\stackrel{O}{+}$	¢ ¢



6ze

	$\stackrel{\stackrel{\rightharpoonup}{+}}{+}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$			$\begin{aligned} & \omega \\ & \underset{\sim}{e} \end{aligned}$		
	1	1	,	1		-	,		1	1
PPM	6.4	6.0	5.6	5.2	4.8		4.4	4.0	224	3.6

C13CPD256 CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 13


VvV	vuc
VVの	WNN
wov	＋மம
勺AN	－6u9
¢மい	VW口O
のur	－Oルー
11	11
	1




6ze
mand




6zf



SpinWorks 4: AD 1942 A
PROTON CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 54
$\infty \infty$ जig ~の
| $\mid$

$\infty$
$\stackrel{\rightharpoonup}{\mathbf{\omega}}$
en


6zf

VVVVVV Vivivi

11111

VVNVNN w w w w wien wwwn whe No 1 NHO
$\sigma \mapsto ज \infty \infty$
$\qquad$
$\qquad$
L~



NNNNNNNNNNN NNNNONGWWNNN心Nゅ



6zf




6zf



## 




6zf




6zf


	\|	1							
PPM	152	148	144	140	136	132	128	124	2320


$\infty \infty \infty$風过


6zg




7.8620


6zg


SpinWorks 4: AD-2258



6zg

7.1524
$-9210^{\circ} L$
$-8166^{\circ} 9$

SpinWorks 4: AD-2258


6zg







VVソ	טリ	ww	NNN
VVの	$\cdots \infty$	NN	－
wov	$\omega \infty$	бֹテ	いの－
かのヘ	$\bigcirc 0$	ツャ	$\stackrel{\square}{\circ}$
$\infty$－	OG +	$\mapsto \sim$	$\infty$



6zg


## SpinWorks 4: AD-2258

$\stackrel{\sim}{\circ}$ $\stackrel{-}{0}$ 0	$\stackrel{\stackrel{\sim}{\sim}}{\infty}$




6zg


SpinWorks 4: AD-2258


N N
$81 \varepsilon^{\circ}$
609
$6 \varepsilon \varepsilon^{\circ}$


6zg


	1	1			1	1	1	242
PPM	52	48	44	40	36	32	28	




6zh





6zh


SpinWorks 4: AD-2265 Re
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 55




6zh


SpinWorks 4: AD-2265 Re
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 55



6zh




6zh

$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{N}{\circ} \end{aligned}$							
1							$247^{1}$
PPM 5.72	5.68	5.64	5.60	5.56	5.52	5.48	



6zh

$\underset{\sim}{\stackrel{\rightharpoonup}{\omega}}$							$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{N} \\ & \sim \end{aligned}$		
			1					248	
PPM	3.8	3.6	3.4	3.2	3.0	2.8	2.6		2.4

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 55


6zh

		$\begin{aligned} & \omega \\ & \stackrel{\omega}{\omega} \end{aligned}$		$\stackrel{\stackrel{\rightharpoonup}{i}}{\sim}$			
	1		1	1		249	1
PPM	1.90	1.80	1.70	1.60	1.50		1.40




6zh


C13CPD256 CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 55


NN NNNN Vis worit


6zh



 $\underbrace{}_{-}$


6zh

PPM	160	150	1	1	130	120




6zh


	T	1	+	+	+	1	1	1	1	553	T
PPM	56	52	48	44	40	36	32	28	24	20	




6zi



6zi




6zi


SpinWorks 4: AD-2262 Re
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 54

## 



6zi


SpinWorks 4: AD-2262 Re
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 54




6zi


$\infty-\infty \times V$ Nッ○○○か $+\infty \times \infty$


6zi




1.2807



6zi


	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \text { on } \end{aligned}$	$\stackrel{+}{\circ}$ $\stackrel{+}{\circ}$

$0.8103-$
$0.8191-$

$0.8404-$
$0.8461-$
$0.8470-$

$0.8704-$
0.8708
0.8746

0.8972
0.9059


6zi




6zi


|  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PPM | 160 | 120 | 1 | 1 | 262 |



元


6zi


PPM	160	150	140	130	3	120




6zi


	1	1		1		1	1	
PPM	52	48	44	40	36	32	28	26424


 wwの $|1| 1 \mid$


மமமமーம○ जぃいいに
 か○ゅ ••।｜।

60
$-N G$
$\omega \omega$
$\square 0$

oóo
vuv -ig Nou ソ®


6zj


SpinWorks 4: AD-2259

5.3737
3.8092


6zj


## SpinWorks 4: AD-2259

$\begin{array}{ll}\stackrel{\circ}{4} & \stackrel{-}{\pi} \\ \stackrel{\infty}{\infty} & \stackrel{\circ}{\circ} \\ \stackrel{\infty}{\infty} & \end{array}$
$1.3144-$
$1.3517-$



6zj


WWNN
NOON
Non NOON MNOV 11


6zj

|  | 1 | 1 | 1 | 1 | 264 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PPM | 160 | 120 | 80 | 40 | 0 |

SpinWorks 4: AD-2259

\%	¢
웅	\%
$\stackrel{\sim}{\omega}$	$\stackrel{ }{+}$

$148.2460-$
$149.6998-$


6zj





SpinWorks 4: AD-2259


6zj


	1	1	I		1	1	1	1	271	\|
PPM	56	52	48	44	40	36	32	28		24






 vivi Nம・かいいか


6zk

！





6zk
$\qquad$
$1 \times>$

	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \hline \end{aligned}$					$\stackrel{\stackrel{\rightharpoonup}{-}}{\substack{\text { - }}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{\sim}{\circ} \end{aligned}$	
	1	I		,	1	1	273	
PPM	9.6	9.4	9.2	9.0	8.8	8.6	273	8.4



