Metal-free $\mathbf{C}\left(\mathbf{s p}^{3}\right)-H$ functionalization ($\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond formation) of 1,2,3,4-tetrahydroacridines using Deep Eutectic solvent as catalyst and reaction medium

Thangellapally Shirisha, ${ }^{\mathrm{a}}$ Subir Majhi, ${ }^{\mathrm{a}}$ Sridhar Balasubramanian, ${ }^{\mathrm{b}, \mathrm{c}}$ and Dhurke Kashinath*a
a.Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
E-mail: kashinath@nitw.ac.in, kashinath.dhurke@gmail.com; Tel: +91-870-2462677.
${ }^{\text {b. Centre for X-ray Crystallography, Department of Analytical \& Structural Chemistry, CSIR- }}$ Indian Institute of Chemical Technology,Tarnaka, Uppal Road, Hyderabad-500007, Telangana, India.
c.Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India

1. General: All the solvents and required chemicals were procured from SD-Fine, SigmaAldrich, and Spectrochem, and used without purification and distillation. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on Bruker Avance 400 MHz spectrometers using CDCl_{3} and DMSO- d_{6} as solvents and reported in $\delta \mathrm{ppm}$. The mass spectra of all the compounds were record using Agilent Technologies-6530.

2. Experimental section:

Synthesis of $\mathbf{1 , 2 , 3 , 4 -}$ tetrahydroacridine derivatives ($\mathbf{1 a - 1 p}, 1 \mathrm{r}, \mathbf{1 s , 1 u}$)

General procedure for synthesis of compound (1a): ${ }^{1}$

In a round bottom flask equipped with a magnetic stir bar, 2-nitrobenzaldehyde (5.0 mmol) was dissolved in EtOH (15 mL). Iron powder (4.0 equiv) and $0.1 \mathrm{~N} \mathrm{HCl}(5.0 \mathrm{~mol} \%, 2.5 \mathrm{~mL}$) were added and the mixture was stirred at $95^{\circ} \mathrm{C}$ for 40 min . The contents were cooled to room temperature and cyclohexanone (1.0 equiv) was added followed by addition of powdered KOH (1.2 equiv). Heating was continued at $95^{\circ} \mathrm{C}$ for another 30 min . The reaction mixture was then filtered through celite pad. The resulting filtrate was diluted with water and extracted using dichloromethane (310 mL). The combined organic layers were further washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by silica gel chromatography (hexane/EtOAc) afforded $\mathbf{1 a}$ as yellow solid in 90% yield.

General procedure for synthesis of compound (1b-1f, 1n,1o,1q,1r): ${ }^{2}$

1.53 g of Deep Eutectic Solvent (DES) was prepared by heating N, N '-dimethyl urea $(0.975 \mathrm{~g})+$ L-tartaric acid $(0.555 \mathrm{~g})$ at $80{ }^{\circ} \mathrm{C}$ for 30 min . To this melt, 2- aminoacetophenone/2aminobenzophenone derivatives $(0.231 \mathrm{~g}, 1 \mathrm{mmol})$ and cyclohexanone $/ 1,3$-cyclohexadione/ 1,3-diketone was added and heating continued for another $1-2 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$ to give the (1b$1 \mathrm{f}, 1 \mathrm{n}, 1 \mathrm{o}, 1 \mathrm{q}, 1 \mathrm{r})$

General procedure for synthesis of compound (1g-1i): ${ }^{3}$

$\mathrm{POCl}_{3}(25 \mathrm{~mL})$ was added dropwise using a constant pressure dropping funnel to an ice-cooled mixture of anthranilic acid ($3.2 \mathrm{~g}, 23.3 \mathrm{mmol}$) and cyclohexanone ($2.65 \mathrm{~mL}, 27 \mathrm{mmol}$). Then, the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 3 h . After the reaction was completed, the reaction mixture was cold to rt . Then the solvent was reduced in a vacuum and the ethyl acetate was
added to residue and neutralized with $1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{CO}_{3}$ solution, and brine, and the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by silica gel chromatography to yield the desired product (4) as a yellow solid.

General procedure for synthesis of compound (1j-1l): ${ }^{4}$

1,2,3,4-tetrahydroacridine-9-carboxylic acid ($0.98 \mathrm{~g}, 3 \mathrm{mmol}$) and potassium carbonate (2.07 $\mathrm{g}, 15 \mathrm{mmol}$) were weighed into a round-bottom flask. Methyl iodide / propargylbromide/ benzylbromide (3 equiv) and acetone (4 mL) were added. The reaction mixture was stirred at room temperature. The progress of the reaction was monitored by TLC. The reaction was completed after 5 h . The solvent was evaporated in vacuo and water was added to the remaining mixture. The product was collected by suction filtration and air-dried. The crude product was separated on a silica gel column to obtain desired product ($1 \mathrm{j}-11$).

General procedure for synthesis of compound (1m): ${ }^{5}$

To a solution of 1,2,3,4-tetrahydroacridine-9-carboxylic acid (3.2 mmol) in DMF (10 mL) DMAP (9.7 mmol) was added and cooled to $0^{\circ} \mathrm{C}$. Then EDC. $\mathrm{HCl}(6.5 \mathrm{mml}$), HOBt (6.5 mmol) and toluidine (4.9 mmol) were added and resulting mixture was stirred at room temperature for 30 minutes.

General procedure for synthesis of compound (1p): ${ }^{6}$

In a $25-\mathrm{mL}$ round-bottom flask, the mixture of isatins $(1.0 \mathrm{~g}, 6.8 \mathrm{mmol})$, cyclohexanone (2.15 g, 13.6 mmol$)$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1.0 \mathrm{~mL}, 18.4 \mathrm{mmol})$, and $\mathrm{EtOH}(10 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 1.5 h , and monitored by thin-layer chromatography (TLC) until the staring material to show complete consumption. The mixture was cooled to room temperature, the alcohols were evaporated in vacuo, and then water was added. The mixture was extracted with ethyl acetate (EtOAc). The organic phase was washed with brine, dried with sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by column chromatography on silica gel ($5-25 \%$ ethyl acetate in petroleum ether) to get the desired product.

General procedure for synthesis of compound (3):

Deep eutectic solvent was prepared by heating Cholinechloride + L-tartaric acid (1:2 ratio) at $80{ }^{\circ} \mathrm{C}$ for 30 min . To this, 1,2,3,4- tetrahydro acridine $\mathbf{1}(0.545 \mathrm{mmol})$ and dialkylazodicarboxylate $2(0.545 \mathrm{mmol})$ were added and heating continued for another 30 min to 2 hours at $80^{\circ} \mathrm{C}$. The completion of reaction was monitored by TLC. After completion of reaction the crude products obtained were purified by column chromatography on silica gel using petroleum ether-ethyl acetate as eluent to give the compound $\mathbf{3}$.

General procedure for synthesis of compound (5):

Deep eutectic solvent was prepared by heating N, N^{\prime}-dimethyl urea + L-tartaric acid (3:1 ratio) at $80^{\circ} \mathrm{C}$ for 30 min . To this, compound $1(0.545 \mathrm{mmol})$ and N - phenyl maleimide (0.545 mmol) were added and heating continued 2 hours at $80^{\circ} \mathrm{C}$. The completion of reaction was monitored by TLC. After completion of reaction the crude products obtained were purified by column chromatography on silica gel using petroleum ether-ethyl acetate as eluent to give the compound 5.

