Supporting Information

Base controlled rongalite mediated reductive aldol/cyclization and dimerization of isatylidene malononitriles/cyanoacetates

Suryakant S. Chaudhari, ^{*ab*} Chandrakant B. Nichinde, ^{*ab*} Baliram R. Patil, ^{*ab*} Amardipsingh S. Girase ^{*a*} Gamidi Rama Krishna ^{*c*} and Anil K. Kinage ^{**ab*}

^a Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India-410 008. <u>E-mail: ak.kinage@ncl.res.in</u>

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India.

^c Organic Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.

Sr. No.	Content	Page No.
1	General information.	S2
2	Single crystal X-ray diffraction study.	S3
3	General procedure for synthesis of starting materials.	S8
4	Synthetic procedure for Spiro[2,3-dihydrofuran-3,3'-oxindole].	S9
5	Synthetic procedure for Di-spiro [cyclopent-3'-ene] Bis-oxindoles.	S10
6	Synthetic procedure for Gram-scale synthesis.	S10
7	General Procedure for synthetic transformation.	S11
8	Characterization data for compounds.	S12
9	References.	S26
10	NMR Spectra of Compounds.	S27

Table of Contents:

1) General information.

All reactions were performed in 10 ml reaction tube. All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated silica gel plates. After elution, plate was visualized under UV illumination at 254 nm, and stanning with basic KMnO₄ solution or in I₂ chamber. ¹H, ¹³C, 135 DEPT and ¹⁹F NMR spectrum were acquired in deuterated solvents at room temperature on Bruker: Ultra shield 400 MHz, chemical shifts (δ) are reported for ¹H NMR in ppm from TMS as internal standard and for ¹³C from the residual solvent peak. ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. Data for ¹³C NMR spectra are reported in terms of chemical shift (δ ppm). High resolution mass spectral (HRMS) analysis was recorded by using a Thermo Scientific Q-Exactive, Accela 1250 pump. ESI TOF mass analyzer.

2) Single crystal X-ray diffraction study.

SC-XRD Experiments: The single crystals of **2a**, **2aa** and **3a** components were obtained from mixture of ethyl acetate : ethanol solvent, while the crystals of **3h** obtained from the ethyl acetate solvent by slow evaporation method. The X-ray diffraction measurements were performed to determine the crystal structure of all the four components at 100 K using APEX3 (Bruker, 2016; Bruker D8 VENTURE Kappa Duo PHOTON II CPAD) diffractometer having graphite-monochromatized (MoK α = 0.71073 Å). The X-ray generator was operated at 50 kV and 30 mA. A preliminary set of unit cell parameters and an orientation matrix were calculated from 36 frames, and the cell refinement was performed by SAINT-Plus (Bruker, 2016). An optimized strategy used for data collection consisted of different sets of φ and ω scans with 0.5° steps φ/ω . The data were collected with a time frame of 10 sec for both the components by setting the sample to detector distance fixed at 40 cm. All the data points were corrected for Lorentzian, polarization, and absorption effects using SAINT-Plus and SADABS programs (Bruker, 2016). SHELXS-97 (Sheldrick, 2008) was used for structure solution, and full-matrix least-squares refinement on F².^{1, 2} The molecular graphics of ORTEP diagrams were performed by Mercury software. The crystal symmetry of the components was cross-checked by running the cif files through PLATON (Spek, 2020) software and notified that no additional symmetry was observed. The Encifer software was used to correct the cif files.

Figure 1. ORTEP diagram of compound 2a, the asymmetric unit contains a single molecule. Herein, the ellipsoids are drawn with a 50% probability.

Figure 2. ORTEP diagram of compound 2aa, the asymmetric unit contains a single molecule. Herein, the ellipsoids are drawn with a 50% probability.

Figure 3. ORTEP diagram of compound **3a**, the asymmetric unit contains a single molecule, along with two water molecules. Herein, the ellipsoids are drawn with a 50% probability.

Figure 4. ORTEP diagram of compound **3h**, the asymmetric unit contains a single molecule along with a water molecule. Herein, the ellipsoids are drawn with a 50% probability.

Table 1.	. Crystallograp	hic information	ation details	of compour	nds 2a, 2a	a, 3a and 3h.
----------	-----------------	-----------------	---------------	------------	------------	---------------

Crystal data	2a	2aa	3a	3h
Chemical formula	C ₁₂ H ₉ N ₃ O ₂	$C_{14}H_{14}N_2O_4$	$C_{22}H_{12}N_6O_2 \cdot 2(H_2O)$	$C_{28}H_{24}N_6O_4\cdot H_2O$
Formula weight (M _r)	227.22	274.27	428.41	526.55
Crystal system	Triclinic	Orthorhombic	Orthorhombic	Monoclinic
Space group	P-1	Pbca	$Pna2_1$	$P2_{1}/c$

Temperature T (K)	100	100	100	100
a (Å)	7.0783 (7)	7.8790 (3)	17.0247 (18)	15.4292 (12)
b (Å)	7.7116 (7)	12.9879 (4)	8.9614 (11)	9.9284 (8)
c (Å)	10.234 (1)	25.3279 (9)	13.2287 (12)	17.7983 (16)
α (°)	84.195 (4)	90	90	90
β (°)	86.746 (4)	90	90	113.305 (3)
γ (°)	82.030 (3)	90	90	90
Ζ	2	8	4	4
Volume (Å ³)	549.87 (9)	2591.85 (16)	2018.2 (4)	2504.0 (4)
Source of radiation	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
D _{calc} (Mg m ⁻³)	1.372	1.406	1.410	1.397
Crystal size (mm)	0.15×0.12×0.11	0.27×0.12×0.09	0.26×0.1×0.08	0.23×0.13×0.09
μ (mm ⁻¹)	0.10	0.11	0.10	0.10
Data collection				
Diffractometer	Bruker D8 VENTURE Kappa Duo PHOTON II CPAD	Bruker D8 VENTURE Kappa Duo PHOTON II CPAD	Bruker D8 VENTURE Kappa Duo PHOTON II CPAD	Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
Absorption correction	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.6502, 0.7454	0.6015, 0.7458	0.5583, 0.7454	0.6143, 0.7459
No. of measured, independent and observed [I > $2\sigma(I)$]	13478, 2234, 1992	30373, 3358, 2904	17679, 4061, 3975	123205, 5466, 4604
Thete range (°)	2 909-26 422	3 045-28 729	2 39-26 37	2 333-27 000
D	0.054	0.052	0.046	0.102
K _{int}	0.034	0.033	0.040	0.102

