PCy₃ assisted Ag(I) catalyzed click reaction for regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles at room temperature

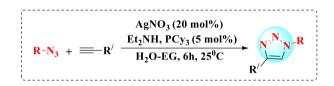
Roktopol Hazarika,^a Sanghamitra Dutta,^a Samprity Sarmah,^a Priyanuj Krishnann Hazarika,^a Kuldeep Singh,^b Arvind Kumar,^b Bipul Sarma,^c Diganta Sarma^a*

^aDepartment of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India

^bAcSIR, Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar-364002, India

^cDepartment of Chemical Sciences, Tezpur University -364002, India

Supporting Information


Table of Contents

- **1** General Information
- 2 General reaction procedure of the triazole synthesis and complex preparation
- **3** Single crystal data
- 4 Comparative study
- 5 Full Characterization data of the compounds
- 6 ¹H & ¹³C NMR spectra of the compounds
- 7 CheckCIF file for the single crystals

General Information:

All reactions were performed under atmospheric conditions using oven dried glassware. All the glassware, magnetic bead and the spatulas are subjected to acid wash to ensure a copper free environment. All reagents and solvents were purchased from common commercial sources and used without further purification unless otherwise stated. All reported yields are isolated yields. Thin layer chromatography (TLC) was carried out using aluminium sheets pre-coated with silica gel $60F_{254}$ (Merck) and was visualized under 254 nm UV light. Column chromatography was performed on silica gel (120–230 mesh). ¹H-NMR spectra were recorded on 500 MHz and ¹³C on 125 MHz spectrometer using TMS as an internal standard. Chemical shifts are reported in parts per million (ppm, δ).

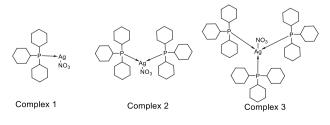
General procedure for the synthesis of 1,4-disubstituted 1,2,3-triazoles:

In a round bottom flask, a mixture of alkyne derivative (1.2 mmol), diethyl amine (1.2 mmol) and azide (1 mmol) was taken and silver nitrate (20 mol%) and tricyclohexylphosphine (5 mol%) were added to it and then allowed to stir at 25°C for the given time period as mentioned in **Figure 1** of the manuscript. Further in one pot protocol, instead of azide, organic bromide (1 mmol) as well as sodium azide (2 mmol) were employed keeping the other reactants intact (**Table 2** in the manuscript). For the $[Ag(PCy_3)_2]NO_3$ catalyzed reaction, the reactants were added in the similar fashion as mentioned earlier but in this reaction, both silver nitrate and tricyclohexylphosphine were replaced by 10 mol% of the synthesized complex (**Table 3** in the manuscript). The progress of the reaction was monitored by TLC. After completion of the reaction, it was extracted with ethyl acetate (3x10 mL), washed with distilled water and brine solution, dried over anhydrous sodium sulfate and

concentrated under reduced pressure. The resulting residue was purified through silica gel column chromatography to get the desired product.

Complex preparation and characterization

From literature, it was found that silver nitrate can bind with one, two and three molecules of the PCy₃ ligand respectively, we have opted for the synthesis of all the three plausible complexes by the following procedure:


Preparation of Ag(PCy₃)₂NO₃: AgNO₃ solution (1 mmol) in 5 ml acetonitrile was slowly added to a solution of tricyclohexylphophine (2 mmol) in DCM and the mixture was stirred in room temperature. The clear solution obtained was filtered to remove any impurity present and the filtrate was kept undisturbed for slow evaporation. The white shining crystal obtained, analysed and subjected in the desired reaction as catalyst.

Similarly, $Ag(PCy_3)NO_3$ and $Ag(PCy_3)_3NO_3$ were prepared by varying the molar ratio of $AgNO_3$ and PCy_3 as 1:1 and 1:3 unaltering the remaining conditions.

Ratio	AgNO ₃	PCy ₃	Physical State	
1:1	0.200 gm	0.330g (1.177 mmol)	0	Grey
	(1.177 mmol)		Crystal	
1:2	0.200 gm	0.660g (2.354 mmol)	White Crystal	
	(1.177 mmol)			
1:3	0.200 gm	0.990g	White	
	(1.177 mmol)	(3.531 mmol)	Crystal	

Table S1: Synthesis of AgNO₃-PCy₃ complexes

The possible structures of the compounds are:

We have develop single crystal for $Ag(PCy_3)_2NO_3$ which clearly suggests the discrete formation of the complex.

Crystal structures of the complex was solved and refined in triclinic space group *P*-1 with one symmetry independent molecule in the lattice. The crystal data parameter is available in Table 1 (MS). The ORTEP with 50% probability ellipsoid is displayed in Figure 1. One of the PCy₃ groups is positional disordered and resolved in eight locations with site occupancies 1, 0.5, 0.5, 1, 1, 0.5, 0.5, 1 in each atom. Experimental section is referred for the details of the Single crystal X-ray data collection methods; CIF and CheckCIF report (File name: BS_RN_Ag_1_0m_a) are attached in this supplementary file.

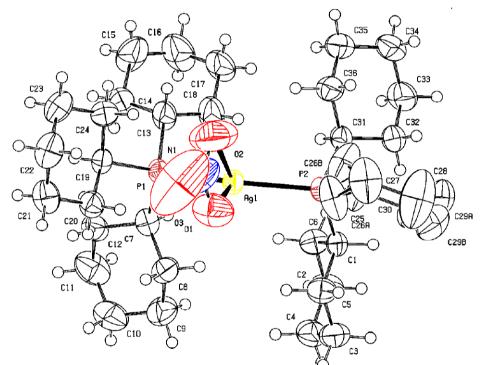


Figure S1: ORTEP of the complex [Ag(PCy₃)₂]NO₃ with 50% probability ellipsoid

Single crystal for product molecule 1-benzyl-4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazole(3c):

Crystal structures of one of the synthesized molecules (3c) was solved and refined in monoclinic space group $P2_1/n$ with one symmetry independent molecule in the lattice. The

crystal data parameter is available in Table 1 (MS). The ORTEP with 50% probability ellipsoid is displayed in Figure 2 (MS). One of the CF₃ groups in the molecule is positional disordered and resolved in five locations with 0.60 site occupancies in each atom; whereas, the other CF₃ group is resolved in six locations with site occupancies viz. 0.75, 0.25, 0.75, 0.25, 0.60 and 0.40. Experimental section is referred for the details of the Single crystal X-ray data collection methods; CIF and CheckCIF (File name: BS_RHP289) report are attached in this supplementary file.

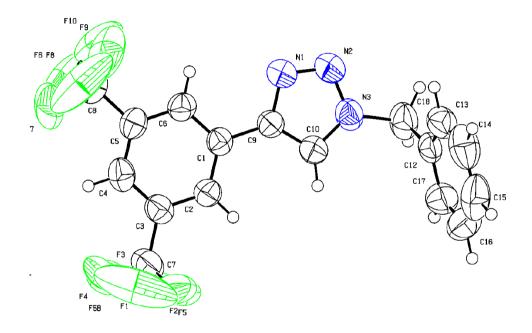
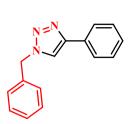


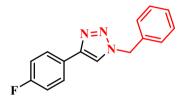
Figure S2: ORTEP of the synthesized molecule $C_{17}H_{11}F_6N_3$ with 50% probability ellipsoid

Table S2: Crystallographic parameters

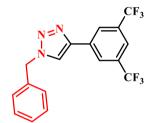

Crystal data	$[Ag(PCy_3)_2]NO_3$	C17H11F6N3
Formula unit	C ₃₆ H ₅₅ AgNO ₃ P ₂	$C_{17}H_{11}F_6N_3$
Formula weight (gmol ⁻¹)	719.62	371.29
Crystal system	Triclinic	Monoclinic
T [K]	100	100
<i>a</i> [Å]	9.262(2)	12.664(6)
<i>b</i> [Å]	9.837(2)	4.767(2)
<i>c</i> [Å]	23.332(5)	27.831(13)
α [°]	94.658(6)	90
β[°]	96.469(6)	103.124(11)

γ [°]	116.368(6)	90
Volume [Å ³]	1871.8(7)	1636.3(13)
Space group	<i>P</i> -1	$P2_{1}/n$
Ζ	2	4
$D_{cal} [g/cm^3]$	1.277	1.507
$R_1, wR2$	0.0511, 0.1284	0.0458, 0.0960
GOOF	1.067	1.003
Instrument	Bruker CCD Apex II	Bruker CCD Apex II
CCDC No	2254372	2254371

Table S3: Comparable study of the present work with some of the existing works


Literature	Catalyst	Catalyst preparation required	Reaction conditions	Yield (%)	Substrate scope
Zhao <i>et. al.</i> $(2016)^1$	Silver–polyamine nanocomposite	Yes	H ₂ O/80 ⁰ C/8h	92	10 examples
McNulty <i>et</i> . $al. (2011)^2$	N,N-diisopropyl(2- diphenylphosphanyl)be nzamide: AgOAc	Yes	Toluene/caprylic acid (20 mol%)/ RT/ 48 h	98	19 examples
Ortega- Arizmendi <i>et.</i> <i>al.</i> (2013) ³	AgCl (5 mol%)	No	H ₂ O/acetone/RT/24 h	64	20 examples
El Ayouchia <i>et. al.</i> (2020) ⁴	AgCl (10 mol%)	No	H ₂ O/RT/24 h	92	9 examples
McNulty <i>et.</i> <i>al.</i> (2012) ⁵	Ag(OOCCH ₃) (2 mol%)/ N,N- diisopropylamide substituent ligand	Yes	Toluene/90 ⁰ C/Caprylic acid/24 h	98	16 examples
Garg <i>et. al.</i> (2019) ⁶	Ag-NHC@SiO ₂	Yes	H ₂ O/quinine/60 ⁰ C/6h	98	22 examples
This work	AgNO ₃ (20 mol%)	No	H ₂ O-EG/diethyl amine/PCy ₃ /RT/6h	95	50 examples

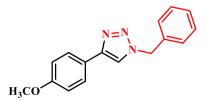
Characterization of the compounds:


1-benzyl-4-phenyl-1H-1,2,3-triazole⁷ (**3a**): White solid, mp 128-130°C, ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.61 (s, 1H), 7.30 (ddd, *J* = 30.0, 11.0, 6.7 Hz, 8H), 5.51 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 147.21 (s), 133.67 (s), 129.50 (s), 128.13 (s), 127.77 (d, J = 2.2 Hz), 127.09 (d, J = 13.2 Hz), 124.69 (s), 118.49 (s), 53.21 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₃N₃ 236.11; Found 236.10

1-benzyl-4-(4-fluorophenyl)-1H-1,2,3-triazole⁸ (**3b**): White solid, mp 109-110°C, ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 3.2 Hz, 2H), 7.58 (s, 1H), 7.37–7.18 (m, 5H), 7.03 (t, *J* = 8.6 Hz, 2H), 5.51 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 162.77 (d, J = 247.2 Hz).134.71 (s), 129.32 (s), 128.98 (s), 128.23 (s), 127.56 (d, J = 8.2 Hz), 126.88 (s), 119.45 (s), 116.01 (s), 115.84 (s), 54.40 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₂FN₃ 254.10; Found 254.13


1-benzyl-4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazole(3c): White solids, mp.: 95°C. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (s, 2H), 7.85 (s, 1H), 7.82 (s, 1H), 7.47 – 7.38 (m, 3H), 7.38 – 7.32 (m, 2H), 5.63 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 145.65 (s), 134.22 (s), 132.79 (s), 132.32 (q, J = 33.5 Hz), 129.45 (s), 129.22 (s), 128.30 (s), 125.70 (s), 124.38 (s), 122.22 (s), 121.65 (q), 120.62 (s), 54.64 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₁F₆N₃ 372.09; Found 372.10

1-benzyl-4-(p-tolyl)-1H-1,2,3-triazole⁹ (3d): Pale yellow solid, mp 150-152 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 8.1 Hz, 2H), 7.63 (s, 1H), 7.37 (dd, J = 8.0, 5.8 Hz, 3H), 7.31 (dd, J = 7.5, 1.6 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 5.56 (s, 2H), 2.36 (s, 3H).