1. Z. Jamal, Y. C. Teo, G. S. Lim, Tetrahedron, 2016, 72, 2132-2138.
2. N. Satyanarayana, K. Sathish, S. Nagaraju, R. Pawar, M. Faizan, M. Arumugavel, T. Shirisha and D. Kashinath, New J. Chem., 2022, 46, 1637-1642.
3. D. Wang, M. Hu, X. Li, D. Zhang, C. Chen, J. Fu, S. Shao, G. Shi, Y. Zhou, S. Wu, T. Zhang, Eur. J. Med. Chem., 2019, 168, 207-220.
4. Y. Wu, Z. Chen, Y. Liu, L. Yu, L. Zhou, S. Yang, L. Lai, Bioorg. Med. Chem., 2011, 19, 3361-3366.
5. X. Lu, H. Zhang, X. Li, G. Chen, Q. S. Li, Y. Luo, B. F. Ruan, X.-W. Chen, H.-L. Zhu, Bioorg. Med. Chem., 2011, 19, 6827-6832.
6. Y. Ge, N. Yu, Synth. Commun., 2021, 51, 379-387.

3. Recycling experiments

To check the recyclability of DES [i.e., ChCl/L-(+)-TA (1:2) or DMU/ L-(+)-TA (3:1)], experiments were conducted to extract DES from the reaction mixture using liquid-to-liquid extraction method and this was followed by evaporation of aqueous layer. The recovered DES was then vacuum-dried and utilized to conduct the model reaction in the subsequent run. Interestingly it was noted that DES was stable even after four consecutive runs to give the desired products $\mathbf{3 e}$ or $\mathbf{5 e}$ with relatively good yields.

General procedure for the recycling the DES:

After completion of the reaction [monitored by the TLC (both C-N and C-C bond formations)], water (5 mL) was added and the mixture was stirred for 5 minutes at room temperature. Then EtOAc (10 mL) was added the round bottom flask. The mixture was transferred to the separating funnel and organic layer was separated (Two times). The aqueous layer concentrated under vacuum (to remove the water). The thick liquid (DES) obtained was reused for the next cycle of reaction.

Fig. 1 Bar graph showing the recyclability of $\mathrm{ChCl} / \mathrm{L}-(+)-\mathrm{TA}$ for the synthesis of compound $\mathbf{3 e}$.

Fig. 2 Bar graph showing the recyclability of DMU/L-(+)-TA for the synthesis of compound 5e.

4. Green metrics calculations

S. No.	Parameters	Formula	Characteristics	Ideal Value	Calculated value for compound 3a
1	Environment al (E) factor	Amount of waste (in Grams)/ Amount of product (in Grams)	E-factor signifies the total amount of waste generated in a chemical reaction.	0	$0.0166 / 0.179=0.09$
2.	Atom economy (AE \%)	[MW of product $/$ / Sum of MW of reactants) \times 100	Atom economy signifies the percentage of atoms wasted in chemical reaction. Higher the value of AE, greener is the reaction.	100%	$[357.41 /(183.254+174.156)]$ $\times 100=100$
3.	Mass intensity (MI)	$\sum_{\text {stoichiometric }}$ reactants)/[mass of stoichiometry product $]$	Mass intensity (MI), defined as the mass ratio of total input of materials (excluding water) to final product. MI takes into account reaction efficiency.	1	$(0.1+0.095) / 0.179=1.09$
4.	Reaction mass efficiency (RME \%)	[mass of product $/ \sum$ (mass of stoichiometric reactants) $\times 100$	RME accounts into atom economy, chemical yield and stoichiometry.	100%	$[0.179 /(0.1+0.095)] \times 100=$ 91.79
5.	Carbon efficiency (CE \%)	$[$ [Amount of carbon in product/ Total carbon present in reactants $]$ 100	CE signifies the percentage of carbons in the reactants that is remain in the product.	100%	$[0.5 \times 19 /(0.545 \times 13+$ $0.545 \times 6)] \times 100$ $=[3.401 /(7.085+3.27)=$ 91.74%

S. No.	Compound No.	\boldsymbol{E}-Factor	Atom economy (\%)	Mass intensity	Reaction mass efficiency (\%)	Carbon efficiency (\%)
$\mathbf{1}$	3 a	0.09	100	1.09	91.79	91.74
$\mathbf{2}$	3 b	0.11	100	1.11	89.89	89.9
$\mathbf{3}$	3 c	0.075	100	1.075	92.9	92.9
$\mathbf{4}$	3 d	0.096	100	1.096	90.7	90.5
$\mathbf{5}$	3 e	0.046	100	1.046	95.59	95.5
$\mathbf{6}$	3 f	0.089	100	1.089	91.8	91.8
$\mathbf{7}$	3 g	0.139	100	1.139	87.78	87.3
$\mathbf{8}$	3 h	0.074	100	1.074	92.9	93
$\mathbf{9}$	3 i	0.058	100	1.058	94.5	94.55
$\mathbf{1 0}$	$\mathbf{3 j}$	$\mathbf{0 . 0 4 4}$	$\mathbf{1 0 0}$	$\mathbf{1 . 0 4 4}$	$\mathbf{9 5 . 7 8}$	$\mathbf{9 5 . 7 8}$
$\mathbf{1 1}$	3 k	0.052	100	1.052	95	95
$\mathbf{1 2}$	31	0.099	100	1.099	90.9	90.8
$\mathbf{1 3}$	3 m	0.087	100	1.087	91.96	91.9
$\mathbf{1 4}$	3 n	0.11	100	1.11	89.77	89.6
$\mathbf{1 5}$	3 o	0.129	100	1.129	88.5	88.5
$\mathbf{1 6}$	3 p	0.2	100	1.2	82.9	82.8
$\mathbf{1 7}$	3 q	0.15	100	1.15	86.7	86.68
$\mathbf{1 8}$	3 r	0.1	100	1.11	90	90
$\mathbf{1 9}$	3 s	0.219	100	1.219	82	81.9
$\mathbf{2 0}$	3 t	0.17	100	1.17	85	84.94
$\mathbf{2 1}$	3 u	0.2	100	1.2	83	83
$\mathbf{2 2}$	3 v	0.19	100	1.19	83.9	83.7
$\mathbf{2 3}$	3 w	0.42	100	1.42	70	70
$\mathbf{2 4}$	3 x	0.216	100	1.216	82	82

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Parameters	Formula	Characteristics	Ideal Value	Calculated value for compound 5a
1	Environmental (E) factor	Amount of waste (in Grams)/ Amount of product (in Grams)	E-factor signifies the total amount of waste generated in a chemical reaction.	0	$0.0195 / 0.175=0.11$
2.	Atom economy (AE \%)	[MW of product] / Sum of MW of reactants) $\times 100$	Atom economy signifies the percentage of atoms wasted in chemical reaction. Higher the value of AE , greener is the reaction.	100\%	$\begin{aligned} & {[356.425 /(183.254+173.17} \\ & 1)] \times 100=100 \end{aligned}$
3.	Process mass intensity (PMI)	\sum (mass of stoichiometric reactants)/[mass of stoichiometry product]	Mass intensity (MI), defined as the mass ratio of total input of materials (excluding water) to final product. MI takes into account reaction efficiency.	1	$(0.1+0.0945) / 0.175=1.111$
4.	Reaction mass efficiency (RME \%)	[mass of product/ \sum (mass of stoichiometric reactants)] $\times 100$	RME accounts into atom economy, chemical yield and stoichiometry.	100\%	$\begin{aligned} & \hline[0.175 / \\ & (0.1+0.0945)] \times 100= \\ & 89.97 \% \end{aligned}$
5.	$\begin{aligned} & \text { Carbon } \\ & \text { efficiency (CE } \\ & \% \text {) } \end{aligned}$	[Amount of carbon in product/ Total carbon present in reactants] 100	CE signifies the percentage of carbons in the reactants that is remain in the product.	100\%	$\begin{aligned} & {[0.49 \times 23 /(0.545 \times 13+} \\ & 0.545 \times 10)] \times 100 \\ & =[11.27 /(7.085+5.45)= \\ & 89.9 \% \end{aligned}$

