Supporting Information

K₂S₂O₈ Mediated Direct C-H Heteroarylation/Hydroxylation of

Indolin-2-ones with Quinoxalin-2(1H)-ones

Hui Qin, Guoliang Wei, Yutao Lou, Xiaowei Zheng, Meihua Bao, Yiwen Zhang and

Ping Huang

List of Contents

1.	General information	S2
2.	General procedure for the synthesis of target compounds	S2
3.	Free radical-trapping experiment	S2-5
4.	Characterization of products	S5-14
5.	References	S15-16
5.	Copies of NMR and HR-ESI-MS Spectra	S16-62

1. General information

Unless stated otherwise, all reactions for preparing compound **3a-3ak** were carried out under an air atmosphere. All reagents and solvents were of commercial quality and were used without further purification. Purification was carried out according to standard laboratory methods¹. All reactions were monitored by TLC analysis with silica gel-coated plates with fluorescent indicator UV254. ¹H and ¹³C NMR spectra were obtained on either a Bruker AV 400 at 400 MHz and 100 MHz, respectively. Chemical shifts are reported in ppm and coupling constants are reported in Hz with TMS at 0.0 ppm (¹H and ¹³C) and DMSO- d_6 referenced at 2.50 (¹H) and 39.5 (¹³C). Mass spectra were measured with an AB4500 and Orbitrap ExplorisTM 120 mass spectrometer using ESI ionization.

2. General procedure for the synthesis of 3a-ak

Different substituted oxindole 1 (0.2 mmol, 1.0 equiv.) and various quinoxalin-2-one 2 (0.24 mmol, 1.2 equiv.) was dissolved with 2 mL acetonitrile (ACN) and was treated with $K_2S_2O_8$ (0.4 mmol, 2.0 equiv.) at 80 °C under air atmosphere in a 10 mL thick-walled ground test tube. Then mixture was stirred until the reaction completed. The progress of the reaction was monitored by TLC. After that, reaction product was purified using column chromatography on silica gel with petroleum ether/ethyl acetate (2:1 to 1:2) or dichloromethane/methanol (100:0 to 100:1).

3. Free radical-trapping experiment

Oxindole (**1a**, 0.2 mmol), quinoxalin-2-one (**2a**, 0.24 mmol, 1.2 equiv.), K₂S₂O₈ (0.4 mmol, 2.0 equiv.) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 0.4 mmol, 2.0 equiv.) were

added to a 10 mL thick-walled ground test tube with a magnetic stirring bar, then the reaction mixture was stirred at 80 °C for 4 h until the reaction completed. the desired product **3a** was not observed in reaction process via TLC monitored, but a free radical-trapping adduct **5** and **6** was detected by LC-MS and HRMS of the reaction solution, indicating that was proposed to go through a radical process (Figure S1 and S2).

Figure S1. LC-MS analysis of the adduct 5 and 6

Figure S2. HRMS analysis of the adduct 1a', 5 and 6

4. Characterization of products

3-Hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3a) was purified by silica column with dichloromethane/methanol = 100:0-100:1, orange solid, 51.6 mg, 83% yield;

¹**H NMR (300 MHz, DMSO-***d*₆**):** δ = 10.50 (s, 1H, NH), 8.02 (d, *J* = 8.00 Hz, 1H, ArH), 7.71 (t, *J* = 7.88 Hz, 1H, ArH), 7.61 (d, *J* = 8.36 Hz, 1H, ArH), 7.49 (d, *J* = 7.64 Hz, 1H, ArH), 7.18-7.24 (m, 1H, ArH), 6.94 (d, *J* = 5.5 Hz, 1H, ArH), 6.82-6.88 (m, 2H, ArH), 6.64 (s, 1H, OH), 3.54 (s, 3H, NCH₃);

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 176.27, 156.24, 152.43, 144.48, 133.71, 131.69, 131.54, 130.73, 130.00, 129.88, 124.40, 123.98, 121.78, 115.48, 110.13, 77.85, 29.25;

HRMS (ESI-TOF) calcd for $C_{17}H_{14}N_3O_3 [M + H]^+$: 308.1030; found: 308.1036.