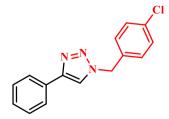
¹³C NMR (125 MHz, CDCl₃) δ 148.39 (s), 138.16 (s), 134.82 (s), 129.61 (s), 129.26 (s), 128.88 (s), 128.19 (s), 127.73 (s), 125.73 (s), 119.33 (s), 54.33 (s), 21.41 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₅N₃ 250.13; Found 250.10

1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole¹⁰ (**3e**): Pale yellow solid, mp 142-144 °C. ¹H NMR (500 MHz,) δ 7.72 (d, J = 8.7 Hz, 2H), 7.57 (s, 1H), 7.43 – 7.34 (m, 3H), 7.34 – 7.27 (m, 2H), 6.93 (d, J = 8.8 Hz, 2H), 5.56 (s, 2H), 3.83 (s, 3H).

¹³C NMR (125 MHz,) δ 159.62 (s), 148.12 (s), 134.79 (s), 129.14 (s), 128.75 (s), 128.06 (s), 127.02 (s), 123.30 (s), 118.68 (s), 114.23 (s), 55.32 (s), 54.21 (s). MS (ESI) m/z: $[M+H]^+$ calcd for C₁₆H₁₅N₃O 266.12; Found 266.11

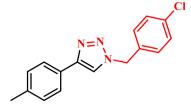
N=N N

1-(4-bromobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole¹¹ (**3f**): Pale yellow solid, m.p 202–204°C: ¹H NMR (500 MHz,) δ 7.68 (d, J = 7.8 Hz, 2H), 7.62 (s, 1H), 7.51 (d, J = 8.1 Hz, 2H), 7.19 (m, 4H), 5.51 (s, 2H), 2.36 (s, 3H).

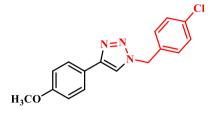

¹³C NMR (125 MHz,) δ 148.51 (s), 138.16 (s), 133.78 (s), 132.33 (s), 129.59 (d, J = 19.0 Hz), 127.55 (s), 125.63 (s), 122.93 (s), 119.08 (s), 53.51 (s), 21.29 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₄BrN₃ 328.04; Found 328.07

N=N N **1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazole**¹⁰ (**3g**): White solid, mp 150-152°C, ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 7.3 Hz, 2H), 7.67 (s, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 7.17 (d, J = 8.3 Hz, 2H), 5.52 (s, 2H).

 13 C NMR (125 MHz, CDCl₃) δ 148.52 (s), 133.83 (s), 132.45 (s), 130.45 (s), 129.79 (s), 128.99 (s), 128.44 (s), 125.83 (s), 123.08 (s), 119.61 (s), 53.65 (s). MS (ESI) m/z: [M+H]^+ calcd for C_{15}H_{12}BrN_3 314.02; Found 314.05

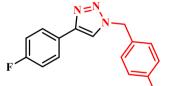

1-(4-bromobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (3h): Pale yellow solid, ¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, *J* = 7.9, 5.6 Hz, 2H), 7.58 (s, 1H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 7.05 (dd, *J* = 12.6, 4.7 Hz, 2H), 5.47 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 163.16 (d, J = 247.3 Hz), 147.97 (s), 135.63 (s), 134.06 (s), 132.80 (s), 130.12 (s), 127.91 (d, J = 8.4 Hz), 125.47 (s), 123.46 (s), 119.64 (s), 116.35 (s), 116.21 (s), 54.01 (s).

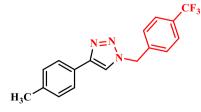

1-(4-chlorobenzyl)-4-phenyl-1H-1,2,3-triazole² (**3i**): White solid, mp 138-140°C, C₁₅H₁₂ClN₃;¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 7.7 Hz, 2H), 7.69 (s, 1H), 7.46 – 7.30 (m, 5H), 7.26 (d, *J* = 8.3 Hz, 2H), 5.55 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 148.79 (s), 135.24 (s), 133.62 (s), 130.78 (s), 129.77 (s), 129.25 (s), 128.69 (s), 126.12 (s), 119.87 (s), 53.87 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₂ClN₃ 270.07; Found 270.05

1-(4-chlorobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole¹² (**3j**): Off-white solid; mp. 140–143°C: ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 7.6 Hz, 2H), 7.55 (s, 1H), 7.28 (d, *J* = 7.6 Hz, 2H), 7.24 – 7.09 (m, 4H), 5.46 (s, 2H), 2.29 (s, 3H).

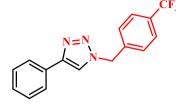

¹³C NMR (125 MHz, CDCl₃) δ 148.47(S), 138.19 (s), 134.84 (s), 133.22 (s), 129.53 (s), 129.38 (d, J = 3.2 Hz), 127.48 (s), 125.64 (s), 119.13 (s), 53.51 (s), 21.30 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₄ClN₃ 284.09; Found 284.10

1-(4-chlorobenzyl)-4-(4-methoxyphenyl)-1H-1,2,3-triazole (3k): White solids: ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 8.7 Hz, 2H), 7.58 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 5.54 (s, 2H), 3.84 (s, 3H). MS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₄ClN₃O 300.08; Found 300.10


1-(4-chlorobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (3l): White solids, mp. 105-107⁰C : ¹H NMR (500 MHz,) δ 7.79 – 7.73 (m, 2H), 7.63 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 7.09 (t, *J* = 8.6 Hz, 2H), 5.53 (s, 2H).

¹³C NMR (125 MHz,) δ 162.73 (d, J = 247.8 Hz), 147.54 (s), 134.92 (s), 133.11 (s), 129.40 (s), 127.47 (d, J = 7.9 Hz), 126.62 (d, J = 2.7 Hz), 119.19 (s), 115.91 (s), 115.77 (s), 53.51 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₁ClFN₃ 288.06; Found 288.05

4-(4-fluorophenyl)-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (**3m**): ¹H NMR (500 MHz, CDCl₃) δ 7.73 (dd, *J* = 8.3, 5.5 Hz, 2H), 7.61 (s, 2H), 7.60 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.05 (t, *J* = 8.6 Hz, 2H), 5.59 (s, 2H)


¹³C NMR (125 MHz, CDCl₃) δ 161.64 (d, J = 247.7 Hz), 146.58 (s), 137.42 (s), 130.01, 127.07 (s), 126.36 (d, J = 8.2 Hz), 125.05 (q), 118.16 (s), 114.81 (s), 114.67 (s), 52.46 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₁F₄N₃ 322.09; Found 322.12

4-(p-tolyl)-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (3n): Off White solids, m.p. 150-152^oC: ¹H NMR (500 MHz, CDCl₃) δ 7.72 - 7.61 (m, 5H), 7.40 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 5.63 (s, 2H), 2.37 (s, 3H).

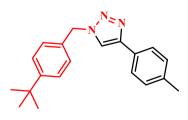
¹³C NMR (125 MHz, CDCl₃) δ 148.67 (s), 138.77 (s), 138.28 (s), 131.07 (q, J = 32.7 Hz), 129.58 (s), 128.20 (s), 127.48 (s), 126.16

(q), 125.68 (s), 119.26 (s), 53.54 (s), 21.31 (s). MS (ESI) m/z: $[M+H]^+$ calcd for $C_{17}H_{14}F_3N_3$ 318.11; Found 318.09

4-phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (30): White solids, m.p: 117-119^oC: ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 7.7 Hz, 2H), 7.64 (s, 1H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 4H), 7.24 (d, *J* = 7.2 Hz, 1H), 5.55 (s, 2H).

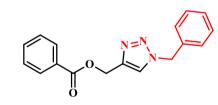
¹³C NMR (125 MHz, CDCl₃) δ 147.77 (s), 137.91 (s), δ 130.29 (q, *J* = 32.7 Hz), 129.47 (s), 128.13 (s), 127.64 (s), 127.44 (s), 125.38 (q), 124.99 (s), 122.12 (s), 118.93 (s), 52.80 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₂F₃N₃ 304.10; Found 304.09

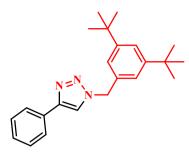
OMe OMe OMe OMe OMe OMe


1-(3,5-bis((3,5-dimethoxybenzyl)oxy)benzyl)-4-phenyl-1H-

1,2,3-triazole (3p): Pale yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 7.9 Hz, 2H), 7.57 (s, 1H), 7.34– 7.24 (m, 3H), 6.50 (d, J = 5.8 Hz, 2H), 6.46 (d, J = 4.4 Hz, 5H), 6.32 (s, 2H), 5.40 (s, 2H), 4.87 (s, 4H), 3.70 (s, 12H).

¹³C NMR (125 MHz, CDCl₃) δ 160.99 (s), 160.35 (s), 138.76 (s), 128.80 (s), 125.72 (s), 107.23 (s), 105.21 (s), 99.96 (s), 70.10 (s), 59.75 (s), 55.37 (s). MS (ESI) m/z: $[M+H]^+$ calcd for C₃₃H₃₃N₃O₆ 568.24; Found 568.22

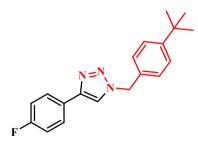

(1-benzyl-1H-1,2,3-triazol-4-yl)methyl benzoate¹³ (3q): White solid, mp 84-86°C: ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 7.9 Hz, 2H), 7.61 (s, 1H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.45 – 7.33 (m, 5H), 7.29 – 7.26 (m, 2H), 5.52 (s, 2H), 5.44 (s, 2H).


¹³C NMR (125 MHz, CDCl₃) δ 166.45 (s), 143.36 (s), 134.41 (s), 133.20 (s), 129.76 (s), 129.18 (s), 128.86 (s), 128.40 (s), 128.17 (s), 123.85 (s), 58.10 (s), 54.26 (s). MS (ESI) m/z: $[M+H]^+$ calcd for C₁₇H₁₅N₃O₂ 294.12; Found 294.11

1-(4-(tert-butyl)benzyl)-4-(p-tolyl)-1H-1,2,3-triazole¹⁴ (3r): White solid, mp 109-110 °C: ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 8.1 Hz, 2H), 7.60 (s, 1H), 7.33-7.39 (m, 4H), 7.18 (d, *J* = 8.0 Hz, 2H), 5.51 (s, 2H), 2.34 (s, 3H), 1.30 (s, 9H).

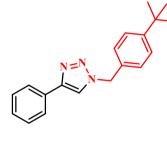
¹³C NMR (125 MHz, CDCl₃) δ 138.03 (s), 131.79 (s), 129.55 (s), 127.98 (s), 127.57 (s), 125.65 (d, J = 8.6 Hz), 119.20 (s), 54.01 (s), 34.73 (s), 31.35 (s), 21.36 (s).

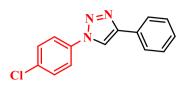
1-(3,5-di-tert-butylbenzyl)-4-phenyl-1H-1,2,3-triazole (3s): white solid: ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6 Hz, 2H), 7.69 (s, 1H), 7.44 (dd, *J* = 16.9, 9.3 Hz, 3H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 1.4 Hz, 2H), 5.58 (s, 2H), 1.34 (s, 18H).