Refinement				
$R[F^2 > 2\sigma]$ (F ²)], wR(F ²)	0.041, 0.096	0.039, 0.103	0.030, 0.079	0.040, 0.103
GOF on F ²	1.06	1.07	1.04	1.04
No. of independent reflections	2234	3358	4061	5466
No. of parameters	166	190	295	371
F_000	236	1152	888	1104
No. of restraints	0	0	1	3
H-atom treatment	Constr	Constr	Constr	Constr
$ \begin{array}{ c c } \Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \\ A^{\circ -3}) \end{array} $	0.27, -0.18	0.33, -0.23	0.22, -0.16	0.34, -0.21
CCDC number	2289592	2289593	2289594	2289595

Table 2. Hydrogen-bond geometry $(A^{\circ}, {}^{\circ})$ of 2a, 2aa, 3a and 3h components are given as below.

Name of the compound	D–H···A	<i>D</i> –Н	Н…А	$D \cdots A$	D–H··· A
2a	N2-H2A•••O2	0.8900	2.0100	2.8512(3)	159
	N2-H2B•••N1	0.9000	2.1400	3.0205(3)	165
	N3-H3•••O2	0.9300	1.9100	2.8271(3)	170
	C9-H9B•••N1	0.9900	2.6000	3.4469(3)	143
2aa	N006-H006•••O003	0.8800	2.0800	2.9173(1)	159
	N1-H1A•••O003	0.9000	2.4300	3.0086(1)	122
	N1-H1A•••O002	0.9000	2.3300	3.0038(1)	132
	N1-H1B•••O002	0.8800	1.9600	2.8378(1)	176
3a	N1-H1•••O2	0.8800	2.0500	2.8743(4)	155
	N2-H2•••O3	0.8800	2.1900	3.0074(4)	155
	N2-H2•••N4	0.8800	2.3700	2.9463(4)	123
	N3-H3A•••O4	0.8800	2.1200	2.9974(4)	176
	N3-H3B•••O3	0.8800	1.9800	2.8517(4)	169

	O3-H3C•••O1	0.8700	1.9100	2.7482(3)	162
	O3-H3D•••N4	0.8700	2.1500	2.7881(3)	130
	04–H4A•••N5	0.8700	2.2400	3.0884(4)	166
	04–H4B•••N6	0.8700	2.5700	3.2247(4)	133
	С12-Н12•••О2	0.9500	2.4900	3.1072(4)	123
	С21-Н21•••О1	0.9500	2.5800	3.2202(4)	125
3h	04–H4A•••O5	0.8500	1.9700	2.8107(3)	168
	04–H4B•••N4	0.8700	2.0600	2.9206(3)	170
	N5-H5A•••O4	0.8700	1.9600	2.8190(3)	169
	N5-H5B•••O1	0.9200	1.9800	2.8620(3)	159
	С3–НЗА•••О5	0.9700	2.5200	2.9003(3)	103
	С19-Н19•••О5	0.9300	2.5000	3.1745(3)	130
	С25-Н2•••О2	0.9300	2.4000	3.0940(3)	131
	С25-Н25••О2	0.9300	2.5500	3.2002(3)	127

3) General procedure for synthesis of starting materials.

a) Synthesis of N- alkyl protected isatin derivatives.

N-Protected isatin derivatives were synthesized from commercially available isatin alkyl halides and in the presence of potassium carbonate as base in DMF solution. Alkyl halides (12 mmol, 1.2 eq.) was added to a stirred solution of isatin (10 mmol, 1.0 eq.) and K_2CO_3 (12 mmol, 1.2 eq.) in DMF and further stirred at room temperature for 12 h. Reactions were monitored by TLC until completion. After completion of the reaction, the mixture was quenched with water (20 mL) and extracted with dichloromethane (3 x 20 mL). The combined organic phase was washed with brine, dried over anhydrous Na_2SO_4 , filtered and concentrated in vacuum. The crude residue was then purified by column chromatography on silica gel with ethyl acetate-pet ether (10/90 to 20/80) to provide N-protected isatin derivative.³⁻⁴

b) Synthesis of N-Aryl substituted isatin derivatives.

N-Arylation of isatin were synthesized from commercially available isatin and aryl halide (1.2eq.) in the presence of CuO (2eq.) in DMF solvent at reflux condition for 5-12 h. After reaction cooled to room temperature and filter to remove CuO. The filtrate was poured in cold water and ethyl acetate was added. The two organic and aqueous layers were separated. The organic layer dried over anhydrous Na_2SO_4 , filtered and concentrated in vacuum and resulting crude product was purified by column chromatography to afford product.⁵

c) Synthesis of Isatyledene malononitrile. (1a-1z)

A mixture of isatin derivatives (0.5 mmol, 1 equiv.), malononitrile (0.51 mmol, 1.01 equiv.) in Ethanol solvent (1 mL) was stirred at room temperature until starting material was completely converted to product (monitored by TLC). After completion of reaction solvent was removed under low pressure. Obtained product was used for next step without any further purification.⁶

d. Synthesis of Isatyledene ethyl cyanoacetate. (1aa-1ae)

A mixture of isatin/substituted isatin (0.5 mmol, 1 equiv.), ethyl cyanoacetate (0.51 mmol, 1.01 equiv.) in Ethanol: H_2O (3:7) solvent (2 mL) was stirred at 75 °C until the starting material was completely converted to product (monitored by TLC). After completion of reaction solvent was removed under low pressure. Obtained product was used for next step without any further purification.⁷

4)Procedure-(A) Synthetic procedure for Spiro[2,3-dihydrofuran-3,3'-oxindole](2 a-2 z & 2 aa-2 ae).

