-SUPPLEMENTARY MATERIALS-

Concise Approach to γ-(Het)aryl- and Aminobutyric Acids. Synthesis of vigabatrin

Andrey Yu. Plodukhin ${ }^{1}$, Maksim A. Boichenko ${ }^{1}$, Ivan A. Andreev ${ }^{2,3}$, Elena A. Tarasenko ${ }^{1}$, Kanstantsin V. Anisovich ${ }^{1}$, Nina K. Ratmanova ${ }^{2,3}$, Sergey S. Zhokhov ${ }^{1}$, Igor V. Trushkov ${ }^{2, *}$, Olga A. Ivanova ${ }^{1, *}$
${ }^{1}$ Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
${ }^{2}$ N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia
${ }^{3}$ Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
* Correspondence: iv@kinet.chem.msu.ru (O.A.I.); trush@ioc.ac.ru (I.V.T.); Tel.: +7-916-645-9951 (I.V.T.)

Contents

General Information S2
Synthesis and analytical data for 2-oxopyrrolidine-3-carboxamides 2 S3
Synthesis and analytical data for γ-aryl- γ-aminobutyric acid derivatives 3 S11
Synthesis and analytical data for 5-(4-methylphenyl)pyrrolidin-2-one 5a S17
References S19
Copies of NMR spectra S20
HPLC reports for ($3 R S, 5 S R$)-2a and ($3 S, 5 R$)-2a (freshly prepared solutions) S49
HPLC reports for racemic 3a and for (R)-3a S51
HPLC report for racemic 5a and for (R)-5a S59

General Information

The structures of synthesised compounds were elucidated with the aid of $1 \mathrm{D} \operatorname{NMR}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ and 2D NMR (NOESY, HSQC ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$) spectroscopy. NMR spectra were acquired on Bruker Avance 600, Bruker Avance 500, and Agilent 400-MR spectrometers at room temperature; the chemical shifts δ were measured in ppm with respect to solvent (${ }^{1} \mathrm{H}: \mathrm{CDCl}_{3}, \delta=7.26 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}, \delta=$ $3.35 \mathrm{ppm} ; \mathrm{DMSO}_{\mathrm{d}}, \delta=2.50 \mathrm{ppm} ; \mathrm{D}_{2} \mathrm{O}, \delta=4.79 \mathrm{ppm} ;{ }^{13} \mathrm{C}: \mathrm{CDCl}_{3}, \delta=77.0 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}, \delta=$ $\left.49.9 \mathrm{ppm} ; \mathrm{DMSO}_{\mathrm{d}}, \delta=39.5 \mathrm{ppm}\right)$. Splitting patterns are designated as s , singlet; d, doublet; dd, double doublet; m, multiplet; br., broad. Coupling constants (J) are in Hertz. IR spectra were recorded on Thermo Nicolet IR spectrometer with Fourier transform IR 200. Registration of spectra was carried out at a resolution of $4 \mathrm{~cm}^{-1}$, the number of scans 20 . Samples were placed on the working surface of the internal reflection (ATR) element from ZnSe with the angle of incidence of 45°. High resolution and accurate mass measurements were carried out using a BrukermicrOTOF-Q ${ }^{\text {TM }}$ ESI-TOF (Electrospray Ionisation/Time of Flight). Elemental analyses were performed with Fisons EA-1108 CHNS elemental analyser instrument. Melting points (mp) were measured on Electrothermal 9100 capillary melting point apparatus. Analytical thin layer chromatography (TLC) was carried out with silica gel plates (silica gel 60 , F_{254}, supported on aluminium); visualisation was done by a UV lamp (365 nm). Column chromatography was performed on Macherey-Nagel silica gel (230-400 mesh). Enantiomeric purity of the optically active compound 2a was determined by chiral HPLC with a Hitachi LaChrome Elite-2000 chromatograph using a Daicel Chiralpac AD-H column ($0.46 \times 25 \mathrm{~cm}$) at room temperature. The column was eluted with n-hexane/i-PrOH $=80: 20$ at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$, and peak detection was accomplished using a UV detector at 219 nm . Chiral HPLC analysis for (R)-3a was performed with an Agilent 1200 chromatograph. The separation was accomplished in isocratic mode using a Diasphere-110-Chirasel-E column: Nautilus-R, BioChemMack S\&T (Russia), 5.0 $\mu \mathrm{m}, 4.0 \times 250 \mathrm{~mm}$. The column was eluted with methanol $/ 0.1 \mathrm{M}$ aq. solution of $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=$ 20/80 at a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$, and peak detection was accomplished using a UV detector at 220 nm at $25^{\circ} \mathrm{C}$. All reactions were carried out using freshly distilled and dry solvents. Cyclopropanes 1 were prepared by Knoevenagel/Corey-Chaykovsky reactions sequence from the corresponding aldehydes. ${ }^{51,52}$ Commercial reagents employed in the synthesis were analytical grade, obtained from Aldrich or Alfa Aesar.

Synthesis and analytical data for 2-oxopyrrolidine-3-carboxamides 2

General Procedure 1

To cyclopropane (1 equiv.) in a glass vial with a screw cap was added approx. 6 M methanolic solution of NH_{3} (10 equiv.) so that the volume of the solution does not exceed $1 / 3$ of the vial volume. The vial was tightly closed, the reaction vessel was immediately immersed in an oil bath preheated to $130^{\circ} \mathrm{C}$ and vigorously stirred for $9-18 \mathrm{~h}$ until TLC control showed the complete consumption of the starting material. The reaction mixture was then cooled to room temperature until crystallization occurred. If the powder did not crystallise, MeOH was evaporated by $1 / 3$ and the wall of the vial was rubbed with a spatula. Then the mixture was filtered and rinsed with a minimum amount of cold $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ (2:1) mixture. The resulting solid was dried under a vacuum diaphragm pump for 1 h to give pure 2-oxopyrrolidine-3carboxamide 2.

General Procedure 2

To cyclopropane (1 equiv.) in a glass vial amine solution (10 equiv.) in methanol was added in one portion so that the volume of the solution does not exceed $1 / 3$ of the vial volume. The vial was tightly closed and the reaction vessel was immediately placed in an oil bath preheated to $130{ }^{\circ} \mathrm{C}$ and vigorously stirred for 9 h . The reaction mixture was then cooled to room temperature and concentrated under reduced pressure. The residue was then purified using silica gel column chromatography.
(3RS,5SR)-2-0xo-5-(p-tolyl)pyrrolidine-3-carboxamide (2a) was obtained from dimethyl 2-(p-
 tolyl)cyclopropane-1,1-dicarboxylate 1a ($350 \mathrm{mg}, 1.4 \mathrm{mmol}$) and $\mathrm{NH}_{3}(6 \mathrm{M}$ solution in $\mathrm{MeOH}, 2.4 \mathrm{~mL}, 14 \mathrm{mmol}$) according to the General Procedure 1 but extra portion of $\mathrm{NH}_{3}(6 \mathrm{M}$ solution in $\mathrm{MeOH}, 2.4 \mathrm{~mL}, 14 \mathrm{mmol}$) was added after 9 h and the reaction proceeded for another 9 h . White solid ($246 \mathrm{mg}, 80 \%$), mp $184-185^{\circ} \mathrm{C}$ (NMR was registered immediately after the sample preparation).
${ }^{1} \mathrm{H}$ NMR (CD $3 \mathrm{OD}, 600 \mathrm{MHz}$): $\delta=7.26$ (d, $\left.{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right), 7.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right), 4.69-$ 4.66 (m, 1H, CH), 3.55-3.52 (m, 1H, CH), 2.71-2.68 (m, 1H, CH 2), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.24-2.23(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$). Signals of NH -groups were not observed.
${ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{OD}, 150 \mathrm{MHz}$): $\delta=177.5$ (CO), 174.8 (CO), 141.2 (C), 139.7 (C), 131.3 ($2 \times \mathrm{CH}$), 128.2 $(2 \times \mathrm{CH}), 58.4(\mathrm{CH}), 36.7(\mathrm{CH}), 36.6\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{3}\right)$.