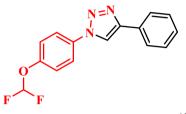

¹³C NMR (125 MHz, CDCl₃) δ 151.92 (s), 128.80 (s), 128.10 (s), 125.73 (s), 122.87 (s), 122.42 (s), 119.42 (s), 54.90 (s), 34.92 (s), 31.41 (s). MS (ESI) m/z: $[M+H]^+$ calcd for C₂₃H₂₉N₃ 348.24; Found 348.22

1-(3,5-di-tert-butylbenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3t): Pale yellow liquid: ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.55 (s, 1H), 7.35 (s, 1H), 7.13 (d, *J* = 7.9 Hz, 2H), 7.08 (s, 2H), 5.47 (s, 2H), 2.29 (s, 3H), 1.23 (s, 18H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 151.79 (s), 137.89 (s), 133.82 (s), 129.46 (s), 125.60 (s), 122.79 (s), 122.39 (s), 121.97 (s), 121.29 (s), 119.09 (s), 54.83 (s), 34.88 (s), 31.44 (d, *J* = 7.0 Hz), 21.30 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₁N₃ 362.25; 362.28

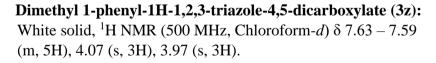

1-(4-(tert-butyl)benzyl)-4-phenyl-1H-1,2,3-triazole (3u):White solid, mp 114-115°C : ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.58 (s, 1H), 7.31 (t, *J* = 7.7 Hz, 4H), 7.23 – 7.16 (m, 3H), 5.46 (s, 2H), 1.24 (s, 9H).


¹³C NMR (125 MHz, CDCl₃) δ 151.91 (s), 148.10 (s), 131.64 (s), 130.60 (s), 128.78 (s), 128.11 (s), 127.89 (s), 127.46 (s), 126.07 (s), 125.60 (d, *J* = 18.4 Hz), 119.48 (s), 53.94 (s), 34.65 (s), 31.27 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₁N₃ 292.17; Found 292.15

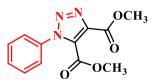

1-(4-(tert-butyl)benzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (**3v**): Pale yellow liquid, ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.65 (m, 2H), 7.53 (s, 1H), 7.33 (d, J = 8.2 Hz, 2H), 7.18 – 7.16 (m, 2H), 7.00 (t, J = 8.7 Hz, 2H), 5.45 (s, 2H), 1.23 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 162.71 (d, J = 247.0 Hz), 152.08 (s), 147.35 (s), 131.63 (s), 127.99 (s), 127.51 (d, J = 7.8 Hz), 126.18 (s), 125.11 (s), 119.27 (s), 115.90 (s), 115.76 (s), 54.06 (s), 34.74 (s), 31.33 (s). MS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₀FN₃ 310.16; Found 310.15

1-(4-chlorophenyl)-4-phenyl-1H-1,2,3-triazole (**3w**): Yellow liquid, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.11 (s, 1H), 7.84 (d, *J* = 7.7 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.3 Hz, 2H), 7.41 (s, 1H), 7.33 (d, *J* = 7.4 Hz, 2H). MS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₀ClN₃ 256.06; Found 256.08


1-(4-(difluoromethoxy)phenyl)-4-phenyl-1H-1,2,3-triazole (**3x):** Pale yellow solid, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 7.84 (d, *J* = 7.5 Hz, 2H), 7.74 (d, *J* = 9.2 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.25 (d, *J* = 8.5 Hz, 2H), 6.52 (t, *J* = 72.8 Hz, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 148.78 (d, J = 283.3 Hz), 133.38, 129.09, 128.00, 127.60, 124.91, 121.07, 120.03, 116.63. MS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₁F₂N₃O 288.09; Found 288.08



1-benzyl-4,5-diphenyl-1H-1,2,3-triazole (**3y**): Brown liquid, ¹H NMR (500 MHz, Chloroform-*d*) δ 7.49 – 7.45 (m, 2H), 7.40 (t, *J* = 7.4 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.17 (dd, *J* = 8.8, 4.7 Hz, 6H), 7.06 (d, *J* = 7.4 Hz, 2H), 6.94 (dd, *J* = 6.7, 2.9 Hz, 2H), 5.32 (s, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 143.44, 134.32, 130.58, 129.06, 128.66, 128.14, 127.67, 127.42, 127.12, 126.46, 125.67, 50.99. MS (ESI) m/z: $[M+H]^+$ calcd for C₂₁H₁₇N₃ 312.14; Found 312.10

¹³C NMR (125 MHz, Chloroform-*d*) δ 160.23, 159.49, 138.74, 135.51, 132.53, 130.62, 129.70, 124.30, 52.82. MS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₁N₃O₄ 262.07; Found 262.05

References

1. Zhao, X. L.; Yang, K. F.; Zhang, Y.; Xu, L. W.; Guo, X. Q. Silver nanoparticles embedded in modified polyallylamine resin as efficient catalysts for alkyne–azide 1,3-dipolar cycloaddition in water. Catal. Commun. 2016, 74, 110–114.

2. McNulty, J.; Keskar, K.; Vemula, R. The first well-defined silver(i)-complex-catalyzed cycloaddition of azides onto terminal alkynes at room temperature. Chem. Eur. J. 2011, 17, 14727–14730.

3. Ortega-Arizmendi, A.I.; Aldeco-Pérez, E.; Cuevas-Yañez, E. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and "Abnormal" Silver N-Heterocyclic Carbene Complex. Sci. World J. 2013, 2013, 186537.

4. El Ayouchia, H. B.; Bahsis, L.; Fichtali, I.; Domingo, L. R.; Rios-Gutierrez, M.; Julve, M.; Stiriba, S. E. Deciphering the Mechanism of Silver Catalysis of "Click" Chemistry in Water by Combining Experimental and MEDT Studies. Catalysts 2020, 10, 956.

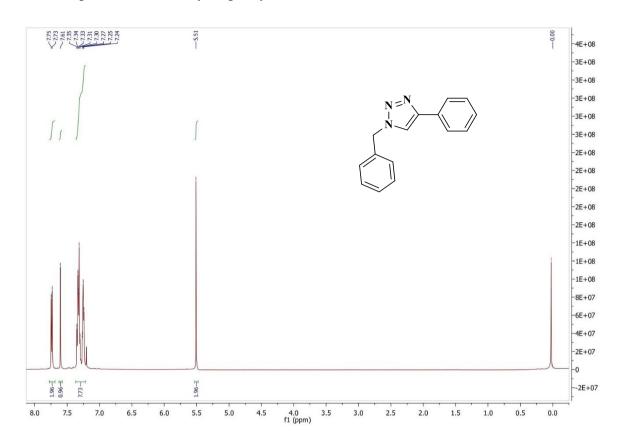
5. McNulty, J.; Keskar, K. Discovery of a Robust and Efficient Homogeneous Silver(I) Catalyst for the Cycloaddition of Azides onto Terminal Alkynes. Eur. J. Org. Chem. 2012, 2012, 5462–5470.

6. Garg, A.; Khupse, N.; Bordoloi, A.; Sarma, D. Ag–NHC anchored on silica: an efficient ultra-low loading catalyst for regioselective 1, 2, 3-triazole synthesis. New J. Chem. 2019, 43, 19331-19337.

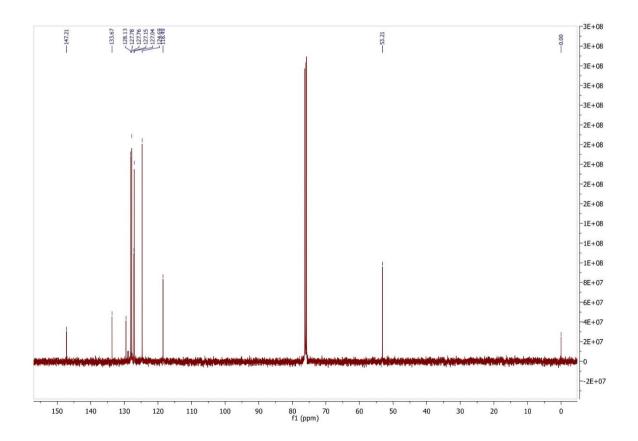
7. Campbell-Verduyn, L.S.; Mirfeizi, L.; Dierckx, R.A.; Elsinga, P.H.; Feringa, B.L. Phosphoramidite accelerated copper(i)-catalyzed [3 + 2] cycloadditions of azides and alkynes. Chem. Commun. 2009, 2139-2141.

8. Huang, L.; Liu, W.; Wu, J.; Fu, Y. Wang, K.; Huo, C.; Du; Z. Nano-copper catalyzed three-component reaction to construct 1,4-substituted 1,2,3-triazoles. Tetrahedron lett. 2014, 55, 2312-2316.

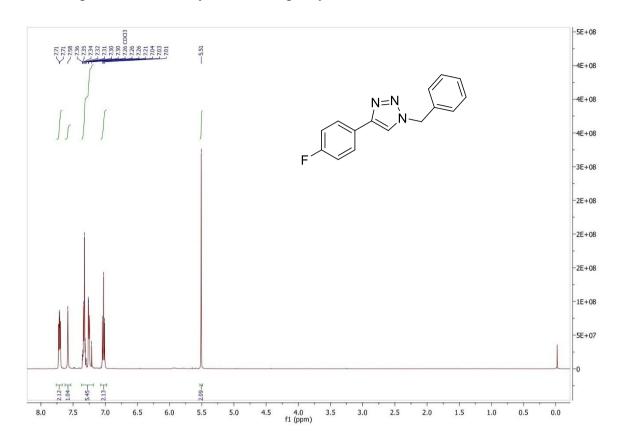
9. Shin, J.A.; Oh, S.J.; Lee, H.Y.; Lim, Y.G. An efficient Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction in aqueous medium with a zwitterionic ligand, betaine. Catal. Sci. Technol. 2017, 7, 2450-2456.

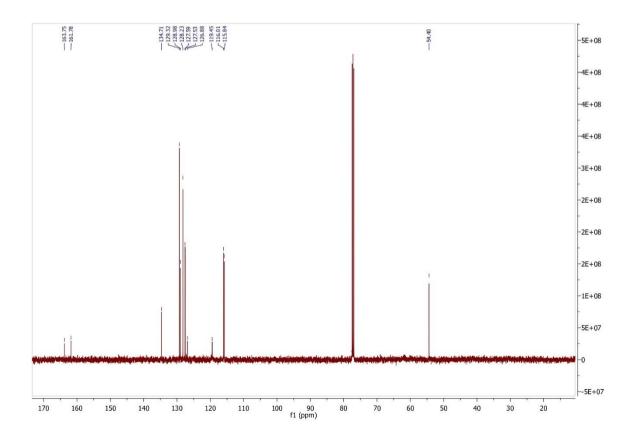

10. Naeimi, H.; Dadashzadeh, S.; Moradian, M. Facile and efficient sonochemical synthesis of 1,4-disubstituted 1,2,3-triazole derivatives catalyzed by CuI under mild conditions. Res. Chem. Intermed. 2015, 5, 2687-2695.

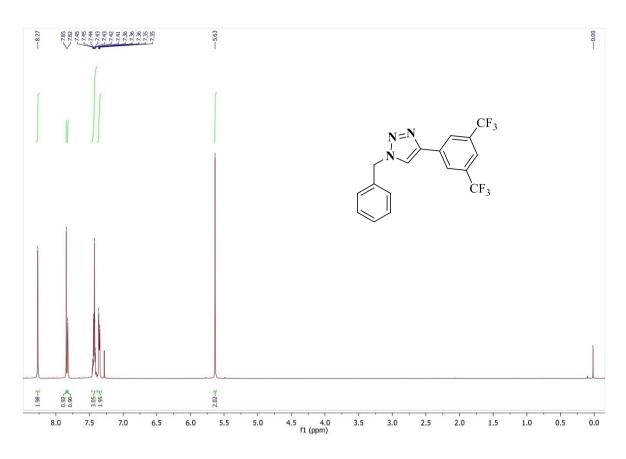
11. Chavan, P. V.; Pandit K. S., Desai, U. V.; Kulkarni, M. A.; Wadgaonkar P.P. Cellulose supported cuprous iodide nanoparticles (Cell-CuI NPs): a new heterogeneous and recyclable catalyst for the one pot synthesis of 1,4-disubstituted – 1,2,3-triazoles in water. RSC Adv., 2014,4, 42137-42146.


12. Lopez-Ruiz, H.; Cerda-Pedro, J.E.D.L.; Rojas-Lima, S.; Perez-Perez, I.; Rodriguez-Sanchez, B.V.; Santillan, R.; Coreno, O. Cuprous oxide on charcoal-catalyzed ligand-free synthesis of 1,4-disubstituted 1,2,3-triazoles via click chemistry. ARKIVOC 2013, (iii), 139-164.