6-Fluoro-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3b) was purified by silica column with dichloromethane/methanol = 100:0-100:1, orange solid, 36.8 mg, 54% yield;

¹**H NMR (400 MHz, DMSO-***d***₆):** *δ* = 10.69 (s, 1H, NH), 8.01 (dd, *J* = 1.52, 8.01 Hz, 1H, ArH), 7.71 (dt, *J* = 1.52, 7.84 Hz, 1H, ArH), 7.61 (d, *J* = 8.51 Hz, 1H, ArH), 7.48 (t, *J* = 8.32 Hz, 1H, ArH), 6.96-6.98 (m, 1H, ArH), 6.75 (s, 1H, OH), 6.68-6.71 (m, 1H, ArH), 6.60-6.65 (m, 1H, ArH), 3.54 (s, 3H, NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.56, 162.30-164.71 (d, *J*_{C-F} = 241.42 Hz), 155.94, 152.45, 146.20-146.32 (d, *J*_{C-F} = 12.63 Hz), 133.69, 131.72, 131.57, 129.90, 126.67-126.70 (d, *J*_{C-F} = 2.72 Hz), 124.42, 120.93-121.26 (d, *J*_{C-F} = 32.73 Hz), 115.49, 107.58-107.80 (d, *J*_{C-F} = 22.17 Hz), 98.26-98.53 (d, *J*_{C-F} = 27.11 Hz), 77.33, 29.28;

HRMS (ESI-TOF) calcd for $C_{17}H_{13}FN_3O_3$ [M + H]⁺: 326.0935; found: 326.0931.

6-Bromo-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3c) was purified by silica column with dichloromethane/methanol = 100:0-100:1, orange solid, 34.7 mg, 45% yield;

¹**H NMR (400 MHz, DMSO-***d***₆):** *δ* = 10.68 (s, 1H, NH), 8.01 (dd, *J* = 1.52, 8.01 Hz, 1H, ArH), 7.72 (dt, *J* = 1.61, 7.84 Hz, 1H, ArH), 7.61 (dd, *J* = 1.32, 8.54 Hz, 1H, ArH), 7.49 (dt, *J* = 1.22, 7.63 Hz, 1H, ArH), 7.00-7.02 (m, 1H, ArH), 6.96-6.98 (m, 1H, ArH), 6.91 (d, *J* = 7.82 Hz, 1H, ArH), 6.81 (s, 1H, OH), 3.54 (s, 3H, NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.08, 155.71, 152.46, 146.14, 133.69, 131.77, 131.64, 130.09, 129.93, 125.82, 124.47, 124.39, 122.63, 115.54, 112.92, 77.44, 29.30;

HRMS (ESI-TOF) calcd for C₁₇H₁₃BrN₃O₃ [M + H]⁺: 386.0135; found: 386.0147.

4-Chloro-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3d) was purified by silica column with dichloromethane/methanol = 100:0-100:1, yellow solid, 27.1 mg, 42% yield;

¹H NMR (400 MHz, DMSO-*d*₆): δ = 10.89 (s, 1H, NH), 7.91 (brs, 1H, ArH), 7.70 (t, *J* = 7.62 Hz, 1H, ArH), 7.61 (d, *J* = 7.24 Hz, 1H, ArH), 7.43 (brs, 1H, ArH), 7.25 (t, *J* = 8.03 Hz, 1H, ArH), 6.93 (d, *J* = 8.31 Hz, 1H, ArH), 6.89 (d, *J* = 7.72 Hz, 1H, ArH), 5.00 (brs, 1H, OH), 3.61 (s, 3H, NCH₃); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 174.67, 155.48, 145.69, 133.60, 132.36, 131.57, 130.35, 129.85, 129.20, 124.38, 121.92, 115.53, 108.79, 29.60;

HRMS (ESI-TOF) calcd for C₁₇H₁₃ClN₃O₃ [M + H]⁺: 342.0640; found: 342.0637.

4-Fluoro-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3e) was purified by silica column with dichloromethane/methanol = 100:0-100:1, yellow solid, 37.4 mg, 56% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 10.77 (s, 1H, NH), 8.03 (dd, *J* = 1.53, 8.02 Hz, 1H, ArH), 7.74 (td, *J* = 7.81, 1.54 Hz, 1H, ArH), 7.64 (d, *J* = 8.00 Hz, 1H, ArH), 7.51 (t, *J* = 8.21 Hz, 1H, ArH), 7.25-7.31 (m, 1H, ArH), 6.97-6.98 (m, 1H, ArH), 6.81 (s, 1H, OH), 6.75 (d, *J* = 7.62 Hz, 1H, ArH), 6.65 (t, *J* = 8.92 Hz, 1H, ArH), 3.57 (s, 3H, NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 175.65, 157.22-159.68 (d, *J*_{C-F} = 245.32 Hz), 154.84, 152.40, 146.67-146.75 (d, *J*_{C-F} = 8.72 Hz), 133.67, 132.15-132.24 (d, *J*_{C-F} = 9.02 Hz), 131.77, 131.58, 129.91, 124.56, 116.16-116.36 (d, *J*_{C-F} = 19.33 Hz), 115.62, 109.21-109.41 (d, *J*_{C-F} = 20.00 Hz), 106.80-106.83 (d, *J*_{C-F} = 2.92 Hz), 76.83, 29.34;

HRMS (ESI-TOF) calcd for $C_{17}H_{13}FN_3O_3 [M + H]^+$: 326.0935; found: 326.0933.