$8.0158-$
$8.0268-$
8.0348
8.0490
8.0621


6zk


7.2830


6zk

$\stackrel{\stackrel{\rightharpoonup}{i}}{\underset{\sim}{\sim}}$			$\underset{\underset{\sim}{\mathrm{N}}}{\mathrm{H}}$		$\begin{aligned} & \stackrel{+}{\sim} \\ & \stackrel{\sim}{\sim} \end{aligned}$			
	1	1					275	
PPM	7.80	7.70	7.60	7.50	7.40	7.30	275	7.20




6zk




6zk

									77	
PPM	1.8	1.6	1.4	1.2	1.0	0.8	0.6	0.4	277	0.2



6zk
 MUN
GUN
$\infty N 0$
$\infty \infty 00$
$\infty 00$
$1 ।$

	\|				
PPM	160	120	80	40	0


148.298
149.524




6zk

			1		2791
PPM	160	150	140	130	120



6zk




6zI




6zl




6z1


SpinWorks 4: AD-2275
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 50



6zI





6zl


PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 50



6zI


SpinWorks 4: AD-2275
C13CPD256 CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 50



6zl

14.906
28.214
29.001
30.958
31.209 $\downarrow$

	1	1	1	1	
PPM	160	120	80	40	$0^{287}$

SpinWorks 4: AD-2275
C13CPD256 CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 50



6zI

							288	
PPM	170	160	150	140	130	120		110



14.906


6zl


	1	1	1	1	289	
PPM	50	40	30	20	10	



$M$
$\stackrel{y}{+}$
$\stackrel{+}{N}$





$\begin{array}{ll}v & \\ 0 & \sigma \\ \infty & \sigma \\ + & \omega \\ \square & \infty\end{array}$
$7.4365 —$
7.2834







	1	\|		1	92
PPM	160	120	80	40	2

123.730 -

121.856 -



	\|		\|			93
PPM	140	136	132	128	124	29

SpinWorks 4: AD-1844 PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 47
 wiviin ine ionioivi io






SpinWorks 4: AD-1844
PROTON CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 47





C13CPD256 CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 47



7b


		1			296	
PPM	160	120	80	40		0

## SpinWorks 4：AD－1844

C13CPD256 CDCl3／opt／topspin3．5pl2／nmrdata nmrsu 47






							1
PPM	170	160	150	140	130	120	97

SpinWorks 4: AD-1981
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 7




VVNV	$\checkmark$	$\checkmark$
जن்	$\omega{ }^{\omega}$	N
ソののの	$\checkmark$	$\infty$
¢ローN゙号	ज®	$\stackrel{\omega}{\sim}$
$111$		












				1	
PPM	140	136	132	128	324









ソゾ	M M
¢0＇이	¢
－	




	1	1	1	1	304
PPM	160	120	80	40	004






11
II

$7 e$

			$\stackrel{+}{\omega}$ $\stackrel{\rightharpoonup}{8}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{\infty} \end{aligned}$		$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \omega \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{8} \stackrel{\rightharpoonup}{\sim} \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{\circ} \\ & \stackrel{\sim}{n} \end{aligned}$	
											\|
PPM	10	8			6		4		2		0


$\infty \times$	$\infty \times \infty \times \infty$
$\omega$	NNமமமம○○○○○○
いம	NOCVU10VAWN
$\bigcirc$	
V＋	－のwoのnNocoovo


vソvvへ	VVV	VVVV
－ipin ${ }^{\circ}$	いwi	
－0のメへ	N○○	ャワค•
u®＋uco	¢0w	¢ ¢ ¢
ம＋	Num	$\infty \times 0$ の
	I	11
，		11




		$\begin{aligned} & \omega \\ & \stackrel{\omega}{\bullet} \\ & \stackrel{\infty}{2} \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{O}{0} \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{\circ}{\infty} \end{aligned}$					
	1	1		1	1	1	，	1	307
PPM	8.4	8.2		8.0	7.8	7.6	7.4	7.2	7.0



$7 e$

PPM	160	120	80	40	308	0



$130.4258=$
$130.4841-$
$131.1106-$




		$\begin{aligned} & \text { How } \\ & \text { Boun } \\ & 060 \end{aligned}$			$\stackrel{\div}{8}$	$\begin{aligned} & \omega \\ & \stackrel{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$$	$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		
							1		310	,
PPM	10	8		6		4	2		310	0




1111 ｜｜｜11
7.2834

VNVN
0000 $00^{\circ} 0^{\circ}$ NANN $\infty \times \infty$
$\infty \infty$ ○ー
/


SpinWorks 4：SUB－210
C13CPD256 CDCI3／opt／topspin3．5pl2／nmrdata nmrsu


VソV	טum
VVor	のベー
wov	$\bigcirc 0$
VGr	$\begin{aligned} & \text { बN } \\ & \cup N \end{aligned}$
1	$11$








		T	-	-	T		T		
PPM	144	140	136	132	128	124	120	116	11313



2.0505
2.4571
$\stackrel{\rightharpoonup}{\omega}$
$\stackrel{\rightharpoonup}{\omega}$
$\stackrel{1}{\omega}$


## 

$\perp \quad 0$
10
$\infty \infty \infty \infty \infty \infty$ winNNi, in oooioo
 | | | | | | | | | | | |

sZL6.9



		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{-}{\bullet} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{\circ}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & \sim \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{\rightharpoonup}{0} \\ & N \end{aligned}$		$\begin{aligned} & \underset{\sim}{i} \\ & N \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
PPM	8.4					8.0	7.6	7.2		6.815