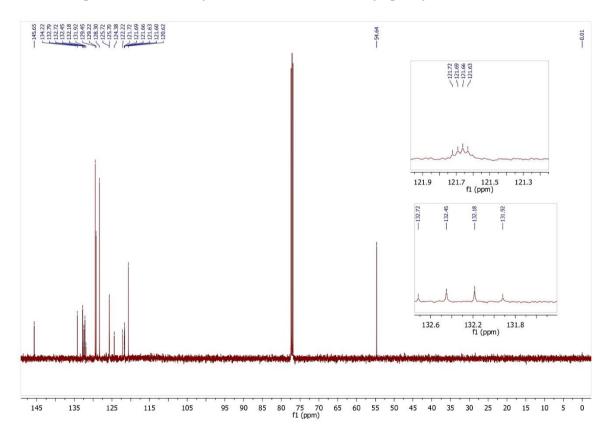
13. Gupta, S.; Singh, A.; Narula, A. K. A Green Methodology for the Synthesis of Some Regioselective 1, 4-Disubstituted 1,2,3-Triazoles via Laccase-Mediated Click Reaction. Chemistryselect, 2022, 7, e202200498.

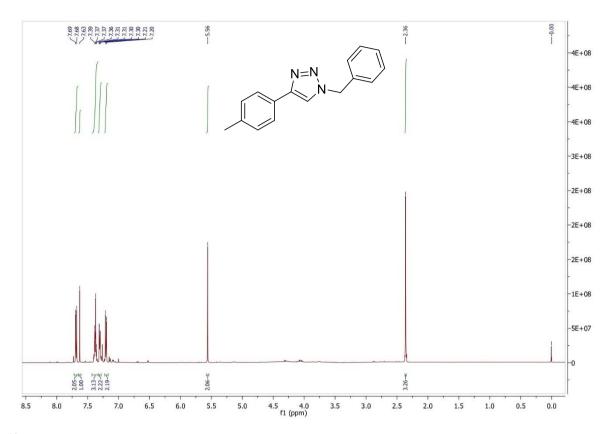

¹H-NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazole (3a)


¹³C-NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazole (3a)

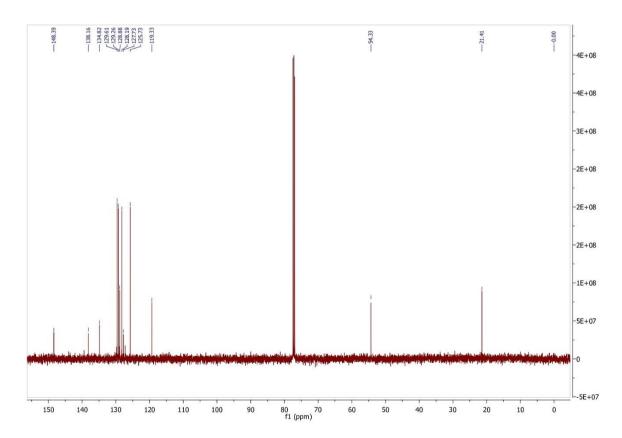


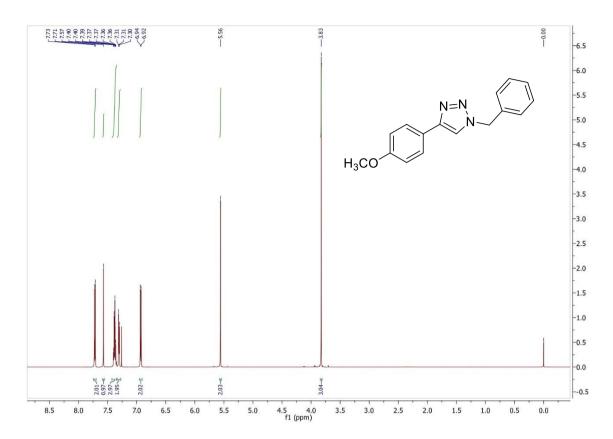
¹H-NMR spectrum of 1-benzyl-4-(4-fluorophenyl)-1H-1,2,3-triazole (3b)

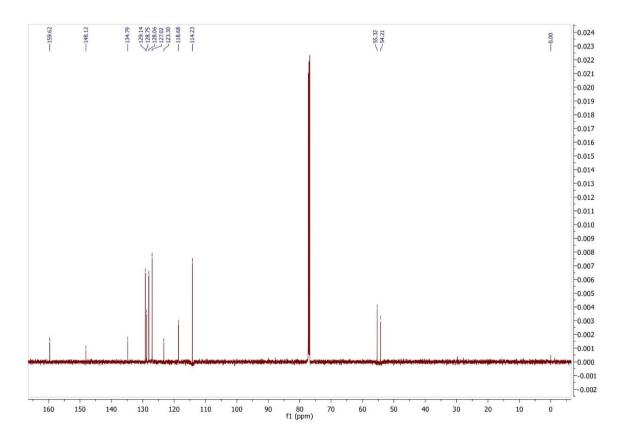

¹³C-NMR spectrum of 1-benzyl-4-(4-fluorophenyl)-1H-1,2,3-triazole (3b)

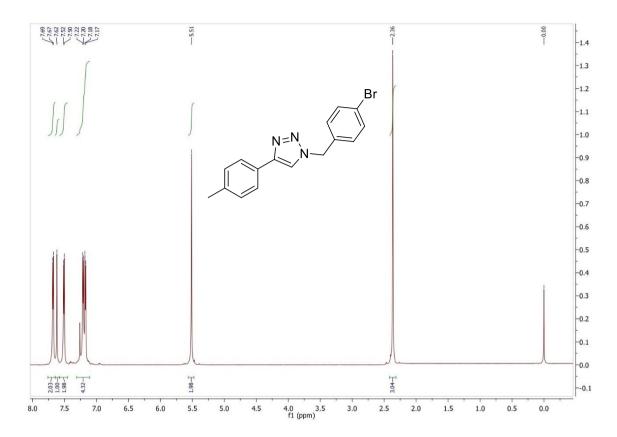


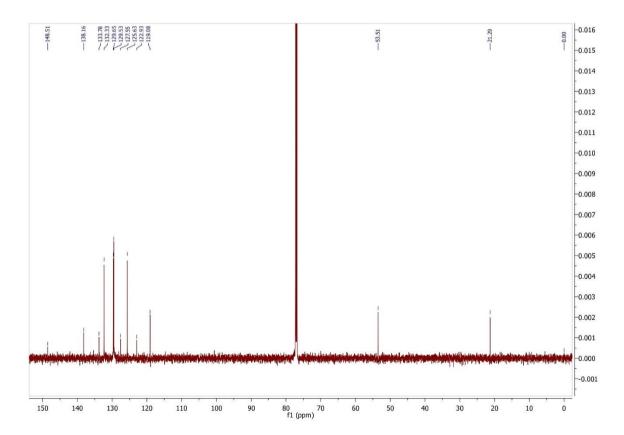
¹H-NMR spectrum of 1-benzyl-4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazole (3c)

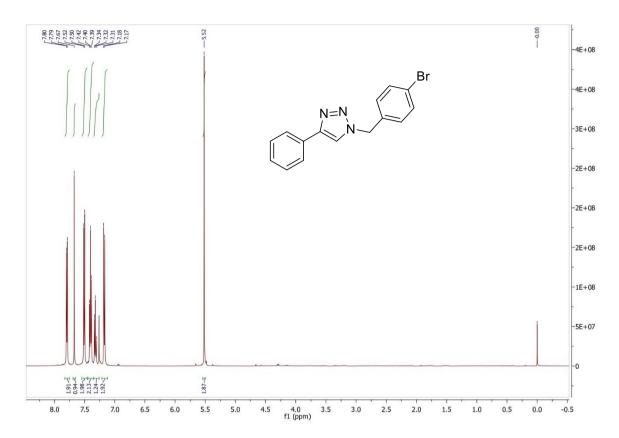

¹³C-NMR spectrum of 1-benzyl-4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazole (3c)

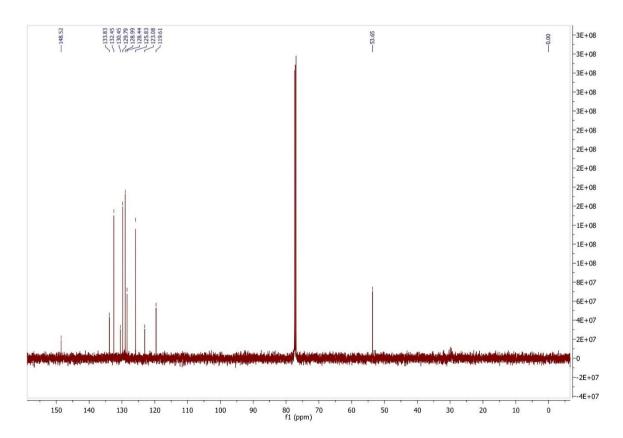

¹H-NMR spectrum of 1-benzyl-4-(p-tolyl)-1H-1,2,3-triazole (3d)

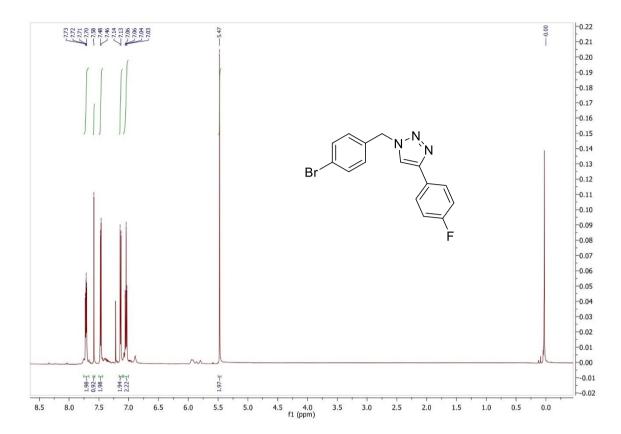

¹³C-NMR spectrum of 1-benzyl-4-(p-tolyl)-1H-1,2,3-triazole (3d)


¹H-NMR spectrum of 1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (3e)

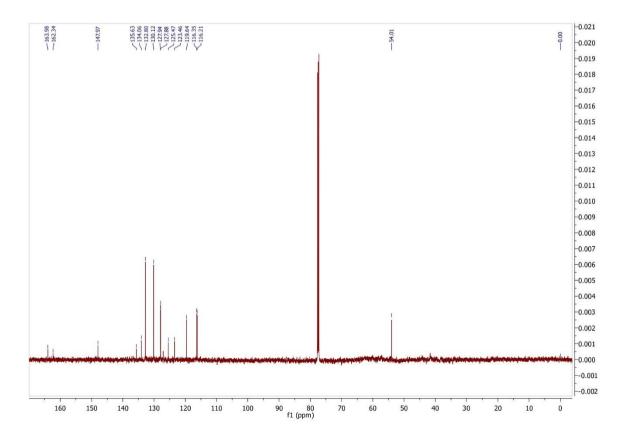

¹³C-NMR spectrum of 1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (3e)

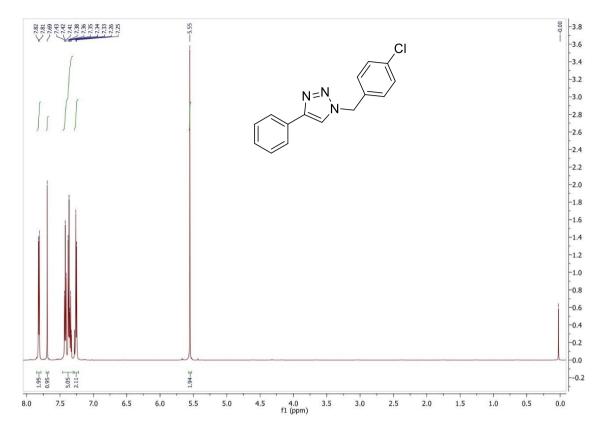

¹H-NMR spectrum of 1-(4-bromobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3f)


¹³C-NMR spectrum of 1-(4-bromobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3f)

