Supporting Information

Efficient Amidation of Weak Amines: Synthesis, Chiral Separation by SFC, and Antimicrobial Activity of $\mathbf{N - (9 , 1 0 - d i o x o - 9 , ~ 1 0 - d i h y d r o ~}$ anthracene-1-yl) carboxamide

Kathiravan Asokan, ${ }^{1}$ A. Zahir Hussain ${ }^{2}$ and Andivelu Ilangovan, ${ }^{3 *}$
${ }^{1}$ Aragen Life Sciences Pvt. Ltd. Bengaluru-562106, India.
${ }^{2}$ Department of Chemistry, Jamal Mohamed College, Tiruchirappalli, Tamilnadu-620020, India.
${ }^{3}$ School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu-620024, India.

Email: ilangovanbdu@yahoo.com

Table of Contents		
1	General Information	S2
2	General procedure for the synthesis of compounds 2a and 2b	S2
3	Experimental procedure and characterization of synthesized compounds	S3
4	SFC Experimental Procedure	S19
5	General Procedure for Antibacterial Activity	S21
6	Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR Spectra	S23-S77
7	Copies of HRMS data	S78-100
8	SFC chromatogram	$\begin{aligned} & \text { S101- } \\ & \text { S109 } \end{aligned}$
9	Optical Rotation values for compounds $\mathbf{4 a}, \mathbf{4 a}{ }^{\prime} \mathbf{4 b}$ and $\mathbf{4 b}^{\mathbf{\prime}}$	$\begin{aligned} & \mathrm{S} 110- \\ & \mathrm{S} 113 \end{aligned}$

1. General Information:

All the reagents were purchased commercially and used without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded with Bruker $400 \mathrm{MHz} .{ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were recorded in CDCl_{3} with tetramethylsilane as the internal standard. Multiplicities are reported using the following abbreviations: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{sep}=$ septet, $\mathrm{br}=$ broad resonance. All the NMR spectra were acquired at ambient temperature. Analytical thin layer chromatography (TLC) was performed using Silica Gel $60 \AA \mathrm{~F}_{254}$ pre-coated plates (0.25 mm thickness). Visualization was accomplished by irradiation with a UV lamp and staining with I_{2} on silica gel. High resolution mass spectra (HRMS) were recorded on Bruker Compass Data Analysis 4.1, HRMS-ESI Mass Spectrometer with Orbitrap Exploris-240 Analyzer, Source Type ESI, in positive mode.

2. Experimental Procedure

2.1. General procedure for the synthesis of (tert-butoxycarbonyl)proline (2a) and 1-(tert-butoxycarbonyl)piperidine-2-carboxylic acid (2b)

To a suspension of DL-proline (1.0 equiv.) in THF: $\mathrm{H}_{2} \mathrm{O}$ (1:1), sodium bicarbonate (3.0 equiv.) was added and stirred at room temperature for 30 min , then boc anhydride (1.05 equiv.) was added and stirred for 12 h . The reaction mixture was monitored by TLC. The reaction mixture was concentrated under reduced pressure. The residue was adjusted $\mathrm{pH}-2$ by using aqueous citric acid solution. The aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$), washed with water, brine solution and combined organic layer was dried anhydrous sodium sulphate, filtered and concentrated under reduced pressure to get the desired product $\mathbf{2 a} \mathbf{~ o r} \mathbf{2 b}$.

1-(tert-butoxycarbonyl)proline (DL-2a): ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 1.34-139(\mathrm{~d}, J=$ $20.80 \mathrm{~Hz}, 9 \mathrm{H}), 1.80-1.86(\mathrm{~m}, 3 \mathrm{H}), 2.14-2.18(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.30(\mathrm{~m}, 2 \mathrm{H}), 4.03-4.08(\mathrm{~m}, 1 \mathrm{H})$, 12.40 (br, 1H). ELSD purity: 99.91\% LCMS: $214.08[\mathrm{M}+\mathrm{H}]+$

1-(tert-butoxycarbonyl)piperidine-2-carboxylic acid (DL-2b): ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}$, DMSOd6) $\delta 1.05-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.39(\mathrm{~m}, 10 \mathrm{H}), 1.59-1.62(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.96(\mathrm{~m}$, $1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.61(\mathrm{~d}, J=29.20 \mathrm{~Hz}, 1 \mathrm{H}), 12.71(\mathrm{~s}, 1 \mathrm{H})$. ELSD purity: 99.95% LCMS: $228.14[\mathrm{M}+\mathrm{H}]+$

2.2. General procedure for synthesis of (\pm) 3a and (\pm) 3b

To a suspension of DL-pyrrolidine-1, 2-dicarboxylic acid 1-tert-butyl ester 2a (0.3 $\mathrm{mmol})$ and DIPEA (0.5 mmol) in THF, COMU $(0.25 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After 30 min 1 -aminoanthraquinone $1(0.25 \mathrm{mmol})$ was added. The resulting reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and refluxed for 24 h . After completion of reaction (by TLC), reaction mixture was cooled to rt and diluted with water then extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with water, brine solution, dried over anhydrous sodium sulphate, filtered and concentrated under reduced pressure. Crude product was purified through super critical fluid chromatography (Chiralcel-OX3, Methanol) to obtain the pair of enantiomers of (\pm)-3a.

3. Experimental procedure and characterization of synthesized compounds

tert-Butyl 2-((9,10-dioxo-9,10-dihydroanthracen-1-yl)carbamoyl)pyrrolidine-1-carboxylate (\pm)3a

The reaction was carried out according to the general procedure A using 1a (56 mg , 0.25 mmol), 2a ($64 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: 0-55 ${ }^{\circ} \mathrm{C}$, 24 h . Yield: ($70 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{HNMR}$ (400 MHz , DMSO-d6) δ 1.23-1.45 (d, $J=87.9 \mathrm{~Hz}, 9 \mathrm{H}$), 1.90-2.06 (m, 3H), 2.25-2.38 (m, 1H), 3.48-3.55 (m, 1H), 3.64-3.73 (m, $1 \mathrm{H}), ~ 4.27-4.31(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.98(\mathrm{~m}, 4 \mathrm{H}), 8.17-8.24(\mathrm{~m}, 2 \mathrm{H}), 9.01-9.07(\mathrm{~m}, 1 \mathrm{H}), 12.46-12.61$ (d, $J=60.0 \mathrm{~Hz}, 1 \mathrm{H})$.
tert-butyl 2-((9,10-dioxo-9,10-dihydroanthracen-1-yl)carbamoyl)piperidine-1-carboxylate (\pm)-3b

The reaction was carried out according to the general procedure A using 1 ($56 \mathrm{mg}, 0.25$ mmol), 2b ($69 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: 0-55 ${ }^{\circ} \mathrm{C}$, 24 h . Yield: ($69 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{HNMR}$ (400 MHz, DMSO-d6) $\delta 1.23-1.64$
(m, 15H), $2.97(\mathrm{br}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.99(\mathrm{~m}, 4 \mathrm{H}), 8.18-8.19(\mathrm{~m}, 2 \mathrm{H})$, 9.07-9.09 (m, 1H), $12.60(\mathrm{~s}, 1 \mathrm{H})$.

2.4 NMR studies

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ values for compound (-)-4a and (+)-4a', assigned on the basis of 2D NMR spectral data (HSQC and HMBC), and are given in Table 1.