S. No.	Compound No.	\boldsymbol{E}-Factor	Atom economy (\%)	Mass intensity	Reaction mass efficiency (\%)	Carbon efficiency (\%)
$\mathbf{1}$	$\mathbf{5 a}$	0.11	100	1.11	89.97	89.9
$\mathbf{2}$	$\mathbf{5 b}$	0.149	100	1.149	87	87
$\mathbf{3}$	$\mathbf{5 c}$	0.098	100	1.098	91	90.9
$\mathbf{4}$	$\mathbf{5 d}$	0.11	100	1.11	90	89.6
$\mathbf{5}$	$\mathbf{5 e}$	0.063	100	1.063	94	93.8
$\mathbf{6}$	$\mathbf{5 f}$	0.19	100	1.19	83.9	83.4
$\mathbf{7}$	$\mathbf{5 g}$	0.053	100	1.053	94.9	94.8
$\mathbf{8}$	$\mathbf{5 h}$	0.11	100	1.11	90	89.3
$\mathbf{9}$	$\mathbf{5 i}$	0.098	100	1.098	91	90.8
$\mathbf{1 0}$	$\mathbf{5 j}$	$\mathbf{0 . 0 4 2}$	$\mathbf{1 0 0}$	$\mathbf{1 . 0 4 2}$	$\mathbf{9 5 . 9}$	$\mathbf{9 6}$
$\mathbf{1 1}$	$\mathbf{5 k}$	0.053	100	1.053	94.9	94.9
$\mathbf{1 2}$	$\mathbf{5 l}$	0.2	100	1.2	82	81.9
$\mathbf{1 3}$	$\mathbf{5 m}$	0.1	100	1.1	90.9	90.4
$\mathbf{1 4}$	$\mathbf{5 n}$	0.25	100	1.25	79.9	79.7
$\mathbf{1 5}$	$\mathbf{5 0}$	0.13	100	1.13	87.9	87.8
$\mathbf{1 6}$	$\mathbf{5 p}$	0.25	100	1.25	79.8	79.7
$\mathbf{1 7}$	$\mathbf{5 q}$	0.12	100	1.12	89	88.9
$\mathbf{1 8}$	$\mathbf{5 r}$	0.32	100	1.32	75.7	75.4
$\mathbf{1 9}$	$\mathbf{5 s}$	0.26	100	1.26	79	78.8
$\mathbf{2 0}$	$\mathbf{5 t}$	0.3	100	1.3	75	74.8
$\mathbf{2 1}$	$\mathbf{5 u}$	0.26	100	1.26	79	78.6

5. Characterization Data for synthesized compounds

Diethyl 1-(1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate(3a): Yield = 92\%, white solid; M. P: 99.2-99.8 ${ }^{\circ} \mathrm{C}$; IR (KBr, $\mathbf{c m}^{\mathbf{- 1}}$): 3055, 2928, 2862, 1757, 1623, 1545, 1247, 1141, 1056, 945, 742; ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.94(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.73 (dd, $J=13.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.51$
 $-7.42(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.21-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.87(\mathrm{~m}$, $2 \mathrm{H}), 2.44(\mathrm{~d}, J=33.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=32.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 1 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 156.85,156.30,152.37,146.60,135.32,132.02,129.21$, 128.81, 127.37, 127.09, 126.53, 63.65, 62.02, 61.14, 28.64, 27.69, 21.24, 14.74, 14.35. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 358.1761$; Observed: 358. 1766.

Diethyl 1-(9-methyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3b): Yield $=90 \%$, White solid; M. P: 119-119.9 ${ }^{\circ} \mathrm{C}$; IR (KBr, $\mathbf{c m}^{\mathbf{- 1}}$): 3025, 2948, 2884, 1753, 1645, 1510, 1275, 1112, 1071, 954, 798; ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$
 - $6.38(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.99(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.75$ $(\mathrm{m}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta} 158.43,157.66,156.90,155.23,152.23,145.85$, $142.02,129.88,129.25,128.20,127.20,126.03,123.28,64.08,62.61,62.48,61.66,26.99$, 26.58, 21.43, 14.58, 14.40, 14.13, 13.77. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ [M+H] $: 372.1918 ;$ Observed: 372.1920.

Diethyl 1-(9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3c):

Yield $=93 \%$, white solid; M. P: $121.9-121.5^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}\right)$: 3055, 2984, 2873, 1756, 1672, 1531, 1274, 1142, 1049, 959, 763; ${ }^{1} \mathbf{H}$
 Hz, 1H), $7.54-7.50$ (m, 2H), 7.49 - 7.46 (m, 1H), 7.34 (d, $J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.50(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 4.35$
 (s, 2H), $4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.43-$ 1.25 (m, 6H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO) $\boldsymbol{\delta}$ 156.88, 156.18, 146.59, 146.23, 136.84, 130.62, $129.59,129.40,129.34,129.27,129.17,129.07,128.72,128.39,126.90,126.64,125.58,62.05$,
61.15, 27.52, 27.18, 21.16, 14.85, 14.79. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 434.2075$; Observed: 434.2068.

Diethyl 1-(7-chloro-9-phenyl-2,3-dihydro-1H-cyclopenta[b]quinolin-3-yl)hydrazine-1,2-

 dicarboxylate (3d):Yield $=91 \%$, White solid; M. P: 198.1-198.4 ${ }^{\circ} \mathrm{C}$; IR ($\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}$): 3255, 2978, 2928, 2852, 1743, 1682, 1522, 1228, 1159, 1060, 942, 759; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCL $\left.{ }_{3}+\mathbf{D M S O}\right) \boldsymbol{\delta} 8.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=6.4,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}$,
 2 H), 7.52 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H})$, $4.31-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.07(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.26$ (s, 1H), $1.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C L}_{3}+$ DMSO) $\boldsymbol{\delta} 163.73,156.85,156.00,152.31,146.91,142.39,135.51,134.21,131.68$, $131.46,129.35,129.13,129.05,128.81,127.60,124.21,63.49,62.12,61.16,27.81,27.40$, 14.68, 14.29. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 454.1528; Observed: 454.1529.

Diethyl 1-(7-chloro-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3e):

Yield $=96 \%$, White solid; M. P: $186.9-187.3^{\circ} \mathrm{C}$; IR ($\mathbf{K B r}, \mathbf{c m}^{-1}$): $3367,2979,1801,1759,1516,1240,1173,1050,837,762 ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}_{\mathbf{3}}$) $\boldsymbol{\delta} 7.94(\mathrm{~d}, ~ J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53$ (m, 3H), 7.52 (dt, $J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.50(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{~m}, 1 \mathrm{H}), 4.41-$
 $4.30(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 2.05-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.43$ -1.27 (m, 6H). ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D M S O}\right) \boldsymbol{\delta} 157.03,156.91,145.71,144.75,136.11$, $131.98,131.28,130.54,129.38,129.32,129.23,128.73,127.68,124.07,62.06,61.14,27.60$, 27.07, 21.01, 14.85, 14.80. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 468.1685; Observed: 468.1686.

Diisopropyl

1-(7-chloro-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-
dicarboxylate (3f)
Yield $=92 \%$, White solid; M. P: 150.9-151.3 ${ }^{\circ} \mathrm{C} ; \mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right)$: 3304, 2981, 2934, 1730, 1674, 1469, 1262, 1097, 831, 762; ${ }^{1} H$ NMR (400

$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 8.19(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.62$ $(\mathrm{m}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.24(\mathrm{~m}$, $1 \mathrm{H}), 5.52(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H})$, $2.02-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{dd}, J=16.4,6.0 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D M S O}$) $\boldsymbol{\delta} 157.18$, $156.54,155.67,152.01,145.68,144.75,136.11,135.02,132.68,131.84,131.56,131.28$, $130.56,128.68,127.67,124.78,124.09,71.64,69.59,27.60,27.12,22.27,22.21,22.15,21.86$, 21.06. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 496.1998$; Observed: 496.1999.