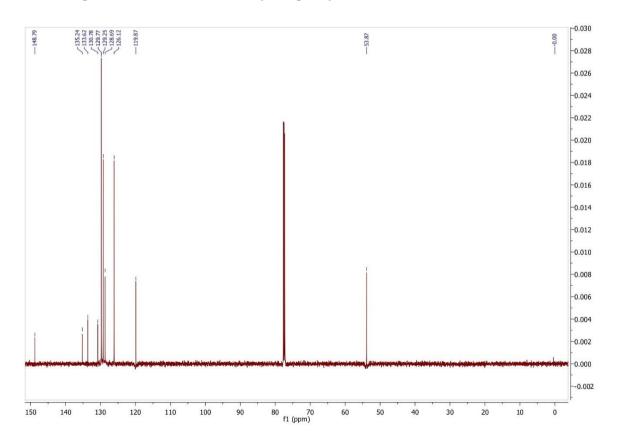


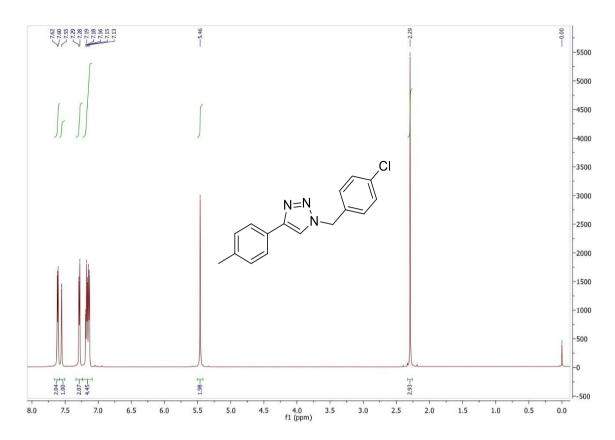
¹H-NMR spectrum of 1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazole (3g)


¹³C-NMR spectrum of 1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazole (3g)

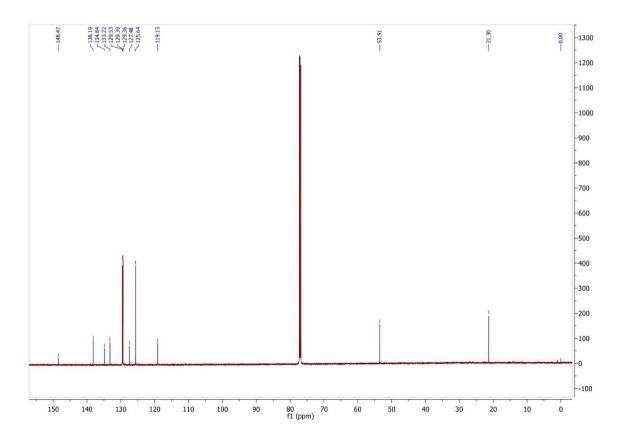


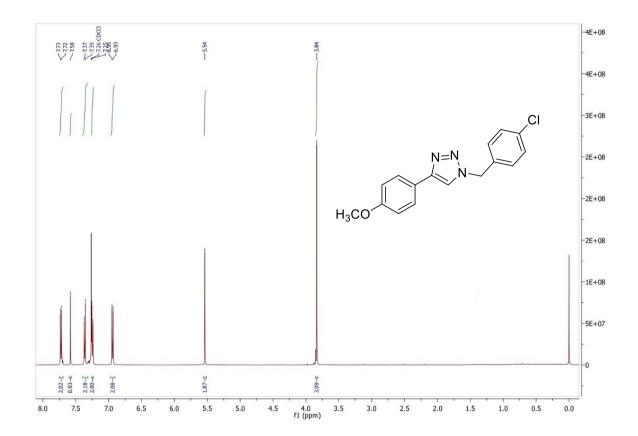
¹H-NMR spectrum of 1-(4-bromobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (3h)


¹³C-NMR spectrum of 1-(4-bromobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (3h)

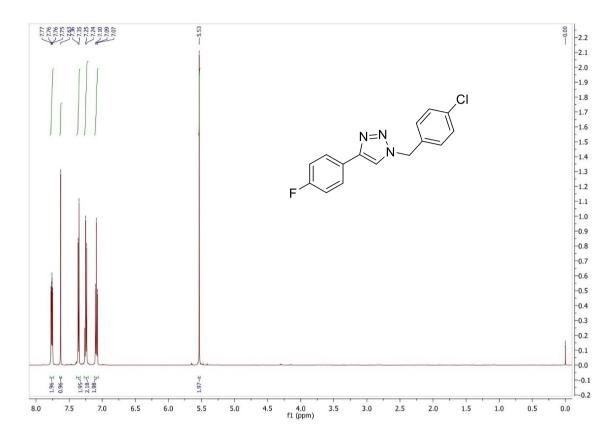


¹H-NMR spectrum of 1-(4-chlorobenzyl)-4-phenyl-1H-1,2,3-triazole (3i)

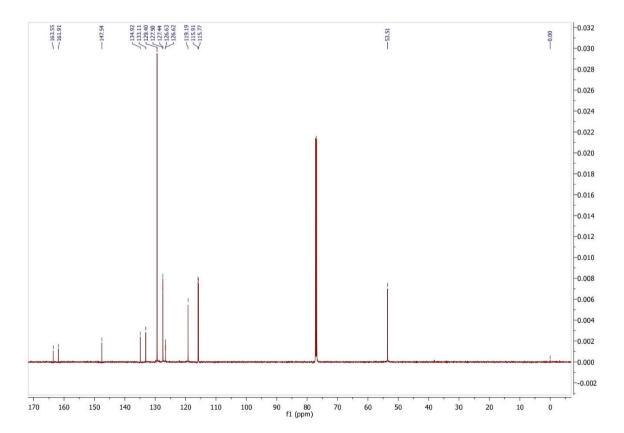

¹³C-NMR spectrum of 1-(4-chlorobenzyl)-4-phenyl-1H-1,2,3-triazole (3i)



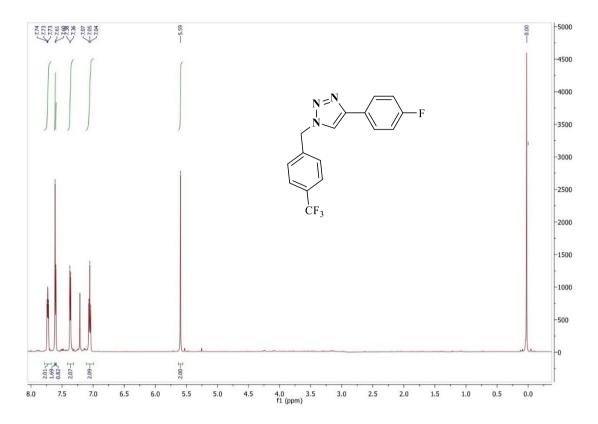
¹H-NMR spectrum of 1-(4-chlorobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3j)



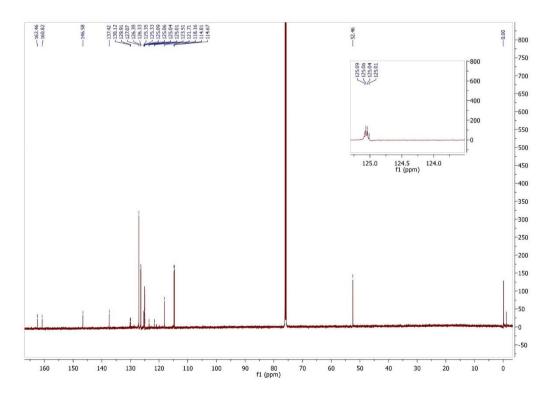
¹³C-NMR spectrum of 1-(4-chlorobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3j)

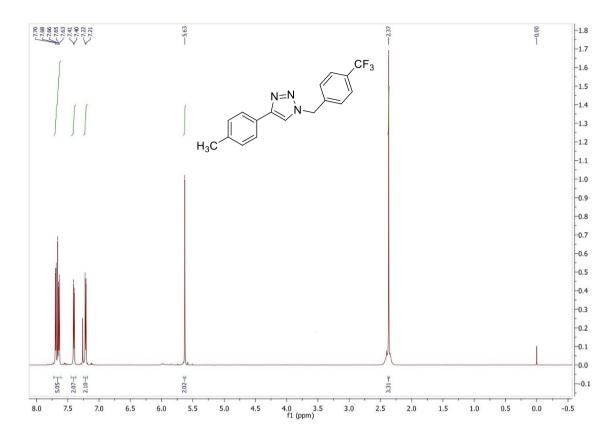


¹H-NMR spectrum of 1-(4-chlorobenzyl)-4-(4-methoxyphenyl)-1H-1,2,3-triazole (3k)

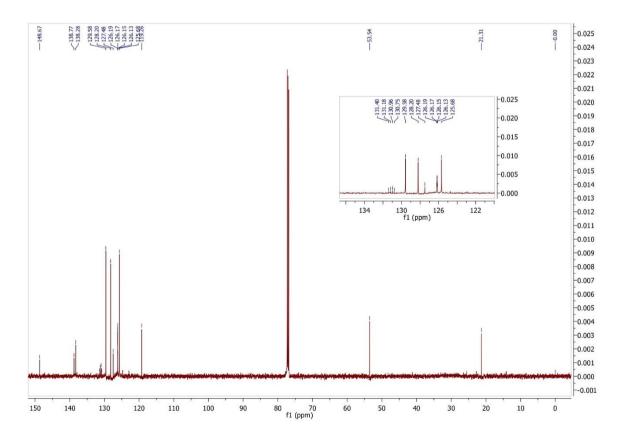


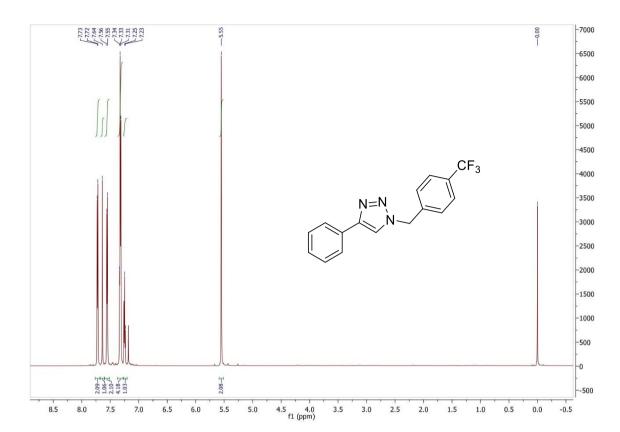
¹H-NMR spectrum of 1-(4-chlorobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (31)


¹³C-NMR spectrum of 1-(4-chlorobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (31)

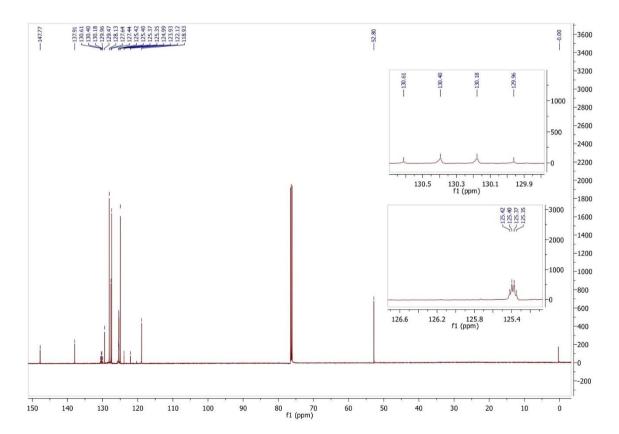


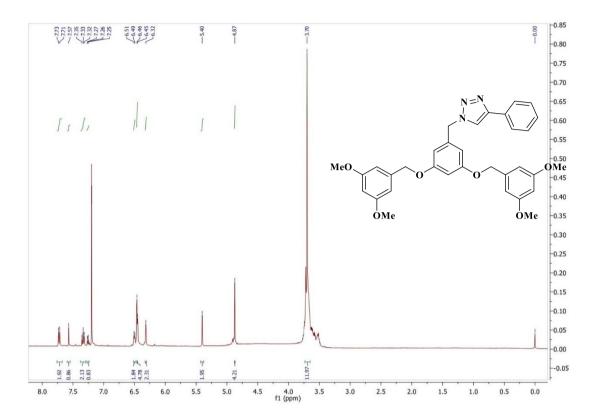
^{*I*}H-NMR spectrum of 4-(4-fluorophenyl)-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (3m)