Figure 1. (a) General numbering and HMBC correlations for proline derivative
Table 1. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{CNMR}$ spectral data for proline derivative, assignments based on HSQC and HMBC correlations

S.No.	Assignment	Type of atom	$\mathbf{}^{\mathbf{H}} \mathbf{\text { Chemical shift }}$ $\mathbf{(p p m})$	$\mathbf{1 3}_{\mathbf{3}}$ C Chemical shift (ppm)
1	1	C	-	118.19
2	2	C	-	185.31
3	3	C	-	133.80
4	4	C	-	132.10
5	5	C	-	182.30
6	6	C	-	133.73
7	7	CH	$8.23(\mathrm{~m})$	126.94
8	8	CH	$7.93(\mathrm{~m})$	134.62
9	9	CH	$7.93(\mathrm{~m})$	134.31
10	10	CH	$8.16(\mathrm{~m})$	126.28
11	11	CH	$7.92(\mathrm{~m})$	121.60
12	12	CH	$7.86(\mathrm{t})$	135.26
13	13	CH	$9.12(\mathrm{dd})$	125.21

14	14	C	-	140.65
15	15	O	-	-
16	16	O	-	-
17	17	NH	$13.18(\mathrm{~s})$	-
18	18	C	-	176.27
19	19	CH	$3.85(\mathrm{~m})$	61.45
20	20	CH_{2}	$2.15,1.86(\mathrm{~m})$	30.79
21	21	CH_{2}	$1.69(\mathrm{~m})$	25.96
22	22	CH_{2}	$3.13,2.96(\mathrm{~m})$	46.87
23	23	NH_{2}	-	-
24	24	O	-	-

NOTE: m: multiplet, t : triplet d: doublet, s: singlet, dd: doublet of doublet, br: broad

b. Pipecolic acid analogue

Figure 2. General numbering and HMBC correlations of pipecolic acid derivative

Table 2. ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{CNMR}$ spectral data (chemical shifts) for pipecolic acid derivative

S.No.	Assignment	Type of atom	${ }^{1}$ H Chemical shift (ppm)	${ }^{13} \mathrm{C}$ Chemical shift (ppm)
1	1	C	-	118.09
2	2	C	-	185.68
3	3	C	-	133.89
4	4	C	-	132.23
5	5	CO	-	182.37
6	6	C	-	133.75
7	7	CH	8.23 (m)	127.10
8	8	CH	7.93 (m)	134.74
9	9	CH	7.93 (m)	134.50
10	10	CH	8.16 (m)	126.39
11	11	CH	7.92 (m)	121.69
12	12	CH	7.86 (t)	135.47
13	13	CH	9.12 (dd)	125.50
14	14	C	-	141.04
15	15	O	-	-
16	16	O	-	-
17	17	NH	12.78 (s)	-
18	18	C	-	174.31
19	19	CH	3.36 (m)	66.42
20	20	CH_{2}	1.87, 1.56 (m)	29.00
21	21	CH_{2}	1.72, 1.46 (m)	23.57
22	22	CH_{2}	2.99, 2.69 (m)	44.92
23	23	NH	-	-
24	24	O	-	-

$\mathrm{CH}_{2} \quad 1.52,1.44$ (m)
Note: Assignments made on the basis of HSQC and HMBC correlations, m: multiplet, t : triplet d: doublet, s: singlet, dd: doublet of doublet, br: broad.

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-(4-methylcyclohexyl)acetamide (3c)

N -(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-(4-methylcyclohexyl)acetamide

The reaction was carried out according to the general procedure A using $\mathbf{1 a}$ (56 mg , $0.25 \mathrm{mmol}), 2-((1 \mathrm{~s}, 4 \mathrm{~s})-4$-methylcyclohexyl)acetic acid (2c) ($47 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA (87 $\mathrm{mg}, 0.5 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}$, 24 h . Yield: ($59 \mathrm{mg}, 65 \%$), the product $3 \mathbf{c}$ was obtained as a cis and trans isomers and it was successfully separated by using SFC.

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-((1s,4s)-4-methylcyclohexyl)acetamide

 (3c')
(3c')
${ }^{1}$ HNMR (400 MHz, DMSO-d6) $\delta 12.10$ ($\mathrm{s}, 1 \mathrm{H}$), $8.99(\mathrm{q}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~m}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~m}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~m}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.50(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (q, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~m}, J=6.8 \mathrm{~Hz}, 7 \mathrm{H}), 1.31(\mathrm{~m}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 100 MHz) $\delta 24.8,28.0,55.3,59.1,60.9,117.6,121.7,125.4,126.4$, 127.0, 132.3, 133.7, 133.8, 134.7, 134.7, 135.7, 141.4, 162.7, 172.2, 182.2, 186.6. HRMS (ESI), Calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}: 362.1751$; found: 362.1741 .
N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-(4-methylcyclohexyl)acetamide- Isomer-1 (3c')

As Isomer-2 assigned as trans form, isomer-1 will be cis form. However H21 and H24 protons splitting pattern was not clear. Hence it is difficult to fix the relative stereo chemistry. N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-((1r,4r)-4-methylcyclohexyl)acetamide (3c')

${ }^{1}$ HNMR (400 MHz, DMSO-d6) $\delta 12.10(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{q}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{q}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~m}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~m}, J=3.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.40(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~m}, J=10.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~m}, J=4.8 \mathrm{~Hz}$, H), $1.08(\mathrm{~m}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{~m}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{~m}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 100 MHz) $\delta 24.8,28.0,55.3,59.1,60.9,117.6,121.7,125.4,126.4,127.0,132.3$, 133.7, 133.8, 134.7, 134.7, 135.7, 141.4, 162.7, 172.2, 182.2, 186.6.
N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-(4-methylcyclohexyl)acetamide-Isomer-2 (3c')

In HSQC, we could see $\mathrm{CH} 21(1.92 \mathrm{ppm})$ at 35.00 ppm and $\mathrm{CH} 24(1.33 \mathrm{ppm})$ at 32.00 ppm. In COSY, $\mathrm{H} 19(2.42 \mathrm{ppm})$ is coupling with H 21 and $\mathrm{H} 27(0.89 \mathrm{ppm})$ is coupling with H 24 . In ${ }^{1} \mathrm{HNMR}$ (Homo nuclear decoupling), we could see H 21 (J value 11.60 Hz) and H 24 (J value 10.00 Hz). Based on above J values H21 (Axial) and H24 (Axial) protons are in trans form.
N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide (3d)

The reaction was carried out according to the general procedure A using $\mathbf{1 a}$ (57 mg , 0.25 mmol), biotin ($\mathbf{2 d}$) ($73 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25$ mmol). Conditions: $0-55^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield: ($80 \mathrm{mg}, 71 \%$), ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{DMSO}-d 6) \delta$ $12.11(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~m}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{q}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.41$ (d, $J=42.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~m}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{q}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{t}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.72(\mathrm{q}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~m}, J=11.9 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 100 MHz) $\delta 24.8,28.0,55.3,59.1,60.9,117.6,121.7,125.4,126.4,127.0,132.3$, 133.7, 133.8, 134.7, 134.7, 135.7, 141.4, 162.7, 172.2, 182.2, 186.6. HRMS (ESI), Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 450.1482 ; found: 450.1478 .

2-(4,4-difluorocyclohexyl)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)acetamide (3e)

(3e)

The reaction was carried out according to the general procedure A using $\mathbf{1 a}(60 \mathrm{mg}$, 0.25 mmol), 2-(4,4-difluorocyclohexyl)acetic acid (2e) ($53 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5$ mmol), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}$, 24 h . Yield: ($56 \mathrm{mg}, 58 \%$), ${ }^{1} \mathrm{HNMR}$ (400 MHz, DMSO-d6) $\delta 12.08$ (s, 1H), 8.99 (q, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.26 (m, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.19 ($\mathrm{m}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.93(\mathrm{~m}, J=3.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.53(\mathrm{~s}, 2 \mathrm{H}), 2.05(\mathrm{q}, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.85$ $(\mathrm{m}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.34(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 100 MHz$) \delta 24.8,28.0$, $55.3,59.1,60.9,117.6,121.7,125.4,126.4,127.0,132.3,133.7,133.8,134.7,134.7,135.7$, 141.4, 162.7, 172.2, 182.2, 186.6. HRMS (ESI), Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{NF}_{2}(\mathrm{M}+\mathrm{H})^{+}: 384.1399$; found: 384.1399.

2-(4,4-difluorocyclohexyl)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)acetamide (3f)

The reaction was carried out according to the general procedure A using $\mathbf{1 a}$ (56 mg , 0.25 mmol), 4-hydroxybutanoic acid ($\mathbf{2 f}$) ($31 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}$, 24 h . Yield: ($49 \mathrm{mg}, 63 \%$), ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.11(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~m}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.94$ (q, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.41(\mathrm{~d}, J=42.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~m}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{q}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{t}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.72(\mathrm{q}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~m}, J=$ $11.9 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DMSO-d6, 100 MHz) $\delta 24.8,28.0,55.3,59.1,60.9,117.6,121.7$, $125.4,126.4,127.0,132.3,133.7,133.8,134.7,134.7,135.7,141.4,162.7,172.2,182.2,186.6$. HRMS (ESI), Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~N}(\mathrm{M}-\mathrm{H})^{+}$: 308.0922 ; found: 309.0918

N-(9, 10-dioxo-9,10-dihydroanthracen-1-yl)-3-methylbenzamide (3h)

The reaction was carried out according to the general procedure A using 1a (60 mg , 0.25 mmol), 3-methylbenzoic acid ($\mathbf{2 h}$) ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield : ($64 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{HNMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.25(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{q}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~m}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~m}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.11(\mathrm{q}, ~ J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{t}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~m}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.48(\mathrm{~m}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d 6,100 \mathrm{MHz}\right) \delta 21.7$, $118.2,122.8,124.8,126.5,127.3,127.7,128.7,129.0,133.0,133.3,134.3,134.5,134.6,134.8$, 136.1, 139.0, 142.7, 167.0, 182.4, 187.8. HRMS (ESI), Calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 342.1125 ; found: 342.1121 .