IR (KBr): 3385, 3186, 3026, 2920, 2864, 1668, 1614, 1515, 1456, 1428, 1375, 1306, 1281, 1273, 1221, 1184, 1113, 1090, 1043, 1021, $1011 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $\mathrm{m} / \mathrm{z}=219.1135[\mathrm{M}+\mathrm{H}]^{+}\left(219.1128\right.$ calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right)$.
(3S,5R)-2-Oxo-5-(p-tolyl)pyrrolidine-3-carboxamide (($3 S, 5 R$)-2a) was obtained from dimethyl (S)-2-(p-tolyl)cyclopropane-1,1-dicarboxylate (S)-1a ${ }^{53}$ ($150 \mathrm{mg}, 0.6 \mathrm{mmol}$) and $\mathrm{NH}_{3}(6 \mathrm{M}$ solution in $\mathrm{MeOH}, 1 \mathrm{~mL}, 6 \mathrm{mmol})$ according to the General Procedure 1 but extra portion of $\mathrm{NH}_{3}(6 \mathrm{M}$ solution in $\mathrm{MeOH}, 1 \mathrm{~mL}, 6$ mmol) was added after 9 h and the reaction proceeded for another 9 h . White solid (92 mg , 70%), m.p. $184-185{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{21}+17.1$ (c 0.105 in MeOH). NMR spectra coincide with those for rac-2a.
(3RS,5SR)-2-Oxo-5-phenylpyrrolidine-3-carboxamide (2b) was obtained from dimethyl 2-
 phenylcyclopropane-1,1-dicarboxylate $\mathbf{1 b}$ ($300 \mathrm{mg}, 1.3 \mathrm{mmol}$) and $\mathrm{NH}_{3}(6 \mathrm{M}$ methanolic solution, $2.2 \mathrm{~mL}, 13.2 \mathrm{mmol}$) according to the General Procedure 1 as a mixture of two diastereomers with dr 90:10 [(3RS,5SR)-2b:(3RS,5RS)2b, A:B]. White solid ($186 \mathrm{mg}, 71 \%$), m.p. $191-192^{\circ} \mathrm{C}$. NMR spectra of the major isomer are given.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $6,400 \mathrm{MHz}$): $\delta=8.34$ (br.s, $1 \mathrm{H}, \mathrm{NH}$), 7.53 (br.s, $1 \mathrm{H}, \mathrm{NH}$), $7.39-7.25$ (m, $5 \mathrm{H}, \mathrm{Ar}$), 7.16 (br.s, $1 \mathrm{H}, \mathrm{NH}$), 4.60 (dd, ${ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz},^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.34\left(\mathrm{dd},{ }^{3} \mathrm{~J}=10.5 \mathrm{~Hz},^{3} \mathrm{~J}=8.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}), 2.60-2.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.11-2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 100 \mathrm{MHz}$): $\delta=174.1$ (CO), 170.7 (CO), 143.2 (C), 128.6 ($2 \times \mathrm{CH}$), 127.5 (CH), $126.2(2 \times \mathrm{CH}), 55.2(\mathrm{CH}), 48.4(\mathrm{CH}), 34.1\left(\mathrm{CH}_{2}\right)$.

IR (KBr): 3416, 3367, 3258, 3183, 3066, 3035, 2957, 2912, 2859, 2799, 1694, 1629, 1497, 1456, $1432,1397,1364,1330,1304,1285,1268,1221,1204,1150,1094,1077,1031 \mathrm{~cm}^{-1}$. HRMS ESI-TOF: $m / z=205.0981[M+H]^{+}\left(205.0972\right.$ calcd for $\left.\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right)$.
(3RS,5SR)-5-(4-Bromophenyl)-2-oxopyrrolidine-3-carboxamide (2c) was obtained from
 dimethyl 2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate 1c ($737 \mathrm{mg}, 2.4 \mathrm{mmol}$) and $\mathrm{NH}_{3}(6 \mathrm{M}$ solution in $\mathrm{MeOH}, 4 \mathrm{~mL}, 24$ mmol) according to the General Procedure 1; white solid (470 mg (71\%), m.p. 202-203 ${ }^{\circ} \mathrm{C}$. NMR spectra, recorded 1 h after the
sample preparation, showed the presence of $c a .10 \%$ of the second diastereomer. NMR spectra of the major isomer are given.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $6,500 \mathrm{MHz}$): $\delta=8.35$ (br.s, $1 \mathrm{H}, \mathrm{NH}$), 7.57 (d, $\left.{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right), 7.51$ (br.s, 1 H , NH), 7.30 (d, $\left.{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right), 7.14(1 \mathrm{H}, \mathrm{NH}), 4.61\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.34$ ($\mathrm{dd},{ }^{3} \mathrm{~J}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $2.58\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=12.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), 2.02 (ddd, ${ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR (DMSO-d $6,125 \mathrm{MHz}$): $\delta=174.0$ (CO), 170.4 (CO), 142.6 (C), 131.3 ($2 \times \mathrm{CH}$), 128.3 $(2 \times \mathrm{CH}), 120.3(\mathrm{C}), 54.4(\mathrm{CH}), 48.2(\mathrm{CH}), 33.7\left(\mathrm{CH}_{2}\right)$.

IR (KBr): 3451, 3328, 3196, 3080, 2991, 2955, 2898, 1696, 1604, 1488, 1451, 1412, 1364, 1337, $1300,1277,1205,1187,1090,1070,1009 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $\mathrm{m} / \mathrm{z}=283.0067[\mathrm{M}+\mathrm{H}]^{+}\left(283.0077\right.$ calcd for $\left.\mathrm{C}_{11} \mathrm{H}_{12}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}{ }^{+}\right)$.
(3RS,5SR)-5-(3,4-Dimethoxyphenyl)-2-oxopyrrolidine-3-carboxamide (2d) was obtained from White solid (213 mg, 79\%), m.p. 209-210 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta=8.27$ (br.s, $1 \mathrm{H}, \mathrm{NH}$), 7.50 (br.s, $1 \mathrm{H}, \mathrm{NH}$), 7.13 (br.s, $1 \mathrm{H}, \mathrm{NH}$), $6.95\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 6.84\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right)$, $4.54\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.35-3.29(\mathrm{~m}$, 1H, CH), 2.55-2.49 (m, 1H, CH2), 2.09-2.01 (m, 1H, CH2).
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 100 \mathrm{MHz}$): $\delta=173.9$ (CO), 170.7 (CO), 148.8 (C), 148.2 (C), 135.5 (C), 118.2 $(\mathrm{CH}), 111.8(\mathrm{CH}), 109.9(\mathrm{CH}), 55.6\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.5\left(\mathrm{CH}_{3} \mathrm{O}\right), 54.9(\mathrm{CH}), 48.3(\mathrm{CH}), 34.0\left(\mathrm{CH}_{2}\right)$.

IR (KBr): 3385, 3206, 2996, 2949, 2914, 2846, 1682, 1524, 1457, 1384, 1293, 1260, 1181, 1114, 1029, 851, $817 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=265.1185[\mathrm{M}+\mathrm{H}]^{+}\left(265.1183\right.$ calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}\right)$.

When spectra of $\mathbf{2 d}$ were recorded 24 hours after preparation of the solution of $\mathbf{2 d}$ in DMSO- d_{6}, they demonstrated the formation of an equilibrium mixture of diastereomers ($3 R S, 5 S R$)-2d:(3RS,5RS)-2d in a ratio of 77:23. This process is well known for the related CH acids and occurs via facile enolisation of $\mathrm{CH}\left(\mathrm{CONH}_{2}\right) \mathrm{CONH}$-fragment.

${ }^{1} \mathrm{H}$ NMR (DMSO-d $6,400 \mathrm{MHz}$, after 24 h): $\delta=8.30$ (br.s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{B}$), 8.29 (br.s, 1H, NH, A), 7.52 (br.s, 1H, NH, A), 7.47 (br.s, $1 \mathrm{H}, \mathrm{NH}, \mathrm{B}$), 7.15 (br.s, $1 \mathrm{H}+1 \mathrm{H}, \mathrm{NH}, \mathrm{A}, \mathrm{B}$), 6.96 (d, ${ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$, A), $6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}+1 \mathrm{H}, \mathrm{Ar}, \mathrm{A}, \mathrm{B}\right), 6.88\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{B}\right), 6.83\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=\right.$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{A}), 6.79\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},^{4} \mathrm{~J}=1.9,1 \mathrm{H}, \mathrm{Ar}, \mathrm{B}\right), 4.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}, \mathrm{B}), 4.54\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{A}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}, \mathrm{B}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}, \mathrm{A}\right)$, 3.73 (s, 3H, CH3O, A), 3.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}, \mathrm{B}$), 3.37-3.25 (m, 1H+1H, CH, A, B), 2.69-2.61 (m, 1H, $\left.\mathrm{CH}_{2}, \mathbf{B}\right), 2.57-2.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{A}\right), 2.10-2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{A}\right), 1.99-1.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{B}\right)$. ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$, after 24 h): $\delta=174.2$ (CO, B), 174.0 (CO, A), 171.1 (CO, B), 170.8 (CO, A), 148.9 (C, B), 148.8 (C, A), 148.2 (C, A), 148.1 (C, B), 136.0 (C, B), 135.5 (C, A), 118.2 (CH, A), 117.6 (CH, B), 111.8 (CH, B), 111.7 (CH, A), 109.9 (CH, A), 109.7 (CH, B), 55.6 ($2 \times \mathrm{CH}_{3} \mathrm{O}, \mathrm{A}$), $55.49\left(\mathrm{CH}_{3} \mathrm{O}, \mathbf{B}\right), 55.47\left(\mathrm{CH}_{3} \mathrm{O}, \mathrm{B}\right), 55.4(\mathrm{CH}, \mathbf{B}), 54.9(\mathrm{CH}, \mathrm{A}), 48.4(\mathrm{CH}, \mathrm{A}), 47.6(\mathrm{CH}, \mathbf{B}), 34.3\left(\mathrm{CH}_{2}\right.$, B), $34.0\left(\mathrm{CH}_{2}, \mathrm{~A}\right)$.