	$\mid$	1					
PPM	140	136	132	128	124		






1 | | | | | | | 1






|  | 1 | 1 | 1 | 320 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 200 | 160 | 120 | 80 | 40 | 0 |





					1		1	1	321	
PPM	150	146	142	138	134	130	126	122		118



$\infty$	$\cdots \infty$	VVvV	VV
－	NNமம○○○○○○○	VVVV	のののの
NO	NOCOOVANமOO	－${ }^{\text {a }}$	Nャト○
V		®wwn	MoN～
，		$111$	$111$


$\checkmark$	$\checkmark$
N	－0
$\stackrel{\infty}{\sim}$	ज̆



SpinWorks 4: AD 1955
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 10




$\begin{aligned} & \stackrel{\omega}{\omega} \\ & \stackrel{\omega}{\omega} \end{aligned}$			$\underset{\sim}{N}$			
	1	1	1	1	1	T
PPM	4.00	3.90	3.80	3.70	3.60	3.50






					327
PPM	160	120	80	40	27






		$\begin{aligned} & \text { ave } \\ & \text { Bion } \\ & \text { Bol } \end{aligned}$	$$	$\begin{aligned} & \stackrel{\bullet}{\dot{\sim}} \\ & \stackrel{\sim}{6} \end{aligned}$	$\begin{array}{ll} \circ & \circ \\ \stackrel{\circ}{0} & \stackrel{i}{\circ} \\ \hline 0 \end{array}$	$$			329
	1	1						1	,
PPM	12	8				4		0	





```
 |!||||||||||||
 | || | | | || ||ा|
```

$v=$
$0 \pm$
$0 y$
$n 0$
No
1

$\sim$$\infty$$\omega$$\sim$	



-69 S 's

_ $1090^{\circ} \mathrm{S}$
$-69 S^{\circ} \mathrm{S}$

$-1090^{\circ} \mathrm{S}$




மャ	$\mapsto$	
のお	$\cdots$	－${ }^{\text {a }}$ ，
00	$\bigcirc$	
$\omega \omega$	N	
$\bigcirc 0$	$\checkmark$	
NW	$\sigma$	
$7$		




	｜	I		｜	23
PPM	160	120	80	40	

SpinWorks 4: AD-2121
C13CPD256 CDCl3/opt/topspin3.5pl2/nmrdata nmrsu 33

$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{+}{\circ} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$


$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\omega}$	$\stackrel{\leftrightarrow}{\omega} \omega$	NNNAN nucta
$\stackrel{\downarrow}{\bullet}$	号边	NVvios
	¢	1


wilpaww

	I	,	T	I	1	1		1	333
PPM	140	136	132	128	124	120	116	112	

SpinWorks 4: AD-2121
C13CPD256 CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 33

	$\stackrel{\sim}{\sim}$	$\xrightarrow{ \pm}$	




	\|	1	1	1		1	1		
PPM	56	52	48	44	40	36	32	28	3324



SpinWorks 4: AD 1982
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 19


SpinWorks 4: AD 1982







					339
PPM	160	120	80	40	






 NへNべゥio○○○○。 $\infty \circ N O の+1-6 フ ォ N \mapsto O$

 1 1 1｜
7.5553

6.1963
$6.1855-$








ャレம	$\mapsto \vdash$	
のロの	¢U	－${ }^{\text {a }}$
06	6	Ow－
¢Nの	No	－Vーowoc－
のメV	Vo	
－06	$\omega+$	
$1$		





	1	1	1	1	
PPM	160	120	80	40	0


	H
-8i ${ }^{\text {¢ }}$	$\underset{\text { N }}{ }$


+	
$\bigcirc$	
$\stackrel{\circ}{\circ}$	 
	L L M 人




泪

	1	1	1	1	1		346	
PPM	170	160	150	140	130	120	346	110



	1			1	1	1	347
PPM	80	70	60	50	40	30	







$\qquad$









SpinWorks 4: SUB 216 RE
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 52





	1			T	T	,
PPM	200	160	120	80	40	0



W.


$\begin{aligned} & \infty \\ & \stackrel{\infty}{\stackrel{0}{\circ}} \\ & \stackrel{\sim}{\circ} \end{aligned}$			$\stackrel{\circ}{\circ}$ $\stackrel{\infty}{\infty}$ $\stackrel{+}{\circ}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{~}{\sim}} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$
	$1 H$			




	1	1	1	1	354	
PPM	70	60	50	40	30	



the compound exists as diastereomers





	I	,	I	1	356
PPM	8.30	8.20	8.10	8.00	

SpinWorks 4: AD-2074REP
PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 39


the compound exists as diastereomers
$8 f$


he compound exists as diastereomers
$8 f$



he compound exists as diastereomers
$8 f$



1.2248
1.2703
the compound exists as diastereomers
$8 f$


## SpinWorks 4: AD-2074REP

C13CPD256 CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 39


the compound exists as diastereomers


மம	ャワம•
の®	の日ang
60	
wi	$\cdots \square^{\circ}{ }^{\circ}$
$\checkmark \square$	$\infty \infty$
$\pm \checkmark$	


the compound exists as diastereomers


	｜				6	
PPM	170	166	162	158	62	154


 ONGNNNNNNNNN - बのゥ

the compound exists as diastereomers


	1	\|	\|	1	1	1
PPM	132	128	124	120	116	112


जुजुu	जu	$\stackrel{\rightharpoonup}{0}$
- inÑ	${ }^{\circ}{ }^{\circ}$	N
¢00\%	-9	-
$1$		


the compound exists as diastereomers


the compound exists as diastereomers


							65
PPM	26	24	22	20	18	16	



the compound exists as diastereomers

					$\begin{aligned} & \text { ij } \\ & \text { N } \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & \infty \\ & \infty \\ & \infty \end{aligned}$			366
									-6-
PPM	12	8				4			