5-Chloro-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3f) was purified by silica column with dichloromethane/methanol = 100:0-100:1, yellow solid, 38.2 mg, 53% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 10.67 (s, 1H, NH), 8.01 (dd, *J* = 1.52, 8.01 Hz, 1H, ArH), 7.72 (dt, *J* = 1.62, 7.83 Hz, 1H, ArH), 7.62 (dd, *J* = 1.22, 8.52 Hz, 1H, ArH), 7.49 (dt, *J* = 1.21, 7.63 Hz, 1H, ArH), 7.28 (dd, *J* = 2.22, 8.34 Hz, 1H, ArH), 6.98-6.99 (m, 1H, ArH), 6.90 (d, *J* = 8.21 Hz, 1H, ArH), 6.84 (s, 1H, OH), 3.55 (s, 3H, NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 175.92, 155.57, 152.52, 143.35, 133.80, 132.76, 131.81, 131.61, 129.95, 129.72, 125.63, 124.40, 124.19, 115.51, 111.53, 77.81, 29.31;

HRMS (ESI-TOF) calcd for C₁₇H₁₃ClN₃O₃ [M + H]⁺: 342.0640; found: 342.0648.

5-Fluoro-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3g) was purified by silica column with dichloromethane/methanol = 100:0-100:1, yellow solid, 42.4 mg, 65% yield;

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 10.54$ (s, 1H, NH), 8.01 (dd, J = 1.51, 8.00 Hz, 1H, ArH),

7.72 (td, *J* = 7.82, 1.52 Hz, 1H, ArH), 7.60 (dd, *J* = 8.53, 1.31 Hz, 1H, ArH), 7.50 (td, *J* = 7.62, 1.23 Hz, 1H, ArH), 7.03-7.09 (m, 1H, ArH), 6.87 (t, *J* = 4.22 Hz, 1H, ArH), 6.84 (dd, *J* = 2.31, 2.94 Hz, 1H, ArH), 6.79 (s, 1H, OH), 3.55 (s, 3H, NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.19, 156.97-159.32 (d, *J*_{C-F} = 235.52 Hz), 155.66, 152.49, 140.65-140.67 (d, *J*_{C-F} = 1.82 Hz), 133.78, 132.31-132.39 (d, *J*_{C-F} = 7.73 Hz), 131.74, 131.60, 129.93, 124.38, 115.90-116.13 (d, *J*_{C-F} = 23.02 Hz), 115.47, 111.82-112.07 (d, *J*_{C-F} = 24.52 Hz), 110.73-110.81 (d, *J*_{C-F} = 7.71 Hz), 78.04-78.06 (d, *J*_{C-F} = 1.62 Hz), 29.28;

HRMS (ESI-TOF) calcd for $C_{17}H_{13}FN_3O_3 [M + H]^+$: 326.0935; found: 326.0937.

5-Bromo-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3h) was purified by silica column with dichloromethane/methanol = 100:0-100:1, orange solid, 37.4 mg, 48% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 10.69 (s, 1H, NH), 8.01 (dd, *J* = 1.51, 8.02 Hz, 1H, ArH), 7.72 (dt, *J* = 1.62, 7.81 Hz, 1H, ArH), 7.62 (dd, *J* = 1.21, 8.43 Hz, 1H, ArH), 7.49 (dt, *J* = 1.23, 7.62 Hz, 1H, ArH), 7.41 (dd, *J* = 2.12, 8.31 Hz, 1H, ArH), 7.10 (d, *J* = 2.11 Hz, 1H, ArH), 6.97-6.98 (m, 1H, ArH), 6.84 (s, 1H, OH), 3.55 (s, 3H, NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 175.80, 155.57, 152.52, 143.76, 133.79, 133.15, 132.58, 131.82, 131.61, 129.95, 126.85, 124.40, 115.50, 113.29, 112.11, 77.76, 29.32;

HRMS (ESI-TOF) calcd for C₁₇H₁₃BrN₃O₃ [M + H]⁺: 386.0135; found: 386.0143.

5-Methyl-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3i) was purified by silica column with dichloromethane/methanol = 100:0-100:1, yellow solid, 23.1 mg, 35% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 10.41 (s, 1H, NH), 8.01 (dd, *J* = 1.52, 8.01 Hz, 1H, ArH), 7.70 (dt, *J* = 7.82, 1.64 Hz, 1H, ArH), 7.60 (dd, *J* = 1.22, 8.54 Hz, 1H, ArH), 7.48 (dt, *J* = 1.21, 7.63 Hz, 1H, ArH), 7.00-7.03 (m, 1H, ArH), 6.75-6.78 (m, 2H, ArH), 6.59 (s, 1H, OH), 3.54 (s, 3H, NCH₃), 2.14 (s, 3H, CH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.28, 156.32, 152.41, 142.01, 133.71, 131.67, 131.50, 130.78, 130.59, 130.13, 129.86, 124.62, 124.37, 115.46, 109.88, 77.94, 29.25, 20.95; HRMS (ESI-TOF) calcd for C₁₈H₁₆N₃O₃ [M + H] ⁺: 322.1186; found: 322.1189.