Scale-up (6.8 mmol): 2d was obtained from dimethyl 2-(3,4-dimethoxyphenyl)cyclopropane-1,1-dicarboxylate 1d ($2.0 \mathrm{~g}, 6.8 \mathrm{mmol}$) and NH_{3} (6 M methanolic solution, $11.3 \mathrm{~mL}, 68 \mathrm{mmol}$) according to the General Procedure 1. White solid (1.3 g, 72\%), m.p. 209-210 ${ }^{\circ} \mathrm{C}$.
(3RS,5SR)- and (3RS,5RS)-2-Oxo-5-(pyridin-3-yl)pyrrolidine-3-carboxamide (2e) was obtained
 from dimethyl 2-(pyridin-3-yl)cyclopropane-1,1dicarboxylate $\mathbf{1 e}(115 \mathrm{mg}, 0.49 \mathrm{mmol}), \mathrm{NH}_{3}(6 \mathrm{M}$ solution in $\mathrm{MeOH}, 0.82 \mathrm{~mL}, 4.9 \mathrm{mmol}$) according to the General Procedure 2, reaction time 8.5 h. Product was isolated by silica gel column chromatography as a mixture of diastereomers, ($3 R S, 5 S R$)-2e:(3RS,5RS)-2e, A:B with $d r=60: 40$. Yellowish oil ($72 \mathrm{mg}, 72 \%$); $\mathrm{R}_{f}=0.23$ ($\mathrm{CHCl}_{3}:$ methanol; 5:1).
${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 400 \mathrm{MHz}$): $\delta=8.58-8.53(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}, \mathrm{Ar}, \mathbf{A}, \mathbf{B}), 8.51-8.47$ (m, $1 \mathrm{H}+1 \mathrm{H}, \mathrm{Ar}, \mathbf{A}, \mathbf{B}$), 7.96-7.92 (m, 1H, Ar, A), 7.87-7.82 (m, 1H, Ar, B), 7.50-7.44 (m, 1H+1H, Ar, A, B), $4.97\left(d d,{ }^{3}\right)=$ $\left.8.2 \mathrm{~Hz} \mathrm{H}^{3} \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{B}\right), 4.85-4.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{A}), 3.63-3.52(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}, \mathrm{CH}, \mathrm{A}, \mathrm{B}$, exchange for deuterium atoms), $2.98-2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~B}\right), 2.80\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.9 \mathrm{~Hz},^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$,
$\left.\mathrm{CH}_{2}, \mathbf{A}\right), 2.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.9 \mathrm{~Hz},^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{A}\right), 2.22-2.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{B}\right)$. Signals of NHgroups were not observed.
${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CD} 3$ OD, 100 MHz$): \delta=175.1$ (CO, B), 174.9 (CO, A), 172.0 (CO, B), 171.9 (CO, A), 147.9 (CH, A), 147.8 (CH, B), 146.8 (CH, A), 146.4 (CH, B), 138.7 (C, B), 138.3 (C, A), 134.5 (CH, A), 134.1 (CH, B), 123.8 (CH+CH, A, B), 77.7 (CH+CH, A, B), $54.0(C H, B), 53.4(C H, A), 33.28\left(\mathrm{CH}_{2}\right.$, B), $33.25\left(\mathrm{CH}_{2}, \mathrm{~A}\right)$.

IR (film): 3373, 2956, 2929, 2396, 2351, 1959, 1935, 1709, 1662, 1610, 1569, 1552, 1534, 1466, $1435,1382,1273,1192,1140,1092,1047,1028,1006 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=206.0920[M+H]^{+}\left(206.0924\right.$ calcd for $\left.\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\right)$.
(3RS,5SR)- and (3RS,5RS)-2-Oxo-5-vinylpyrrolidine-3-carboxamide (2f) was obtained from
 dimethyl 2 -vinylcyclopropane-1,1-dicarboxylate 1 f ($500 \mathrm{mg}, 2.7$ $\mathrm{mmol}), \mathrm{NH}_{3}$ (6 M solution in $\mathrm{MeOH}, 4.5 \mathrm{~mL}, 27 \mathrm{mmol}$) according to the General Procedure 1. Product was isolated as a mixture of diastereomers (3RS,5SR)-2f:(3RS,5RS)-2f, A:B with dr = 59:41 Yield: 290 mg (69\%); white solid, mp 199-200 ${ }^{\circ} \mathrm{C}$ (lit. $215{ }^{\circ} \mathrm{C}^{54} ; 192-194{ }^{\circ} \mathrm{C}^{55}$).
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 500 \mathrm{MHz}$): $\delta=8.20-8.07$ (br.s, $1 \mathrm{H}+1 \mathrm{H}, \mathrm{NH}, \mathrm{A}, \mathbf{B}$), $7.53-7.43$ (br.s, $1 \mathrm{H}+1 \mathrm{H}$, NH, A, B), 7.12-7.04 (br.s, 1H+1H, NH, A, B), 5.85-5.70 (m, 1H+1H, =CH, A, B), 5.19 (d, ${ }^{3}$) = $\left.17.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}, \mathbf{A}\right), 5.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}, \mathbf{B}\right), 5.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}+1 \mathrm{H},=\mathrm{CH}_{2}\right.$, A, B), 4.10-4.06 (m, 1H, CH, B), 4.01-3.95 (m, 1H, CH, A), $3.20\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}, \mathrm{A}), 3.14\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{B}\right), 2.42\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=12.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=\right.$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{B}$), $2.30\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=12.7 \mathrm{~Hz},^{3} \mathrm{~J}=8.9 \mathrm{~Hz},^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~A}\right), 1.92\left(\mathrm{ddd}^{2} \mathrm{~J}=\right.$ $\left.12.7 \mathrm{~Hz},{ }^{3} J=9.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~A}\right), 1.83\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=12.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2}, \mathbf{B}$).
${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right): \delta=173.8$ (CO, B), 173.7 (CO, A), 170.8 (CO, B), 170.4 (CO, A), 139.9 (=CH, B), 139.7 (=CH, A), 115.3 (=CH2, A), 114.5 (=CH2, B), 54.2 (CH, A), 54.1 (CH, B), 47.8 (CH, A), $46.8(\mathrm{CH}, \mathbf{B}), 30.75\left(\mathrm{CH}_{2}, \mathrm{~A}\right), 30.72\left(\mathrm{CH}_{2}, \mathbf{B}\right)$.

IR (KBr): 3402, 3201, 3086, 2902, 2777, 1680, 1618, 1460, 1425, 1371, 1319, 1271, $933 \mathrm{~cm}^{-1}$.
HRMS ESI-TOF: $m / z=155.0812[\mathrm{M}+\mathrm{H}]^{+}\left(155.0815\right.$ calcd for $\left.\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right)$.
(3RS,5SR)- and (3RS,5RS)-N,1-Dimethyl-2-oxo-5-phenylpyrrolidine-3-carboxamide (2g) was

obtained from dimethyl 2- phenylcyclopropane-1,1dicarboxylate 1b ($364 \mathrm{mg}, 1.56 \mathrm{mmol}$), methylamine (9.81 M solution in $\mathrm{MeOH}, 1.6 \mathrm{~mL}, 15.6 \mathrm{mmol}$) according to the General Procedure 2. The ratio of diastereomers ($d r=$ 53:47, (3RS,5SR)-2g:(3RS,5RS)-2g, A:B) was determined from the ${ }^{1} \mathrm{H}$ NMR spectra of the crude reaction mixture. Yield: 299 mg (83\%). First fraction (B prevails) - beige paste, second fraction (A prevails) - white solid, mp $119-120^{\circ} \mathrm{C}, \mathrm{R}_{f}(\mathbf{A})=0.40 ; \mathrm{R}_{f}(\mathbf{B})=0.52$ (ethyl acetate:methanol; 10:1).