N -(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-methoxybenzamide (3i)

The reaction was carried out according to the general procedure A using $\mathbf{1 a}$ (55 mg , 0.25 mmol), 4-methoxybenzoic acid (2i) ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$),

COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield : ($55 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{HNMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.25(\mathrm{~s}, 1 \mathrm{H}), 9.37(\mathrm{q}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~m}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~m}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{q}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~m}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.08$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ (DMSO- $d 6,100 \mathrm{MHz}$) $\delta 55.7,114.4,118.0,122.7$, $126.4,127.0,127.3,127.7,129.9,133.1,134.3,134.3,134.5,134.6,136.1,143.0,163.2,166.3$, 183.0, 187.9. HRMS (ESI), Calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 358.1074 ; found: 358.1069.

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-(trifluoromethoxy)benzamide (3j)

The reaction was carried out according to the general procedure A using $\mathbf{1 a}$ (57 mg , 0.25 mmol), 4-(trifluoromethoxy)benzoic acid ($\mathbf{2 j}$) ($62 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5$ mmol), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0-55{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield : ($57 \mathrm{mg}, 55 \%$). ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.36(\mathrm{~s}, 1 \mathrm{H}), 9.34(\mathrm{q}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~m}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.31(\mathrm{~m}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{q}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{q}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~m}, J=2.4$ $\mathrm{Hz}, 3 \mathrm{H}$), 7.43 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d 6,100 \mathrm{MHz}$) δ 118.2, 121.1, 123.1, $126.4,127.4,127.7,129.8,133.1,133.1,134.2,134.3,134.6,134.8,136.3,142.5,152.4,165.4$, 182.8, 188.0. HRMS (ESI), Calcd. for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{NF}_{3}(\mathrm{M}+\mathrm{H})^{+}: 412.0791$; found: 412.0788 .

\mathbf{N}-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2nitro benzamide (3k)

(30)

The reaction was carried out according to the general procedure A using 1-aminoanthracene-9, 10-dione (1a) ($56 \mathrm{mg}, 0.25 \mathrm{mmol}$), 2-nitrobenzoic acid (21) ($47.5 \mathrm{mg}, 0.3$ mmol), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield: 48%; ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 12.59$ ($\mathrm{s}, 1 \mathrm{H}$), 8.97 (q, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.21 (q, $J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 8.08(\mathrm{q}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{q}, J 5.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.96(\mathrm{~m}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.88(\mathrm{~m}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, Ion trap LCMS(ESI), Calcd. for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O} 5(\mathrm{M}+\mathrm{H})^{+}: 373.07$; found: 373.03.

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-3,5-dimethylbenzamide (31)

The reaction was carried out according to the general procedure A using $\mathbf{1 a}$ (56 mg , 0.25 mmol), 3,5-dimethylbenzoic acid (21) ($45 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}$, 24 h . Yield : ($62 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{HNMR}$ (400 MHz, DMSO-d6) $\delta 13.21(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~m}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ $(\mathrm{m}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{q}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~m}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 4.09$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.64(\mathrm{~s}, 5 \mathrm{H}), 2.47(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{CNMR}(\mathrm{DMSO}-\mathrm{d} 6,100 \mathrm{MHz}) \delta 21.6,118.2$, $122.8,125.7,126.6,127.3,127.7,133.1,134.2,134.3,134.5,134.6,134.8,136.1,138.8,142.8$, 167.3, 183.0, 187.7. HRMS (ESI), Calcd. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 356.1281$; found: 356.1276.

3-cyano-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-fluorobenzamide (3m)

The reaction was carried out according to the general procedure A using 1-aminoanthracene-9,10-dione (1a) ($60 \mathrm{mg}, 0.25 \mathrm{mmol}$), 3-cyano-4-fluorobenzoic acid ($\mathbf{2 m}$) (50 $\mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: 0-55 ${ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield : (49 mg, 52\%), ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 12.92$ (s, 1H), 9.03 (d, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~m}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~m}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{q}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ (q, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.00(\mathrm{~m}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.86(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ (DMSO-d6, $100 \mathrm{MHz}) \delta 101.2,101.4,113.4,117.6,117.8,118.7,122.6,125.8,126.5,127.2,131.8,132.2$, $133.5,133.5,134.7,134.8,134.9,135.9,140.7,162.9,163.2,165.8,182.0,186.8$. HRMS (ESI), Calcd. for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 371.0826$; found: 371.0822 .

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-3,5-difluorobenzamide (3n)

The reaction was carried out according to the general procedure A using 1 ($56 \mathrm{mg}, 0.25$ mmol), 3,5-difluorobenzoic acid (2n) ($47.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield: trace ; ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}$, DMSOd6) $\delta 13.38(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{q}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~m}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~m}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.17(\mathrm{q}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~m}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~m}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.41(\mathrm{q}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H})$. HRMS (ESI), Calcd. for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{NF}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 364.0780$; found: 364.0775.

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-1 naphthamide (3p)

The reaction was carried out according to the general procedure A using $\mathbf{1}(56 \mathrm{mg}, 0.25$ mmol), 1-naphthoic acid ($\mathbf{2 p}$) ($47.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIPEA ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$), COMU (107 $\mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield: $58 \% ;{ }^{1} \mathrm{HNMR}$ ($400 \mathrm{MHz}, \mathrm{DMSO}-d 6$) δ $12.78(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{q}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~m}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~m}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 8.05$ (m, $J=3.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.93(\mathrm{~m}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{q}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~m}, J=1.9 \mathrm{~Hz}$, $2 H)$.). Ion trap LCMS(ESI), Calcd. for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{NF}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 378.10$; found: 377.82.

(6)

The reaction was carried out according to the general procedure A using 1,5-diaminoanthracene-9,10-dione (1b) ($200 \mathrm{mg}, 0.0 .84 \mathrm{mmol}$), (tert-butoxycarbonyl)proline (2a) ($398 \mathrm{mg}, 1.85 \mathrm{mmol}$), DIPEA ($542 \mathrm{mg}, 4.2 \mathrm{mmol}$), COMU ($540 \mathrm{mg}, 1.26 \mathrm{mmol}$). Conditions: $0-55{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield : $58 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 11.98(\mathrm{~s}, 2 \mathrm{H}), 9.54(\mathrm{br}, 4 \mathrm{H})$, $8.70(\mathrm{q}, \mathrm{J}=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~m}, \mathrm{~J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.67(\mathrm{t}, J=7.8 \mathrm{~Hz} 2 \mathrm{H}), 3.29(\mathrm{q}, \mathrm{J}=5.6 \mathrm{~Hz}, 4 \mathrm{H})$, $2.55(\mathrm{~m}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~m}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~m}, \mathrm{~J}=6.7 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13}$ CNMR(DMSO$d 6,100 \mathrm{MHz}) \delta 185.14,167.99,139.09,135.84,134.49,126.88$,
123.24118.99, 60.43, 45.45, 29.10, 23.58; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})+$, 433.180; found. 433.1868.

tert-butyl 2-((2-acetylphenyl)carbamoyl)pyrrolidine-1-carboxylate (5a)

5a (61\%)

The reaction was carried out according to the general procedure A using 1-(2-aminophenyl)ethan-1-one (1c) ($200 \mathrm{mg}, 1.48 \mathrm{mmol}$), (tert-butoxycarbonyl)proline (2a) (382 $\mathrm{mg}, 1.78 \mathrm{mmol}$), DIPEA ($573 \mathrm{mg}, 4.44 \mathrm{mmol}$), COMU ($951 \mathrm{mg}, 2.22 \mathrm{mmol}$). Conditions: $0-$ $55{ }^{\circ} \mathrm{C}$, 24 h . Yield : 61\% ; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 10.47(\mathrm{~d}, \mathrm{~J}=71.21 \mathrm{H}$), 7.83 (q, $\mathrm{J}=23.5,1 \mathrm{H}), 7.64(\mathrm{~m}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.48(\mathrm{~m}, \mathrm{~J}=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{t}, J=7.2 \mathrm{~Hz} 1 \mathrm{H}), 4.11(\mathrm{~m}$, $\mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~m}, J=14.44 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.30$ (d, J=32.1Hz, 10H).; ${ }^{13} \mathrm{C}$ NMR (DMSO-d6, 100MHz) $\delta 195.97,195.56,171.16,170.89$, $153.70,153.04,137.34,136.73,132.53,132.21,131.19,130.75,129.41,129.25,128.23$, 127.94, 123.95, 123.63, 122.73, 122.18, 78.86, 78.58, 60.40, 46.58, 46.36, 29.97, 29.16, 27.95, 27.86, 23.78, 23.07.; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})+$, 334.40 ; found. 334.9854 tert-butyl2-((2-(methoxycarbonyl)phenyl)carbamoyl)pyrrolidine-1-carboxylate (5b)