5-Methoxy-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3j) was purified by silica column with dichloromethane/methanol = 100:0-100:1, yellow solid, 33.8 mg, 48% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 10.33 (s, 1H, NH), 8.01 (dd, *J* = 1.52, 8.01 Hz, 1H, ArH), 7.71 (dt, *J* = 1.53, 7.82 Hz, 1H, ArH), 7.61 (dd, *J* = 1.22, 8.53 Hz, 1H, ArH), 7.48 (dt, *J* = 1.22, 7.64 Hz, 1H, ArH), 6.77 (s, 2H, ArH), 6.62 (s, 1H, OH), 6.56 (s, 1H, ArH), 3.60 (s, 3H, OCH₃), 3.54 (s, 3H, NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.13, 156.15, 155.01, 152.44, 137.69, 133.80, 131.91, 131.69, 131.52, 129.90, 124.36, 115.48, 114.44, 110.98, 110.45, 78.25, 55.81, 29.26;

HRMS (ESI-TOF) calcd for $C_{18}H_{16}N_3O_4 [M + H]^+$: 338.1135; found: 338.1139.

4-Methyl-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3k) was purified by silica column with dichloromethane/methanol = 100:0-100:1, yellow solid, 35.2 mg, 54% yield; ¹**H NMR (400 MHz, DMSO-***d***₆):** δ = 10.49 (s, 1H, NH), 7.84 (s, 1H, ArH), 7.68 (t, *J* = 7.77 Hz, 1H, ArH), 7.58-7.60 (d, *J* = 8.24 Hz, 1H, ArH), 7.42 (t, *J* = 7.88 Hz, 1H, ArH), 7.06-7.12 (m, 2H, ArH), 6.98 (s, 1H, OH), 6.68-6.74 (m, 2H, ArH), 3.60 (s, 3H, NCH₃), 1.92 (s, 3H, CH₃); ¹³**C NMR (100 MHz, DMSO-***d***₆):** δ = 176.22, 156.08, 152.32, 144.01, 134.16, 133.64, 132.30, 131.39, 129.71, 128.65, 128.45, 124.24, 123.39, 115.46, 109.02, 78.38, 29.29, 18.60; **HRMS (ESI-TOF)** calcd for C₁₈H₁₆N₃O₃ [M + H]⁺: 322.1186; found: 322.1187.

1-Methyl-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (31) was purified by silica column with dichloromethane/methanol = 100:0-100:1, red solid, 22.2 mg, 34% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 8.02 (dd, *J* = 1.5, 8.0 Hz, 1H, ArH), 7.70 (td, *J* = 7.93, 1.51 Hz, 1H, ArH), 7.57-7.59 (m, 1H, ArH), 7.49 (t, *J* = 7.61 Hz, 1H, ArH), 7.32 (td, *J* = 7.72, 1.33 Hz, 1H, ArH), 7.00-7.06 (m, 2H, ArH), 6.92 (t, *J* = 7.54 Hz, 1H, ArH), 3.51 (s, 3H, NCH₃), 3.20 (s, 3H, 1H, ArH), 7.00-7.06 (m, 2H, ArH), 6.92 (t, *J* = 7.54 Hz, 1H, ArH), 7.00-7.06 (m, 2H, ArH), 6.92 (t, *J* = 7.54 Hz, 1H, ArH), 7.91 (t, *J* = 7.92, 1.33 Hz, 1H, ArH), 7.00-7.06 (m, 2H, ArH), 6.92 (t, *J* = 7.54 Hz, 1H, ArH), 7.91 (t, *J* = 7.91 (t, J =

NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 174.71, 156.10, 152.38, 145.81, 133.68, 131.73, 131.58, 130.15, 129.90, 129.81, 124.43, 123.65, 122.50, 115.36, 109.04, 77.43, 29.03, 26.65; HRMS (ESI-TOF) calcd for C₁₈H₁₆N₃O₃ [M + H]⁺: 322.1186; found: 322.1188.

1-Phenyl-3-hydroxy-3-(1-methylquinoxalin-2-one) indolin-2-one (3m) was purified by silica column with dichloromethane/methanol = 100:0-100:1, pale solid, 40.4 mg, 54% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 8.06 (dd, *J* = 1.52, 8.02 Hz, 1H, ArH), 7.73 (td, *J* = 7.81, 1.54 Hz, 1H, ArH), 7.61-7.65 (m, 3H, ArH), 7.47-7.55 (m, 4H, ArH), 7.27 (td, *J* = 7.82, 1.42 Hz, 1H, ArH), 7.12 (dd, *J* = 7.44, 1.32 Hz, 1H, ArH), 6.98 (t, *J* = 7.52 Hz, 1H, ArH), 6.78 (d, *J* = 7.84 Hz, 1H, ArH), 3.58 (s, 3H, NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 174.29, 156.15, 152.64, 145.62, 135.12, 133.68, 131.87, 131.69, 130.23, 130.12, 130.00, 129.51, 128.49, 127.08, 124.53, 124.39, 123.14, 115.59, 109.52, 77.51, 29.47;

HRMS (ESI-TOF) calcd for C₂₃H₁₈N₃O₃ [M + H] ⁺: 384.1343; found: 384.1347.