Diethyl 1-(7-nitro-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3g):

Yield $=88 \%$, Yellow solid; M. P: $176.2-177.0^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right.$): $3420,2924,2853,1751,1715,1545,1374,1292,1054,706 ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta} 8.37(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.47$
 $(\mathrm{m}, 1 \mathrm{H}), 5.57(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.27-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~m}$, $\left.3 \mathrm{H}), 1.40(\mathrm{~s}, 2 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ 156.70, 150.96, 148.76, 148.10, 146.94, 135.28, 134.44, 133.37, 130.97, 130.30, 129.32, 129.18, 129.00, 128.86, 127.76, 122.83, 62.89, 62.28, 61.97, 40.08, 28.02, 22.25, 14.42. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 479.1925; Observed: 479.1930.

Diethyl 1-(9-chloro-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3h):

Yield $=93 \%$, White solid; M. P: $153.8-154.9^{\circ} \mathrm{C}$; IR (KBr, $\mathbf{c m}^{-1}$): 3251, 2979, 2934, 2868, 1749, 1682, 1512, 1317, 1217, 1132, 1056, 915,753; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta} 8.19(\mathrm{dd}, J=8.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69 (ddd, $J=8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (ddd, $J=8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.33(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 4.34$
 (s, 2H), $4.25-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H})$, $2.01(\mathrm{~s}, 2 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO) $\boldsymbol{\delta}$ 158.38, 156.87, 156.78, $147.19,140.59,131.97,130.95,130.75,125.61,124.35,123.00,62.08,61.09,27.28,26.87$, 20.42, 14.82, 14.78. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 392.1372$; Observed: 392.1372.

Diethyl

 (3i):Yield $=95 \%$, white solid; M. P: 169.4-169.9 ${ }^{\circ}$ C ; IR (KBr, $\mathbf{c m}^{\mathbf{- 1}}$): 3253, 3062, 2977, 2933, $2869,1750,1682,1509,12290,1094,805 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76-6.30(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.26(\mathrm{~m}, 2 \mathrm{H})$, $4.23-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.77(\mathrm{~m}, 1 \mathrm{H})$, $2.46(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.21(\mathrm{~m}$,
 $6 \mathrm{H}) .{ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO) $\boldsymbol{\delta} 156.82,146.72,140.43,130.03,129.98,129.82,128.01$, 125.42, 123.49, 62.06, 61.13, 27.30, 27.00, 20.48, 14.81, 14.76. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 470.0477$; Observed: 470.0477 .

Diethyl 1-(9-chloro-6-nitro-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3j):

Yield $=96 \%$, light Yellow solid; M. P: $158.2-158.9^{\circ} \mathrm{C}$; IR ($\mathbf{K B r}$, $\mathbf{c m}^{-1}$):3246, 3021, 2931, 1749, 1677, 1528, 1346, 1226, 1163 , 1068, $901,885 \mathbf{j}^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 8.83$ ($\mathrm{s}, 1 \mathrm{H}$), 8.32 (s, 2H), $6.70-6.25(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.25$ - $4.09(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}$,
 $1 \mathrm{H}), 2.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 159.54$, $157.13,156.31,148.05,145.39,141.86,133.25,128.85,125.76,125.58,120.59,62.97,62.01$, 27.46, 26.46, 20.74, 14.55, 14.42. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 437.1223 ;$ Observed: 437.1228.

Diethyl 1-(9-(methoxycarbonyl)-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3k):

Yield $=95 \%$, white solid; M. P: 147.8-148.6 ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}\right.$): 3253, 2978, 2933, 1744, 1683, 1435, 1316, 1194, 1059, 957, 758; ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ 7.98 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.63$ (m, 2H), $7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 6.60$ $(\mathrm{m}, 1 \mathrm{H}), 5.52(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H})$, $2.94(\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.21(\mathrm{~m}, 6 \mathrm{H})$.
 ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta} \mathbf{1 7 2 . 5 6}, 161.67,161.57,161.22,151.00$, $142.81,134.66,134.21,132.92,132.55,129.13,127.94,66.78,65.85,57.81,31.96,31.31$, 25.47, 19.57, 19.53. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 416.1816; Observed: 416.1839.

Yield $=91 \%$, White solid; M. P: 119.2-119.9 ${ }^{\circ} \mathrm{C}$; IR (KBr, $\mathbf{c m}^{-1}$): $3273,2977,2938,1728,1671,1231,1026,962,761 ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (m, 2H), 7.55 - $7.49(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~s}$, $3 \mathrm{H}), 2.98-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.53-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.18(\mathrm{~m}, 12 \mathrm{H})$.

${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 172.56,161.37,161.29,161.15,151.00,142.76,134.60$, $134.21,132.89,132.52,129.14,127.93,74.27,73.32,57.82,31.99,31.33,27.01,26.99,26.96$, 26.93, 25.48. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 444.2129; Observed: 444.2127.

Diethyl 1-(9-((prop-2-yn-1-yloxy) carbonyl)-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-

 dicarboxylate (3m):Yield $=92 \%$, White solid; M. P: 110.1-110.5 ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right.$):3273, 2977, 2938, 1728, 1671, 1231, 1026, 962, 761; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ $-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~m}, 1 \mathrm{H}), 5.06$ ($\mathrm{s}, 2 \mathrm{H}$), 4.31 (dd, $J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.20$ (dd, $J=6.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.02-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 3 \mathrm{H})$,
 $1.35-1.25(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 166.65,156.95,156.88,156.80,156.55$, $146.26,136.99,129.96,129.56,128.40,127.89,124.09,123.14,78.68,78.26,62.03,61.11$, 60.91, 53.69, 27.18, 26.45, 20.66, 14.89, 14.77. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 440.1816$; Observed: 440.1816 .

Diisopropyl 1-(9-((prop-2-yn-1-yloxy)carbonyl)-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-

1,2-dicarboxylate (3n)

Yield $=90 \%$, White solid; M. P: 94.8-95.2 ${ }^{\circ} \mathrm{C}$; IR ($\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}$):3273, 2977, 2938, 1728, 1671, 1231, 1026, 962, 761; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (ddd, $J=8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{ddd}, J=8.4,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}$, $1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.03-4.89(\mathrm{~m}, 2 \mathrm{H}), 3.01-$ $2.95(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 3 \mathrm{H}), 1.31$
 - 1.23 (m, 12H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 166.80, 166.21,
$156.14,146.19,137.11,132.46,131.83,129.58,129.26,127.47,124.05,123.97,123.33,77.24$, 76.85, 75.97, 70.24, 69.51, 52.99, 29.69, 27.19, 26.29, 21.98, 21.95. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 468.2129; Observed: 468.2126.

Diethyl 1-(9-((benzyloxy)carbonyl)-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2dicarboxylate (3o):

Yield $=89 \%$, white solid; M. P: $145.5-146.3^{\circ} \mathrm{C}$; IR ($\mathbf{K B r}, \mathbf{c m}^{-1}$):3250, 2979, 2933, 1745, 1683, 1513, 1093, 956; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO) $\boldsymbol{\delta} 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}$,
 $2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 3 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.03-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.84(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO) $\boldsymbol{\delta} 167.22,156.87,156.81,156.53,146.27,137.80,135.81,129.94,129.46,129.14,129.00$, 128.94, 128.16, 127.78, 124.19, 123.20, 67.87, 62.03, 61.11, 27.16, 26.47, 20.69, 14.80, 14.76. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 492.2129$; Observed: 492.2129.

Diisopropyl 1-(9-(p-tolylcarbamoyl)-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-

 dicarboxylate (3p):Yield $=83 \%$, White solid; M. P: 238.4-238. $9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 10.98(\mathrm{~s}, 1 \mathrm{H}), 10.13(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.94-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.88-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~s}$, $1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 164.91, 155.41, 153.92, 147.94, 142.07,
 $140.13,139.90,136.58,134.05,130.97,130.31,129.67,127.89,125.59,122.75,122.48$, 120.74, 71.12, 70.22, 69.04, 22.27, 22.14, 22.01, 20.91. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 519.2602$; Observed: 519.2596.