For ($3 R S, 5 S R$)-2g-enriched fraction:
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$) for ($3 R \mathrm{RS}, 5 \mathrm{SR}$)-2g: $\delta=7.72$ (br.s, $1 \mathrm{H}, \mathrm{NH}$), 7.35-7.30 (m, 3H, Ar), 7.20$7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 4.39\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.33\left(\mathrm{dd},{ }^{3} \mathrm{~J}=11.0 \mathrm{~Hz},^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH), $2.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NH}\right.$), 2.72-2.68 (m, 1H, CH 2), $2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.36-2.31(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$) for (3RS,5SR)-2g: $\delta=172.6$ (CO), 168.3 (CO), 139.5 (C, Ar), 128.8 $(2 \times \mathrm{CH}, \mathrm{Ar}), 128.3(\mathrm{CH}, \mathrm{Ar}), 126.8(2 \times \mathrm{CH}, \mathrm{Ar}), 62.5(\mathrm{CHPh}), 46.5(\mathrm{CH}), 30.9\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3} \mathrm{~N}\right)$, $26.0\left(\mathrm{CH}_{3} \mathrm{NH}\right)$.

IR (KBr) 3285, 3099, 2973, 2936, 2882, 1662, 1570, 1480, 1460, 1396, 1374, 1284, 1269, 1246, $1159,1110 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=233.1287[M+H]^{+}\left(233.1285\right.$ calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right)$.
For (3RS,5RS)-2g-enriched fraction:
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ for ($3 R \mathrm{RS}, 5 \mathrm{RS}$)-2g: $\delta=7.45$ (br.s, $1 \mathrm{H}, \mathrm{NH}$), 7.29-7.26 (m, 3H, Ar), 7.13$7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 4.55\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.41\left(\mathrm{dd},{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH), 2.95 (ddd, ${ }^{2} \mathrm{~J}=13.5 \mathrm{~Hz},^{3} \mathrm{~J}=8.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NH}\right.$), $2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.08\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=13.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$) for ($3 R \mathrm{~S}, 5 \mathrm{RS}$)-2g: $\delta=172.6$ (CON), 168.1 (CON), 140.2 (C, Ar), 129.0 $(2 \times \mathrm{CH}, \mathrm{Ar}), 128.0(\mathrm{CH}, \mathrm{Ar}), 126.0(2 \times \mathrm{CH}, \mathrm{Ar}), 62.7(\mathrm{CHPh}), 46.1(\mathrm{CH}), 30.7\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3} \mathrm{~N}\right)$, $26.1\left(\mathrm{CH}_{3} \mathrm{NH}\right)$.

IR (Nujol, cm^{-1}): 3480, 3319, 2945, 1684, 1668, 1553, 1456, 1400, 1362, 1282, 1260, $1110 \mathrm{~cm}^{-1}$. HRMS ESI-TOF: $m / z=233.1288[M+H]^{+}\left(233.1285\right.$ calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right)$.
(3RS,5SR)- and (3RS,5RS)-N,1-Dimethyl-2-oxo-5-(pyridin-3-yl)pyrrolidine-3-carboxamide (2h)
 was obtained from dimethyl 2-(pyridin-3-yl)cyclopropane-1,1-dicarboxylate $\mathbf{1 e}$ ($300 \mathrm{mg}, 1.3 \mathrm{mmol}$), methylamine (9.81 M solution in $\mathrm{MeOH}, 1.3 \mathrm{~mL}, 13$ mmol) according to the General Procedure 2. Product was isolated by silica gel column chromatography as a mixture of diastereomers (3RS,5SR)-2h:(3RS,5RS)-2h, A:B with $d r=53: 47$.

Yield $166 \mathrm{mg}(56 \%)$, colorless oil. $\mathrm{R}_{f}(\mathbf{A})=0.56 ; \mathrm{R}_{f}(\mathbf{B})=0.51\left(\mathrm{CHCl}_{3}:\right.$ methanol; 8:1).
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) for (3RS,5SR)-2h: $\delta=7.59$ (br.s, 1H, NH), 7.56-7.52 (m, 1H, Ar), 7.457.41 (m, 1H, Ar), 7.29-7.27 (m, 1H, Ar), 7.26-7.24 (m, 1H, Ar), $4.43\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}$), $3.34\left(\mathrm{dd},{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 2.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NH}\right.$), $2.69\left(\mathrm{ddd},{ }^{2} \mathrm{~J}\right.$ $=13.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.33\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=13.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.1\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ for (3RS,5SR)-2h: $\delta=172.5$ (CO), 167.9 (CO), 149.9 (CH), 148.7 (CH), 135.2 (C), 134.2 (CH), $124.0(\mathrm{CH}), 60.0(\mathrm{CH}), 46.6(\mathrm{CH}), 30.3\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3} \mathrm{~N}\right), 26.2\left(\mathrm{CH}_{3} \mathrm{~N}\right)$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) for ($3 R \mathrm{RS}, 5 \mathrm{RS}$)-2h: $\delta=8.54-8.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 8.45-8.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, 7.40 (br.s, $1 \mathrm{H}, \mathrm{NH}$), 4.58 (dd, ${ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz},^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.40\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.9 \mathrm{~Hz},^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH), 2.97 (ddd, ${ }^{2} \mathrm{~J}=13.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.76 (d, ${ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NH}$), $2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.03$ (ddd, $\left.{ }^{2} \mathrm{~J}=13.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$.
$\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,100 \mathrm{MHz}\right)$ for (3RS,5RS)-2h: $\delta=172.5$ (CO), 167.7 (CO), 149.7 (CH), 148.1 (CH), 138.6 (CH), 135.7 (C), 123.8 (CH), $60.5(\mathrm{CH}), 46.1(\mathrm{CH}), 30.5\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3} \mathrm{~N}\right), 26.1\left(\mathrm{CH}_{3} \mathrm{~N}\right)$. IR (film): 3508, 3302, 3089, 2945, 2807, 2404, 2236, 1940, 1701, 1687, 1659, 1643, 1576, 1561, $1546,1478,1435,1426,1399,1364,1321,1306,1259,1161,1109,1043,1027 \mathrm{~cm}^{-1}$. HRMS ESI-TOF: $m / z=234.1244[M+H]^{+}\left(234.1237\right.$ calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\right)$.
N, N '-Dimethyl-2-(pyridin-3-yl)cyclopropane-1,1-dicarboxamide (4a) was obtained as a side
 product in the reaction of dimethyl 2-(pyridin-3-yl)cyclopropane-1,1dicarboxylate $1 \mathbf{e}(300 \mathrm{mg}, 1.3 \mathrm{mmol})$ with methylamine $(9.81 \mathrm{M}$ solution in $\mathrm{MeOH}, 1.3 \mathrm{~mL}, 13 \mathrm{mmol}$) according to the General Procedure 2. Compound 4a was isolated using silica gel column chromatography. White foam ($87 \mathrm{mg}, 29 \%$), m.p. 188$189^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.42\left(\mathrm{CHCl}_{3}: m\right.$ ethanol; 8:1).
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta=8.27-8.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.44\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{Ar}), 7.11\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 4.00(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.59(\mathrm{dd}$, $\left.{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.94-1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$): $\delta=169.6$ (CO), 167.8 (CO), 148.8 (CH), 147.3 (CH), 136.4 $(\mathrm{CH}), 131.8(\mathrm{C}), 123.1(\mathrm{CH}), 37.8(\mathrm{C}), 29.2(\mathrm{CH}), 26.3\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{2}\right)$.

IR (KBr): 3435, 3309, 3213, 3046, 3000, 2947, 2897, 2463, 2357, 2308, 1658, 1638, 1580, 1543, $1479,1445,1403,1351,1291,1244,1225,1187,1149,1134,1108,1073,1034 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=234.1240[M+H]^{+}\left(234.1237\right.$ calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\right)$.

Synthesis and analytical data for γ-aryl- γ-aminobutyric acid derivatives 3

4-Amino-4-(p-tolyl)butyric acid hydrochloride (3a•HCl)

Hydrochloric acid (6 M aq. solution, $4.8 \mathrm{~mL}, 28 \mathrm{mmol}$) was added to 2-oxo-5-(p-tolyl)pyrrolidine-3-carboxamide 2a (305 mg, 1.4 mmol); the resulting solution was refluxed for 6 h . Then the reaction mixture was washed with ethyl acetate $(2 \times 5 \mathrm{~mL})$ and concentrated to dryness. The residue was dissolved in 1 mL of water and flushed through a small pad of silica using EtOAc/i-PrOH/ $\mathrm{H}_{2} \mathrm{O}$ (3:3:1) as eluent. Light yellow solid (295 mg, 92\%), m.p. 202-204 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 600 \mathrm{MHz}\right): \delta=7.33-7.29(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 4.32\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)$, $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.34-2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.24-2.15\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right)$. Signals of $\mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{NH}_{3}-$ groups were not observed.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): \delta=176.6\left(\mathrm{CO}_{2} \mathrm{H}\right), 141.5(\mathrm{C}), 135.3(\mathrm{C}), 131.9(2 \times \mathrm{CH}), 129.4(2 \times \mathrm{CH})$, $56.7(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{3}\right)$.