¹³C-NMR spectrum of 4-(4-fluorophenyl)-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (3m)

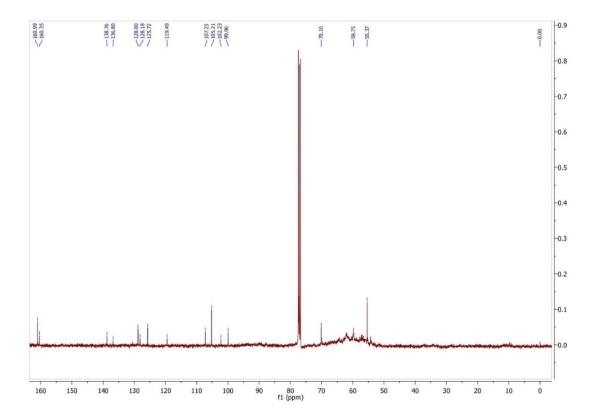


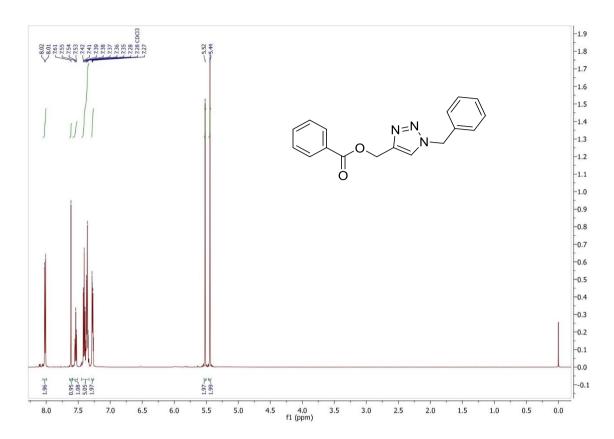
¹H-NMR spectrum of 4-(p-tolyl)-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (3n)

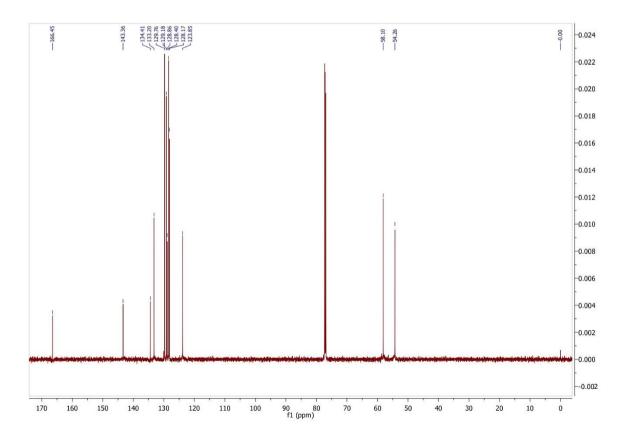

¹³C-NMR spectrum of 4-(p-tolyl)-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (3n)

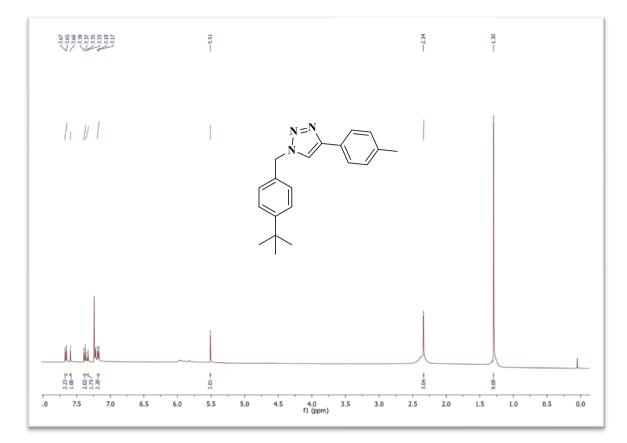


¹H-NMR spectrum of 4-phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (30)

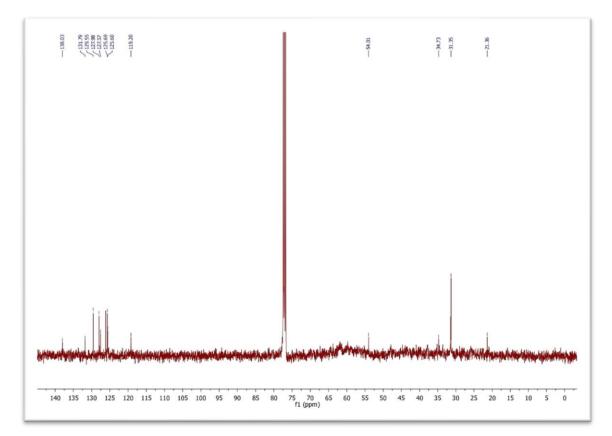

¹³C-NMR spectrum of 4-phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (30)

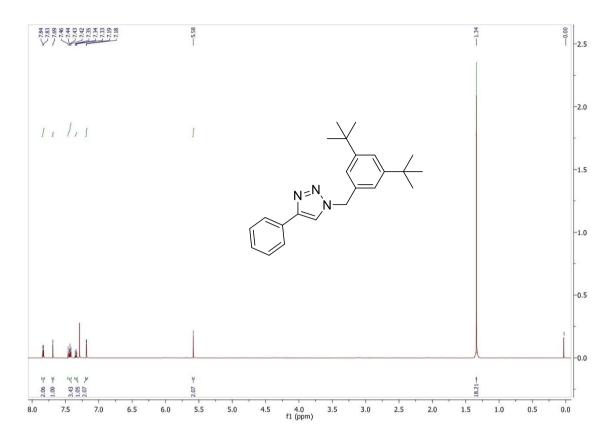

^{*I*}H-NMR spectrum of 1-(3,5-bis((3,5-dimethoxybenzyl)oxy)benzyl)-4-phenyl-1H-1,2,3-triazole (3p)


¹³C-NMR spectrum of 1-(3,5-bis((3,5-dimethoxybenzyl)oxy)benzyl)-4-phenyl-1H-1,2,3-triazole (3p)

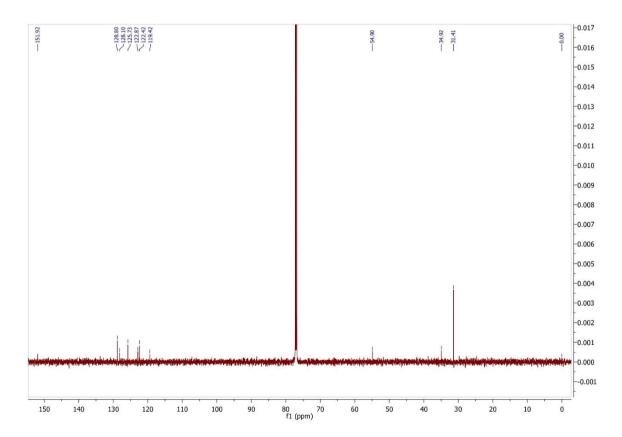


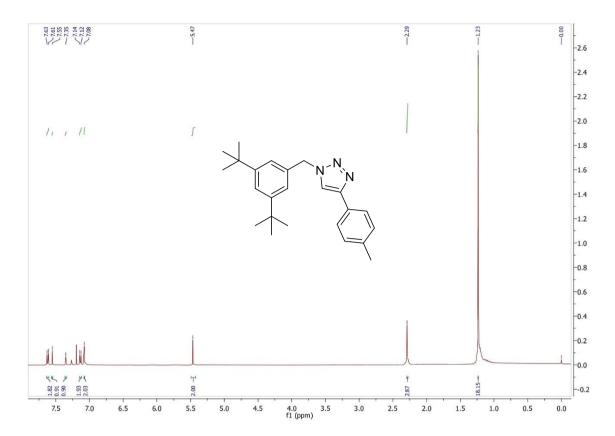
¹H-NMR spectrum of (1-benzyl-1H-1,2,3-triazol-4-yl)methyl benzoate (3q)


¹³C-NMR spectrum of (1-benzyl-1H-1,2,3-triazol-4-yl)methyl benzoate (3q)

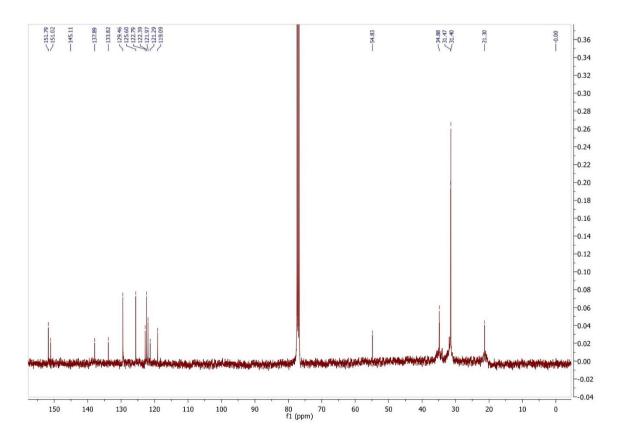


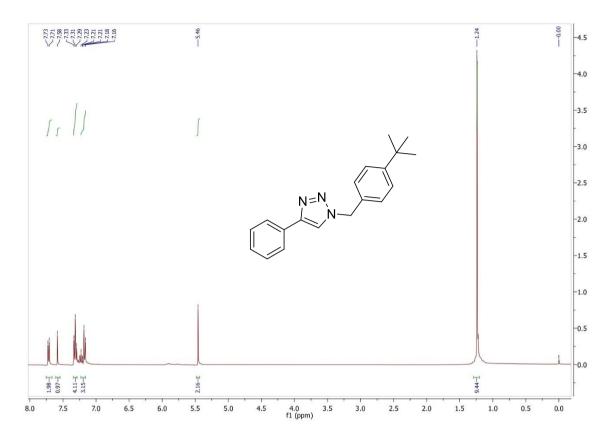
¹H-NMR spectrum of 1-(4-(tert-butyl)benzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3r)


¹³C-NMR spectrum of 1-(4-(tert-butyl)benzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3r)

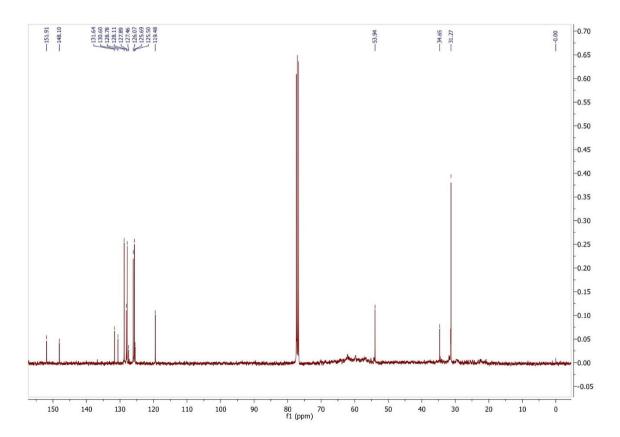


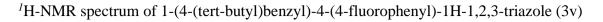
¹H-NMR spectrum of 1-(3,5-di-tert-butylbenzyl)-4-phenyl-1H-1,2,3-triazole (3s)

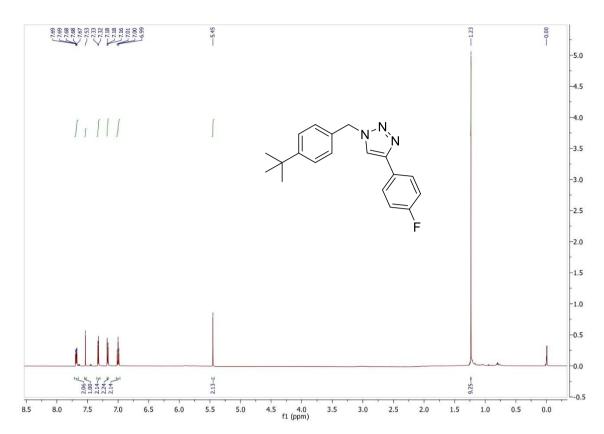

¹³C-NMR spectrum of 1-(3,5-di-tert-butylbenzyl)-4-phenyl-1H-1,2,3-triazole (3s)