Yield $=87 \%$, light Yellow solid; M. P: 121.3-122.1 ${ }^{\circ} \mathrm{C}$; IR (KBr, $\mathbf{c m}^{-1}$): $3275,2988,1750,1682,1610,1505,1387,1221,1061,952$, 757; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO) $\boldsymbol{\delta} 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87$ (ddd, $J=8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.79$
 (s, 1H), 4.13 (m, 4H), $2.99-2.64(m, 2 H), 2.32(m, 2 H), 1.29-1.16$ (m, 6H). ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, ~ D M S O\right) ~ \boldsymbol{\delta} 196.32,158.79,156.91,150.78,148.41,137.62$, $131.89,129.81,128.82,128.30,127.81,127.65,127.57,124.40,62.25,61.24,38.30,29.36$, 25.62, 14.85, 14.78. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 448.1867; Observed: 448.1869.

Diethyl 1-(7-chloro-1-oxo-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-

 dicarboxylate (3r):Yield $=90 \%$, light Yellow solid; M. P: 181.2-181.6 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathbf{c m}^{\mathbf{- 1}}$): 3309, 2982 1750, 1678, 1548, 1482,1312, 1284, 1024, 945,856; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.71$ (dd, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~m}$,
 $1 \mathrm{H}), 4.43-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 1 \mathrm{H})$, $2.39(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ 195.82, 158.70, $156.75,151.58,146.73,136.27,133.26,132.83,130.86,128.65,128.46,128.35,128.21$, 128.13, 127.73, 126.74, 63.05, 62.22, 38.92, 25.63, 14.59, 14.43. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 482.1477; Observed: 482.1479.

Diethyl 1-(9-(ethoxycarbonyl)-1-oxo-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2dicarboxylate (3s):

Yield $=82 \%$, white solid; M. P: $170.3-170.9^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-\mathbf{1}}\right)$: 3350, 2924, 1725, 1689, 1356, 1227, 1024, 759; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO) $\boldsymbol{\delta} 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ (ddd, $J=8.4,6.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (ddd, $J=8.4,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$,
 $5.89(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.15-$ $2.79(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO) $\boldsymbol{\delta}$ 195.89, 167.26, 158.78, 156.88, 156.74, 149.12, $141.55,132.99,130.08,128.83,126.14,123.28,121.91,62.25,62.22,61.22,36.89,25.70$,
14.80, 14.74, 14.24. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 444.1766$; Observed: 444.1764.

Diethyl 1-(quinolin-2-ylmethyl)hydrazine-1,2-dicarboxylate (3t):

Yield $=85 \%$, white solid; M. P: 77.9-78.2 ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}\right.$): 3263, 2978, 2874, 1754, 1645, 1502, 1325, 1219, 1132, 1058, 915; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 8.18-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 2 \mathrm{H})$, $7.65(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}$,
 $2 \mathrm{H}), 4.24-4.15(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, DMSO) $\boldsymbol{\delta} 157.88$, $156.57,156.19,147.61,136.90,129.85,129.08,128.12,127.58,126.62,120.47,62.35,61.23$, 56.81, 14.75, 14.46. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 318.1449$; Observed: 318.1454.

Diethyl 1-(1-(4-phenyl-3-propionylquinolin-2-yl)ethyl)hydrazine-1,2-dicarboxylate (3u):

Yield $=83 \%$, white solid; M. P: $127.1-127.6^{\circ} \mathrm{C}$; IR (KBr, $\mathbf{c m}^{\mathbf{- 1}}$): 3351, 2978, 2934, 1744, 1707, 1559, 1314, 1257, 1140, 1028, 954, 755; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO) $\boldsymbol{\delta} 8.86$ (s, 1H), 7.94 (s, 1H), 7.57 $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 5.52-5.13(\mathrm{~m}, 1 \mathrm{H}), 3.81$ $(\mathrm{m}, 4 \mathrm{H}), 1.84(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 6 \mathrm{H}), 0.42-0.38(\mathrm{~m}$,
 3H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\boldsymbol{\delta} 207.81,156.60,155.93,147.03,135.35,130.45,130.34$, $129.90,129.31,129.22,128.90,127.84,126.00,125.68,62.18,61.08,37.74,16.84,14.70$, 7.51. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 464.218; Observed: 464.2183 .

Diethyl 1-(1-(6-chloro-4-phenyl-3-propionylquinolin-2-yl)ethyl)hydrazine-1,2-

 dicarboxylate (3v):Yield $=84 \%$, white solid; M. P: 129.2-130 ${ }^{\circ} \mathrm{C} ; \mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{\mathbf{1}}\right.$): 3274, 2981, 2929, 1749, 1731, 1702, 1682, 1226, 1058, 768; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO) $\boldsymbol{\delta} 9.15$ ($\mathrm{s}, 1 \mathrm{H}$), 8.23 (s, 1H), 7.83 (dd, J $=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=4.0,2.0 \mathrm{~Hz}$,
 $2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 4 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 3 \mathrm{H})$, 1.22 - 1.07 (m, 6H), $0.64(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, DMSO) $\boldsymbol{\delta}$ 207.41, 156.62, 155.88, $145.49,143.51,134.63,132.61,132.10,131.01,130.40,130.18,129.62,129.39,129.09$,
126.64, 124.57, 62.22, 61.08, 37.67, 16.70, 14.71, 14.68, 7.43. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 498.179$; Observed: 498.1799.

Diethyl 1-(5,6,7,8-tetrahydroquinolin-8-yl)hydrazine-1,2-dicarboxylate (3w):

Yield $=70 \%$, colourless oil; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}\right)$: 3274, 2981, 2929, 1749, 1731, 1702, 1682, 1226, 1058, $768{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ $8.38(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.8$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.58-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}$,
 $4 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 156.36, 154.24, 147.18, 137.27, 122.21, 63.10, 62.61, 61.77, 31.88, 28.32, 21.32, 14.45. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 308.1605$; Observed: 308.1605.

Diethyl 1-((3-hydroxyquinoxalin-2-yl)methyl)hydrazine-1,2-dicarboxylate (3x):

Yield $=82 \%$, white solid; M. P: $128.5-128.9^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right)$: 3274, 2982, 2929, 1728, 1481, 1380, 1236, 1060, 763, ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO) $\boldsymbol{\delta} 12.39(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.58$ (m, 1H), $7.55-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.15-3.98(\mathrm{~m}, 4 \mathrm{H}), 1.23-$
 $1.08(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D M S O}$) $\boldsymbol{\delta} 155.99,155.46,154.04,132.79,131.54,130.95$, 129.26, 123.43, 115.71, 62.61, 61.32, 14.56, 14.53. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 335.135$; Observed: 335.1349.

1-Phenyl-3-(1,2,3,4-tetrahydroacridin-4-yl)pyrrolidine-2,5-dione (5a):

Yield $=90 \%$, white solid; M. P: $154.5-155.1^{\circ} \mathrm{C}$; IR ($\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}$): 3034, 2982, 2855, 1759, 1699, 1454, 1392, 1132, 758; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.50-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.51$ - $2.40(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101
 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 179.33,176.53,157.47,146.13,135.19,132.95,131.20,129.07,128.75$, 128.70, 128.09, 127.33, 126.80, 126.31, 126.15, 44.02, 43.16, 31.23, 29.32, 28.75, 22.56. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 357.1598$; Observed: 357.1597.

[^0]Yield $=87 \%$, white solid; M. P: $180.9-181.9^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right)$: 3068, 2924, 2858, 1770, 1705, 1498, 1181, 785; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ 7.96 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (ddd, J $=8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (ddd, $J=8.3,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 1 \mathrm{H})$, $3.69-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.80$
 (m, 1H), $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 179.31,176.99,157.85,145.52,141.40,132.36,129.58,128.98,128.85$, $128.29,128.17,127.04,126.64,125.82,123.30,44.75,43.89,35.15,29.72,27.10,22.80$, 13.74. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 371.1754; Observed: 371.1754.