All reactions were carried out in (10 ml) reaction tube. Isatyledene malonitrile/ethyl cyanoacetate (0.2 mmol,1 equiv.), (1') (2 equiv.), triethyl amine (2 equiv.) and H_2O (2 mL) were stirred at room temperature until the starting material was completely converted to product (monitored by TLC). After that, the product was isolated by filtration and washed with H_2O 2-3 times and dry for 80 °C under high vacuum to obtain the spiro [2,3 dihydrofuran-3,3'-oxindole].

5) Procedure-(B) Synthetic procedure for Di-spiro [cyclopent-3'-ene] Bis-oxindoles. (3 a-3 h)

Isatyledene malonitrile (0.2 mmol,1 equiv.), (1') (2.5 equiv.) and H_2O (2 mL) were stirred at room temperature, until the starting material was completely converted to product (monitored by TLC). After that, the product was isolated by filtration and then washed with H_2O 2-3 times and dry for 80 °C under high vacuum to obtain Di-spiro [cyclopent-3'-ene] Bis-oxindoles.

6) Synthetic procedure for Gram-scale synthesis.

a) Synthesis of <mark>2 a</mark>

In 15 mL sealed tube, added sequentially (1') (1.57 g), 1a (1 g 2 equiv.), Et₃N (1.03 g 2 equiv.) and 3mL water and stirred for 5 min. After 5 minutes under stirring second portion of remaining 7 mL water was added slowly and reaction mixture continuously stirred for 2 h at room temperature until the starting material was completely converted to product (monitored by TLC). After the product was isolated by filtration and washed with H₂O and dry for 80 °C under high vacuum to give 2a.

b) Synthesis of 2 aa

In 15 mL sealed tube added sequentially **1'** (1.3 g 2 equiv.), **1aa** (1 g), Et₃N 0.853 g (2 equiv.) and 3 mL water and stirred for 5 min. After 5 minutes under stirring second portion of remaining 7 mL water was added slowly and reaction mixture was continuously stirred for 2 h at room temperature until the starting material was completely converted to product (monitored by TLC). After the product was isolated by filtration and washed with H₂O and dry for 80 °C under high vacuum to give **2aa**.

c) Synthesis of <mark>3 a</mark>

In 50 mL round bottom flask, was added (1a 1.3 gm), (1') (2.5 equiv.) and (5 mL) water and stirred for 5 min. After that second portion (5 mL) water was added and continuously stirred for 2.5 h at room temperature until the starting material was completely converted to product (monitored by TLC). After the product was isolated by filtration and washed with H_2O and dry for 80° C under high vacuum to give mixture of product **3a** and **2a**.

7) General Procedure for synthetic transformation.

(Procedure-c) synthesis of 4 a & 4 b

In 10 mL sealed tube were added (**2a**, 0.2mmol), (1.2 mL, $V_{Ac20} / V_{Pyridine}$ 2:1 ratio) and stirred at 100 °C for 12 h. After the reaction the crude product was further purified by column chromatography on the silica gel (40% ethyl acetate/ petroleum ether) to give **4 a or 4 b**.

8) Characterization data for compounds.

(2a) 5-amino-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (43.1 mg, 93% yield), M. P. 224-226 °C., Rf (Ethyl acetate/Pet. ether;1:1) = 0.3

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 10.44 (s, 1 H), 7.46 (s, 2 H), 7.30 (d, *J*=7.3 Hz, 1 H), 7.23 (t, *J*=7.1 Hz, 1 H), 7.03 (t, *J*=7.2 Hz, 1 H), 6.84 (d, *J*=7.6 Hz, 1 H), 4.55 (d, *J*=9.3 Hz, 1 H), 4.43 (d, *J*=9.1 Hz, 1 H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 178.8, 169.3, 141.5, 130.9, 128.7, 123.9, 122.1, 117.6, 109.5, 77.4, 56.8, 54.6; HRMS (ESI) m/z calculated for $C_{12}H_9N_3O_2$ +H 228.0773, found: 228.0771

(2b) 5-amino-5'-fluoro-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (45 mg, 92% yield), M. P. 258-260 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.3

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 10.47 (br. s., 1H), 7.51 (s, 2H), 7.25 (d, *J*=8.1 Hz, 1H), 7.07 (t, *J*=9.0 Hz, 1H), 6.83 (dd, *J*=8.2, 4.1 Hz, 1H), 4.56 (d, *J*=9.3 Hz, 1H), 4.48 (d, *J*=9.3 Hz, 1H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 179.2, 169.5, 159.6, 157.2, 137.9, 132.9, 117.7, 115.4, 115.1, 112.1, 111.9, 110.5, 110.4, 77.2, 57.6, 54.6; ¹⁹F NMR (376 MHz, *DMSO-d*₆) δ -121.0; HRMS (ESI) m/z calculated for $C_{12}H_8FN_3O_2+H$ 246.0679, found: 246.0673

(2c) 5-amino-5'-chloro-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (46.4 mg, 89%yield), M. P. 234-236 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.3

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.57 (s, 1 H), 7.52 (s, 2 H), 7.40 (d, *J*=1.9 Hz, 1 H), 7.28 (dd, *J*=8.3, 2.0 Hz, 1 H), 6.85 (d, *J*=8.3 Hz, 1 H), 4.53 - 4.61 (m, 2 H), 4.44 - 4.53 (m, 2 H); ¹³C NMR (101 MHz, *DMSO-d*₆) δ 178.9, 169.5, 140.7, 133.2, 128.8, 126.2, 124.3, 117.6, 111.1, 77.2, 57.3, 54.5 HRMS: (ESI) m/z calculated for $C_{12}H_8CIN_3O_2$ +H: 262.0383, found: 262.0378

(2d) 5-amino-5'-bromo-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (54.8 mg, 90% yield), M. P. 254-256 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.3

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 10.57 (s, 1H), 7.52 (s, 2H), 7.50 (d, *J*=2.1 Hz, 1H), 7.41 (dd, *J*=8.3, 2.1 Hz, 1H), 6.80 (d, *J*=8.3 Hz, 1H), 4.55 (d, *J*=9.3 Hz, 1H), 4.50 (d, *J*=9.3 Hz, 1H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 178.7, 169.5, 141.1, 133.6, 131.6, 127.1, 117.6, 113.8, 111.6, 77.2, 57.2, 54.5; HRMS: (ESI) m/z calculated for C₁₂H₈BrN₃O₂+H: 305.9878, found: 305.9873