the compound exists as diastereomers

				8.10	8.00	367	7.90
PPM	8.40	8.30	8.20	8.10	8.00	367	7.90

## SpinWorks 4: AD 2083

PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 42

7.5185

the compound exists as diastereomers


のののののののの
மण0．00்○
vランのかの

ᄂ
lll

the compound exists as diastereomers


3.9301
3.7983

the compound exists as diastereomers


the compound exists as diastereomers

$\qquad$




the compound exists as diastereomers


## SpinWorks 4: AD 2083

C13CPD256 CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 42


the compound exists as diastereomers


	1	1	\|	1	1	1	
PPM	170	168	166	164	162	160	37158



[^2]
the compound exists as diastereomers




the compound exists as diastereomers


|  | 1 | 1 | 1 | 375 | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PPM | 50 | 40 | 30 | 20 | 10 |





PROTON CDCI3／opt／topspin3．5pl2／nmrdata nmrsu 30
NNNNiッ
$\mapsto \infty \omega ゅ$ ルルーローのNNンロト
• | | | | | 11। \| \|





 ம○○○○ $0 \infty \infty$ V心DNO





PROTON CDCI3 /opt/topspin3.5pl2/nmrdata nmrsu 30



	$\begin{aligned} & \stackrel{N}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \omega \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { e } \\ & i \\ & + \end{aligned}$	
		,	20	16	12	379
PPM		2.4	2.0	1.6	1.2	379




$\stackrel{\sim}{\sim}$ .593

				1		
PPM	160	120	80	40	0	0






										381	
PPM	148	144	140	136	132	128	124	120	116		112




$\qquad$

		$\begin{aligned} & \text { N. } \\ & \text { op } \\ & \text { مou } \end{aligned}$		$\stackrel{\leftarrow}{\circ}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\sim}{U}}$	$\begin{aligned} & \stackrel{p}{\infty} \\ & \dot{\circ} \\ & \circ \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	
		1							
PPM	12	8				4		0	382








ののの 600 $\omega \omega \stackrel{ }{\omega}$ かべ ｜l







	1	1	\|	\|	\|	1	1	1	T
PPM	4.0	3.8	3.6	3.4	3.2	3.0	2.8	2.6	2.4



ソv\％	जuct	wwn
¢oñ	मもv	－1＾
，	•	






	1	1	1	1	1	1	120
PPM	170	160	150	140	130	387	





		1					1	
PPM	54	50	46	42	38	34	30	238

The absorption spectra and $\lambda_{\text {max }}$ of compounds $4 \mathbf{a}-\mathrm{d}$ (concentration $=0.02 \mathrm{~g} / 100 \mathrm{~mL}$ in $\mathrm{CHCl}_{3}$ )
$\lambda_{\text {max (absorption) }}$ (the absorption band appearing at the longest wavelength) of compounds



4a: $\lambda_{\text {max }}=347 \mathrm{~nm}$

$4 \mathrm{c}: \lambda_{\text {max }}=347 \mathrm{~nm}$


$$
4 b: \lambda_{\max }=347 \mathrm{~nm}
$$



The absorption spectra and $\lambda_{\text {max }}$ of compounds 6a-j
(concentration $=0.02 \mathrm{~g} / 100$ mL in $\mathrm{CHCl}_{3}$ )
$\lambda_{\text {max (absorption) }}$ (the absorption band appearing at the longest wavelength) of compounds


$6 \mathrm{~g}: \lambda_{\text {max }}=351 \mathrm{~nm}$


6a: $\lambda_{\text {max }}=351 \mathrm{~nm}$

$6 \mathrm{~d}: \lambda_{\max }=350 \mathrm{~nm}$

$6 \mathrm{~h}: \lambda_{\text {max }}=351 \mathrm{~nm}$

$6 \mathrm{~b}: \lambda_{\text {max }}=350 \mathrm{~nm}$

$6 \mathrm{e}: \lambda_{\text {max }}=351 \mathrm{~nm}$

$6 i: \lambda_{\text {max }}=350 \mathrm{~nm}$



6c: $\lambda_{\text {max }}=351 \mathrm{~nm}$

$6 \mathrm{f}: \lambda_{\text {max }}=351 \mathrm{~nm}$


$6 \mathrm{j}: \lambda_{\text {max }}=350 \mathrm{~nm}$

The absorption spectra and $\lambda_{\text {max }}$ of compounds 6 k -t
(concentration $=0.02 \mathrm{~g} / 100$ mL in $\mathrm{CHCl}_{3}$ )
$\lambda_{\text {max (absorption) }}$ (the absorption band appearing at the longest wavelength) of compounds

$6 \mathrm{k}: \lambda_{\text {max }}=351 \mathrm{~nm}$

$61: \lambda_{\text {max }}=351 \mathrm{~nm}$

$6 \mathrm{~m}: \lambda_{\text {max }}=351 \mathrm{~nm}$

$6 \mathrm{n}: \lambda_{\text {max }}=351 \mathrm{~nm}$

$60: \lambda_{\text {max }}=351 \mathrm{~nm}$

$6 \mathrm{p}: \lambda_{\text {max }}=351 \mathrm{~nm}$

$6 q: \lambda_{\text {max }}=353 \mathrm{~nm}$

$6 \mathrm{r}: \lambda_{\text {max }}=351 \mathrm{~nm}$


6s: $\lambda_{\text {max }}=351 \mathrm{~nm}$

$6 t: \lambda_{\text {max }}=350 \mathrm{~nm}$

The absorption spectra and
$\lambda_{\text {max }}$ of compounds $6 \mathrm{u}-\mathrm{z}, 6 \mathrm{za}, 6 \mathrm{zb}, 6 \mathrm{zc}$
(concentration $=0.02 \mathrm{~g} / 100$ mL in $\mathrm{CHCl}_{3}$ )
$\lambda_{\text {max (absorption) }}$ (the absorption band appearing at the longest wavelength) of compounds