1-Phenyl-3-(9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)pyrrolidine-2,5-dione (5c):

Yield $=91 \%$, white solid; M. P: 208.4-209.2 ${ }^{\circ} \mathrm{C}$; IR ($\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}$): 3060, 2927, 2861, 1702, 1572, 1485, 1186, 770; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.54$ - $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.4,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.29$ (dd, $J=4.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{dt}, J=6.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.08(\mathrm{~m}$, $1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.56(\mathrm{~m}$, $1 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$
 NMR (101 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}$ 179.42, 176.67, 157.30, 146.77, 145.75, 136.92, 132.99, 129.11, 129.08, 129.00, 128.84, 128.71, 128.68, 128.53, 128.08, 127.88, 126.77, 126.34, 125.99, 125.75, 44.08, 43.52, 31.34, 28.87, 27.41, 22.53. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 433.1911$; Observed: 433.1910 .

3-(7-Chloro-9-phenyl-2,3-dihydro-1H-cyclopenta[b/quinolin-3-yl)-1-phenylpyrrolidine-2,5dione (5d):

Yield $=90 \%$, white solid; M. P: 198.9-199.4 ${ }^{\circ} \mathrm{C}$; IR ($\mathbf{K B r}, \mathbf{c m}^{-1}$): 3072, 2954, 1706, 1556, 1475, 1150, 945, 762; ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.58(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=8.8,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.41(\mathrm{~m}$,
 $\left.1 \mathrm{H}), 2.99-2.79(\mathrm{~m}, 3 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ $178.65,176.01,164.98,146.46,142.55,135.53,134.38,132.68,131.96,130.86,129.32$,
129.20, 128.51, 127.18, 126.58, 124.54, 46.74, 41.72, 31.30, 29.43, 28.74. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 453.1359; Observed: 453.1359.

3-(7-Chloro-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5e):
Yield $=94 \%$, white solid; M. P: $200-200.8^{\circ} \mathrm{C}$; IR ($\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}$): 3065, 2957, 2874, 1734, 1589, 1498, 1167, 860, 770; ${ }^{\mathbf{1}} \mathbf{H}^{\mathbf{N}}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 2 \mathrm{H})$, $7.56(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=$ $8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 ($\mathrm{s}, 1 \mathrm{H}$), 7.20 (dt, $J=6.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.08 (m, 1H), $3.34-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.64-$ $2.59(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.94$
 (m, 1H), 1.94 - $1.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}$ 179.32, 176.59, 157.77, 146.08, 144.07, 136.10, 132.87, 131.89, 130.40, 129.86, 129.53, 129.14, 128.98, 128.94, 128.90, 128.24, 128.18, 127.51, 126.21, 124.56, 43.94, 43.51, 31.31, 28.70, 27.45, 22.38. HRMS (ESIMS): m / z Calculated for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 467.1521$; Observed: 467.1527.
tert-Butyl 8-chloro-4-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-10-phenyl-3,4-dihydrobenzo[b][1,6]naphthyridine-2(1H)-carboxylate (5f):

Yield $=84 \%$, white solid; M. P: 202.1- $202.7^{\circ} \mathrm{C}$; IR (KBr, $\mathbf{c m}^{-1}$): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}$, $2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 3 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.36 ($\mathrm{s}, 1 \mathrm{H}$), 7.23 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.54 (m, 2H), 4.30 - 4.19 (m, 2H), 3.32 (m, 2H), $2.99-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.53(\mathrm{~m}$,
 $1 \mathrm{H}), 1.43(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 178.33,176.05,154.37,144.64,134.40$, $132.68,132.61,130.53,130.38,129.20,128.87,128.38,127.34,126.27,124.73,80.73,44.04$, 41.21, 31.13, 29.71, 28.35. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 568.1998; Observed: 568.1995.

3-(7-Nitro-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5g):
Yield $=95 \%$, light Yellow solid; M. P: 201.4-202.2 ${ }^{\circ} \mathrm{C}$; IR (KBr, $\mathbf{c m}^{-1}$): 3032, 1770, 1704, 1596, 1344, 1283, 1182, 1092, 781; ${ }^{1} \mathbf{H}$

NMR (400 MHz, CDCl $\mathbf{3}_{\mathbf{3}}$) $8.30-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, 5 H), $7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dt}, J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 1 \mathrm{H})$, $3.36(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H})$, $1.81-1.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} \mathbf{1 7 9 . 0 7}, 176.38,161.82,148.79,147.58$, $145.32,135.08,132.76,131.28,130.46,129.21,129.15,128.92,128.85,128.83,128.30$, 126.10, 122.91, 122.18, 43.81, 43.76, 31.35, 28.36, 27.41, 22.15. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 478.1762$; Observed: 478.1689.

3-(9-Chloro-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5h):

Yield $=90 \%$, White solid; M. P: $166.2-167.0^{\circ} \mathrm{C}$; IR (KBr, $\mathbf{c m}^{-1}$): 3063, 2923, 2854, 1770, 1705, 1595, 1480, 1158, 919, 857; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 8.14(\mathrm{dd}, J=8.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (dd, $\left.J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.60(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.47-7.40(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.19(\mathrm{~m}$, $1 \mathrm{H}), 2.96-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H})$,
 $1.73(\mathrm{td}, J=12.8,9.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta} 179.09,176.31,157.60,146.13$, $141.86,132.85,129.54,129.10,128.12,127.17,126.18,125.45,123.66,44.04,43.69,31.09$, 28.97, 27.34, 22.30. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 391.1208$; Observed: 391.1214.

3-(6-Bromo-9-chloro-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5i):
Yield $=91 \%$, white solid; M. P: $186.5-187.2^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}\right.$): 3054, 2924, 2853, 1710, 1599, 1458, 1382, 1179, 821, 816; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 8.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 1 \mathrm{H}), 4.06$ - $4.01(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 2 \mathrm{H}), 2.38$ - $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.71$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ 178.82, 176.03, 158.87,
 $146.53,142.00,132.68,131.28,130.68,129.71,129.15,128.27,126.06,125.19,124.23$, 123.80, 43.89, 43.64, 31.11, 28.72, 27.39, 22.14. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{BrClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 469.0313$; Observed: 469.0317.

3-(9-Chloro-6-nitro-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5j):

Yield $=96 \%$, white solid; M. P: $184.2-185.2^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}\right)$: 3069, 2953, 2824, 1732, 1549, 1452, 1361, 1182, 825; ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 3 \mathrm{H}), 7.48(\mathrm{dd}, J=6.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.36(\mathrm{~m}$, $1 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$
 $(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 178.67,175.80,160.71,148.13,144.86,142.04,132.86,132.49,129.37$, 128.57, 128.45, 125.93, 125.76, 125.17, 120.59, 43.77, 31.14, 29.71, 28.45, 27.78, 21.97. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 436.1059$; Observed: 436.1056.

Methyl-4-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-1,2,3,4-tetrahydroacridine-9-carboxylate

 (5k):Yield $=95 \%$, White solid; M. P: 134.6-135.2 ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right)$: 3045, 2937, 1770, 1736, 1596, 1440, 1384, 1228, 1182, 1092, 985, 781; ${ }^{1}$ H NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (ddd, $J=8.0,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (ddd, $J=8.0,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.41-$ 7.36 (m, 2H), 7.34 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H})$, 4.05 (s, 3H), 3.94 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.70-3.64$ (m, 1H), 3.13 (m, 1H), 3.01
 (m, 2H), $2.97(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}$, 1H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta} 178.91,176.68,168.13,158.43,145.83,137.88,132.25$, $129.26,129.20,129.04,128.40,127.54,127.20,126.57,124.13,123.12,52.58,44.37,43.51$, 34.77, 29.70, 26.71, 22.17. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 415.1653; Observed: 415.1654.