(2e) 5-amino-5'-iodo-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (60.7 mg, 86% yield), M. P. 244-246 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.3

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 10.56 (s, 1H), 7.61 (d, *J*=1.8 Hz, 1H), 7.57 (dd, *J*=8.1, 1.8 Hz, 1H), 7.51 (s, 2H), 6.70 (d, *J*=8.1 Hz, 1H), 4.53 (d, J=9.5 Hz, 1H), 4.49 (d, J=9.5 Hz, 1H); ¹³C NMR (101 MHz, DMSO-d₆) δ 178.4, 169.5, 141.5, 137.4, 133.9, 132.4, 117.7, 112.1, 85.1, 77.2, 57.1, 54.5; HRMS: (ESI) m/z calculated for C₁₂H₈IN₃O₂+H: 353.9739, found: 353.9734

(2f) 5-amino-7'-fluoro-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (44.6 mg, 91% yield), M. P. 256-258 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.4

¹**H NMR** (400 MHz, DMSO- d_6) δ 10.97 (br. s., 1 H), 7.52 (br. s., 2 H), 7.11 - 7.22 (m, 2 H), 7.00 - 7.11 (m, 1 H), 4.58 (d, *J*=9.3 Hz, 1 H), 4.46 (d, *J*=9.4 Hz, 1 H); ¹³**C NMR** (101 MHz, *DMSO-d_6*) δ 178.9, 169.5, 147.5, 145.1, 134.3, 128.7, 123.2, 120.1, 117.6, 115.9, 77.5, 57.4, 54.7; ¹⁹**F NMR** (376 MHz, *DMSO-d_6*) δ -133.2; **HRMS:** (ESI) m/z calculated for C₁₂H₈FN₃O₂+H: 246.0679, found: 246.0676

(2g) 5-amino-4',7'-dichloro-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (54.2 mg, 92% yield), M. P. 276-278°C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.4

¹H NMR (400 MHz, DMSO- d_6) δ 11.15 (br. s., 1 H), 7.54 (s, 2 H), 7.37 (d, *J*=8.8 Hz, 1 H), 7.09 (d, *J*=8.6 Hz, 1 H), 4.64 (d, *J*=9.8 Hz, 1 H), 4.47 (d, *J*=9.8 Hz, 1 H); ¹³C NMR (101 MHz, *DMSO-d_6*) δ 178.1, 169.9, 141.1, 130.3, 129.2, 128.6, 123.7, 117.3, 113.1, 75.1, 58.9, 51.9; HRMS: (ESI) m/z calculated for C₁₂H₇Cl₂N₃O₂+H: 295.9994, found: 295.9993

(2h) 5-amino-5'-methyl-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (40.4 mg, 84% yield), M. P. 242-244 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.2

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.34 (s, 1 H), 7.44 (s, 2 H), 7.11 (s, 1 H), 7.03 (d, *J*=7.8 Hz, 1 H), 6.72 (d, *J*=7.8 Hz, 1 H), 4.53 (d, *J*=9.1 Hz, 1 H), 4.42 (d, *J*=9.1 Hz, 1 H), 2.27 (s, 3 H); ¹³C NMR (101 MHz, *DMSO-d*₆) δ 178.9, 169.4, 139.2, 131., 131.2, 129.1, 124.6, 117.8, 109.4, 77.7, 57.1, 54.9, 20.7; HRMS: (ESI) m/z calculated for $C_{13}H_{11}N_3O_2$ +H: 242.0930, found: 242.0924

(2i) 5-amino-5'-methoxy-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (40.5 mg, 79% yield), M. P. 248-250 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.3

¹**H** NMR (400 MHz, DMSO- d_6) δ 10.26 (s, 1 H), 7.45 (s, 2 H), 6.93 (s, 1 H), 6.78 - 6.83 (m, 1 H), 6.71 - 6.78 (m, 1 H), 4.54 (d, *J*=9.3 Hz, 1 H), 4.45 (d, *J*=9.3 Hz, 1 H), 3.73 (s, 3 H); ¹³C NMR (101 MHz, *DMSO-d*₆) δ 179.1, 169.4, 155.4, 134.9, 132.3, 117.8, 113.8, 110.7, 110.1, 77.5, 57.5, 55.5, 54.9; HRMS: (ESI) m/z calculated for C₁₃H₁₁N₃O₃+H: 258.0879, found: 258.0873.

(2j) 5-amino-2'-oxo-7'-(trifluoromethyl)-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized **procedure-(A)**, obtained as a solid (51.9 mg, 88% yield), **M. P.** 226-228°C, Rf (Ethyl acetate/Pet. ether; 1:1) = 0.6

¹H NMR (400 MHz, *DMSO-d*₆) δ 10.94 (br. s., 1H), 7.62 (d, *J*=7.1 Hz, 1H), 7.57 (br. s., 2H), 7.53 (d, *J*=8.0 Hz, 1H), 7.21 (t, *J*=7.3 Hz, 1H), 4.60 (d, *J*=9.4 Hz, 1H), 4.50 (d, *J*=9.3 Hz, 1H); ¹³C NMR (101 MHz, *DMSO-d*₆) δ 179.5, 169.6, 139.1, 133.3, 128.2, 125.4, 122.4, 117.5, 110.9, 110.5, 77.5, 56.2, 54.5; ¹⁹F NMR (376 MHz, DMSO-d₆) δ -59.9; HRMS: (ESI) m/z calculated for C₁₃H₈F₃N₃O₂+H: 296.0647, found: 296.0641.