The reaction was carried out according to the general procedure A using methyl 2aminobenzoate (1d) ($200 \mathrm{mg}, 1.32 \mathrm{mmol}$), (tert-butoxycarbonyl)proline (2a) ($342 \mathrm{mg}, 1.59$ mmol), DIPEA ($513 \mathrm{mg}, 3.97 \mathrm{mmol}$) COMU ($850 \mathrm{mg}, 1.95 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}-\mathrm{rt}$, 24 h. Yield : 48\%; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 11.09$ (d, J=7.7 Hz, 1H), 7.63 (q, $\mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~m}, \mathrm{~J}=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ $(\mathrm{s}, 1 \mathrm{H}), 1.92(\mathrm{~m}, \mathrm{~J}=12.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}+69.5 \mathrm{~Hz}, 9 \mathrm{H}) . ;{ }^{13} \mathrm{CNMR}$ (DMSO-d6,100MHz) $171.69,171.47,167.54,154.04,153.13,139.73,134.32,130.70,123.07,120.10,119.82$, $116.49,115.88,79.23,78.96,61.84,61.60,52.47,46.80,46.55,30.86,29.97,28.03,27.76$, 23.90, 23.30; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})+$, 349.3999; found. 349.1728.
tert-butyl2-((3-(methoxycarbonyl)-2-methylphenyl)carbamoyl)pyrrolidine-1carboxylate (5e)

5d (45\%)

The reaction was carried out according to the general procedure A using methyl 3-amino-2-methylbenzoate (1f) ($200 \mathrm{mg}, 1.21 \mathrm{mmol}$), (tert-butoxycarbonyl)proline (2a) (313 $\mathrm{mg}, 1.45 \mathrm{mmol}$), DIPEA ($469 \mathrm{mg}, 3.63 \mathrm{mmol}$), COMU ($778 \mathrm{mg}, 1.82 \mathrm{mmol}$). Conditions: $0-$ $55{ }^{\circ} \mathrm{C}$ - rt, 24 h . Yield : 45%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}$, $1 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ; 1.95$ (s, 3H), 1.49 (s, 9H). ; ${ }^{13} \mathrm{CNMR}$ (CDCl3-101MHz) 170.30, 168.40, 156.51, 137.20, 131.40, 130.21, 126.39, 125.85, 80.99, 60.53, 52.05, 47.29, 28.41, 27.30, 24.65, 14.61; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})+$, 363.426; found. 363.1965.

tert-butyl 2-((5-bromo-3-(methoxycarbonyl)-2-methylphenyl)carbamoyl)pyrrolidine-1carboxylate (5e)

The reaction was carried out according to the general procedure A using methyl 3-amino-5-bromo-2-methylbenzoate ($\mathbf{1 g}$) ($200 \mathrm{mg}, 0.82 \mathrm{mmol}$), (tert-butoxycarbonyl)proline (2a) ($212 \mathrm{mg}, 0.98 \mathrm{mmol}$), DIPEA ($318 \mathrm{mg}, 2.46 \mathrm{mmol}$), COMU ($526 \mathrm{mg}, 1.23 \mathrm{mmol}$). Conditions: $0-55^{\circ} \mathrm{C}-\mathrm{rt}, 24 \mathrm{~h}$. Yield: 46%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}$, $1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, 4 \mathrm{H}), 4.67(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 170.28,167.07,156.62,138.56,132.55,128.69,128.10,119.02$, 81.09, 60.50, 52.30, 47.30, 28.40, 2710, 24.64, 14.32. HRMS (ESI): Calcd.for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{5}$ (M-H)-, 440.3220; found. 439.087 \& 440.087.

tert-butyl 2-((6-methoxypyridazin-3-yl)carbamoyl)pyrrolidine-1-carboxylate (5f)

The reaction was carried out according to the general procedure A using 6-methoxypyridazin-3-amine (1h) (200 mg, 1.60 mmol), (tert-butoxycarbonyl)proline (2a) (413 $\mathrm{mg}, 1.92 \mathrm{mmol}$), DIPEA ($620 \mathrm{mg}, 4.79 \mathrm{mmol}$), COMU ($1.03 \mathrm{~g}, 2.40 \mathrm{mmol}$). Conditions: 0-55 ${ }^{\circ} \mathrm{C}$ - rt, 24 h . Yield : 53\% ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 10.98(\mathrm{~d}, \mathrm{~J}=20.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.23(\mathrm{t}$, $\mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~m}, \mathrm{~J}=6.1 \mathrm{~Hz} 1 \mathrm{H}), 3.98(\mathrm{~s}, J=7.8 \mathrm{~Hz} 2 \mathrm{H}), 7.94-8.01$ (m, 4H), 8.70 (dd, $J=7.9 \mathrm{~Hz}, 1.20 \mathrm{~Hz} 2 \mathrm{H}$), 9.54 (br , 4H), 11.98 (s, 3H) 3.39(q, $\mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~m}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) 1.33$ (d, J=51.7Hz,9H$). ;$ HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})+$, 323.365; found. 323.170.

2.5. General procedure (B) for synthesis of (+)-4a', (-)-4a, (+)-4b'\& (-)-4b.

To a stirred solution of compound (+)-3a', (-)-3a, (+)-3b' $\boldsymbol{\&}(-)-\mathbf{3}$ (1.0 equiv.) in THF $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $5 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and continued the stirring for 25 h at room temperature. After completion, the reaction mixture was concentrated under vacuum to obtain the residue, which was neutralized with aq. NaHCO_{3} and extracted with DCM. The organic layer was dried over NaSO_{4} and concentrated under vacuum to obtain (+)-4a', (-)-4a, (+)-4b’\& (-)-4b.

(R)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)pyrrolidine-2-carboxamide

The reaction was carried out according to the general procedure B using (+)-3a' ($105 \mathrm{mg}, 0.25$ mmol), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0^{\circ} \mathrm{C}-\mathrm{rt}, 25 \mathrm{~h}$. Yield : 40\%; MP : 156-158 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}=}=+36.20(\mathrm{c}=0.1$, Acetonitrile $) ;{ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 1.65-1.72(\mathrm{~m}, 2 \mathrm{H})$, 1.83-1.91 (m, 1H), 2.07-2.17 (m, 1H), 2.94-2.98 (m, 1H), 3.07-3.13 (m, 1H), 3.84-3.88 (dd, $J=$ $9.2 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.90-7.95 (m, 3H), 8.15-8.17(m, 1H), 8.22-8.24 $(\mathrm{m}, 1 \mathrm{H}), 9.12(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}) 13.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ (DMSO- $d 6,100 \mathrm{MHz}$): δ $25.9,30.8,46.8,61.4,118.2,121.6,125.2,126.3,126.9,132.1,133.7,133.8,134.3,134.6$, 135.2, 140.6, 176.2, 182.3, 185.3; Chiral purity (ee) by SFC: 98.40\%; FT-IR (film cm-1) 3362,2964,1661,1497,1264,804. HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})+$, 321.1234; found. 321.1228.

(S)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)pyrrolidine-2-carboxamide

The reaction was carried out according to the general procedure B using (-)-3a (105 $\mathrm{mg}, 0.25 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0^{\circ} \mathrm{C}-\mathrm{rt}, 25 \mathrm{~h}$. Yield 38%; MP: $162-1640^{\circ} \mathrm{C} .[\alpha]_{\mathrm{L}=}-41.72(\mathrm{c}=0.1$, Acetonitrile $) ;{ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{DMSO}-d 6) \delta 1.65-1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.83-1.91(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.88$ (dd, $J=9.2 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.86 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.90-7.95 (m, 3H), 8.15-8.17 (m, 1H), 8.22-8.24 (m,1H), 9.12(dd, $J=8.3 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}) 13.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ (DMSO-D6, 100

MHz) $\delta 25.9,30.8,46.8,61.4,118.2,121.6,125.2,126.3,126.9,132.1,133.7,133.8,134.3$, 134.6, 135.2, 140.6, 176.2, 182.3, 185.3; Chiral purity(ee) by SFC: 98.72%, FT-IR (film) cm^{-} ${ }^{13362, ~ 2964,1661,1497,1264,804 ~ ; ~ H R M S ~(E S I): ~ C a l c d . ~ f o r ~} \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})+$, 321.1234; found. 321.1224.