IR (KBr): 3112, $3015,2918,1731,1599,1492,1444,1401,1273,1214,1168,1124,1088,1054$, $1020 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=194.1184[\mathrm{M}]^{+}\left(194.1176\right.$ calcd for $\left.\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}\right)$.

General Procedure 3

To cyclopropane (1 equiv.) in a glass vial with a screw cap was added ca. 6 M methanolic solution of NH_{3} (10 equiv.) so that the volume of the solution does not exceed $1 / 3$ of the vial volume. The vial was tightly closed, the reaction vessel was immediately immersed in an oil bath preheated to $130^{\circ} \mathrm{C}$ and vigorously stirred for 9 h . The reaction mixture was then cooled to room temperature, and MeOH was evaporated. The resulting solid was dried under a vacuum diaphragm pump for 1 h and transferred to a round bottom flask. HCl (6 M aq. solution, 20 equiv.) was then added, and the mixture was refluxed for $6-8 \mathrm{~h}$. The acid solution was removed under reduced pressure. The residue was purified by repeated addition of benzene and subsequent evaporation on a rotary evaporator while heating the bath above $70{ }^{\circ} \mathrm{C}$ (method A) or by column chromatography on silica gel, eluent: EtOAc/i-PrOH/ $\mathrm{H}_{2} \mathrm{O}, 3: 3: 1$ (method B).

4-Amino-4-(p-tolyl)butyric acid hydrochloride (3a.HCl) was synthesised from dimethyl 2-(p-
 tolyl)cyclopropane dicarboxylate 1a ($350 \mathrm{mg}, 1.4 \mathrm{mmol}$) and $\mathrm{NH}_{3}(6 \mathrm{M}$ methanolic solution, $2.4 \mathrm{~mL}, 14.0 \mathrm{mmol}$) according to the General Procedure 3, using heating under reflux with $\mathrm{HCl}(6 \mathrm{M}$ aq. solution, 4.8 $\mathrm{mL}, 28 \mathrm{mmol}$) for 6 h and purification by method A. Light yellow solid ($295 \mathrm{mg}, 91 \%$), m.p. 202$204{ }^{\circ} \mathrm{C}$. NMR spectra coincide with those for sample obtained from 2a.
(R)-4-Amino-4-(p-tolyl)butyric acid hydrochloride ((R)-3a•HCl) was synthesised from dimethyl

(S)-2-(p-tolyl)cyclopropane-1,1-dicarboxylate (S)-1a ${ }^{53}$ ($105 \mathrm{mg}, 0.42 \mathrm{mmol}$) and NH_{3} (6 M solution in $\mathrm{MeOH}, 705 \mu \mathrm{~L}, 4.2 \mathrm{mmol}$) according to the General Procedure 3, using heating under reflux with HCl (6 M aq. solution, $1.4 \mathrm{~mL}, 8.4 \mathrm{mmol}$) for 6 h and purification by method \mathbf{A}. Light yellow solid (85 mg , $88 \%)$, m.p. $202-204^{\circ} \mathrm{C}$. NMR spectra coincide with those for racemic $\mathbf{3 a} \cdot \mathrm{HCl}$.

4-Amino-4-phenylbutyric acid hydrochloride ($\mathbf{3 b} \cdot \mathbf{H C l}$) was synthesised from dimethyl 2-
 phenylcyclopropane-1,1-dicarboxylate $\mathbf{1 b}$ ($613 \mathrm{mg}, 2.6 \mathrm{mmol}$), $\mathrm{NH}_{3}(6 \mathrm{M}$ methanolic solution, $4 \mathrm{~mL}, 24.0 \mathrm{mmol}$) and $\mathrm{HCl}(6 \mathrm{M}$ aq. solution, $4.2 \mathrm{~mL}, 25$ mmol) according to the General Procedure 3 (purification by method A). Yellowish solid ($480 \mathrm{mg}, 85 \%$). NMR data are consistent with the reported ones. ${ }^{56-59}$
${ }^{1} \mathrm{H}$ NMR (DMSO-d $6,400 \mathrm{MHz}$): $\delta=8.80$ (br.s, $3 \mathrm{H}, \mathrm{NH}_{3}$), $7.54-7.49$ (m, 2H, Ar), 7.43-7.34 (m, 3H, Ar), 4.21 (br.s, $1 \mathrm{H}, \mathrm{CH}$), 2.31-2.11 (m, 2H, CH2), 2.09-1.95 (m, 2H, CH 2). Signal of $\mathrm{CO}_{2} \mathrm{H}$-group was not observed.
${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right): \delta=173.4$ ($\mathrm{CO}_{2} \mathrm{H}$), 137.4 (C), $128.8(\mathrm{CH}), 128.6$ ($2 \times \mathrm{CH}$), 127.6 $(2 \times \mathrm{CH}), 53.8(\mathrm{CH}), 30.0\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right)$.

HRMS ESI-TOF: $m / z=180.1025[\mathrm{M}]^{+}\left(180.1019\right.$ calcd for $\left.\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}\right)$.

4-Amino-4-(3,4-dimethoxyphenyl)butyric acid hydrochloride (3c.HCl)

To dimethyl 2-(3,4-dimethoxyphenyl)cyclopropane-1,1-dicarboxylate 1d ($197 \mathrm{mg}, 0.67 \mathrm{mmol}$) in a glass vial with screw cap was added ca. 6 M methanolic solution of $\mathrm{NH}_{3}(1.1 \mathrm{~mL}, 6.7 \mathrm{mmol})$ so that the volume of the solution does not exceed $1 / 3$ of the vial volume. The vial was tightly closed, the reaction vessel was immediately immersed in an oil bath preheated to $130^{\circ} \mathrm{C}$ and vigorously stirred for 9
h. The reaction mixture was then cooled to room temperature, and volatiles were evaporated. The residue was dried under a vacuum diaphragm pump for 1 h and transferred to a round bottom flask. Hydrochloric acid (3 M solution, $5.6 \mathrm{~mL}, 16.6 \mathrm{mmol}$) was added; the resulting solution was refluxed for 4 h , cooled to room temperature, washed with ethyl acetate (2×5 mL) and concentrated to dryness. The residue was dissolved in 1 mL of water and flushed through a plug of silica using EtOAc/i-PrOH/ $\mathrm{H}_{2} \mathrm{O}(3: 3: 1)$ as eluent. Yellow solid ($172 \mathrm{mg}, 93 \%$), dec. p. $215{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $6,400 \mathrm{MHz}$): $\delta=7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.96(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 4.15-4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.77$ (s, 3H, CH3O), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 2.23-2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.05-1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. Signals of CO_{2} and NH_{3} groups were not observed.
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 150 \mathrm{MHz}$): $\delta=173.4\left(\mathrm{CO}_{2} \mathrm{H}\right), 148.9(2 \times \mathrm{C}), 129.5(\mathrm{C}), 120.1(\mathrm{CH}), 111.5(\mathrm{CH})$, $111.1(\mathrm{CH}), 55.7\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.5\left(\mathrm{CH}_{3} \mathrm{O}\right), 53.7(\mathrm{CH}), 30.1\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right)$.

IR (KBr): 3115, 2993, 2933, 2908, 2836, 2600, 1727, 1607, 1595, 1517, 1467, 1445, 1403, 1386, $1337,1264,1243,1211,1191,1165,1142,1096,1023 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=240.1236[M]^{+}\left(240.1230\right.$ calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}\right)$.

4-Amino-4-(o-tolyl)butyric acid hydrochloride (3d•HCl) was synthesised from dimethyl 2-(o-
 tolyl)cyclopropane-1,1-dicarboxylate $\mathbf{1 g}$ ($425 \mathrm{mg}, 1.7 \mathrm{mmol}$), $\mathrm{NH}_{3}(6 \mathrm{M}$ methanolic solution, $3 \mathrm{~mL}, 18.0 \mathrm{mmol}$) and $\mathrm{HCl}(6 \mathrm{M}$ aq. solution, $4.0 \mathrm{~mL}, 24$ $\mathrm{mmol})$ according to the General Procedure 3 (purification by method A). White solid ($288 \mathrm{mg}, 89 \%$), m.p. 228-229 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (CD $3 \mathrm{OD}, 400 \mathrm{MHz}$): $\delta=7.53-7.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.38-7.26(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 4.74\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.9\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.32-2.17\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right)$. Signals of $\mathrm{CO}_{2} \mathrm{H}$ and NH_{3}-groups were not observed.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): \delta=174.0\left(\mathrm{CO}_{2} \mathrm{H}\right), 136.2$ (C), 134.2 (C), 130.5 (CH), 128.4 (CH), 126.5 $(\mathrm{CH}), 124.8(\mathrm{CH}), 49.3(\mathrm{CH}), 28.9\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 17.7\left(\mathrm{CH}_{3}\right)$.