3-Hydroxy-3-(1-ethylquinoxalin-2-one) indolin-2-one (3ab) was purified by silica column with dichloromethane/methanol = 100:0-100:1, pale solid, 49.2 mg, 75% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 10.50 (s, 1H, NH), 8.02 (d, *J* = 8.12 Hz, 1H, ArH), 7.65-7.73 (m, 2H, ArH), 7.48 (t, *J* = 8.32 Hz, 1H, ArH), 7.22 (t, *J* = 6.62 Hz, 1H, ArH), 6.98 (d, *J* = 7.41 Hz, 1H, ArH), 6.82-6.88 (m, 2H, ArH), 6.65 (brs, 1H, OH), 4.13-4.19 (m, 2H, NCH₂), 1.13 (t, *J* = 7.1 Hz, 3H, CH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.26, 156.22, 152.01, 144.45, 132.50, 131.96, 131.64, 130.77, 130.22, 130.00, 124.31, 123.96, 121.82, 115.13, 110.16, 77.83, 37.21, 12.79;

HRMS (ESI-TOF) calcd for $C_{18}H_{16}N_3O_3$ [M + H]⁺: 322.1186; found: 322.1189.

3-Hydroxy-3-(1-pentylquinoxalin-2-one) indolin-2-one (3ac) was purified by silica column with dichloromethane/methanol = 100:0-100:1, orange solid, 39.8 mg, 54% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 10.50 (s, 1H, NH), 8.02 (dd, *J* = 1.51, 8.04 Hz, 1H, ArH), 7.68-7.72 (m, 1H, ArH), 7.63-7.65 (m, 1H, ArH), 7.47 (td, *J* = 7.52, 1.31 Hz, 1H, ArH), 7.22 (td, *J* = 7.71, 1.31 Hz, 1H, ArH), 6.96 (d, *J* = 7.43 Hz, 1H, ArH), 6.88 (d, *J* = 7.72 Hz, 1H, ArH), 6.83 (t, *J* = 7.50 Hz, 1H, ArH), 6.62 (brs, 1H, OH), 4.08-4.13 (m, 2H, NCH₂), 1.50-1.54 (m, 2H, NCH₂C<u>H₂</u>), 1.23-1.24 (m, 4H, NCH₂ CH₂C<u>H₂</u>), 0.79 (t, *J* = 6.62 Hz, 3H, CH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.25, 156.21, 152.25, 144.46, 132.69, 131.94, 131.60, 130.77, 130.19, 129.97, 124.30, 123.89, 121.78, 115.26, 110.16, 77.83, 41.83, 28.71, 26.99, 22.20, 14.33;

HRMS (ESI-TOF) calcd for $C_{21}H_{22}N_3O_3$ [M + H]⁺: 364.1656; found: 364.1652.

3-Hydroxy-3-(1-allylquinoxalin-2-one) indolin-2-one (3ad) was purified by silica column with dichloromethane/methanol = 100:0-100:1, red solid, 38.4 mg, 55% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): $\delta = 10.50$ (s, 1H, NH), 8.02 (d, J = 8.02 Hz, 1H, ArH), 7.67 (t, J = 8.02 Hz, 1H, ArH), 7.55 (d, J = 8.43 Hz, 1H, ArH), 7.47 (t, J = 7.62 Hz, 1H, ArH), 7.22 (t, J = 7.72 Hz, 1H, ArH), 6.99 (d, J = 7.22 Hz, 1H, ArH), 6.82-6.99 (m, 2H, ArH), 6.66 (brs, 1H, OH), 5.78-5.86 (m, 1H, C<u>H</u>=CH₂), 5.13 (d, J = 10.72 Hz, 1H, CH=C<u>H₂</u>)), 4.94 (d, J = 17.22 Hz, 1H, CH=C<u>H₂</u>)), 4.78-4.79 (m, 2H, NCH₂);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.23, 156.33, 152.09, 144.46, 132.73, 131.88, 131.64, 131.48, 130.74, 130.09, 130.02, 124.44, 123.95, 121.83, 117.71, 115.71, 110.17, 77.88, 44.03; HRMS (ESI-TOF) calcd for C₁₉H₁₆N₃O₃ [M + H] ⁺: 334.1186; found: 334.1187.