(R)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)piperidine-2-carboxamide (+)4b’

The reaction was carried out according to the general procedure B using (-)-3b' (109 mg, 0.25 mmol), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0^{\circ} \mathrm{C}-\mathrm{rt}, 25 \mathrm{~h}$. Yield : 35%; MP; 160$162{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}} 25=+26.78(\mathrm{c}=0.1$, Acetonitrile $) ;{ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}$, DMSO- $d 6) \delta$ 1.43-1.57 $(\mathrm{m}, 4 \mathrm{H}), 1.71-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~m}$, 1 H), $7.87-7.97$ (m, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}$), 8.17-8.19 (m, 1H), 8.25-8.27 (m, 1H), 9.12 (dd, $J=8.3$ $\mathrm{Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}) 12.78$ (br, 1H); ${ }^{13} \mathrm{CNMR}$ (DMSO-d6, 100 MHz) $\delta 23.5,25.5,29.0,49.9,60.4$, $118.0,121.6,125.5,126.3,127.1,132.2,133.7,133.8,134.5,134.7,135.4,141.0,174.3,182.3$, 185.6; Chiral purity(ee)by SFC: 99.98\%, FT-IR (film cm ${ }^{-1}$) $3302,2927,1697,1508,1264,705$; HRMS (ESI),Calcd.for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 335.1390$; found: 335.1352.

(S)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)piperidine-2-carboxamide

The reaction was carried out according to the general procedure B using (-)-3b (109 $\mathrm{mg}, 0.25 \mathrm{mmol}$), COMU ($107 \mathrm{mg}, 0.25 \mathrm{mmol}$). Conditions: $0^{\circ} \mathrm{C}-\mathrm{rt}, 25 \mathrm{~h}$. Yield : 37%; MP $158-160{ }^{\circ} \mathrm{C} ;[\alpha] \mathrm{D} 25=-27.06\left(\mathrm{c}=0.1\right.$, Acetonitrile); ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{DMSO}-d 6) \delta 1.43-$ $1.57(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.36$ $(\mathrm{m}, 1 \mathrm{H}), 7.87-7.97(\mathrm{~m}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.17-8.19(\mathrm{~m}, 1 \mathrm{H}), 8.25-8.27(\mathrm{~m}, 1 \mathrm{H}), 9.12(\mathrm{dd}, J=$ $8.3 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}) 12.78$ (br, 1H); ${ }^{13} \mathrm{CNMR}$ (DMSO-d6, 100 MHz) $\delta 23.5,25.5,29.0,49.9$, $60.4,118.0,121.6,125.5,126.3,127.1,132.2,133.7,133.8,134.5,134.7,135.4,141.0,174.3$, 182.3, 185.6 Chiral purity (ee) by SFC: 99.86% FT-IR (film cm ${ }^{-1}$) 3302 , 2929, 1696, 1508, 1266, 707. HRMS (ESI), Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 335.1390$; found: 335.1353.

NMR abbreviations: s-singlet, d-doublet, t-triplet, m-multiplet, q-quartet, br-broad, dddoublet of doublet.

4. SFC Experimental Procedure

Materials

Reagents

Methanol (MeOH), acetonitrile (ACN), Trifluoroacetic acid (TFA), diethylamine (DEA) and 7 N Methanolic ammonia, Isopropanol (IPA), were of HPLC grade and purchased from Sigma-Aldrich Co. (Merck-INDIA).

Compounds

L- or D-pyrrolidine-2-carboxylic acid (9,10-dioxo-9,10-dihydro-anthracen-1-yl)-amide (I-II), L\& D piperidine-2-carboxylic acid (9,10-dioxo-9, 10-dihydro-anthracen-1-yl)-amide (III-IV) were synthesized internally. The purity of the compounds was at least 95%. Structures of four derivatives are listed in Fig. 1.

Columns

Four analytical coated and immobilized polysaccharide-based chiral SFC columns (Chiralpak- IA (4.6X150) mm, 3μ, Chiralpak-IB(4.6X150) mm, 3μ, Chiralpak-IC (4.6X150) $\mathrm{mm}, 3 \mu$, Chiralpak-ID (4.6X150)mm, 3μ, Chiralpak-IE (4.6X150)mm, 3μ, Chiralpak-IF and Chiralpak-IG (4.6X150) mm, 3μ and Chiralcel-OX-3 (4.6X150) mm, 3μ SFC columns were purchased from Chiral Technologies (West Chester, PA, USA). Lux-cellulose-2 and Luxamylose -2 (4.6 X 250)mm, 5μ were purchased from Phenomenex (Torrance, CA, USA). One Whelk-O 1 (RR) (4.6 X 250) mm, 5μ was purchased from Regis (Morton Grove, IL, USA).

SFC instrumentation

Analytical Acquity UPC2 PDA (Waters) with a six-position modifier and columnswitching valves, Thar SFC method development stations (SFC Method Station) with a sixposition modifier and a ten-position column switching valves, and Waters SFC150Mgm prep were all purchased from Waters (WATERS GES MBH, W-Austria).

Methods

Analytical SFC methods

All analytical SFC experiments were performed either on Acquity UPC2 PDA or a Waters analytical SFC system. All method development work was performed on (4.6X150) $\mathrm{mm}, 3 \mu$ dimension columns under gradient or isocratic conditions at a back-pressure of 100 bar, a temperature of $30{ }^{\circ} \mathrm{C}$, a flow rate of $3 \mathrm{ml} / \mathrm{min}$, and a wavelength of 215 nm . The initial gradient program was run from 10% to 50% Co-solvents for 8 min , and 50% co-solvent for an additional $4 \mathrm{~min} .30 \%$ of the Co-solvent ratio was stabilized for scale-up.

Preparative SFC methods

All preparative SFC separations were carried out on Chiralcel-OX-H (30X250)mm, 5μ column on Waters 150 Mgm SFC instrument under isocratic conditions at a back pressure of 100 bar and a temperature of $30^{\circ} \mathrm{C}$.

Sample solution

Preparation For all the analytical SFC experiments, compounds $(\pm) \mathbf{- 3 a},(\pm) \mathbf{- 3 b}$ and $\mathbf{3 d}$ were dissolved in MeOH at a concentration of $\sim 1 \mathrm{mg} / \mathrm{ml}$. For the preparative-scale SFC , 11.25 g of crude $(\pm)-\mathbf{3 a},(\pm) \mathbf{- 3 b}$ and $\mathbf{3 d}$ were dissolved in MeOH at $100 \mathrm{mg} / \mathrm{ml}$. Total purification was completed within 2 hours of time with $50 \mathrm{mg} / \mathrm{injection}$.

5.0 General Procedure for Antibacterial activity

The bacterial and fungal pathogens obtained from Microbial Type Culture Collection (MTCC), Chandigarh, and Government of India. The synthesized compounds were tested for their antibacterial efficacy against both gram positive and gram negative bacterial pathogens. The Gram-positive bacterial pathogens were Vibrio cholera (MTCC 3906), Salmonella typhi (MTCC 531) and Pseudomonas aeruginosa (MTCC 1688). The Gram negative bacterial pathogens were Rhodococcusrhodochrous (MTCC-265), Mycobacterium smegmatis (MTCC994) and Micrococcus luteus (MTCC 1809). The synthesized compounds were tested for their antifungal efficacies against the fungal pathogens were Pichia jadinii MTCC 185, Candida parapsilosis MTCC 7043 and Candida glabrata MTCC 3019.