IR (KBr): 3390, 2960, 2776, 2509, 2343, 2202, 2155, 1712, 1606, 1584, 1496, 1415, 1402, 1358, 1301, 1193, 1180, 1163, 1061, $1027 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=194.1182[M]^{+}\left(194.1176\right.$ calcd for $\left.\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}\right)$.

4-Amino-4-(4-bromophenyl)butyric acid hydrochloride (3e.HCl) was synthesised from dimethyl
 2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate 1c (737 mg, 2.4 mmol), $\mathrm{NH}_{3}(6 \mathrm{M}$ methanolic solution, $4 \mathrm{~mL}, 24.0 \mathrm{mmol}$) and $\mathrm{HCl}(6 \mathrm{M}$ aq. solution, $5.5 \mathrm{~mL}, 33 \mathrm{mmol}$) according to the General Procedure 3 (purification by method A). Yellowish solid ($582 \mathrm{mg}, 84 \%$), m.p. 219-220 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta=7.67-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 4.21\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9\right.$ $\left.\mathrm{Hz},^{3} \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 2.25-2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.05-1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. Signals of $\mathrm{CO}_{2} \mathrm{H}$ and NH_{3}-groups were not observed.
${ }^{13} \mathrm{C}$ NMR (DMSO-d $\mathrm{d}_{6}, 100 \mathrm{MHz}$): $\delta=174.0\left(\mathrm{CO}_{2} \mathrm{H}\right)$, 137.4 (C), $131.6(2 \times \mathrm{CH}), 129.9(2 \times \mathrm{CH}), 121.7$ (C), $53.3(\mathrm{CH}), 30.8\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right)$.

IR (KBr): 3491, 2996, 2962, 2631, 2606, 2250, 2194, 1734, 1595, 1490, 1378, 1223, 1151, 1093, 1075, $1012 \mathrm{~cm}^{-1}$.

Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrClNO}_{2}$: $\mathrm{C}, 40.77 ; \mathrm{H}, 4.45 ; \mathrm{N}, 4.76$. Found: $\mathrm{C}, 40.87 ; \mathrm{H}, 4.39 ; \mathrm{N}, 4.63$.

4-Amino-4-(4-fluorophenyl)butyric acid hydrochloride ($\mathbf{3 f} \cdot \mathbf{H C l}$) was synthesized from dimethyl

2-(4-fluorophenyl)cyclopropane-1,1-dicarboxylate 1 h ($500 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{NH}_{3}(6 \mathrm{M}$ methanolic solution, $3.7 \mathrm{~mL}, 22 \mathrm{mmol})$ and $\mathrm{HCl}(6 \mathrm{M}$ aq. solution, $3.5 \mathrm{~mL}, 21 \mathrm{mmol}$) according to the General Procedure 3 (purification by method A). Yellowish solid ($385 \mathrm{mg}, 83 \%$), m.p. 201-202 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta=8.94-6.83$ (br.s, $\Delta \mathrm{v}_{1 / 2}=363 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NH}_{3}+\mathrm{CO}_{2} \mathrm{H}$), 7.65-7.52 (m, 2H, Ar), 7.29-7.18 (m, 2H, Ar), 4.28-4.21 (m, 1H, CH), 2.29-2.18 (m, 1H, CH 2), 2.18-2.09 (m, 1H, CH_{2}), 2.06-1.93 (m, 2H, CH2).
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$): $\delta=173.7\left(\mathrm{CO}_{2} \mathrm{H}\right), 162.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=245 \mathrm{~Hz}, \mathrm{C}\right), 133.9(\mathrm{C}), 130.0(\mathrm{~d}$, $\left.{ }^{3} J_{C F}=8 \mathrm{~Hz}, 2 \times \mathrm{CH}\right), 115.6\left(\mathrm{~d},{ }^{2} J_{C F}=22 \mathrm{~Hz}, 2 \times \mathrm{CH}\right), 53.2(\mathrm{CH}), 30.4\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right)$.

IR (KBr): 3369, 3119, 3043, 3019, 2967, 2634, 2029, 1713, 1607, 1516, 1408, 1307, 1232, 1165, 1095, $1016 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=198.0924[\mathrm{M}]^{+}\left(198.0925\right.$ calcd for $\left.\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}_{2}{ }^{+}\right)$.

4-Amino-4-(4-chlorophenyl)butyric acid hydrochloride (3g. $\mathbf{H C l}$) was synthesised from dimethyl
 2-(4-chlorophenyl)cyclopropane-1,1-dicarboxylate $1 \mathbf{i}$ ($507 \mathrm{mg}, 1.9 \mathrm{mmol}$), $\mathrm{NH}_{3}(6 \mathrm{M}$ methanolic solution, $3 \mathrm{~mL}, 18.0 \mathrm{mmol}$) and $\mathrm{HCl}(6 \mathrm{M}$ aq. (purification by method A). White solid ($382 \mathrm{mg}, 81 \%$), m.p. 206-207 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 500 \mathrm{MHz}$): $\delta=7.62-7.31(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 4.41\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)$, 2.45-2.34 (m, 1H, CH 2), 2.32-2.16 (m, 3H, CH 2).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=174.8\left(\mathrm{CO}_{2} \mathrm{H}\right), 134.9(2 \times \mathrm{C}), 129.2(2 \times \mathrm{CH}), 129.0(2 \times \mathrm{CH}), 54.1(\mathrm{CH})$, $29.9\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right)$.

IR (KBr): 3034, 2819, 2290, 1735, 1601, 1492, 1417, 1384, 1364, 1210, 1149, 1098, 1029, $1017 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=214.0632[\mathrm{M}]^{+}\left(214.0629\right.$ calcd for $\left.\mathrm{C}_{10} \mathrm{H}_{13}{ }^{35} \mathrm{CINO}_{2}{ }^{+}\right)$.

4-Amino-4-(pyridin-3-yl)butyric acid dihydrochloride ($3 \mathrm{~h} \cdot 2 \mathrm{HCl}$)

To cyclopropane $1 \mathbf{e}(172 \mathrm{mg}, 0.73 \mathrm{mmol})$ in a glass vial with a screw cap
 was added ca. 6 M methanolic solution of $\mathrm{NH}_{3}(10$ equiv., $1.2 \mathrm{~mL}, 7.3$ mmol) so that the volume of the solution does not exceed $1 / 3$ of the vial volume. The vial was tightly closed, the reaction vessel was immediately immersed in an oil bath preheated to $130^{\circ} \mathrm{C}$ and vigorously stirred for 9 h . The reaction mixture was then cooled to room temperature, and MeOH was evaporated. The resulting solid was dried under a vacuum diaphragm pump for 1 h and transferred to a round bottom flask.

Hydrochloric acid (6 M solution, $1.2 \mathrm{~mL}, 7.2 \mathrm{mmol}$) was added to pyrrolidone $\mathbf{2 e}$ (150 $\mathrm{mg}, 0.73 \mathrm{mmol})$; the resulting solution was refluxed for 6 h . Then the reaction mixture was evaporated to dryness and 1 M solution of $\mathrm{NaOH}(3.1 \mathrm{~mL}, 3.1 \mathrm{mmol})$ was added to the residue. The obtained mixture was stirred at $75^{\circ} \mathrm{C}$ for 3 h and air was passed through it until all the ammonia had evaporated (the color of wet indicator paper stopped changing in the absence of the ammonia at the outlet of the flask). 0.5 M solution of hydrochloric acid was added to pH 3. The reaction mixture was concentrated to dryness. The residue was dissolved in 1 mL of water and flushed through a small pad of silica using $\mathrm{EtOAc} / i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$ (3:3:1) as eluent. Yellowish solid ($112 \mathrm{mg}, 71 \%$), dec. p. $190^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $6,600 \mathrm{MHz}$): $\delta=9.21$ (br.s, $3 \mathrm{H}, \mathrm{NH}_{3}$), 9.08 (s, $1 \mathrm{H}, \mathrm{Ar}$), 8.88 (d, ${ }^{3} \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), 8.73 (d, $\left.{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 8.02$ (dd, $\left.{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 4.57$ (br.s, $1 \mathrm{H}, \mathrm{CH}$), 2.35-2.25 (m, 2H, CH2), 2.21-2.10 (m, 2H, CH2). Signal of $\mathrm{CO}_{2} \mathrm{H}$-group was not observed.
${ }^{13} \mathrm{C}$ NMR (DMSO-d $\mathrm{d}_{6}, 150 \mathrm{MHz}$): $\delta=173.6$ ($\mathrm{CO}_{2} \mathrm{H}$), 143.8 (CH), 147.7 (CH), 143.4 (CH), 136.8 (C), $127.1(\mathrm{CH}), 51.4(\mathrm{CH}), 30.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right)$.

HRMS ESI-TOF: $m / z=181.0981[M]^{+}\left(181.0972\right.$ calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$).