Prop-2-yn-1-yl 4-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-1,2,3,4-tetrahydroacridine-9-
carboxylate (5l): carboxylate (5l):

Yield $=82 \%$, white solid; M. P: 170.1-171 ${ }^{\circ} \mathrm{C}$; IR (KBr, $\mathbf{c m}^{-1}$): 3229, 2932, 2865, 1741, 1701, 1498, 1397, 1206,1026, 947, 769; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{dd}$, $J=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H})$,

$4.09-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 2.44$ $(\mathrm{m}, ~, 1 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.03,176.27,166.82,157.43,145.68,137.05,132.84$, $129.41,129.09,128.13,127.86,127.38,126.20,123.95,123.01,76.89,75.95,52.99,43.98$, 43.41, 31.12, 28.79, 26.38, 22.13. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 439.1653; Observed: 439.1658.

Benzyl 4-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-1,2,3,4-tetrahydroacridine-9-carboxylate (5m):

Yield $=91 \%$, white solid; M. P: 138.7-139.3 ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right)$: 3060, 2935, 2852, 1730, 1705, 1498, 1337, 1178, 1023, 766; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.68(\mathrm{~d}, ~ J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.55-7.53$ (m, 1H), $7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{dd}, J=5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}$, $J=5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.26-$ $2.19(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$
 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 179.06,176.30,167.47,157.39,145.69,137.97,135.00,132.84,129.29$, $129.09,128.79,128.12,127.52,127.23,126.20,124.01,123.06,67.67,43.98,43.41,31.12$, 28.80, 26.35, 22.14. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]{ }^{+}: 491.1966$; Observed: 491.1966.

4-(2,5-Dioxo-1-phenylpyrrolidin-3-yl)-N-(p-tolyl)-1,2,3,4-tetrahydroacridine-9carboxamide (5n):

Yield $=80 \%$, white solid; M. P: $227.9-228.3^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{\mathbf{- 1}}\right)$: 3441, 3296, 2926, 2858, 1706, 1670, 1534, 1392, 1185, 819, 763; ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{q}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (m, 3H), $7.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~m}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~m}$, $2 \mathrm{H}), 1.84(\mathrm{~s}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ 176.43, 165.52,
 $157.49,145.66,141.56,135.17,134.73,132.71,129.69,129.56,129.29,129.10$, 128.87, 128.26, 127.13, 126.19, 124.39, 123.40, 120.00, 43.85, 43.23, 30.88, 28.64, 26.04, 22.03, 20.96. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]{ }^{+}$: 490.2125; Observed: 490.2124. (5o):

Yield $=88 \%$, white solid; M. P: 241.2-241.9 ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right)$: 3072, 2954, 1706, 1556, 1475, 1386, 1150, 945, 762; ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz , $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 7.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-$ 7.51 (m, 3H), $7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38$ (m, 2H), 7.26 (s, 1H), 7.25 $-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.20(\mathrm{~m}$, $2 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$,
 $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 196.55,178.51,176.47,161.04,151.09,146.15,136.37,133.14$, $132.80,132.24,130.50,129.15,128.55,128.53,128.47,128.37,128.26,128.10,127.71$, 126.81, 126.47, 124.38, 44.62, 43.28, 40.31, 35.15, 26.59. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 481.1314; Observed: 481.1312 .

Ethyl 4-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-1-oxo-1,2,3,4-tetrahydroacridine-9-carboxylate

 (5p):Yield $=80 \%$, light Yellow solid; M. P: 204.1-204.5 ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right)$: 3084, 2924, 1731, 1708, 1691, 1571, 1498, 1287, 1181, 784, 755; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}$, $2 \mathrm{H}), 4.66(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 1 \mathrm{H})$, $3.29(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.77-$
 $2.67(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $195.79,178.27,176.30,167.64,160.42,148.66,142.40,132.89,132.15,129.31,129.11$, 128.52, 128.22, 126.49, 126.37, 123.35, 121.44, 62.54, 44.01, 43.07, 39.11, 34.78, 29.70, 26.40, 14.08. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 443.1602$; Observed: 443.1603.

1-Phenyl-3-(quinolin-2-ylmethyl)pyrrolidine-2,5-dione (5q):

Yield $=89 \%$, white solid; M. P: 123.4-124 ${ }^{\circ}$ C; IR (KBr, cm ${ }^{-1}$): 3084, 2924, 1731, 1708, 1691, 1571, 1498, 1287, 1181, 784, 755; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4$

$\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34$ $(\mathrm{s}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 179.24,176.47,157.42,147.47,136.60,132.57,129.69,129.13$, 129.04, 128.39, 127.56, 126.84, 126.55, 126.28, 121.59, 38.34, 37.23, 34.09. HRMS (ESIMS): m / z Calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 317.1285; Observed: 317.1284.

1-Phenyl-3-(1-(4-phenyl-3-propionylquinolin-2-yl)ethyl)pyrrolidine-2,5-dione (5r):

Yield $=76 \%$, white solid; M. P: 172.1-172.8 ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right)$: 3060, 2927, 2861, 1702, 1572, 1498, 1186, 770, 756; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{dd}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (dd, $J=9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.46$ (m, 3H), $7.46-7.43$ (m, 1H), $7.39-$ $7.35(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H})$, $4.15-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.48$
 $(\mathrm{m}, 1 \mathrm{H}), 2.24-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.59,179.11,177.20,158.49,146.97,144.65,135.06$, 134.68, 132.30, 130.65, 130.17, 129.99, 129.22, 129.04, 128.92, 128.83, 128.40, 128.37, 126.99, 126.60, 126.12, 125.25, 45.17, 38.59, 38.36, 33.05, 20.08, 7.59. HRMS (ESI-MS): m / z Calculated for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 463.2016$; Observed: 463.2027.

3-(1-(3-Acetyl-6-chloro-4-phenylquinolin-2-yl)ethyl)-1-phenylpyrrolidine-2,5-dione (5s):

Yield $=79 \%$, White solid; M. P: 162.3-163 ${ }^{\circ} \mathrm{C}$; IR ($\mathbf{K B r}, \mathbf{c m}^{-1}$):3057, 2973, 2925, 1775, 1705, 1478, 1392, 1184, 1074, 965, 835; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.39-$ $7.35(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=$ $4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.40$
 (m, 1H), $3.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.15,178.95,177.08,158.94,145.33,143.91$, 135.41, 134.32, 133.03, 132.16, 131.11, 130.75, 130.59, 129.81, 129.25, 129.10, 129.03, 128.65, $128.45,126.45,126.09,124.94,45.08,38.59,38.26,32.95,20.01,7.49$. HRMS (ESIMS): m / z Calculated for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 497.1627; Observed: 497.1627.

1-Phenyl-3-(5,6,7,8-tetrahydroquinolin-8-yl)pyrrolidine-2,5-dione (5t):

Yield $=75 \%$, light Yellow solid; M. P: 129.1-130.2 ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right)$: 3010, 2967, 2903, 2852, 1714, 1665, 1598, 1215, 1177, 1094, 880, 760; ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34$ (dd, $J=4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.47-7.43$ (m, 2H), 7.38 (dd, $J=$ $7.6,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, J=7.7,4.6,1.0 \mathrm{~Hz}$, 1 H), 4.06 (ddd, $J=9.7,4.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=18.5,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{dd}, J=18.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.12,176.47,156.44,146.76,136.91,133.18,129.11$, 128.47, 126.53, 121.75, 43.11, 42.51, 33.28, 28.82, 25.63, 22.06. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 307.1441$; Observed: 307.1441.