Determination of MIC and MBC values of synthesised compounds

The minimum inhibitory concentration (MIC) was determined to espouse the serial dilution technique using 96-well microplates. 1 All the bacterial strains were prepared by Muller Hinton agar, and the turbidity of all the bacterial strains was adjusted to 0.5 McFarland Standard by making a bacterial suspension of three to five well-isolated colonies of the same morphological type selected from an agar plate culture. The cultures were further, diluted 1,000-fold to get an inoculums size of $1.5 \times 10^{5} \mathrm{CFU} / \mathrm{mL} 2100 \mu \mathrm{~L}$ of sterilized Mueller Hinton broth added into the wells of a 96-well plate. The first row served as growth control. Then, the highest concentration ($64 \mu \mathrm{~g}$) of $100 \mu \mathrm{~L}$ of compounds $(+)-\mathbf{4 a} \mathbf{a}^{\prime},(-)-\mathbf{4 a},(+)-\mathbf{4 b} \mathbf{\&}(-)-\mathbf{4 b}$, samples were poured in the second row of the plate. The compound dissolved in dimethyl sulfoxide (DMSO) serially diluted to create a concentration sequence from 64 to $1 \mathrm{mg} / \mathrm{ml}$ was tested against bacterial pathogens. The first row served as growth control. Finally, $10 \mu \mathrm{~L}$ of bacterial suspensions were added to deep wells of the plate incubated for 24 h at $37^{\circ} \mathrm{C}$. The streptomycin sulphate is used as a positive control. The resulting turbidity observed, and after 24 h , MIC determined as one where growth was no longer visible by assessment of turbidity by optical density reading at 600 nm in a microplate reader. The MBC values are the least concentration of an antibacterial compound that prevents the growth of the organism on the agar plates. It is evaluated by subculturing broth dilutions that of MIC values determined microplate. The dilutions are streaked onto sterilized Mueller Hinton agar plates and incubated for 24 hours. No growth on the plate implies that no viable organisms found in broth.

Determination of MIC and MFC values

The determination of MIC and MFC for the synthesized compounds (+)-4b’ $\boldsymbol{\&}(-)-\mathbf{4 b}$ was assessed by the broth micro dilution method. $100 \mu \mathrm{~L}$ of YPD broth added into the wells of a 96-well plate. The first row served as growth control. Then, the highest concentration ($64 \mu \mathrm{~g}$) of $100 \mu \mathrm{~L}$ of compounds (+)-4a', (-)-4a, (+)-4b’\&(-)-4b samples were poured in the second row of the plate. Doubled serial dilutions, where a $100 \mu \mathrm{~L}$ aliquot removed from the most concentrated well went to the next well, and yielded concentrations of 64 to $1 \mu \mathrm{~g} / \mathrm{mL}$. Finally, $10 \mu \mathrm{~L}$ of yeast inoculum suspensions were added to each well of the plate and incubated at 37 ${ }^{\circ} \mathrm{C}$ for 24 h . After incubation the inhibition of visible growth defined as the MIC. This MIC value was further confirmed by Resozurin dye assay. The MFC defined as the minimal concentration of tested compounds required to kill 99.9% the yeast. The dilutions are streaked onto YPD agar plates and incubated for 24 h . No growth on the Petri dishes implies that no viable organisms found in the broth.

Resazurin dye assay

The 750 mg of Resazurin dye was dissolved in 100 ml sterile water. Vortex mixer used to homogenize the solution. This solution then referred to as Resazurin dye solution. After incubated followed by the serial dilution technique using 96-well microplates, $10 \mu \mathrm{l}$ of Resazurin solution as the indicator added in each well. The plates were again incubated in a temperature-controlled incubator at $37^{\circ} \mathrm{C}$ for 4 h . The colour change in the well then observed visually. The purple to pink colour changes taken indicates the growth inhibition of microbes. The lowest concentration of compound at which colour change occurred recorded as the MIC value.

6. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR Spectra

(tert-butoxycarbonyl)proline (2a) -1HNMR spectra

1-(tert-butoxycarbonyl)piperidine-2-carboxylic acid (DL-2b)- 1HNMR spectra

tert-Butyl 2-((9,10-dioxo-9,10-dihydroanthracen-1-yl)carbamoyl)pyrrolidine-1-carboxylate (\pm)-3a-1H NMR spectra

Proline-BOC-Protected

tert-butyl 2-((9,10-dioxo-9,10-dihydroanthracen-1-yl)carbamoyl)piperidine-1-carboxylate (\pm)3b-1H NMR spectra

NMR-02

(R)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)pyrrolidine-2-carboxamide -13C spectra

NMR-02

(R)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)pyrrolidine-2-carboxamide -2D NMR data

(S)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)pyrrolidine-2-carboxamide -13C spectra

NMR-02

(S)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)pyrrolidine-2-carboxamide -2D NMR data

(S)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)piperidine-2-carboxamide- 1HNMR spectra

(S)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)piperidine-2-carboxamide- 13C spectra

(S)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)piperidine-2-carboxamide- 2D spectra

(R)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)piperidine-2-carboxamide- 13C spectra

(R)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)piperidine-2-carboxamide- 2D spectra

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide (3d)
1H NMR spectra

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide (3d)

13C spectra

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-((1s,4s)-4-methylcyclohexyl)acetamide (3c')-1H NMR spectra

N -(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-(4-methylcyclohexyl) acetamide-Isomer-1

N -(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-((1s,4s)-4-methylcyclohexyl)acetamide (3c')-13C spectra
$\mathrm{N}-(9,10$-dioxo-9, 10-dihydroanthracen-1-yl)-2-(4-methylcyclohexyl)acetamide-Isomer-1-13C

N -(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-((1r,4r)-4-methylcyclohexyl)acetamide-1H NMR spectra

N -(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-((1r,4r)-4-methylcyclohexyl)acetamide-13C spectra
$\mathrm{N}-(9,10-\mathrm{dioxo}-9,10-\mathrm{dihydroanthracen-1-yl})-2-(4-$ methylcyclohexyl) acetamide-Isomer-2-13C

3c

ppm

(4,4-difluorocyclohexyl)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)acetamide (3e)-1HNMR spectra

$2-(4,4$-difluorocyclohexyl)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl) acetamide

-1

4,4-difluorocyclohexyl)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)acetamide (3e)-19F

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | -60 | -80 | -100 | -120 | -140 | -160 | -180 | 1 |

4,4-difluorocyclohexyl)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)acetamide (3e)-13C spectra

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-hydroxybutanamide(3f)-13C spectra

N-(9, 10-dioxo-9,10-dihydroanthracen-1-yl)-3-methylbenzamide (3h)- 1H NMR spectra

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-methoxybenzamide (3i)-1H NMR spectra

N-(9,10-dioxo-9,10-dihydroanthracen-1-vl)-4-methoxybenzamide (3i)- 13C spectra

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-(trifluoromethoxy)benzamide (3j)-1H NMR spectra

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-(trifluoromethoxy)benzamide (3j)-19F spectra

$$
\mathrm{AC}-45-19 \mathrm{~F}
$$

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-(trifluoromethoxy)benzamide (3j)-13C spectra

3-cyano-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-fluorobenzamide (31) -1 H NMR spectra

3-cyano-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-fluorobenzamide (3I) -19F spectra

Batch NO-3L-19F

3-cyano-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-fluorobenzamide (3I) -13C spectra

AK-792-13C

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-3,5-difluorobenzamide (3m)- 1H NMR spectra

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-3,5-difluorobenzamide (3m)- 19F spectra
\qquad

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-3,5-difluorobenzamide (3m)- 13C spectra

 AK-D1-F

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2nitro benzamide (30)-1H NMR spectra

N -(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2nitro benzamide (30)-13C spectra

N -(9,10-dioxo-9,10-dihydroanthracen-1-yl)-1 naphthamide (3p)- 1H NMR spectra

N -(9,10-dioxo-9,10-dihydroanthracen-1-yl)-1 naphthamide (3p)-13C spectra

N, N^{\prime}-(9,10-dioxo-9,10-dihydroanthracene-1,5-diyl)bis(pyrrolidine-2-carboxamide) -1H NMR spectra

9. 1O-DIHYDROANTHRANCE PYRROLINE CARBOXAMIDE

9．IO－DIHYDROANTHRANCE PYRROLINE CARBOXAMIDE－I 3C

I	푱	
$\stackrel{\infty}{\infty}$	5	
［	$\stackrel{\square}{1}$	くらアアア

tert-butyl 2-((2-ethylphenyl)carbamoyl)pyrrolidine-1-carboxylate (5a)

tert-butyl 2-((2-ethylphenyl)carbamoyl)pyrrolidine-1-carboxylate (5a)

T-BUTYLE-PYROLIDINE-I-CARBOXYLATE

tert-butyl2-((2-(methoxycarbonyl)phenyl)carbamoyl)pyrrolidine-1-carboxylate (5c)

COMPOUND-10-DMSO

tert-butyl2-((2-(methoxycarbonyl)phenyl)carbamoyl)pyrrolidine-1-carboxylate (5c)

tert-butyl 2-((6-methoxypyridazin-3-yl)carbamoyl)pyrrolidine-1-carboxylate (5d)

tert-butyl 2-((3-(methoxycarbonyl)-2-methylphenyl)carbamoyl)pyrrolidine-1-carboxylate