4-Aminohex-5-enoic acid hydrochloride (3i.HCl) was synthesised from dimethyl 2-
 vinylyclopropane-1,1-dicarboxylate 1 f ($500 \mathrm{mg}, 2.7 \mathrm{mmol}$), $\mathrm{NH}_{3}(6 \mathrm{M}$ methanolic solution, $4.5 \mathrm{~mL}, 27.0 \mathrm{mmol}$) and $\mathrm{HCl}(6 \mathrm{M}$ aq. solution, 4.5 mL , 27.0 mmol) according to the General Procedure 3 (purification by method B). Yellowish solid (255 mg, 57\%), m.p. $208-209^{\circ} \mathrm{C}$ (lit. $207-209{ }^{\circ} \mathrm{C}^{510}$). NMR spectra are consistent with the reported ones. ${ }^{\text {S10-S12 }}$
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta=8.48$ (br.s, $3 \mathrm{H}, \mathrm{NH}_{3}$), 5.75 (ddd, ${ }^{3} \mathrm{~J}=17.6 \mathrm{~Hz}^{3}{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz}^{3} \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), $5.33-5.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right.$), $3.60(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}), 2.29-2.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99-1.88$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 1.79-1.68 (m, 1H, CH2 $)$. Signal of $\mathrm{CO}_{2} \mathrm{H}$-group was not observed.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 100 \mathrm{MHz}$): $\delta=173.6\left(\mathrm{CO}_{2} \mathrm{H}\right)$, $134.3(=\mathrm{CH})$, $120.0\left(=\mathrm{CH}_{2}\right), 52.4(\mathrm{CH}), 29.6$ $\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right)$.
(E)-4-Amino-6-phenylhex-5-enoic acid hydrochloride (3j.HCl) was synthesised from dimethyl 2-
 styrylcyclopropane-1,1-dicarboxylate $1 \mathrm{j}(340 \mathrm{mg}, 1.3 \mathrm{mmol}), \mathrm{NH}_{3}(6 \mathrm{M}$ methanolic solution, $2 \mathrm{~mL}, 12.0 \mathrm{mmol}$) and $\mathrm{HCl}(6 \mathrm{M}$ aq. solution, 2.4 ml , 14.4 mmol) according to the General Procedure 3 (purification by method B). Yellowish solid (111 mg, 47\%).
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta=12.24$ (br.s, 1H, $\mathrm{CO}_{2} \mathrm{H}$), 8.61 (br.s, $3 \mathrm{H}, \mathrm{NH}_{3}$), 7.43-7.39 (m, 2H, Ar), 7.37-7.31 (m, 2H, Ar), 7.30-7.25 (m, 1H, Ar), $6.69\left(d,{ }^{3} \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}=\right), 6.20\left(\mathrm{dd},{ }^{3} \mathrm{~J}\right.$ $\left.=15.9 \mathrm{~Hz}{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}-\right), 3.84-3.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.34-2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.11-2.02(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), 1.93-1.82 (m, 1H, CH2).
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$): $\delta=173.6\left(\mathrm{CO}_{2} \mathrm{H}\right), 135.6(\mathrm{C}), 134.1(\mathrm{CH}), 128.8(2 \times \mathrm{CH}), 128.3(\mathrm{CH})$, $126.6(2 \times \mathrm{CH}), 125.5(\mathrm{CH}), 52.3(\mathrm{CH}), 29.8\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right)$.

IR (KBr): 3466, 3434, 3152, 3046, 1730, 1723, 1635, 1623, 1512, 1495, 1448, 1405, 1174, 1125, $1074,1043 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=204.1036[M-H]^{-}\left(204.1030\right.$ calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{-}\right)$.

General Procedure 4

To 2 M solution of amino acid hydrochloride (1 equiv.) in deionised water 2 M aqueous solution of NaOH (1 equiv.) was added. The resulting mixture was stirred at room temperature for 5 minutes until precipitate formed. Precipitate was filtered on a porous glass filter and washed
once with ice water. Obtained amino acid was dried under vacuo and used without any further purification.

4-Amino-4-(p-tolyl)butyric acid (3a) was synthesised from hydrochloride $\mathbf{3 a} \cdot \mathbf{H C l}(80 \mathrm{mg}, 0.35$

$$
\begin{aligned}
& \mathrm{mmol}) \text { and } \mathrm{NaOH}(2 \mathrm{M} \text { aq. solution, } 175 \mu \mathrm{~L}, 0.35 \mathrm{mmol}) \text { according to the } \\
& \text { General Procedure 4. White solid }(60 \mathrm{mg}, 90 \%) \text {, m.p. } 158-160^{\circ} \mathrm{C} \text {. }
\end{aligned}
$$ $1 \mathrm{H}, \mathrm{CH}$), $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18-1.98\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$. Signals of $\mathrm{CO}_{2} \mathrm{H}$ and NH_{3}-groups were not observed.

${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}: \mathrm{CD}_{3} \mathrm{OD} 10: 1,100 \mathrm{MHz}\right): \delta=181.5\left(\mathrm{CO}_{2} \mathrm{H}\right), 140.5(\mathrm{C}), 133.6(\mathrm{C}), 130.6(2 \times \mathrm{CH})$, $128.0(2 \times \mathrm{CH}), 55.8(\mathrm{CH}), 34.2\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$.

IR (KBr): 3127, 3025, 2947, 2921, 2859, 2661, 1652, 1622, 1537, 1519, 1446, 1398, 1386, 1376, $1317,1258,1212,1187,1141,1113,1079,1036,1022 \mathrm{~cm}^{-1}$.

HRMS ESI-TOF: $m / z=194.1184[\mathrm{M}+\mathrm{H}]^{+}\left(194.1176\right.$ calcd for $\left.\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}\right)$.
(R)-4-Amino-4-(p-tolyl)butyric acid ((R)-3a) was synthesised from hydrochloride (R)-3a•HCl (47
 $\mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{NaOH}(2 \mathrm{M}$ aq. solution, $100 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) according to the General Procedure 4. White solid ($28 \mathrm{mg}, 70 \%$), m.p. $158-160^{\circ} \mathrm{C}$, $[\alpha]_{D}{ }^{20}=-12.0$ (c 0.41 in MeOH). NMR spectra coincide with those for racemic 3a.

General Procedure 5 for derivatization of 4-amino-4-(p-tolyl)butyric acid 5a to pyrrolidin-2one 5a

To a suspension of amino acid (1 equiv.) in toluene (0.03 M) aluminium oxide (5 parts in weight) and water (8 parts in volume) were added. The resulted mixture was refluxed for 5 hours, using Dean-Stark trap to collect water. The reaction mixture was then cooled to room temperature, filtered and the solid was repeatedly washed with methanol. Combined organic fraction was evaporated under vacuo and used without any further purification and flushed through a plug of silica using EtOAc/petroleum ether (from 1:10 to 1:2) as eluent.

5-(p-Tolyl)pyrrolidin-2-one (5a) was synthesized from 4-amino-4-(p-tolyl)butyric acid 3a (8 mg ,
 $0.04 \mathrm{mmol})$, toluene (1.2 mL), $\mathrm{H}_{2} \mathrm{O}(64 \mu \mathrm{~L})$ and $\mathrm{Al}_{2} \mathrm{O}_{3}(40 \mathrm{mg})$ according to the General Procedure 5. $(83 \%, 6 \mathrm{mg})$. NMR data are consistent with the reported ones [S13].
${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 600 \mathrm{MHz}$): $\delta 7.20-7.17(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 4.76-4.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), 2.44-2.41 (m, 2H, CH2 $)$, $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95-1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{OD}, 151 \mathrm{MHz}$): $\delta 181.7$ (CO), 141.7 (C), 139.0 (C), 130.9 ($2 \times \mathrm{CH}$), 127.2 ($2 \times \mathrm{CH}$), 60.1 $(\mathrm{CH}), 32.7\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$.
(R)-5-(p-Tolyl)pyrrolidin-2-one ((R)-5a) was synthesized from (R)-4-amino-4-(p-tolyl)butyric acid Me consistent with the reported ones [S13].
${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 600 \mathrm{MHz}$): $\delta 7.20-7.17(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 4.76-4.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), 2.44-2.41 (m, 2H, CH 2), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95-1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{OD}, 151 \mathrm{MHz}$): $\delta 181.7$ (CO), 141.7 (C), 139.0 (C), 130.9 ($2 \times \mathrm{CH}$), 127.2 ($2 \times \mathrm{CH}$), 60.1 $(\mathrm{CH}), 32.7\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$.

References

S1. W. Fraser, C. J. Suckling and H. C. S. Wood, J. Chem. Soc. Perkin Trans. 1 1990, 3137-3144.
S2. E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353-1364.
S3. A. O. Chagarovskiy, K. L. Ivanov, E. M. Budynina, O. A. Ivanova and I. V. Trushkov, Chem. Heterocycl. Compd., 2012, 48, 825-827.