3-((3-Hydroxyquinoxalin-2-yl)methyl)-1-phenylpyrrolidine-2,5-dione (5u):

Yield $=79 \%$, white solid; M. P: 234.5-234. ${ }^{\circ} \mathrm{C}$; $\mathbf{I R}\left(\mathbf{K B r}, \mathbf{c m}^{-1}\right): 3010,2967,2903,2852$, 1714, 1665, 1598, 1215, 1177, 1094, 880, 760; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 12.41$ ($\mathrm{s}, 1 \mathrm{H}$), $7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.49$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ ($\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (t, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (q, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~m}, 1 \mathrm{H})$,
 2.77 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 179.58,176.79,159.26$, $155.14,133.36,132.29,131.65,130.17,129.30,128.53,127.33,123.65,115.86,37.02,34.43$, 33.03. HRMS (ESI-MS): m/z Calculated for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 334.1186; Observed: 334.1188.

6. Spectral Data

Diethyl 1-(9-methyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3b):

Diethyl 1-(9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3c):

Diethyl 1-(7-Chloro-9-phenyl-2,3-dihydro-1H-cyclopenta[b]quinolin-3-yl)hydrazine-1,2dicarboxylate (3d):

Page 30 of 94

Page 31 of 94

Diethyl 1-(7-chloro-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3e):

Diisopropyl
1-(7-chloro-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-
dicarboxylate (3f)

Diethyl 1-(7-nitro-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3g):

Diethyl 1-(9-chloro-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3h):

Page 36 of 94

Diethyl 1-(6-bromo-9-chloro-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3i):

02-DK-TS-BR-CL-A-DEAD-SELFCDCL3-H-NMR.1.fid T.SHIRISHA

Diethyl 1-(9-chloro-6-nitro-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3j):

Page 39 of 94

Diethyl 1-(9-(methoxycarbonyl)-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3k):

Diisopropyl
1-(9-(methoxycarbonyl)-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2dicarboxylate (3l):

Diethyl 1-(9-((prop-2-yn-1-yloxy)carbonyl)-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2dicarboxylate (3m):

Page 44 of 94

Diisopropyl 1-(9-((prop-2-yn-1-yloxy)carbonyl)-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3n)

Page 45 of 94

Page 46 of 94

Diethyl

dicarboxylate (3o):

Diisopropyl

1-(9-(p-tolylcarbamoyl)-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-

dicarboxylate (3p):

Page 48 of 94

Diethyl 1-(1-oxo-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2-dicarboxylate (3q):

Diethyl

1-(7-chloro-1-oxo-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2dicarboxylate (3r):

Diethyl 1-(9-(ethoxycarbonyl)-1-oxo-1,2,3,4-tetrahydroacridin-4-yl)hydrazine-1,2dicarboxylate (3s):

Diethyl 1-(quinolin-2-ylmethyl)hydrazine-1,2-dicarboxylate (3t):

Page 54 of 94

Page 55 of 94

Diethyl 1－（1－（4－phenyl－3－propionylquinolin－2－yl）ethyl）hydrazine－1，2－dicarboxylate（3u）：
21－DK－TS－5－CL－PH－E－D－DMSO－SELF－H－NMR．1．fid

ఫ甲 \ddagger 号
副気

Diethyl

1-(1-(6-chloro-4-phenyl-3-propionylquinolin-2-yl)ethyl)hydrazine-1,2dicarboxylate (3v):

Diethyl 1-(5,6,7,8-tetrahydroquinolin-8-yl)hydrazine-1,2-dicarboxylate (3w):

Diethyl 1-((3-hydroxyquinoxalin-2-yl)methyl)hydrazine-1,2-dicarboxylate (3x):

Page 60 of 94

Page 61 of 94

1-Phenyl-3-(1,2,3,4-tetrahydroacridin-4-yl)pyrrolidine-2,5-dione (5a):
23-DK-TS-ACR-N-PH-M-CDCL3-SELF-H-NMR.1.fid
SHIRISHA

, Jllıll

3-(9-Methyl-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5b):

1-Phenyl-3-(9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)pyrrolidine-2,5-dione (5c):

3-(7-Chloro-9-phenyl-2,3-dihydro-1H-cyclopenta[b]quinolin-3-yl)-1-phenylpyrrolidine-2,5dione (5d):

3-(7-Chloro-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5e):

tert-Butyl
8-chloro-4-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-10-phenyl-3,4-
dihydrobenzo[b][1,6]naphthyridine-2(1H)-carboxylate (5f):

Page 70 of 94

3-(7-Nitro-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5g):

 1 1 1/1111
 1

3-(9-Chloro-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5h):

3-(6-Bromo-9-chloro-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5i):

Page 74 of 94

3-(9-Chloro-6-nitro-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5j):

31-DK-TS-NO2-CL-A-N-PH-M-SELF-CDC.3-H-NMR.10fidt
T.SHIRISHA
 (

																$\stackrel{H}{-}$		$\xrightarrow[i]{1}$		8				
2.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

 $\begin{array}{lllllllllllllllllllllllllllll}1 \\ 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

Page 76 of 94

Methyl 4-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-1,2,3,4-tetrahydroacridine-9-carboxylate (5k):

Prop-2-yn-1-yl 4-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-1,2,3,4-tetrahydroacridine-9carboxylate (5l)

Page 78 of 94

Benzyl
(5m):

4-(2,5-Dioxo-1-phenylpyrrolidin-3-yl)-N-(p-tolyl)-1,2,3,4-tetrahydroacridine-9carboxamide (5n):

 Counts vs. Mass-to-Charge (m / z)

3-(7-Chloro-1-oxo-9-phenyl-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione

 (5o):

Ethyl 4-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-1-oxo-1,2,3,4-tetrahydroacridine-9-carboxylate (5p):

Page 84 of 94

1-Phenyl-3-(quinolin-2-ylmethyl)pyrrolidine-2,5-dione (5q):

1-Phenyl-3-(1-(4-phenyl-3-propionylquinolin-2-yl)ethyl)pyrrolidine-2,5-dione (5r):

3-(1-(3-Acetyl-6-chloro-4-phenylquinolin-2-yl)ethyl)-1-phenylpyrrolidine-2,5-dione (5s):

 $11|1|$

1-Phenyl-3-(5,6,7,8-tetrahydroquinolin-8-yl)pyrrolidine-2,5-dione (5t):

3-((3-Hydroxyquinoxalin-2-yl)methyl)-1-phenylpyrrolidine-2,5-dione (5u):

-

7. X-ray Crystallography.

X-ray data for the compound was collected at room temperature on a Bruker D8 QUEST instrument with an $\mathrm{I} \mu \mathrm{S}$ Mo microsource $(\lambda=0.7107 \mathrm{~A}$) and a PHOTON-III detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and $\mathrm{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C})$ for methyl H or $1.2 \mathrm{Ueq}(\mathrm{C})$ for other H atoms].

Crystal structure determination of (5i)

Crystal Data for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{ClBr}(M=469.75 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}$ (no. 14), $a=12.9798(5) \AA, b=8.3982(3) \AA, c=18.9108(8) \AA, \beta=104.1125(19)^{\circ}, V=$ 1999.19(14) $\AA^{3}, Z=4, T=294.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=2.212 \mathrm{~mm}^{-1}$, Dcalc $=1.561 \mathrm{~g} / \mathrm{cm}^{3}, 30943$ reflections measured $\left(4.442^{\circ} \leq 2 \Theta \leq 54.998^{\circ}\right), 4574$ unique ($R_{\text {int }}=0.0730, \mathrm{R}_{\text {sigma }}=0.0503$) which were used in all calculations. The final R_{1} was $0.0392(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1040
(all data). CCDC 2294878 deposition number contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

Figure caption: ORTEP diagram of $\mathbf{5 i}$ compound with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
2. Sheldrick G. M. (2015).ActaCrystallogr C71: 3-8.

[^0]: 3-(9-Methyl-1,2,3,4-tetrahydroacridin-4-yl)-1-phenylpyrrolidine-2,5-dione (5b):