WITHOUT-BROMO COMPOUND-CDCL3

tert-butyl 2-((3-(methoxycarbonyl)-2-methylphenyl)carbamoyl)pyrrolidine-1-carboxylate

WITHAOUT BROMO COMPOUND

tert-butyl 2-((5-bromo-3-(methoxycarbonyl)-2-methylphenyl)carbamoyl)pyrrolidine-1-carboxylate

$5 f$

WITH-BROMO COMPOUND-CDCL 3

tert-butyl 2-((5-bromo-3-(methoxycarbonyl)-2-methylphenyl)carbamoyl)pyrrolidine-1-carboxylate

Bromo COMPUND-CDCL3

7. HRMS DATA

(R)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)pyrrolidine-2-carboxamide

(S) -N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)pyrrolidine-2-arboxamide

(R)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)piperidine-2-carboxamide

(S)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)piperidine-2-carboxamide

$\mathbf{N}-(\mathbf{9 , 1 0}-$ dioxo-9,10-dihydroanthracen-1-yl)-2-((1s,4s)-4-methylcyclohexyl)acetamide (3c)

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide (3d)

AK-BIOTN \#486-500 RT: 4.75-4.87 AV: 7 NL: 2.89E8
T: FTMS +CESIFull ms [i50.0000-800.0000]

4,4-difluorocyclohexyl)-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)acetamide (3e)-

\mathbf{N}-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-hydroxybutanamide(3f)

N-(9, 10-dioxo-9,10-dihydroanthracen-1-yl)-3-methylbenzamide (3h)

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-methoxybenzamide (3i)

$3 i$

AK-500 \#627.640 RT: $6.13-6.25$ AV: 7 NL: $7.31 E 7$
T: FTMS + CESIFull ms $[150.0000-800.0000]$

$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{4}^{358.1069} \mathrm{~N}=358.1074$
$-1.4703 \mathrm{ppm}$
350.1102
359.1102

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-(trifluoromethoxy)benzamide (3j)

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-3,5-dimethylbenzamide (3k)

AC-37 \#697-705 RT: 6.79-6.87 AV: 5 NL: 2.54E8
T: FTMS + c ESI Full ms [150.0000-800.0000]

3-cyano-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-4-fluorobenzamide (3I)

AK-792 \#611-618 RT: 5.97-6.03 AV: 4 NL: $1.45 E 8$
T: FTMS + CESIFull ms $[150.0000-800.0000$]
(

N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-3,5-difluorobenzamide (3m)

AK-DLF \#656-661 RT: 6.42-6.46 AV: 3 NL: 1.78 E
AK-DI-F \#656-661 RT: 6.42-6.46 AV: 3 NL:
$\mathrm{H}_{12} \mathrm{O}_{3} \mathrm{O}_{3} \mathrm{NF}_{2}=364.0775$
$\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{NF}_{2}$

$\xrightarrow{1-27}$

\mathbf{N}-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2nitro benzamide (30)

N -(9,10-dioxo-9,10-dihydroanthracen-1-yl)-1 naphthamide (3p)

AK-CRD-378 \#202 RT= 3.75 AV: $1 \quad$ NL= $1.50 E 2$

$N, N^{\prime}-(9,10-$ dioxo-9,10-dihydroanthracene-1,5-diyl)bis(pyrrolidine-2-carboxamide) (6)

tert-butyl 2-((2-ethylphenyl)carbamoyl)pyrrolidine-1-carboxylate

Sample ID : t_butyl_pyrolidine_1_Carboxylate
Date
: 21-09-2023

tert-butyl 2-((2-(methoxycarbonyl)phenyl)carbamoyl)pyrrolidine-1-carboxylate

tert-butyl 2-((6-methoxypyridazin-3-yl)carbamoyl)pyrrolidine-1-carboxylate

tert-butyl 2-((3-(methoxycarbonyl)-2-methylphenyl)carbamoyl)pyrrolidine-1-carboxylate

5e

tert-butyl 2-((5-bromo-3-(methoxycarbonyl)-2-methylphenyl)carbamoyl)pyrrolidine-1-carboxylate

5f

8. Super critical Fluid chromatography Data

Optimisation of condition for SFC separation of compounds (+)-3a' + (-)-3a

SFC screening chromatogram of D and L-proline ((\pm)-3a) amide derivatives in different chiral columns.

Optimisation of condition for SFC separation of compounds (+)-3b' and +(-)-3b

SFC screening chromatogram of D and L-Piperidine (\pm)-3b) amide derivatives in different chiral columns.

Optimisation of condition for SFC separation of compounds $\mathbf{3 c}$ ' and $\mathbf{3 c} \mathbf{c}^{\prime \prime}$

Successful separation of compound $\mathbf{1}$ and cis $\mathbf{3 c}$ ' and trans $\mathbf{3 c}$ ' isomers using Chiralpak IA column with Methanol as Co-solvent.

Chiral purity SFC method for $4 \mathrm{a} \& 4 \mathrm{a}^{\prime}$

SampleName: DL-Proline

Vial : 1:B,1
Injection Volume : 8.00 uL
Column Name: Chiralpak IG-3(4.6X150)mm;3u
File Name: DL-Proline

Date Acquired 25 -Jul-2019 12:08:40 PM IST

System Name: ANL_BLR_UPC2_01
Method Set: 3g_30_1500PSI_B2_C1_C6

Processed Channel Descr: PDA Spectrum PDA 262.0 nm (PDA Spectrum (210-400)nm)

Analytical SFC Conditions
Column/dimensions
\% CO2
\% Co solvent
Total Flow
Back Pressure
Temperature (de gree)

Peak Results

	RT	Area	\% Area
1	3.333	5476142	50.03
2	4.436	5459549	49.97

Chiral purity SFC method for 4a1

SampleName: D-Proline	Date Acquired 25-Jul-2019 01:04:17 PM IST
Vial :1BB,6	System Name:ANL_BLR_UPC2_01
Injection Volume : 8.00 uL	Method Set: 3g_30_1500PSI_B2_C1_C6
Column Name: Chiralpak IG-3(4.6X150)mm;3u	Procesed Channel Descr: PDA Spectrum PDA File Name: D-Proline

Analytical SFC Conditions	$:$
Column/dimensions	$:$ Chiralpak IG-3(4.6X150)mm; 3 u
$\%$ CO2	$: 70 \%$
\% Co solvent	$: 30 \%(0.2 \% 7 \mathrm{M}$ Me thanolic Ammonia in Acstonitrile:Methanol)(1:1)
Total Flow	$: 3.00 \mathrm{~g} / \mathrm{min}$
Back Pressure	$: 1500 \mathrm{PSI}$
Temperature(degree)	$: 30$

Peak Results

	RT	Aren	\% Amou
1	3385	1282374	99.20
	4.616	10340	0.80

Chiral purity SFC method for 4a

Sample Name: L-Proline		Date Acquired 25-Jul-2019 12:19:56 PM IST
Vial : 1:B, 2		System Name: ANL_BLR_UPC2_01
Injection Volume : 8.00 uL		Method Set: 3g_30_1500PSI_B2_C1_C6
Column Name: Chiralpak IG-3(4.6X150)mm;3u		Procesed Channel Descr: PDA Spectrum PDA
File Name: L-Proline $\quad 262.0 \mathrm{~nm}$ (PDA Spectrum (210		
Analytical SFC Conditions		
Column/dimensions \quad Chiralpak IG-3(4.		
\% CO2 :70\%		
\% Co solvent $\quad: 30 \%$ (0.2\% 7M M		monia in Acetonitrile:Methanol)(1:1)
Total Flow	:3.00 $\mathrm{g} / \mathrm{min}$	
Back Pressure	:1500PSI	
Temperature (de gree)	:30	

Peak Results

	RT	Area	\% Area
1	3.384	25501	0.64
2	4.418	4056742	99.36

Chiral purity SFC method for $4 b \& 4 b^{\prime}$

Peak Results

	RT	Area	$\%$ Area
1	2591	3070387	49.58
2	3.785	3109648	50.32

Chiral purity SFC method for 4b'

SampleName: pipecolic acid derivative-PK-2

Vial : 2:D,6
Injection Volume : 10.00 uL
Column Name: Chiralpak IA-3(4.6X150)mm;3u
File Name: pipecolic acid derivative-PK-2