S4. M. W. Gittos and G. J. Letertre, US Patent 4178463, 1979.
S5. K.-D. Steffen, Offenlegungsschrift DE 4010709, 1991.
s6. P. O. Burgos, I. Fernandez, M. J. Iglesias, S. Garcia-Granda and F. L. Ortiz, Org. Lett. 2008, 10, 537-540.

S7. F. Morlacchi, V. Locacco and V. Tortorella, Gazz. Chim. Ital. 1975, 105, 349-354.
s8. K. W. Rosenmund and P. Engels, Arch. Pharm. 1951, 284, 209-216.
s9. K. Karumanchi, S. K. Natarajan, S. Gadde and K. Vanchanagiri, Chem. Papers 2020, 74, 2035-2039.

S10. H.-J. Rong, Y.-F. Cheng, F.-F. Liu, S.-J. Ren and J. Qu, J. Org. Chem. 2017, 82, 532-540.
s11. T. W. Kwon, P. F. Keusenkothen and M. B. Smith, J. Org. Chem. 1992, 57, 6169-6173.
S12. Z.-Y. Wei and E. E. Knaus, Tetrahedron 1994, 50, 5569-5578.
S13. A. Mourelle-Insua, L. A. Zampieri, I. Lavandera and V. Gotor-Fernandez, Adv. Synth. Catal. 2018, 360, 686-695.

Copies of NMR spectra

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}$) of 2a

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 151 \mathrm{MHz}\right)$ of $\mathbf{2 a}$
勋等
11

NOESY $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{2 a}$

${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right)$ of $\mathbf{2 b}(d r 90: 10)$

${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.6,100 \mathrm{MHz}\right)$ of $\mathbf{2 b}(d r 90: 10)$

${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 500 \mathrm{MHz}$) of $\mathbf{2 c}(d r 90: 10)$

					$\stackrel{7}{8}$						$\begin{aligned} & \square \\ & \stackrel{1}{\circ} \\ & \hline 0 \end{aligned}$				$\begin{aligned} & \text { T } \\ & \hline-1 \end{aligned}$			$\stackrel{7}{8}$					
11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

${ }^{13} \mathrm{C}$ NMR (DMSO $\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right)$ of 2c ($d r$ 90:10)

-54.44
-48.16
-33.70

${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 600 \mathrm{MHz}$) of 2d, freshly prepared solution

${ }^{13} \mathrm{C}$ NMR (DMSO-d $6,150 \mathrm{MHz}$) of 2d, freshly prepared solution

${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right)$ of 2d, after $24 \mathrm{~h}(\mathrm{dr} 77: 23)$

$d r 77: 23$

${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$, 100 MHz) of 2d, after 24 h (dr 77:23)

$\stackrel{\rightharpoonup}{\text { min }}$

NOESY (DMSO-d ${ }_{6}$) of $\mathbf{2 d}$

HSQC ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$ of $\mathbf{2 d}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of $\mathbf{2 e}(d r 60: 40)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of $\mathbf{2 e}(d r 60: 40)$

${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 500 \mathrm{MHz}$) of $\mathbf{2 f}$

${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.6,125 \mathrm{MHz}\right)(d r 59: 41)$

HSQC ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$ of $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$) of $\mathbf{2 g}$ (isomer \mathbf{A} prevails, $d r \mathbf{7 5 : 2 5)}$

$d r 75: 25$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ of $\mathbf{2 g}$ (isomer \mathbf{A} prevails, $d r \mathbf{7 5 : 2 5}$)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of $\mathbf{2 g}$（isomer B prevails，$d r 23: 77$ ，purity $\geq 93 \%$ ）

へへへへべふへへへへ

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right.$ ）of $\mathbf{2 g}$（isomer B prevails，dr 23：77，purity $\geq 93 \%$ ）

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{2 h}(d r 53: 47)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{2 h}(d r 53: 47)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of 4 a
L8' $\angle 91 \sim$
$\mathrm{ss} .691=$
$\stackrel{\infty}{\infty}$

$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\sim}{n}} \underset{\sim}{\sim}$
$\stackrel{\stackrel{\rightharpoonup}{m}}{\stackrel{+}{4}}$

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}$) of $\mathbf{3 a} \cdot \mathbf{H C l}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of $\mathbf{3 a} \cdot \mathbf{H C l}$

1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{ppm} \end{aligned}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$) of $\mathbf{3 b} \cdot \mathbf{H C l}$

${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 100 \mathrm{MHz}$) of $\mathbf{3 b} \cdot \mathbf{H C l}$

${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$) of $\mathbf{3 c} \cdot \mathbf{H C l}$

${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 150 \mathrm{MHz}$) of $\mathbf{3 c} \cdot \mathbf{H C l}$

HSQC ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$ of $\mathbf{3 c} \cdot \mathbf{H C l}$

${ }^{1} \mathrm{H}$ NMR (CD 3 OD, 400 MHz) of $\mathbf{3 d} \cdot \mathbf{H C l}$

$\underbrace{\sim}$

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$) of $\mathbf{3 d} \cdot \mathbf{H C l}$

${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$) of $\mathbf{3 e} \cdot \mathbf{H C l}$

${ }^{13} \mathrm{C}$ NMR (DMSO-d $6,100 \mathrm{MHz}$) of $\mathbf{3 e} \cdot \mathrm{HCl}$

${ }^{1} \mathrm{H}$ NMR (DMSO-d $6,400 \mathrm{MHz}$) of $\mathbf{3 f} \cdot \mathbf{H C l}$

${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$) of $\mathbf{3 f} \cdot \mathbf{H C l}$

-53.60
-
$-\begin{array}{r}30.79 \\ 30.15\end{array}$

| 190 | 170 | 150 | 130 | 110 90 80 70 60 50 40 30
 ppm | 20 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$ of $\mathbf{3 g} \cdot \mathrm{HCl}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right)$ of $\mathbf{3 g} \cdot \mathrm{HCl}$

HSQC ${ }^{1} \mathrm{H}^{-13} \mathrm{C}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{3 g} \cdot \mathbf{H C l}$

${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 600 \mathrm{MHz}$) of $\mathbf{3 h} \cdot \mathbf{H C l}$

${ }^{13} \mathrm{C}$ NMR (DMSO-d $6,150 \mathrm{MHz}$) of $\mathbf{3 h} \cdot \mathbf{H C l}$

HSQC ${ }^{1}{ }^{-13}-{ }^{13}\left(\right.$ DMSO- $\left.\mathrm{d}_{6}\right)$ of $\mathbf{3 h} \cdot \mathbf{H C l}$

${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$) of 3i•HCl

${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$) of 3i•HCl
$\stackrel{\circ}{\text { N/ }}$

$\stackrel{\stackrel{\sim}{m}}{\substack{\sim \\ i}}$

$\left.\begin{array}{llllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0$
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$) of 3j•HCl

${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$) of $\mathbf{3 j} \cdot \mathbf{H C l}$
$\stackrel{\circ}{\mathrm{B}}$
$\stackrel{1}{1}$
No
$\stackrel{\rightharpoonup}{\sim}$

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}: \mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of 3a

$\stackrel{\pi}{3}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}: \mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of 3a

$\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$ of 5 a

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 151 \mathrm{MHz}\right)$ of $\mathbf{5 a}$

HPLC reports for (3RS,5SR)-2a and (3S,5R)-2a (freshly prepared solutions)
(3RS,5SR)-2a (freshly prepared solution)

RESULTS

No				Retention Area
	$\min \quad \mathrm{mV}^{*} \mathrm{sec}$	Area	Name	
1	14.73	3666.993	50.38	
2	22.24	3611.016	49.62	
2				
20.00	7278.009	100.00		

(3S,5R)-2a (freshly prepared solution)

RESULTS

No Retention Area Area Name
$\min m V^{*}$ sec $\%$
$1 \quad 22.132470 .072100 .00$
$1 \quad 40.002470 .072100 .00$

HPLC reports for racemic 3a and for (R)-3a

Racemic 3a

RESULTS

No	Retention	Area	Area	Name
	\min	mV *sec	$\%$	
1	5.579	1918.3	33.0	
2	5.871	3903.0	67.0	
2				

(R)-3a

RESULTS

No Retention Area Area Name $\min \quad \mathrm{mV}$ *sec \%
$\begin{array}{llll}1 & 5.973 & 3492.14 & 100.00\end{array}$
$1 \quad 20.00 \quad 3492.14 \quad 100.00$

HPLC report for racemic 5a

RESULTS

No			
	Retention	Area	Area Name
	min	Nec	$\%$
1	11.71	3201.266	49.44
2	12.74	3273.576	50.56
2	40.00	6474.842	100.00

HPLC report for (R)-5a

RESULTS

No Retention			
	min	Area	mV* sec
Area	Name		
1	12.57	8244.432	100.00
1	26.00	8244.432	100.00