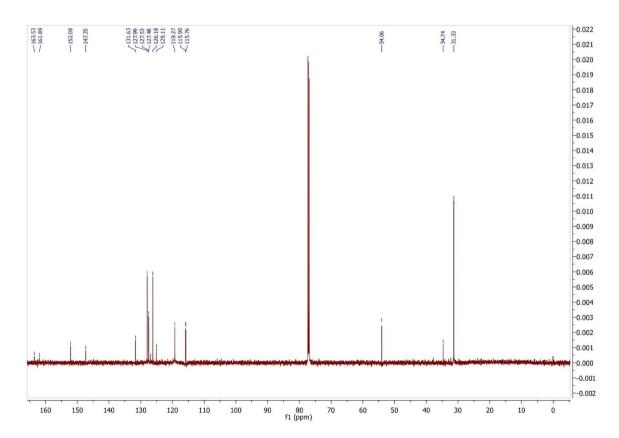
¹H-NMR spectrum of 1-(3,5-di-tert-butylbenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3t)

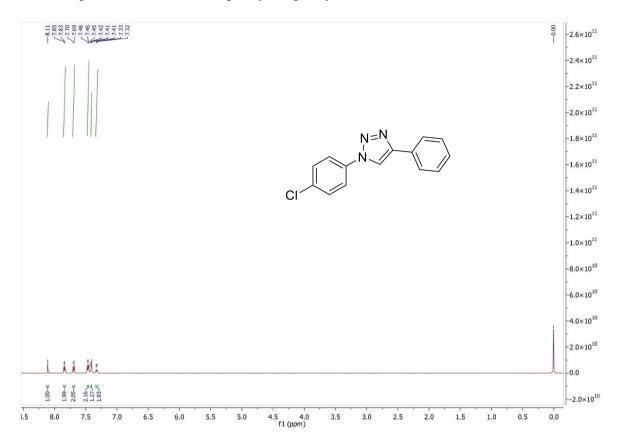

¹³C-NMR spectrum of 1-(3,5-di-tert-butylbenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3t)

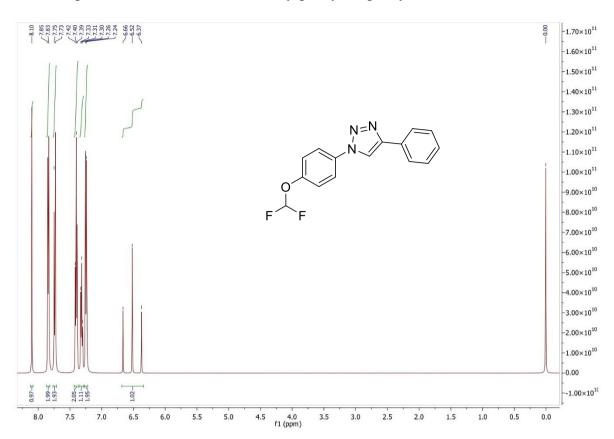




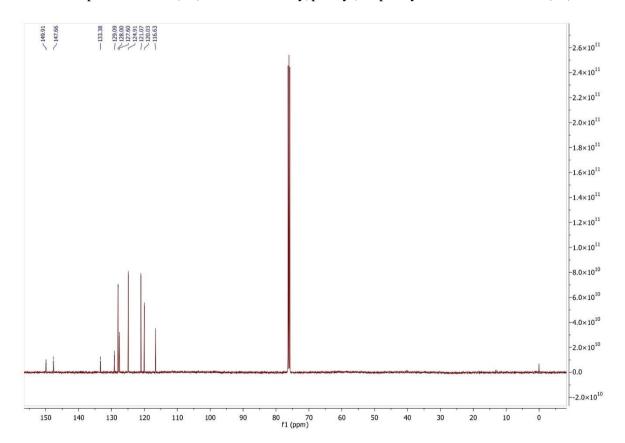
¹H-NMR spectrum of 1-(4-(tert-butyl)benzyl)-4-phenyl-1H-1,2,3-triazole (3u)

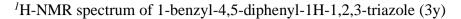

¹³C-NMR spectrum of 1-(4-(tert-butyl)benzyl)-4-phenyl-1H-1,2,3-triazole (3u)

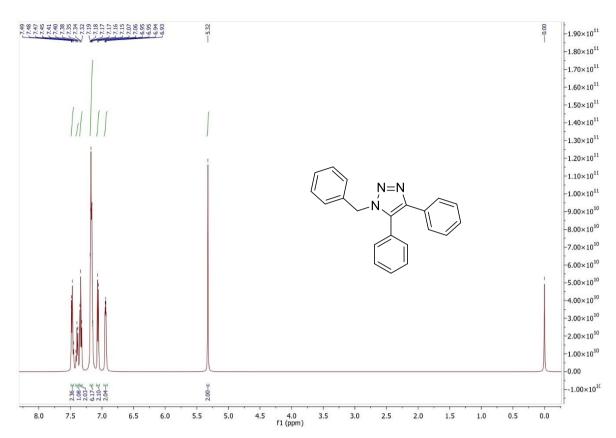




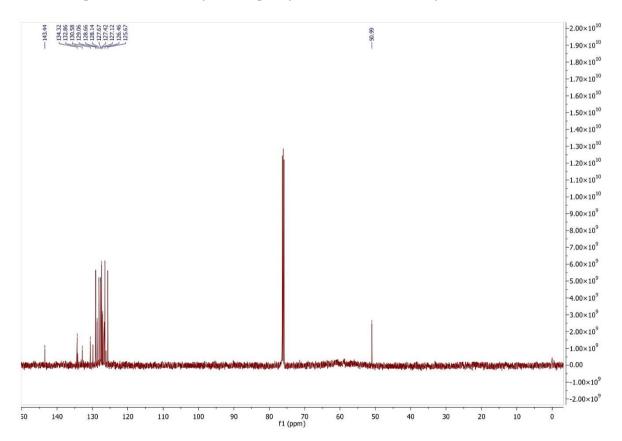
¹³C-NMR spectrum of 1-(4-(tert-butyl)benzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (3v)

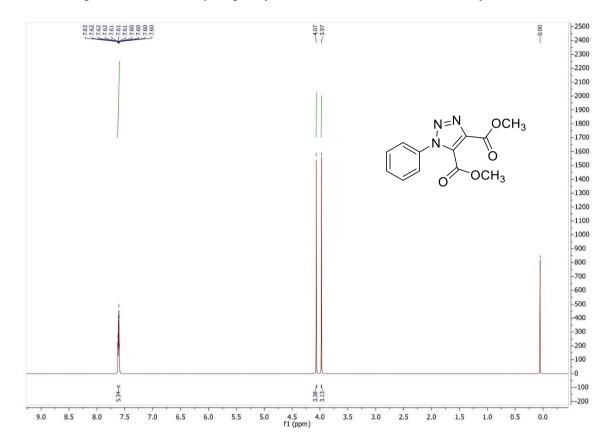


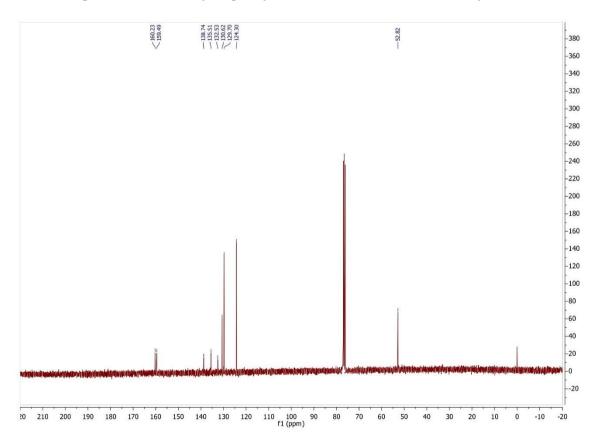

¹H-NMR spectrum of 1-(4-chlorophenyl)-4-phenyl-1H-1,2,3-triazole (3w)

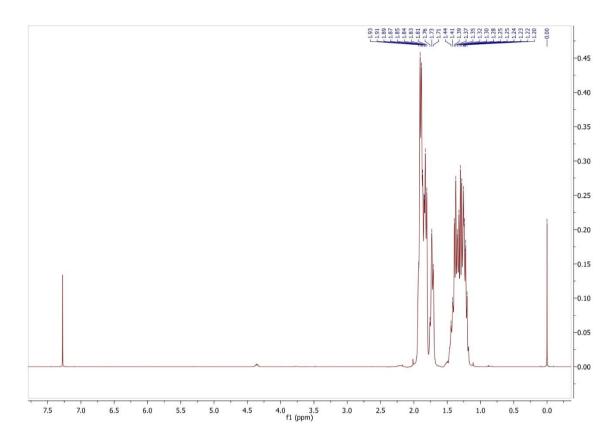


¹H-NMR spectrum of 1-(4-(difluoromethoxy)phenyl)-4-phenyl-1H-1,2,3-triazole (3x)

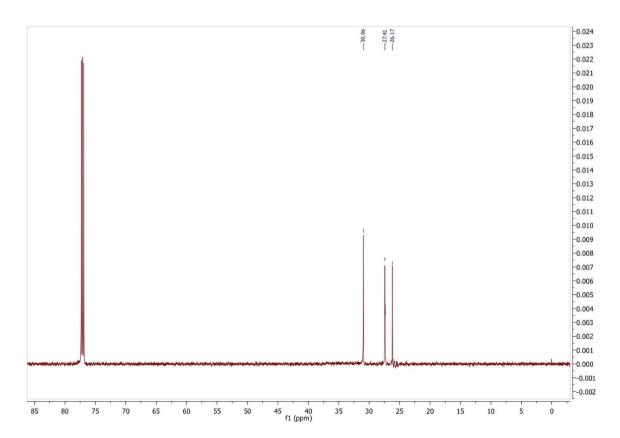

¹³C-NMR spectrum of 1-(4-(difluoromethoxy)phenyl)-4-phenyl-1H-1,2,3-triazole (3x)




¹³C-NMR spectrum of 1-benzyl-4,5-diphenyl-1H-1,2,3-triazole (3y)



¹H-NMR spectrum of dimethyl 1-phenyl-1H-1,2,3-triazole-4,5-dicarboxylate (3z)


¹³C-NMR spectrum of dimethyl 1-phenyl-1H-1,2,3-triazole-4,5-dicarboxylate (3z)

¹H-NMR spectrum of Ag[(PCy₃)₂]NO₃

¹³C-NMR spectrum of Ag[(PCy₃)₂]NO₃

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) BS_RN_Ag_1_0m_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: BS_RN_Ag_1_0m_a

Bond precision:	C-C = 0.0086 A	Waveleng	gth=0.71073			
Cell:	a=9.262(2)					
_	alpha=94.658(6)	beta=96.469(6)	gamma=116.368(6)			
Temperature:	100 K					
	Calculated	Reporte	ed			
Volume	1871.8(7)	1871.8				
Space group	P -1	P −1				
Hall group	-P 1	-P 1				
Moiety formula	C36 H55 Ag N O3 P	2?				
Sum formula	C36 H55 Ag N O3 P	2 C36 H5	5 Ag N O3 P2			
Mr	719.62	719.62				
Dx,g cm-3	1.277	1.277				
Z	2	2				
Mu (mm-1)	0.657	0.657				
F000	758.0	758.0				
F000′	756.85					
h,k,lmax	11,12,28	11,12,2	28			
Nref	7364	7362				
Tmin,Tmax	0.821,0.871	0.820,0	0.870			
Tmin'	0.800					
Correction method= # Reported T Limits: Tmin=0.820 Tmax=0.870 AbsCorr = MULTI-SCAN						
Data completene	ss= 1.000	Theta $(max) = 25$.	.998			
R(reflections)=	0.0511(5751)		wR2(reflections)= 0.1406(7362)			
S = 1.067	Npar= 4	06				