(21) 5-amino-1'-methyl-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (43.4 mg, 90% yield), M. P. 220-222°C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.7

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 7.50 (s, 2H), 7.39 - 7.30 (m, 2H), 7.17 - 7.07 (m, 1H), 7.03 (d, *J* = 7.8 Hz, 1H), 4.55 (d, *J* = 9.3 Hz, 1H), 4.44 (d, *J* = 9.3 Hz, 1H), 3.14 (s, 3H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 177.2, 169.6, 143.2, 130.3, 129.1, 123.7, 122., 117.6, 108.6, 77.6, 56.6, 54.4, 26.3; HRMS: (ESI) m/z calculated for C₁₃H₁₁N₃O₂+H: 242.0930, found: 242.0924

(2m) 5-amino-1'-ethyl-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (46.8 mg, 92%yield), M. P. 202-204 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.7

¹**H** NMR (400 MHz, DMSO- d_6) δ 7.49 (s, 2 H), 7.36 (d, J=7.4 Hz, 2 H), 7.33 (td, J=7.7, 1.2 Hz, 1 H), 7.06 - 7.12 (m, 2 H), 4.55 (d, J=9.4 Hz, 1 H), 4.45 (d, J=9.3 Hz, 1 H), 3.66 - 3.75 (m, 2 H), 1.14 (t, J=7.1 Hz, 3 H); ¹³C NMR (101 MHz, *DMSO-d₆*) δ 177.1, 169.7, 142.3, 130.7, 129.4, 124.1, 123.1, 117.8, 109.1, 77.7, 56.8, 54.9, 34.7, 12.8; **HRMS:** (ESI) m/z calculated for C₁₄H₁₃N₃O₂+H: 256.1086, found: 256.1084

(2n) 5-amino-1'-butyl-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimize procedure-(A), obtained as a solid (53.8 mg, 95% yield), M. P. 230-232°C., Rf (Ethyl acetate/Pet. ether;1:1) = 0.7

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 7.49 (s, 2H), 7.36 (d, *J*=7.3 Hz, 1H), 7.32 (t, *J*=7.8 Hz, 1H), 7.08 - 7.14 (m, 1H), 7.06 (d, *J*=7.9 Hz, 1H), 4.54 (d, *J*=9.3 Hz, 1H), 4.46 (d, J=9.3 Hz, 1H), 3.69 - 3.79 (m, 1H), 3.61 (dt, *J*=13.9, 6.8 Hz, 1H), 1.51 - 1.61 (m, 2H), 1.25 - 1.36 (m, 2H), 0.88 (t, *J*=7.3 Hz, 3H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 177.1, 169.5, 142.5, 130.5, 129.0, 123.9, 122.7, 117.5, 108.8, 77.5, 56.6, 54.8, 28.9, 19.3, 13.6; **HRMS:** (ESI) m/z calculated for C₁₆H₁₇N₃O₂+H: 284.1399, found: 284.1394

(20) 5-amino-1'-(2-methoxyethyl)-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (49.6 mg, 87% yield), M. P. 196-198 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.4

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 7.49 (s, 2H), 7.29 - 7.38 (m, 2H), 7.06 - 7.13 (m, 2H), 4.54 (d, *J*=9.3 Hz, 1H), 4.45 (d, *J*=9.3 Hz, 1H), 3.80 - 3.87 (m, 2H), 3.53 (t, *J*=5.7 Hz, 2H), 3.22 (s, 3H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 177.4, 169.5, 142.7, 130.2, 128.9, 123.8, 122.8, 117.5, 109.2, 77.6, 68.9, 58.2, 56.5, 54.6; HRMS: (ESI) m/z calculated for C₁₅H₁₅N₃O₃+H: 286.1192, found: 286.1186.

(2p) 5-amino-1'-isobutyl-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (50.3mg, 89% yield), M. P. 190-192 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.5

¹**H** NMR (400 MHz, DMSO- d_6) δ 7.49 (s, 2 H), 7.36 (d, *J*=7.4 Hz, 1 H), 7.27 - 7.34 (m, 1 H), 7.04 - 7.13 (m, 2 H), 4.54 (d, *J*=9.3 Hz, 1 H), 4.46 (d, *J*=9.3 Hz, 1 H), 3.55 (dd, *J*=13.8, 8.2 Hz, 1 H), 3.40 (dd, *J*=13.8, 6.8 Hz, 1 H), 2.00 - 2.11 (m, 1 H), 0.88 (dd, *J*=14.0, 6.6 Hz, 6 H); ¹³C NMR (101 MHz, DMSO- d_6) δ 177.5, 169.4, 142.8, 130.4, 128.9, 123.8, 122.7, 117.6, 109.1, 77.5, 56.6, 54.8, 46.7, 26.3, 19.9, 19.7; **HRMS**: (ESI) m/z calculated for C₁₆H₁₇N₃O₂ +H: 284.1399, found: 284.1394

(2q) 5-amino-1'-isopropyl-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (47.3 mg, 89% yield), M. P. 194-196 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.5

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 7.46 (s, 2H), 7.36 (d, *J*=8.4 Hz, 1H), 7.27 - 7.32 (m, 1H), 7.18 (d, *J*=7.8 Hz, 1H), 7.05 - 7.12 (m, 1H), 4.53 - 4.56 (m, 1H), 4.46 - 4.52 (m, 1H), 4.44 - 4.46 (m, 1H), 1.40 (d, *J*=3.3 Hz, 3H), 1.39 (d, *J*=3.4 Hz, 3H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 176.9, 169.3, 141.7, 130.9, 128.9, 124.0, 122.4, 117.4, 109.8, 77.4, 56.5, 55.1, 43.7, 19.2, 18.9; **HRMS:** (ESI) m/z calculated for C₁₅H₁₅N3O₂+H: 270.1243, found: 270.1237

(2r) 5-amino-1'-cyclopentyl-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (51.9 mg, 88% yield), M. P. 188-190 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.6

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 7.47 (s, 2H), 7.36 (d, *J*=7.1 Hz, 1H), 7.28 - 7.34 (m, 1H), 7.06 - 7.13 (m, 2H), 4.64 (quin, *J*=8.5 Hz, 1H), 4.55 (d, *J*=9.3 Hz, 1H), 4.44 (d, J=9.3 Hz, 1H), 1.94 - 2.04 (m, 2H), 1.77 - 1.92 (m, 4H), 1.60 - 1.67 (m, 2H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 177.1, 169.4, 141.9, 130.8, 128.9, 124.0, 122.5, 117.5, 109.6, 77.5, 56.6, 55., 52.3, 27.6, 27.5, 24.7, 24.7; **HRMS:** (ESI) m/z calculated for C₁₇H₁₇N₃O₂ +H: 296.1399, found: 296.1394

(2s) 5-amino-1'-(cyclohexylmethyl)-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (56.2 mg, 87% yield), M. P. 246-248 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.6