3-Hydroxy-3-(1-benzylquinoxalin-2-one) indolin-2-one (3ae) was purified by silica column with

dichloromethane/methanol = 100:0-100:1, red solid, 57.2 mg, 72% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 10.48 (s, 1H, NH), 8.03 (dd, *J* = 1.52, 7.91 Hz, 1H, ArH), 7.60 (td, *J* = 7.83, 1.61 Hz, 1H, ArH), 7.51 (d, *J* = 8.74 Hz, 1H, ArH), 7.45 (td, *J* = 7.60, 1.22 Hz, 1H, ArH), 7.31-7.32 (m, 1H, ArH), 7.22-7.27 (m, 4H, ArH), 7.09-7.12 (m, 1H, ArH), 7.04 (d, *J* = 6.64 Hz, 1H, ArH), 6.89 (d, *J* = 7.41 Hz, 2H, ArH), 6.72 (brs, 1H, OH), 5.49 d, *J* = 16.04 Hz, 1H, NCH₂);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.31, 156.53, 152.69, 144.50, 135.99, 132.74, 132.04, 131.53, 130.74, 130.19, 130.08, 129.17, 127.93, 127.10, 124.57, 124.00, 121.85, 115.73, 110.23, 78.01, 44.96;

HRMS (ESI-TOF) calcd for C₂₃H₁₈N₃O₃ [M + H]⁺: 384.1343; found: 384.1341.

3-Hydroxy-3-(1-methylacetatequinoxalin-2-one) indolin-2-one (3af) was purified by silica column with dichloromethane/methanol = 100:0-100:1, orange solid, 52.6 mg, 70% yield;

¹**H NMR (300 MHz, DMSO-***d*₆**):** δ = 10.51 (s, 1H, NH), 8.05 (dd, *J* = 0.91, 4.82 Hz, 1H, ArH), 7.68 (td, *J* = 4.73, 0.92 Hz, 1H, ArH), 7.49-7.55 (m, 2H, ArH), 7.23 (td, *J* = 4.62, 0.81 Hz, 1H, ArH), 6.99 (d, *J* = 4.02 Hz, 1H, ArH), 6.84-6.88 (m, 2H, ArH), 6.72 (s, 1H, OH), 5.04 (d, *J* = 1.52 Hz, 2H, NCH₂), 3.65 (s, 3H, OCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.28, 168.70, 156.78, 152.69, 139.27, 137.77, 127.87, 125.84, 125.67, 125.64, 124.97, 124.11, 122.63, 121.14, 116.87, 115.18, 109.67, 77.15, 44.60; HRMS (ESI-TOF) calcd for C₁₉H₁₆N₃O₅ [M + H] ⁺: 366.1084; found: 366.1082.

3-Hydroxy-3-(1-cyclohexylmethylquinoxalin-2-one) indolin-2-one (3ag) was purified by silica column with dichloromethane/methanol = 100:0-100:1, orange solid, 34.2 mg, 43% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): $\delta = 10.49$ (s, 1H, NH), 8.01 (d, J = 8.12 Hz, 1H, ArH), 7.63-7.71 (m, 2H, ArH), 7.46 (t, J = 8.12 Hz, 1H, ArH), 7.21 (t, J = 7.62 Hz, 1H, ArH), 6.93-6.98 (m, 2H, ArH and OH), 6.80-6.87 (m, 2H, ArH), 3.94-4.10 (m, 2H, CH₂), 1.75 (m, 1H), 1.44-1.59 (m, 6H), 1.03-1.13 (m, 4H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.26, 156.26, 152.69, 144.46, 133.06, 131.90, 131.46, 130.77, 130.17, 129.96, 124.26, 123.82, 121.71, 115.67, 110.15, 77.85, 47.20, 36.30, 30.43, 30.36, 26.35, 26.18, 25.66;

HRMS (ESI-TOF) calcd for C₂₃H₂₄N₃O₃ [M + H]⁺: 390.1812; found: 390.1809.

3-Hydroxy-3-(1-cyclopropylmethylquinoxalin-2-one) indolin-2-one (3ah) was purified by silica column with dichloromethane/methanol = 100:0-100:1, orange solid, 22.8 mg, 32% yield; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 10.51 (s, 1H, NH), 8.02 (d, *J* = 8.03 Hz, 1H, ArH), 7.68-7.75 (m, 2H, ArH), 7.48 (t, *J* = 7.51 Hz, 1H, ArH), 7.21 (t, *J* = 7.71 Hz, 1H, ArH), 6.97 (d, *J* = 7.52 Hz, 1H, ArH), 6.81-6.87 (m, 2H, ArH), 4.03-4.13 (m, 2H, CH₂), 1.14-1.20 (m, 1H), 0.27-0.40 (m, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.26, 156.42, 152.57, 144.45, 132.95, 131.88, 131.56, 130.75, 130.16, 129.98, 124.34, 123.86, 121.78, 115.59, 110.16, 77.87, 45.63, 10.01, 4.12; HRMS (ESI-TOF) calcd for C₂₀H₁₈N₃O₃ [M + H] ⁺: 348.1343; found: 348.1340.