$6 \mathrm{u}: \lambda_{\text {max }}=351 \mathrm{~nm}$

$6 \mathrm{x}: \lambda_{\text {max }}=351 \mathrm{~nm}$


6za: $\lambda_{\text {max }}=351 \mathrm{~nm}$


6zb $\quad \lambda_{\text {max }}=351 \mathrm{~nm}$


6zc : $\lambda_{\text {max }}=350 \mathrm{~nm}$

The absorption spectra and $\lambda_{\text {max }}$ of compounds $6 \mathbf{z e}, 6 \mathrm{zf}, \mathbf{6 z g}$

## (concentration $=0.02 \mathrm{~g} / 100$

 mL in $\mathrm{CHCl}_{3}$ )$\lambda_{\text {max (absorption) }}$ (the absorption band appearing at the longest wavelength) of compounds



6ze : $\lambda_{\text {max }}=351 \mathrm{~nm}$



6zd : $\lambda_{\text {max }}=349 \mathrm{~nm}$

The absorption spectra and $\lambda_{\text {max }}$ of compounds 7a-h
(concentration $=0.02 \mathrm{~g} / 100$ mL in $\mathrm{CHCl}_{3}$ )
$\lambda_{\max \text { (absorption) }}$ (the absorption band appearing at the longest wavelength) of compounds


$7 \mathrm{a}: \lambda_{\text {max }}=353 \mathrm{~nm}$

$7 \mathrm{~d}: \lambda_{\text {max }}=353 \mathrm{~nm}$

$7 \mathrm{~b}: \lambda_{\text {max }}=350 \mathrm{~nm}$

$7 \mathrm{e}: \lambda_{\text {max }}=350 \mathrm{~nm}$

$7 \mathrm{c}: \lambda_{\text {max }}=349 \mathrm{~nm}$





7h
$\lambda_{\text {max }}=349$ nm 394

The absorption spectra and $\lambda_{\text {max }}$ of compounds 8a-h, 8f2-(D)
(concentration $=0.02 \mathrm{~g} / 100$ mL in $\mathrm{CHCl}_{3}$ )
$\lambda_{\text {max (absorption) }}$ (the absorption
band appearing at the longest



8f: $\lambda_{\text {max }}=350 \mathrm{~nm}$


unds






8a: $\lambda_{\text {max }}=350 \mathrm{~nm}$

$8 \mathrm{~b}: \lambda_{\max }=350 \mathrm{~nm}$


8d : $\lambda_{\text {max }}=350 \mathrm{~nm}$

$\lambda_{\text {max }}=\mathbf{3 5 0} \mathrm{nm}$
$8 g$





8 h
$\min _{2 x}=350 \mathrm{~nm}$

The absorption spectra (using UV-Vis spectroscopy, concentration $=0.02 \mathrm{~g} / 100 \mathrm{~mL}$ in $\mathrm{CHCl}_{3}$ ) were recorded in $\mathrm{CHCl}_{3}$ and $\lambda_{\max \text { (absorption) }}$ (the absorption band appearing at the longest wavelength) of compounds $\mathbf{6 a}, \mathbf{6 j}, \mathbf{6 z}, \mathbf{6 e}, \mathbf{6 y}$

$\lambda_{\max \text { (absorption) }}(\mathrm{nm})=$ Pyrene: 337, 6a: 349, 6j: 349, 6z: 349, 6e: 349, 6y: 350.


Pyrene: $\lambda_{\text {max }}=337 \mathrm{~nm}$


6j: $\lambda_{\text {max }}=349 \mathrm{~nm}$


6e: $\lambda_{\text {max }}=349 \mathrm{~nm}$


6a: $\lambda_{\text {max }}=349 \mathrm{~nm}$

$6 \mathrm{z}: \lambda_{\text {max }}=349 \mathrm{~nm}$


6y: $\lambda_{\text {max }}=349 \mathrm{~nm}$

Preliminary analysis: Emission spectra of compounds $\mathbf{6 a}, \mathbf{6 j}, \mathbf{6 z}$, $\mathbf{6 e}$ and $\mathbf{6 y}$ in $\mathrm{CHCl}_{3}$ (concentration $=3.8 \mu \mathrm{M}$ ) at the excitation wavelength of 350 nm .

$\lambda_{\text {max (emission) }}(\mathrm{nm})$ at the
excitation wavelength of $350 \mathrm{~nm}=$
Pyrene: 393, 6a: 395, 6j: 390, 6z: 396, 6e:
404, 6y: 392.


Pyrene


6j

$6 e$


$6 z$

$6 y$

The absorption spectra (using UV-Vis spectroscopy, concentration $=0.02 \mathrm{~g} / 100 \mathrm{~mL}$ in THF) were recorded in THF and $\lambda_{\max (\text { absorption) }}$ (the absorption band appearing at the longest wavelength) of compounds $\mathbf{6 a}, \mathbf{6 j}, \mathbf{6 z}, \mathbf{6 e}, \mathbf{6 y}$

$6 z$


6a


6


6j

$6 y$
$\lambda_{\max (\text { absorption })}(\mathrm{nm})=$ Pyrene: 336, 6a: 349,
6j: 349, 6z: 350, 6e: 349, 6y: 349.