Date Acquired 14-Aug-2019 12:30:55 PM IST

System Name:ANL_BLR_UPC2_01
Method Set: 3g_30_1500PSI_B1_C1_C4

Processed Channel Descr: PDA Spectrum PDA 262.0 nm (PDA Spectrum (210-400)nm)

Analytical SFC Conditions	
Column/dimensions	$:$ Chiralpak IA(4.6X150)mm;3u
$\%$ CO2	$: 70 \%$
\% Co solvent	$: 30 \%($ Methanol $)$
Total Flow	$: 3.00 \mathrm{~g} / \mathrm{min}$
Back Pressure	$: 1500 \mathrm{PSI}$
Temperature(degree)	$: 30$

Peak Results

	RT	Area	\% Area
1	2613	1506	0.07
2	3.799	2301688	99.30

Chiral purity SFC method for 4b

Peak Results

	RT	Area	\% Area
1	2650	5771310	99.99
2	3.955	841	0.01

9. Optical Rotation values for compounds $4 a, 4 a{ }^{\prime} 4 b$ and 4b'

D-Proline derivative

[Data Information]	
Creation Date	05-Sep-2019 16:21
[Measurement Information]	
Instrument Name	Polarimeter
Model Name	P-2000
Serial No.	A112361232
Polarizer	Dichrom
Faraday Cell	Flint Glass
Accessory	PTC-262
Accessory S/N	B024761481
Temperature	25.00 C
Control Sonsor	Holder
Monitor Sensor	Holder
Start Mode	Start immediately
Light Source	WI
Monitor wavelength	589 nm
D.I.T.	5 sec
No. of cycle	5
Cycle interval	5 sec
Temp. Monitor	Holder
Temp. Corr. Factor	0 at 25 C
Aperture(S)	3.0 mm
Aperture(L)	Auto
Mode	Specific O.R.
Path Length	100 mm
Concentration	0.1 w/v\%
Water content of sample	
Factor	1

[Comment]	
Sample name	D-Proline derivative
Comment	0.1% in Acetonitrile
User	Administrator
Workgroup	QC
Division	QC
Company	GVK

L-Proline derivative

[Data Information] Creation Date				05-Sep-2019 12:36				[Comment]						
					Sample name	L-Proline de	rivative							
					Comment	0.1\% in Ace	tonitrile							
[Measurement Information]								User	Administrat					
Instrument Name							Polarimeter				Workgroup	QC		
Model Name							P-2000				Division	QC		
Serial No.				A112361232				Company	GVK					
				Dichrom										
Faraday Cell				Flint Glass										
Accessory				PTC-262					-		O			
Accessory S/N				B024761481					-					
				25.00 C										
TemperatureControl Sonsor				Holder										
				Holder										
Monitor Sensor Start Mode				Start immediatel										
Light Source				WI										
Light Source ${ }_{\text {Monitor wavelength }}$				589 nm										
D.I.T.				5 sec										
No. of cycle				5										
Cycle interval				5 sec										
Temp. Monitor				Holder										
Temp. Corr. Factor				0 at 25 C										
Aperture(S)				3.0 mm										
Aperture(L)				Auto										
Mode				Specific O.R.										
Path Length				100 mm										
Concentration				0.1 w/v\%										
				mple	0 \%									
Water content of saFactor				1										
		No.	Samp	ple No .	Mode	Calc. Data	Meas. Data	PMT Voltage[V]	Temperature(C)	Blank	Comment			
1	*	1	L-Pro	oline derivative-1	Specific O.R.	-44.2200	-0.0442	422	25.01	+0.0051	0.1\% in Acetonitrile			
2	*	2	L-Pro	oline derivative-2	Specific O.R.	-40.1200	-0.0401	427	25.01	+0.0051	0.1\% in Acetonitrile			
3	*	3	L-Pro	oline derivative-3	Specific O.R.	-42.0200	-0.0420	430	25.00	+0.0051	0.1\% in Acetonitrile			
4	*	4	L-Pro	oline derivative-4	Specific O.R.	-41.3200	-0.0413	412	25.00	+0.0051	0.1\% in Acetonitrile			
5	*	5	L-Pro	oline derivative-5	Specific O.R.	-40.9200	-0.0409	285	24.99	+0.0051	0.1\% in Acetonitrile			
6	-	6		Avg.		-41.7200								
7		7		S.D		1.5572								
8		8		C.V		3.7326								

D-pipecolic acid derivative

[Data Information]	
Creation Date	05-Sep-2019 14:49
[Measurement Information]	
Instrument Name	Polarimeter
Model Name	P-2000
Serial No.	A112361232
Polarizer	Dichrom
Faraday Cell	Flint Glass
Accessory	PTC-262
Accessory S/N	B024761481
Temperature	25.00 C
Control Sonsor	Holder
Monitor Sensor	Holder
Start Mode	Start immediately
Light Source	WI
Monitor wavelength	589 nm
D.I.T.	5 sec
No. of cycle	5
Cycle interval	5 sec
Temp. Monitor	Holder
Temp. Corr. Factor	0 at 25 C
Aperture(S)	3.0 mm
Aperture(L)	Auto
Mode	Specific O.R.
Path Length	100 mm
Concentration	0.1 wiv\%
Water content of sample	
Factor	1

		No.	Sample No.	Mode	Calc. Data	Meas. Data	PMT Voltage	V]	Temperature(C)	Blank
Comment										
1	${ }^{*}$	1	D-pipecolic acid derivative-1	Specific O.R.	+26.8800	+0.0269	411	24.99	+0.0051	0.1% in Acetonitrile
2	${ }^{*}$	2	D-pipecolic acid derivative-2	Specific O.R.	+26.2800	+0.0263	410	24.99	+0.0051	0.1% in Acetonitrile
3	${ }^{*}$	3	D-pipecolic acid derivative-3	Specific O.R.	+26.8800	+0.0269	328	24.99	+0.0051	0.1% in Acetonitrile
4	${ }^{*}$	4	D-pipecolic acid derivative-4	Specific O.R.	+25.4800	+0.0255	370	25.00	+0.0051	0.1% in Acetonitrile
5	$*$	5	D-pipecolic acid derivative-5	Specific 0.R.	+28.3800	+0.0284	403	25.00	+0.0051	0.1% in Acetonitrile
6	$*$	6	Avg.		+26.7800					
7		7	S.D		1.0630					
8		8	C.V		3.9694					

L-pipecolic acid derivative

[Data Information]
Creation Date
05-Sep-2019 15:18
[Measurement Information]
Instrument Name Polarimeter
Model Name P-2000
Serial No. A112361232
Polarizer Dichrom
Faraday Cell Flint Glass
Accessory PTC-262
Accessory S/N B02476148
Temperature
25.00 C

Holder
Holder
Start immediately
Monitor Sensor
Start Mode
$\begin{array}{ll}\text { Light Source } & \text { WI } \\ \text { Monitor wavelength } & 589 \mathrm{~nm}\end{array}$
D.I.T. 5 sec

No. of cycle 5
Cycle interval $\quad 5 \mathrm{sec}$
Temp. Monitor Holder
Temp. Corr. Factor 0 at 25 C
Aperture(S) $\quad 3.0 \mathrm{~mm}$
Aperture(L) Auto
Mode Specific O.R.
Path Length $\quad 100 \mathrm{~mm}$
Concentration $0.1 \mathrm{w} / \mathrm{v} \%$
Water content of sample 0%
Factor

		No.	Sample No.	Mode	Calc. Data	Meas. Data	PMT Voltage[V]	Temperature(C)	Blank	Comment
1	$*$	1	L-pipecolic acid derivative-1	Specific O.R.	-26.1200	-0.0261	397	25.01	+0.0051	0.1% in Acetonitrile
2	${ }^{*}$	2	L-pipecolic acid derivative-2	Specific O.R.	-26.6200	-0.0266	355	25.01	+0.0051	0.1% in Acetonitrile
3	$*$	3	L-pipecolic acid derivative-3	Specific O.R.	-27.9200	-0.0279	296	25.00	+0.0051	0.1% in Acetonitrile
4	${ }^{*}$	4	L-pipecolic acid derivative-4	Specific O.R.	-26.8200	-0.0268	367	25.00	+0.0051	0.1% in Acetonitrile
5	$*$	5	L-pipecolic acid derivative-5	Specific O.R.	-27.6200	-0.0276	411	24.99	+0.0051	0.1% in Acetonitrile
6	$*$	6	Avg.		-27.0200					
7		7	S.D		0.7382					
8		8	C.V		2.7322					