3-Hydroxy-3-(1-(4-bromobenzyl)-quinoxalin-2-one) indolin-2-one (3ai) was purified by silica column with dichloromethane/methanol = 100:0-100:1, orange solid, 56.4 mg, 58% yield;

¹**H** NMR (400 MHz, DMSO-*d*₆): δ = 10.53 (s, 1H, NH), 8.03 (dd, *J* = 1.52, 7.93 Hz, 1H, ArH), 7.62 (td, *J* = 7.84, 1.62 Hz, 1H, ArH), 7.47-7.51 (m, 4H, ArH), 7.23 (t, *J* = 7.73 Hz, 1H, ArH), 7.07 (d, *J* = 8.42 Hz, 2H, ArH), 7.03 (d, *J* = 6.84 Hz, 1H, ArH), 6.88 (d, *J* = 7.73 Hz, 1H, ArH), 6.71 (s, 1H, OH), 5.31-5.45 (m, 2H, NCH₂);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.26, 156.51, 152.63, 144.46, 135.50, 132.63, 132.08, 131.62, 130.69, 130.25, 130.08, 129.40, 128.87, 124.67, 124.04, 121.86, 121.06, 115.64, 110.21, 77.99, 44.48;

HRMS (ESI-TOF) calcd for C₂₃H₁₇BrN₃O₃ [M + H]⁺: 462.0448; found: 462.0448.

3-Hydroxy-3-(6, 7-difluoro-1-methylquinoxalin-2-one) indolin-2-one (3aj) was purified by silica column with dichloromethane/methanol = 100:0-100:1, pale solid, 45.1 mg, 62% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 10.52 (s, 1H, NH), 8.07 (dd, *J* = 8.32, 10.63 Hz, 1H, ArH), 7.81 (dd, *J* = 7.43, 12.31 Hz, 1H, ArH), 7.22 (td, *J* = 7.43, 1.32 Hz, 1H, ArH), 6.95 (d, *J* = 7.36 Hz, 1H, ArH), 6.85 (t, *J* = 7.61 Hz, 1H, ArH), 6.65 (brs, 1H, OH), 3.50 (s, 3H, NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.09, 157.06-157.09 (d, *J*_{C-F} = 3.2 Hz), 152.48-152.62 and 150.00-150.14 (d, *J*_{C-F} = 14.0, 248.6 Hz), 152.18, 147.48-147.62 and 145.05-145.19 (d, *J*_{C-F} = 13.8, 242.8 Hz), 144.46, 131.53-131.63 (d, *J*_{C-F} = 9.8 Hz), 130.50, 130.07, 128.24-128.34 (d, *J*_{C-F} = 9.5 Hz), 124.08, 121.77, 117.30-117.48 (d, *J*_{C-F} = 17.7 Hz), 110.16, 104.62-104.85 (d, *J*_{C-F} = 23.3 Hz), 77.92, 30.03;

HRMS (ESI-TOF) calcd for $C_{17}H_{12}F_2N_3O_3$ [M + H]⁺: 344.0841; found: 344.0847.

3-Hydroxy-3-(6, 7-difchloro-1-methylquinoxalin-2-one) indolin-2-one (3ak) was purified by silica column with dichloromethane/methanol = 100:0-100:1, light yellow solid, 36.3 mg, 47% yield; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 10.54 (s, 1H, NH), 8.20 (s, 1H, ArH), 7.93 (s, 1H, ArH), 7.22 (dt, *J* = 1.32, 7.61 Hz, 1H, ArH), 6.95 (dd, *J* = 1.31, 7.42 Hz, 1H, ArH), 6.83-6.87 (m, 2H, ArH), 6.72 (s, 1H, ArH), 3.51 (s, 3H, NCH₃);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.00, 158.17, 152.09, 144.44, 133.78, 133.71, 131.21, 130.45, 130.40, 130.15, 126.33, 124.16, 121.81, 117.49, 110.19, 78.02, 29.76;

HRMS (ESI-TOF) calcd for $C_{17}H_{12}F_2N_3O_3$ [M + H]⁺: 376.0250; found: 376.0248.

1-Methyl-1, 4-dihydroquinoxaline-2, 3-dione $(4)^2$ was purified by silica column with dichloromethane/methanol = 100:0-100:1, pale solid, 16.2 mg, 36% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): *δ* = 12.02 (s, 1H, NH), 7.33-7.05 (m, 1H, ArH), 7.12-7.20 (m, 3H, ArH), 3.51 (s, 3H, NCH₃).