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🎈 Alert level B

PLAT241_ALERT_2_B	High 'MainMol'	Ueq as Compared to	Neighbors of	02	Check
PLAT241_ALERT_2_B	High 'MainMol'	Ueq as Compared to	Neighbors of	C28	Check
PLAT242_ALERT_2_B	Low 'MainMol'	Ueq as Compared to	Neighbors of	N1	Check
PLAT919_ALERT_3_B	Reflection # Lik	ely Affected by the	Beamstop	1	Check

Alert level C

PLAT213_ALERT_2_C Atom 03 has ADP max/min Ratio	. 3.2	prolat
PLAT220_ALERT_2_C NonSolvent Resd 1 C Ueq(max)/Ueq(min) Rang	e 3.5	Ratio
PLAT234_ALERT_4_C Large Hirshfeld Difference O2N1	. 0.16	Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C25C26A	. 0.18	Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C28C29A	. 0.18	Ang.
PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors o	f 01	Check
PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors o	f C16	Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors o	f Ag1	Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors o	f C14	Check
PLAT329_ALERT_4_C Carbon Atom Hybridisation Unclear for	. C26A	Check
PLAT329_ALERT_4_C Carbon Atom Hybridisation Unclear for	. C26B	Check
PLAT329_ALERT_4_C Carbon Atom Hybridisation Unclear for	. C29A	Check
PLAT329_ALERT_4_C Carbon Atom Hybridisation Unclear for	. C29B	Check
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds	. 0.00862	Ang.
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance	. 2.056	Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.60	0 2	Report
PLAT918_ALERT_3_C Reflection(s) with I(obs) much Smaller I(calc)	. 1	Check
PLAT934_ALERT_3_C Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers .	. 1	Check
PLAT975_ALERT_2_C Check Calcd Resid. Dens. 0.90Ang From C30	. 0.42	eA-3
PLAT975_ALERT_2_C Check Calcd Resid. Dens. 0.93Ang From C30	. 0.41	eA-3

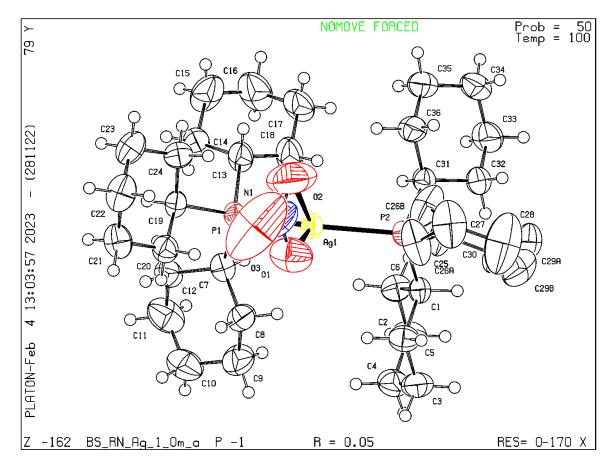
Alert level G

	-							
PLAT066_ALERT_1_G	Predicted a	and Reporte	ed Tmin&?	[max Range	e Identi	cal	?	Check
PLAT154_ALERT_1_G	The s.u.'s	on the Cel	ll Angles	s are Equa	al(No	te)	0.006	Degree
PLAT232_ALERT_2_G	Hirshfeld 7	Test Diff	(M-X) Aq	g1	-P2	•	5.2	s.u.
PLAT232_ALERT_2_G	Hirshfeld ?	Test Diff	(M-X) Aq	y1	-01	•	5.7	s.u.
PLAT300_ALERT_4_G	Atom Site (Occupancy o	of C26A	Con	strained	at	0.5	Check
PLAT300_ALERT_4_G	Atom Site (Occupancy o	of C26B	Con	strained	at	0.5	Check
PLAT300_ALERT_4_G	Atom Site (Occupancy o	of C29A	Con	strained	at	0.5	Check
PLAT300_ALERT_4_G	Atom Site (Occupancy o	of C29B	Con	strained	at	0.5	Check
PLAT301_ALERT_3_G	Main Residu	ue Disorde	er		(Resd 1)	5%	Note
PLAT367_ALERT_2_G	Long? C(s	p?)-C(sp?)	Bond C2	25 –	C30	•	1.51	Ang.
PLAT367_ALERT_2_G	Long? C(s	p?)-C(sp?)	Bond C2	27 –	C28	•	1.51	Ang.
PLAT779_ALERT_4_G	Suspect or	Irrelevant	(Bond)	Angle(s)	in CIF	• • •	28.70	Deg.
C294	A -C30 -C2	9B 1_555	5 1_55	5 1_555		Ŧ	# 64 Che	ck
PLAT779_ALERT_4_G	Suspect or	Irrelevant	(Bond)	Angle(s)	in CIF	• • •	42.50	Deg.
C261	B -C25 -C2	6A 1_555	5 1_55	5 1_555		ŧ	# 71 Che	ck
PLAT779_ALERT_4_G	Suspect or	Irrelevant	: (Bond)	Angle(s)	in CIF	• • •	37.00	Deg.
C261	B -C27 -C2	6A 1_555	5 1_55	5 1_555		i	# 205 Che	ck
PLAT779_ALERT_4_G	Suspect or	Irrelevant	(Bond)	Angle(s)	in CIF	• • •	32.50	Deg.
C291	B -C28 -C2	9A 1_555	5 1_55	5 1_555		ŧ	# 215 Che	ck

PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please Do !
PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged	Please Check
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res	52.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	1 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
4 ALERT level B = A potentially serious problem, consider carefully
20 ALERT level C = Check. Ensure it is not caused by an omission or oversight
19 ALERT level G = General information/check it is not something unexpected
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
17 ALERT type 2 Indicator that the structure model may be wrong or deficient
7 ALERT type 3 Indicator that the structure quality may be low
15 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) BS_RHP289

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: BS_RHP289

Bond precision:	C-C = 0.0034 A	Wavelength=	=0.71073				
Cell:	a=12.664(6) alpha=90	b=4.767(2) beta=103.124(11)	c=27.831(13) gamma=90				
Temperature:	100 K		-				
	Calculated	Reported					
Volume	1636.3(13)	1636.3(13))				
Space group	P 21/n	P 21/n					
Hall group	-P 2yn	-P 2yn					
Moiety formula	C17 H11 F6 N3	?					
Sum formula	C17 H11 F6 N3	C17 H11 F	6 N3				
Mr	371.29	371.29					
Dx,g cm-3	1.507	1.507					
Z	4	4					
Mu (mm-1)	0.139	0.139					
F000	752.0	752.0					
F000′	752.57						
h,k,lmax	15,5,34	15,5,34					
Nref	3216	3165					
Tmin,Tmax	0.972,0.982	0.971,0.93	81				
Tmin'	0.958						
Correction method= # Reported T Limits: Tmin=0.971 Tmax=0.981 AbsCorr = MULTI-SCAN							
Data completenes	Data completeness= 0.984 Theta(max)= 25.999						
R(reflections)=	0.0458(2082)		wR2(reflections) = 0.1100(3165)				
S = 1.003	Npar=	281					

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🎈 Alert level B

PLAT213_ALERT_2_B Atom F5B

has ADP max/min Ratio 4.2 prolat

Alert level C

PLAT213_ALERT_2_C Atom F9	has ADP max/min	n Ratio	3.2	prolat
PLAT234_ALERT_4_C Large Hirshfeld 1	Difference F8	C8	0.16	Ang.
PLAT234_ALERT_4_C Large Hirshfeld H	Difference F5B	C7	0.22	Ang.
PLAT241_ALERT_2_C High 'MainMol'	Ueq as Compared to	Neighbors of	C18	Check
PLAT242_ALERT_2_C Low 'MainMol'	Ueq as Compared to	Neighbors of	C12	Check
PLAT260_ALERT_2_C Large Average Ue	q of Residue Includ	ing Fi	0.110	Check
PLAT331_ALERT_2_C Small Aver Pheny	l C-C Dist C12	C17	1.37	Ang.
PLAT906_ALERT_3_C Large K Value in	the Analysis of Var	riance	3.428	Check
PLAT911_ALERT_3_C Missing FCF Refl	Between Thmin & ST	h/L= 0.600) 52	Report

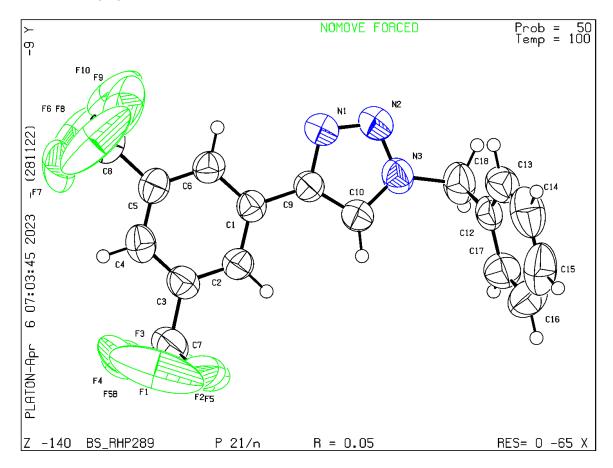
Alert level G

	5		
PLAT019_ALERT_1_G	_diffrn_measured_fraction_thet	$ta_full/*_max < 1.0$	0.998 Report
PLAT066_ALERT_1_G	Predicted and Reported Tmin&Tm	max Range Identical	? Check
PLAT230_ALERT_2_G	Hirshfeld Test Diff for F1	C7 .	6.0 s.u.
PLAT230_ALERT_2_G	Hirshfeld Test Diff for F6	F7 .	10.8 s.u.
PLAT230_ALERT_2_G	Hirshfeld Test Diff for F6	F10 .	7.7 s.u.
PLAT230_ALERT_2_G	Hirshfeld Test Diff for F7	F8 .	25.0 s.u.
PLAT230_ALERT_2_G	Hirshfeld Test Diff for F8	F9 .	8.2 s.u.
PLAT230_ALERT_2_G	Hirshfeld Test Diff for F9	F10 .	40.9 s.u.
PLAT242_ALERT_2_G	Low 'MainMol' Ueq as Company	red to Neighbors of	C7 Check
PLAT242_ALERT_2_G	Low 'MainMol' Ueq as Company	red to Neighbors of	C8 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F1	Constrained at	0.73 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F2	Constrained at	0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F3	Constrained at	0.6 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F6	Constrained at	0.6 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F7	Constrained at	0.6 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F8	Constrained at	0.6 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F9	Constrained at	0.6 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F10	Constrained at	0.6 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F4	Constrained at	0.4 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F5	Constrained at	0.27 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of F5B	Constrained at	0.25 Check
PLAT301_ALERT_3_G	Main Residue Disorder	(Resd 1)	23% Note
PLAT764_ALERT_4_G	Overcomplete CIF Bond List Det	tected (Rep/Expd) .	1.16 Ratio
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) A	Angle(s) in CIF	37.00 Deg.
F1	-C7 -F5 1_555 1_555	1_555 #	40 Check
PLAT883_ALERT_1_G	No Info/Value for _atom_sites_	_solution_primary .	Please Do !
PLAT913_ALERT_3_G	Missing # of Very Strong Refle	ections in FCF	1 Note
PLAT933_ALERT_2_G	Number of HKL-OMIT Records in	Embedded .res File	50 Note
PLAT965_ALERT_2_G	The SHELXL WEIGHT Optimisation	n has not Converged	Please Check
PLAT967_ALERT_5_G	Note: Two-Theta Cutoff Value	in Embedded .res	52.0 Degree
PLAT978_ALERT_2_G	Number C-C Bonds with Positive	e Residual Density.	0 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
9 ALERT level C = Check. Ensure it is not caused by an omission or oversight
30 ALERT level G = General information/check it is not something unexpected
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
17 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
15 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

Datablock BS_RHP289 - ellipsoid plot