Preliminary analysis: Emission spectra of compounds $\mathbf{6 a}, \mathbf{6 j}, \mathbf{6 z}$, $\mathbf{6 e}$ and $6 \mathbf{y}$ in THF (concentration $=3.8 \mu \mathrm{M}$ ) at the excitation wavelength of 350 nm .

$\lambda_{\text {max (emission) }}(\mathrm{nm})$ at the
excitation wavelength of $350 \mathrm{~nm}=$
Pyrene: 392, 6a: 395, 6j: 391, 6z: 396, 6e:
405, 6y: 392.

The absorption spectra (using UV-Vis spectroscopy, concentration $=0.01 \mathrm{~g} / 100 \mathrm{~mL}$ in $\mathrm{CHCl}_{3}$ ) were recorded in $\mathrm{CHCl}_{3}$ and $\lambda_{\text {max (absorption) }}$ (the absorption band appearing at the longest wavelength) of compounds $\mathbf{7 b}, \mathbf{7 c}, \mathbf{7 d}, \mathbf{7 e}, \mathbf{7 f}, \mathbf{7 g}, \mathbf{7 h}, \mathbf{8 a}, \mathbf{8 b}, \mathbf{8 c}, \mathbf{8 e}, \mathbf{8 f}, \mathbf{8 g}, \mathbf{8 h}$.
For all the compounds $\lambda_{\text {max }}=350 \mathrm{~nm}$.







The absorption spectra (using UV-Vis spectroscopy, concentration $=0.01 \mathrm{~g} / 100 \mathrm{~mL}$ in $\mathrm{CHCl}_{3}$ ) were recorded in $\mathrm{CHCl}_{3}$ and $\lambda_{\text {max (absorption) }}$ (the absorption band appearing at the longest wavelength) of compounds $\mathbf{6 z g}, \mathbf{6 z h}, \mathbf{6 z i}, \mathbf{6 z j}, \mathbf{6 z k}, \mathbf{6 z l}$.
For all the compounds $\lambda_{\max }=350 \mathrm{~nm}$.



6zg: $\mathrm{R}=\mathrm{OMe}$


6zj: $\mathrm{R}=\mathrm{OMe}$


6zh: $\mathrm{R}=\mathrm{Me}$ 6zi: $\mathrm{R}=\mathrm{Ac}$


6zk: $\mathrm{R}=\mathrm{Cl}$
6zI: R = OEt

Preliminary analysis: emission spectra of $\mathbf{7 d}, \mathbf{7 e}, \mathbf{7 g}, \mathbf{7 h}, \mathbf{8 a}, \mathbf{8 b}, \mathbf{8 c}, \mathbf{8 e}, \mathbf{8 g}$ in $\mathrm{CHCl}_{3}$ at 350 nm . The concentration of all the sample solutions is $6.06 \mu \mathrm{M}$.


$7 \mathrm{~g}:$

7e: R=Me


$\lambda_{\text {max }}$ (emission) (nm) at the excitation wavelength of $350 \mathrm{~nm}=7 \mathrm{~d}: 392,7 \mathrm{e}: 392,7 \mathrm{~g}: 392$, 7h: 392.

$\lambda_{\text {max }}$ (emission) (nm) at the excitation wavelength of $350 \mathrm{~nm}=\mathbf{8 a}: 396, \mathbf{8 b}: 396, \mathbf{8 c}$ : 390, 8e: 390, 8g: 390.


Optical absorption (1A) and emission (1B) spectra of representative compounds. (1A): The absorption spectra of $\mathbf{6 a}, \mathbf{6 j}, \mathbf{6 z}, \mathbf{6 e} \mathbf{a n d} \mathbf{6 y}$ (concentration $=0.02 \mathrm{~g} / 100$ mL in $\mathrm{CHCl}_{3}$ ) in $\mathrm{CHCl}_{3}, \lambda_{\text {max (absorption) }}(\mathrm{nm})=$ Pyrene: 337, 6a: 349, $6 \mathrm{j}: 349,6 \mathrm{z}: 349,6 \mathrm{e}: 349,6 \mathrm{y}: 350$. (1B): Emission spectra of $6 \mathbf{a}, 6 \mathrm{j}, 6 \mathrm{z}, 6 \mathrm{e}$ and 6 y in $\mathrm{CHCl}_{3}$ (concentration $=3.8 \mu \mathrm{M}$ ) at the excitation wavelength of $350 \mathrm{~nm} \lambda_{\text {max (emission) }}(\mathrm{nm})=$ Pyrene: $393, \mathbf{6 a}: 395,6 \mathrm{j}: 390,6 \mathrm{z}: 396,6 \mathbf{e}: 404,6 \mathrm{y}: 392$.

Figure 1 (in the manuscript)


Optical absorption (1C) and emission (1D) spectra of representative compounds. (1C): The absorption spectra of $\mathbf{6 a}, \mathbf{6 j}, \mathbf{6 z}, \mathbf{6 e}$ and $\mathbf{6 y}$ (concentration $=0.02 \mathrm{~g} / \mathbf{1 0 0}$
 THF) at the excitation wavelength of $350 \mathrm{~nm} \lambda_{\text {max (emission) }}(\mathrm{nm})=$ Pyrene: 392, 6a: 395, 6j: 391, 6z: 396, 6e: 405, 6y: 392

Figure 1 (in the manuscript)