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 7.48 (s, 2H), 7.28 - 7.38 (m, 2H), 7.04 - 7.12 (m, 2H), 4.54 (d, *J*=9.3 Hz, 1H), 4.46 (d, *J*=9.3 Hz, 1H), 3.51 - 3.67 (m, 1H), 3.43 (dd, *J*=13.9, 6.6 Hz, 1H), 1.61 - 1.71 (m, 4H), 1.49 - 1.60 (m, 1H), 1.09 - 1.17 (m, 4H), 0.94 - 1.01 (m, 2 H); ¹³C NMR (101 MHz, *DMSO-d*₆) δ 177.4, 169.4, 142.9, 130.4, 128.9, 123.8, 122.6, 117.5, 109.1, 77.5, 56.6, 54.8, 45.7, 45.5, 35.5, 30.1, 29.9, 25.8, 25.3, 25.2; **HRMS:** (ESI) m/z calculated for: C₁₉H₂₁N₃O₂+H, 324.1712 found: 324.1704

(2t) 5-amino-1'-benzyl-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimize procedure-(A), obtained as a solid (55.1 mg, 87% yield), M. P. 242-244 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.7

¹**H** NMR (400 MHz, DMSO- d_6) δ 7.56 (s, 2 H), 7.39 (d, *J*=7.4 Hz, 1 H), 7.32 - 7.25 (m, 5 H), 7.19 - 7.24 (m, 1 H), 7.09 (t, *J*=7.4 Hz, 1 H), 6.85 (d, *J*=7.8 Hz, 1 H), 5.01 (d, *J*=15.9 Hz, 1 H), 4.81 (d, *J*=15.9 Hz, 1 H), 4.64 (d, *J*=9.3 Hz, 1 H), 4.52 (d, *J*=9.3 Hz, 1 H); ¹³C NMR (101 MHz, *DMSO-d*₆) δ 177.5, 169.5, 142.1, 135.9, 130.4, 128.9, 128.6, 127.4, 126.9, 123.9, 123.1, 117.7, 109.3, 77.5, 56.8, 54.7, 42.9; **HRMS:** (ESI) m/z calculated for: C₁₉H₁₅N₃O₂ +H, 318.1243 found: 318.1242.

(2u) 5-amino-2'-oxo-1'-phenethyl-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (60.2 mg, 91% yield), M. P. 214-216 °C, Rf (Ethyl acetate/Pet. ether; 1:1) = 0.7

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 7.50 (s, 2H), 7.32 - 7.37 (m, 1H), 7.22 - 7.32 (m, 3H), 7.14 - 7.22 (m, 3H), 7.09 (t, *J*=7.5 Hz, 1H), 7.02 (d, *J*=7.9 Hz, 1H), 4.24 - 4.47 (m, 2H), 3.89 (t, *J*=7.1 Hz, 2H), 2.88 (t, *J*=6.8 Hz, 2H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 177.1, 169.5, 142.3, 138.2, 130.2, 128.9, 128.9, 128.3, 126.3, 123.8, 122.7, 117.6, 108.9, 77.6, 56.5, 54.3, 41.1, 32.9; **HRMS:** (ESI) m/z calculated for: C₂₀H₁₇N₃O₂ +H, 332.1399 found: 332.1394.

(2v) 5-amino-1'-(4-nitrobenzyl)-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (63 mg, 87% yield), M. P. 210-212 °C, Rf (Ethyl acetate/Pet. Ether; 1:1) = 0.5

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 8.13 - 8.21 (m, 2H), 7.59 - 7.61 (m, 1H), 7.57 - 7.59 (m, 2H), 7.40 - 7.45 (m, 1H), 7.22 - 7.29 (m, 1H), 7.08 - 7.16 (m, 1H), 6.91 (d, *J*=7.8 Hz, 1H), 5.15 (d, *J*=16.8 Hz, 1H), 5.02 (d, *J*=16.6 Hz, H), 4.68 (d, *J*=9.4 Hz, 1H), 4.55 (d, *J*=9.5 Hz, 1H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ ppm 178.2, 169.9, 147.4, 144.5, 142.3, 130.9, 129.5, 128.7, 124.6, 124.1, 123.8, 118.2, 109.6, 77.9, 57.3, 55.2, 42.9; **HRMS:** (ESI) m/z calculated for: C₁₉H₁₄N₄O₄ +H, 363.1093 found: 363.1088

(2w) 1'-allyl-5-amino-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (50.2 mg, 94% yield), M. P. 224-226°C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.6

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 7.52 (s, 2H), 7.36 - 7.41 (m, 1H), 7.30 (td, *J*=7.7, 1.2 Hz, 1H), 7.07 - 7.14 (m, 1H), 6.94 (d, *J*=7.8 Hz, 1H), 5.78 - 5.89 (m, 1H), 5.08 - 5.16 (m, 2H), 4.58 (d, *J*=9.4 Hz, 1H), 4.49 (d, *J*=9.3 Hz, 1H), 4.34 - 4.43 (m, 1H), 4.19 - 4.27 (m, 1H); ¹³C NMR (101 MHz, *DMSO-d*₆) δ 177.1, 169.5, 142.3, 131.5, 130.3, 128.9, 123.9, 122., 117.6, 116.3, 109.2, 77.5, 56.7, 54.7, 41.6; **HRMS:** (ESI) m/z calculated for: C₁₅H₁₃N₃O₂+H, 268.1086 found: 267.1081

(2x) 5-amino-2'-oxo-1'-(prop-2-yn-1-yl)-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (49.3 mg, 93% yield), M. P. 220-222 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.6

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 7.54 (s, 2H), 7.40 (d, *J*=7.8 Hz, 1H), 7.36 (dd, *J*=7.8, 1.1 Hz, 1H), 7.14 - 7.19 (m, 1H), 7.12 (d, *J*=7.9 Hz, 1H), 4.54 - 4.62 (m, 2H), 4.51 (d, *J*=2.5 Hz, 1H), 4.45 - 4.48 (m, 1H), 3.27 (t, *J*=2.4 Hz, 1H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 176.6, 169.6, 141.3, 130.1, 129.1, 123.9, 123.3, 117.4, 109.4, 77.9, 77.5, 74.6, 56.6, 54.3, 29.1; **HRMS:** (ESI) m/z calculated for: C₁₅H₁₁N₃O₂ +H, 266.0930 found: 266.0924