5. Reference

- W. L. F. Armarego and C. Chai, in *Purification of Laboratory Chemicals (Seventh Edition)*, Butterworth-Heinemann, Boston, 2013, DOI: <u>https://doi.org/10.1016/B978-0-12-382161-4.00004-2</u>, pp. 103-554.
- C. Liang, Y. Guo, Y. Zhang, Z. Wang, L. Li and W. Li, Organic Chemistry Frontiers, 2023, 10, 611-623.

6. Copies of 1H NMR and 13C NMR Spectra

Figure S1. The ¹H NMR Spectrum of Compound 3a in DMSO-d₆

Figure S2. The ¹³C NMR Spectrum of Compound 3a in DMSO-*d*₆

Figure S3. The ¹H NMR Spectrum of Compound 3b in DMSO-d₆

Figure S4. The 13 C NMR Spectrum of Compound 3b in DMSO- d_6

Figure S5. The ¹H NMR Spectrum of Compound 3c in DMSO-d₆

Figure S6. The ¹³C NMR Spectrum of Compound 3c in DMSO-*d*₆

Figure S7. The ¹H NMR Spectrum of Compound 3d in DMSO-d₆

Figure S8. The ¹³C NMR Spectrum of Compound 3d in DMSO-d₆

Figure S9. The ¹H NMR Spectrum of Compound 3e in DMSO- d_6

Figure S10. The ¹³C NMR Spectrum of Compound 3e in DMSO-d₆

Figure S11. The ¹H NMR Spectrum of Compound 3f in DMSO-d₆

Figure S12. The ¹³C NMR Spectrum of Compound 3f in DMSO-*d*₆

Figure S13. The ¹H NMR Spectrum of Compound 3g in DMSO-d₆

Figure S14. The ¹³C NMR Spectrum of Compound 3g in DMSO-*d*₆

Figure S15. The ¹H NMR Spectrum of Compound 3h in DMSO-d₆

Figure S16. The ¹³C NMR Spectrum of Compound 3h in DMSO-*d*₆

Figure S17. The ¹H NMR Spectrum of Compound 3i in DMSO-d₆

Figure S18. The ¹³C NMR Spectrum of Compound 3i in DMSO-*d*₆

Figure S19. The ¹H NMR Spectrum of Compound 3j in DMSO-d₆

Figure S20. The ¹³C NMR Spectrum of Compound 3j in DMSO-*d*₆

Figure S21. The ¹H NMR Spectrum of Compound 3k in DMSO-d₆

Figure S22. The ¹³C NMR Spectrum of Compound 3k in DMSO-*d*₆

Figure S23. The ¹H NMR Spectrum of Compound 3I in DMSO-*d*₆

Figure S24. The ¹³C NMR Spectrum of Compound 31 in DMSO-*d*₆

Figure S25. The ¹H NMR Spectrum of Compound 3m in DMSO- d_6

Figure S26. The ¹³C NMR Spectrum of Compound 3m in DMSO-d₆

Figure S27. The ¹H NMR Spectrum of Compound 3ab in DMSO-d₆

Figure S28. The ¹³C NMR Spectrum of Compound 3ab in DMSO-d₆

Figure S29. The ¹H NMR Spectrum of Compound **3ac** in DMSO- d_6

Figure S30. The 13 C NMR Spectrum of Compound 3ac in DMSO- d_6

Figure S31. The ¹H NMR Spectrum of Compound 3ad in DMSO-d₆

Figure S32. The ¹³C NMR Spectrum of Compound 3ad in DMSO-d₆

Figure S33. The ¹H NMR Spectrum of Compound 3ae in DMSO-*d*₆

Figure S34. The 13 C NMR Spectrum of Compound 3ae in DMSO- d_6

Figure S35. The ¹H NMR Spectrum of Compound 3af in DMSO-d₆

Figure S36. The ¹³C NMR Spectrum of Compound 3af in DMSO-*d*₆

Figure S37. The ¹H NMR Spectrum of Compound 3ag in DMSO-*d*₆

Figure S38. The 13 C NMR Spectrum of Compound 3ag in DMSO- d_6

Figure S39. The ¹H NMR Spectrum of Compound 3ah in DMSO-d₆

Figure S40. The ¹³C NMR Spectrum of Compound **3ah** in DMSO-*d*₆

Figure S41. The ¹H NMR Spectrum of Compound 3ai in DMSO-d₆

Figure S42. The 13 C NMR Spectrum of Compound 3ai in DMSO- d_6

Figure S43. The ¹H NMR Spectrum of Compound 3aj in DMSO-d₆

Figure S44. The ¹³C NMR Spectrum of Compound 3aj in DMSO-d₆

Figure S45. The ¹H NMR Spectrum of Compound 3ak in DMSO-d₆

Figure S46. The 13 C NMR Spectrum of Compound 3ak in DMSO- d_6

Figure S47. The ¹H NMR Spectrum of Compound 4 in DMSO-*d*₆