Optical absorption (1G) and emission (1E), (1F) spectra of representative compounds. (1G): The absorption spectra of $\mathbf{6 z g}, \mathbf{6 z h}, \mathbf{6 z i} \mathbf{6} \mathbf{6 z j} \mathbf{6} \mathbf{6 z} \mathbf{~ a n d ~} \mathbf{6 z l}$ (concentration $=0.01 \mathrm{~g} / 100 \mathrm{~mL}$ in $\mathrm{CHCl}_{\mathbf{3}}$ ), $\lambda_{\text {max (absorption) }}(\mathrm{nm})=\mathbf{6 z g}, \mathbf{6 z h}, \mathbf{6 x}, \mathbf{6 z j}, \mathbf{6 z k}$ and $\mathbf{6 z l}=350 \mathrm{~nm}$. (1E) and (1F): Emission spectra of $\mathbf{7 d} \mathbf{d} \mathbf{7 e}, \mathbf{7 g}, \mathbf{7 h}, \mathbf{8 a}, \mathbf{8 b}, \mathbf{8 c}, 8 \mathbf{8}$ and $\mathbf{8 g}$ (concentration $=6.06 \mu \mathrm{M}$ in $\mathrm{CHCl}_{3}$ ) at the $\mathbf{e x c i t a t i o n ~}$ wavelength of $350 \mathrm{~nm} \lambda_{\text {max (emission) }}(\mathrm{nm})=7 \mathrm{dd}: 392,7 \mathrm{e}: 392,7 \mathrm{~g}: 392,7 \mathrm{~h}: 392, \mathbf{8 a}: 396, \mathbf{8 b}: 396, \mathbf{8 c}: 390,8 \mathrm{8e}: 390, \mathbf{8 g}: 390$.

Figure 1 (in the manuscript)

## Fluorescence Quantum yield ( $\Phi$ ) calculation.

The quantum yield of $\mathbf{6 j}, \mathbf{6 y}, \mathbf{6 z}, \mathbf{7 h}, \mathbf{8 a}$ was calculated using anthracene ( $\Phi=0.27$ ) as reference (ref. A. Srivastava, S. Grewal, S. Singh, Rajani and S. Venkataramani, ChemPhotoChem, 2023, 7, e202300029). For the calculation of quantum yield different concentration of each compound were made in ethanol $(\eta=1.36)$ with the absorbance less than 0.1 nm at 355 nm . Fluorescence spectra were recorded for all the solutions at same of excited $\lambda_{\max }$. Then by comparing the integrated photoluminescence intensity and absorbency values of all the sample solutions with the reference anthracene quantum yields were calculated. The quantum yield was calculated following the given equation below.
$\Phi_{\mathrm{X}}=\Phi_{\mathrm{ST}}\left(\mathrm{m}_{\mathrm{X}} / \mathrm{m}_{\mathrm{ST}}\right)\left(\eta_{\mathrm{x}}^{2} / \eta_{\mathrm{sT}}^{2}\right)$
Where $\Phi$ is the quantum yield, $\eta$ is the refractive index of solvent, $m$ is slope, $X$ is the sample and ST is the standard.


Figure S1. Integrated Fluorescence Intensity vs Absorbance plot for the anthracene.


Figure S2. Integrated Fluorescence Intensity vs Absorbance plot for the compound $\mathbf{6 y}$.


Figure S3. Integrated Fluorescence Intensity vs Absorbance plot for the compound $\mathbf{6 a}$.


Figure S4. Integrated Fluorescence Intensity vs Absorbance plot for the compound $\mathbf{6 j}$.


Figure S5. Integrated Fluorescence Intensity vs Absorbance plot for the compound $\mathbf{6 z}$.


Figure S6. Integrated Fluorescence Intensity vs Absorbance plot for the compound 7h.


Figure S7. Integrated Fluorescence Intensity vs Absorbance plot for the compound 8a.

Table S1. Quantum yield of $\mathbf{6 y}, \mathbf{6 a}, \mathbf{6 j}, \mathbf{6 z}, \mathbf{7 h}, 8 \mathrm{Ba}$.

Compound	slope $\left(\mathrm{m}_{\mathrm{x}}\right)$	quantum yield $(\Phi)$
$\mathbf{6 y}$	151762.60046	0.226
$\mathbf{6 a}$	93113.22571	0.139
$\mathbf{6 j}$	46274.97295	0.069
$\mathbf{6 z}$	112328.07115	0.169
$\mathbf{7 h}$	60141.06904	0.089
$\mathbf{8 a}$	2969.97295	0.004

## Experimental

## General

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectra of compounds were recorded (using TMS as an internal standard) in 400 and $\sim 101 \mathrm{MHz}$ spectrometers, respectively. The HRMS analysis data of samples were obtained from the QTOF mass analyzer using the electrospray ionization (ESI) method. FT-IR spectra of samples were recorded as neat or thin films. Column chromatography purification of crude reaction mixtures was carried out on silica gel (100-200 mesh). Reactions were conducted in anhydrous solvents under a nitrogen atm wherever required. Organic layers obtained after the workup were dried using anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Thin layer chromatography (TLC) analyses were performed on silica gel or alumina plates and components were visualized by UV light or under iodine vapor. Isolated yields of all the products are reported and yields were not optimized.

General procedure for the synthesis of compounds 4a-h: A solution of aromatic aldehyde ( 1 equiv), carboxylic acid ( 1 equiv), ammonia solution ( 7 N in methanol, $25-50$ equiv), and isocyanide ( 1 equiv) in TFE ( 2 mL ) was stirred at room temperature for 24 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and brine. The organic extracts were combined, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The crude mixture was subjected to column chromatography to afford the compound 4a-h (Procedure adapted from ref. L. A. Polindara-García et al Eur. J. Org. Chem., 2022, e202101517).