(2y) 5-amino-2'-oxo-1'-phenyl-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (52.6 mg, 87% yield), M. P. 208-210 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.6

¹**H** NMR (400 MHz, DMSO- d_6) δ 7.57 - 7.64 (m, 2 H), 7.56 (s, 2 H), 7.45 - 7.51 (m, 2 H), 7.41 (d, *J*=7.1 Hz, 2 H), 7.25 - 7.32 (m, 1 H), 7.13 - 7.21 (m, 1 H), 6.75 (d, *J*=7.8 Hz, 1 H), 4.73 (d, *J*=9.5 Hz, 1 H), 4.57 (d, *J*=9.4 Hz, 1 H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 176.9, 169.5, 142.9, 134.2, 130.3, 129.6, 129.1, 128.2, 126.6, 124.3, 123.5, 117.6, 109.1, 77.7, 56.9, 55.1; HRMS: (ESI) m/z calculated for: C₁₈H₁₃N₃O₂ +H, 304.1086 found: 304.1081

(2z) 5-amino-1'-(4-methoxyphenyl)-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carbonitrile, the titled compound was prepared by following the optimize procedure-(A), obtained as a solid (53.2 mg, 80% yield), M. P. 154-156 °C, Rf (Ethyl acetate/Pet. ether;1:1) = 0.6

¹**H** NMR (400 MHz, DMSO- d_6) δ 7.56 (s, 2 H), 7.45 (d, *J*=6.6 Hz, 1 H), 7.29 - 7.35 (m, 2 H), 7.23 - 7.29 (m, 1 H), 7.16 (d, *J*=7.4 Hz, 1 H), 7.12 (d, *J*=9.0 Hz, 2 H), 6.68 (d, *J*=7.8 Hz, 1 H), 4.71 (d, *J*=9.4 Hz, 1 H), 4.56 (d, *J*=9.4 Hz, 1 H), 3.83 (s, 3 H); ¹³C NMR (101 MHz, *DMSO-d*₆) δ 177.1, 169.5, 158.7, 143.4, 130.2, 129.1, 128.1, 126.7, 124.2, 123.3, 117.6, 114.8, 108.9, 77.7, 56.8, 55.4, 55.0; HRMS: (ESI) m/z calculated for: C₁₉H₁₅N₃O₃ +H, 334.1192 found: 334.1186

(2aa) Ethyl 5-amino-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carboxylate, the titled compound was prepared by following the optimize procedure-(A), obtained as a solid (49.3 mg, 90% yield), M. P. 212-214 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.3

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 10.28 (s, 1 H), 7.25 (br. s., 2 H), 7.08 - 7.15 (m, 2 H), 6.89 - 6.96 (m, 1 H), 6.77 (d, *J*=7.5 Hz, 1 H), 4.47 (d, *J*=9.1 Hz, 1 H), 4.37 (d, *J*=9.0 Hz, 1 H), 3.71 (br. s., 2 H), 0.74 (br. s., 3 H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 179.9, 142.1, 133.9, 128.0, 123.1, 121.8, 109.1, 78.2, 57.7, 14.1; HRMS: (ESI) m/z calculated for: C₁₄H₁₄N₂O₄+H, 275.1032 found: 275.1026

(2ab) ethyl 5-amino-5'-fluoro-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carboxylate, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (53.1 mg, 91% yield), M. P. 186-188 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.3

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 10.30 (s, 1H), 7.29 (br. s., 2H), 7.02 (dd, *J*=8.3, 2.5 Hz, 1H), 6.88 - 6.99 (m, 1H), 6.75 (dd, *J*=8.4, 4.4 Hz, 1H), 4.48 (d, *J*=9.1 Hz, 1H), 4.42 (d, *J*=9.1 Hz, 1H), 3.60 - 3.89 (m, 2H), 0.66 - 0.96 (m, 3H); ¹³C NMR (101 MHz, *DMSO-d*₆) δ 179.8, 159.3, 156.9, 138.3, 135.6, 135.5, 114.1, 113.8, 111.1, 110.8, 109.5, 109.4, 77.6, 57.5, 13.9; ¹⁹F NMR (376 MHz, DMSO-*d*₆) d ppm -122.1; **HRMS:** (ESI) m/z calculated for: $C_{14}H_{13}FN_2O_4$ +H, 293.0938 found: 293.0932.

(2ac) ethyl 5-amino-5'-methyl-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carboxylate, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (44.8 mg 79% yield), M. P. 232-234°C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.2

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 10.18 (s, 1 H), 7.21 (br. s.,2 H), 6.78 - 7.00 (m, 2 H), 6.66 (d, *J*=7.9 Hz, 1 H), 4.45 (d, *J*=9.0 Hz, 1 H), 4.36 (d, *J*=8.9 Hz, 1 H), 3.59 - 3.89 (m, 2 H), 2.23 (s, 3 H), 0.77 (br. s., 3 H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 179.6, 139.5, 133.9, 130.3, 128.1, 123.6, 123.6, 108.6, 78.1, 57.4, 20.6, 13.9; **HRMS:** (ESI) m/z calculated for: $C_{15}H_{16}N_2O_4$ +H, 289.1188, found:289.1183

(2ad) ethyl 5-amino-2'-oxo-7'-(trifluoromethyl)-2H-spiro[furan-3,3'-indoline]-4-carboxylate, the titled compound was prepared by following the optimize procedure-(A), obtained as a solid (51.6 mg, 76% yield), M. P. 240-242 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.3

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 10.77 (s, 1 H), (NH2 replaced), 7.43 (dd, *J*=7.6, 3.1 Hz, 2 H), 7.10 (t, *J*=7.5 Hz, 1 H), 4.53 (d, *J*=9.3 Hz, 1 H), 4.46 (d, *J*=9.0 Hz, 1 H), 3.65 - 3.68 (m, 2 H), 0.53 - 0.81 (m, 3 H); ¹³**C** NMR (101 MHz, DMSO-*d*₆) δ 180.3, 139.5, 135.9, 127.1, 125.1, 124.0, 122.4, 121.7, 110.2, 109.9, 77.7, 57.5, 57.5, 13.3; ¹⁹**F** NMR (376 MHz, DMSO-*d*₆) δ -60.03: **HRMS:** (ESI) m/z calculated for: $C_{15}H_{13}F_{3}N_{2}O_{4}$ +H, 343.0906, found: 343.0900