General procedure for the synthesis of compounds $\mathbf{6 a - z}, \mathbf{6 z a}-\mathbf{6 z c}, \mathbf{6 z g}-6 \mathrm{zn}$ : A solution of pyrenylglycinamide 4 ( 1 equiv), aryl iodide (4 equiv), KOAc ( 5 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, and $\mathrm{CuBr}_{2}(10 \mathrm{~mol} \%)$ in dry toluene $(1.5 \mathrm{~mL})$ was heated in a sealed tube vial under conventional heating (oil bath) at $130^{\circ} \mathrm{C}$ for 48 h . The tube was flashed with nitrogen before heating. The reaction mixture was concentrated under reduced pressure. The crude mixture was subjected to column chromatography to afford the corresponding C-H arylated pyrenylglycine.

General procedure for the synthesis of compounds 6ze: A solution of pyreneglycinamide 4a ( 1 equiv), methyl 4-(bromomethyl)benzoate (4 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( $10 \mathrm{~mol} \%$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), NaOTf ( 3 equiv) in tert-amylOH ( 1.5 mL ) was heated in a sealed tube vial under conventional heating (oil bath) at $120^{\circ} \mathrm{C}$ for 48 h . The tube was flashed with nitrogen before heating. The reaction mixture was concentrated under reduced pressure. The crude mixture was subjected to column chromatography to afford the compound $\mathbf{6 z e}$.

General procedure for the synthesis of compounds 6zf: A solution of pyreneglycinamide $4 \mathbf{a}$ ( 1 equiv), 1 -iodobutane (4 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2 equiv), $(\mathrm{BnO})_{2} \mathrm{PO}_{2} \mathrm{H}$ ( 0.3 equiv) in tert-amylOH ( 1.5 mL ) was heated in a sealed tube vial under conventional heating (oil bath) at $120^{\circ} \mathrm{C}$ for 48 h . The tube was flashed with nitrogen before heating. The reaction mixture was concentrated under reduced pressure. The crude mixture was subjected to column chromatography to afford the compounds $\mathbf{6 z f}$.

General procedure for the synthesis of compounds 6zd: A solution of pyreneglycinamide 4 ( 1 equiv), 1 -iodopentane ( 4.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%$ ), KOAc ( 2.0 equiv) in dry $1,4-$ dioxane ( 1.5 mL ) was heated in a sealed tube vial under conventional heating (oil bath) at 130 ${ }^{\circ} \mathrm{C}$ for 48 h . The tube was flashed with nitrogen before heating. The reaction mixture was concentrated under reduced pressure. The crude mixture was subjected to column chromatography to afford the compound $\mathbf{6 z d}$.

General procedure for the synthesis of compounds 7a-h: To an appropriate arylated compound 6 ( 1 equiv) dissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}(1: 1,2-4 \mathrm{~mL}), 12 \mathrm{~N} \mathrm{HCl}(0.33-0.5 \mathrm{~mL})$ was added. The mixture was stirred at rt for 15 min . Zinc dust ( 15 equiv) was then added in three portions and the mixture was stirred at rt for $18-36 \mathrm{~h}$. The mixture was transferred to a separating funnel with $2 \mathrm{~N} \mathrm{NaOH}(20 \mathrm{~mL})$ and extracted with ethyl acetate. The reaction mixture was concentrated under reduced pressure. The crude mixture was subjected to column chromatography to afford compound $\mathbf{7 a} \mathbf{a}$ (the plicolinamide directing group removal procedure was carried out using the standard reported procedure).

General procedure for the synthesis of compounds 8a-h and 8f2-(D): An appropriate amount of $N$-protected amino acid (1 equiv), $N$-(3-dimethylaminopropyl)- $N^{\prime}$ ethylcarbodiimide hydrochloride ( 1.1 equiv), 1-hydroxybenzotriazole hydrate ( 1.1 equiv) in dry DCM ( 5 mL ) was stirred for 1 h at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Then, an appropriate amount of amine compound 7 ( 1 equiv) was added to the above mixture and stirred for 24-25 h at room temperature. The resulting solution was then subjected to aqueous workup and washed with aqueous $\mathrm{NaHCO}_{3}$ solution (two times). The resulting solution mixture was concentrated and purified on silica gel column chromatography (EtOAc/hexane) to give the corresponding pyrene-based peptides.


General procedure for the synthesis of pyrene-4-carbaldehyde (3d): To a solution of 1,2,3,6,7,8-hexahydropyrene (3da, $208 \mathrm{mg}, 1 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added stannic chloride ( $140 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$ ), and the mixture was cooled to $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Then, $1,1^{\prime}$-dichlorodimethyl ether ( $136 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$ ) was added by a syringe, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h . The reaction was monitored by TLC. After completion, the reaction mixture was gradually warmed to rt and then quenched with ice water, acidified by dilute hydrochloric acid, and extracted with DCM. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and then concentrated to get the crude product 3db which is used for the next step without purification. To a solution of 1,2,3,6,7,8-hexahydropyrene-4-carbaldehyde ( $\mathbf{3 d b}$, 1 mmol ) in dry toluene ( 5 mL ) was added DDQ ( 2 equiv) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 20 h . The reaction was monitored by TLC. The reaction mixture was concentrated under reduced pressure. The crude mixture was subjected to column chromatography to afford the compound 3d ( $86 \%$ yield). (The preparation of $\mathbf{3 d}$ was carried out using the reported procedure: (a) P.-F. Li and C.-F. Chen, J. Org. Chem., 2012, 77, 9250. (b) K. W. Bair, C. W. Andrews, R. L. Tuttle, V. C. Knick, M. Cory and D. D. McKee, J. Med. Chem., 1991, 34, 1983).


[^0]:    $S=1.000$
    Npar= 743

[^1]:    
     aly
    $111 \mid 11111111 / 1111111$ \| \| \| | || | \| \| Г 「

[^2]:    N NNNUNNA NNNN の जMulf 8 Miotiogi Midin