(2ae) ethyl5-amino-2'-oxo-1'-(prop-2-yn-1-yl)-2H-spiro[furan-3,3'-indoline]-4-carboxylate, the titled compound was prepared by following the optimized procedure-(A), obtained as a solid (42.7 mg 70% yield), M. P. 120-122 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.6

¹H NMR (400 MHz, DMSO- d_6) δ (NH₂ replaced) 7.28 (t, *J*=7.6 Hz, 1 H), 7.21 (d, *J*=7.4 Hz, 1 H), 7.05 (d, *J*=5.8 Hz, 2 H), 4.51 - 4.76 (m, 1 H), 4.50 (d, *J*=9.8 Hz, 2 H), 4.42 (d, *J*=9.4 Hz, 1 H), 3.66 (br. s., 2 H), 3.25 (br. s., 1 H), 0.69 (br. s., 3 H); ¹³C NMR (101 MHz, DMSO- d_6) δ 177.2, 141.6, 132.9, 127.9, 122.8, 122.7, 108.5, 78.1, 77.8, 74.2, 57.4, 28.9, 14.1; **HRMS:** (ESI) m/z calculated for: C₁₇H₁₆N₂O₄+H 313.1188, found: 313.1183.

(3a) 4'-amino-2,2''-dioxodispiro[indoline-3,1'-cyclopentane-2',3''-indolin]-3'-ene-3',5',5'tricarbonitrile, the titled compound was prepared by following the optimized procedure-(B), obtained as a solid, (33.1 mg, 85% yield, 20:1 dr.) diastereomeric ratio calculated by ¹H NMR of crude product, M. P. 228-230 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.4

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.22 (s, 1 H), 10.76 (s, 1 H), 8.37 (s, 2 H), 7.71 (d, *J*=7.9 Hz, 1 H), 7.29 - 7.39 (m, 2 H), 7.21 (t, *J*=7.7 Hz, 1 H), 7.12 (t, *J*=7.8 Hz, 1 H), 7.00 (t, *J*=7.6 Hz, 1 H), 6.79 (d, *J*=7.8 Hz, 1 H), 6.67 (d, *J*=7.8 Hz, 1 H); ¹³**C NMR** (101 MHz, *DMSO-d*₆) δ 176.3, 172.6, 153.4, 142.9, 142.8, 131.7, 130.6, 126.6, 126.5, 123.1, 122.7, 122.5, 119.4, 115.0, 112.2, 111.5, 110.5, 110.2, 75.9, 62.4, 62.1, 46.4; **HRMS:** (ESI) m/z calculated for: $C_{22}H_{12}N_6O_2$ +H, 393.1100 found: 393.1095

(3b) 4'-amino-5,5''-dimethyl-2,2''-dioxodispiro[indoline-3,1'-cyclopentane-2',3''-indolin]-3'-ene-3',5',5'-tricarbonitrile, the titled compound was prepared by following the optimized procedure-(B), obtained as a solid, (35.1 mg, 84% yield & d. r. 20:1), diastereomeric ratio calculated by ¹H NMR of crude product, M. P. 238-240 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.5

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 11.15 (s, 1H), 10.68 (s, 1H), 8.31 (br. s., 2H), 7.53 (s, 1H), 7.09 - 7.23 (m, 2H), 6.96 - 7.05 (m, 1H), 6.63 - 6.72 (m, 1H), 6.50 - 6.60 (m, 1H), 2.26 (s, 3H), 2.22 (s, 3H); ¹³C NMR (101 MHz, *DMSO-d*₆) δ 176.2, 172.6, 153.3, 140.4, 140.3, 131.8, 131.4, 131.1, 130.8, 127.1, 127.0, 123.1, 119.5, 115.0, 112.2, 111.4, 110.1, 109.8, 76.1, 62.3, 61.9, 46.5, 20.9, 20.8; **HRMS:** (ESI) m/z calculated for: C₂₄H₁₆N₆O₂ +Na, 443.1232 found: 443.1227

(3c) 4'-amino-5,5''-dimethoxy-2,2''-dioxodispiro[indoline-3,1'-cyclopentane-2',3''-indolin]-3'-ene-3',5',5'-tricarbonitrile, the titled compound was prepared by following the optimized procedure-(B), obtained as a solid, (39.1 mg, 87% yield & d. r. 20:1), diastereomeric ratio calculated by ¹H NMR of crude product, M. P. 230-232 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.5

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 11.10 (s, 1H), 10.58 - 10.72 (m, 1 H), 8.35 (br. s., 2 H), 7.30 - 7.42 (m, 1 H), 6.89 - 7.01 (m, 2 H), 6.76 - 6.84 (m, 1 H), 6.67 - 6.76 (m, 1 H), 6.61 (dd, *J*=8.5, 1.6 Hz, 1 H), 3.71 (s, 3 H), 3.68 (s, 3 H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 176.1, 172.4, 154.9, 153.3, 135.9, 135.6, 124.3, 120.6, 115.6, 114.9, 114.5, 114.3, 113.9, 112.1, 111.4, 110.8, 110.4, 75.9, 62.6, 62.1, 55.5, 55.3, 46.5; HRMS: (ESI) m/z calculated for: $C_{24}H_{16}N_6O_4$ +Na, 475.1131 found: 475.1125

(3e) (4'-amino-5,5''-dichloro-2,2''-dioxodispiro[indoline-3,1'-cyclopentane-2',3''-indolin]-3'-ene-3',5',5'-tricarbonitrile, the titled compound was prepared by following the optimized procedure-(B), obtained as a solid, (34.8 mg, 76% yield & d. r. 20:1), diastereomeric ratio calculated by ¹H NMR of crude product, M. P. 232-234 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.4

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 11.62 (s, 1H), 11.15 (s, 1H), 8.54 (s, 2H), 7.67 (d, *J*=2.3 Hz, 1H), 7.47 (dd, *J*=8.4, 2.1 Hz, 1H), 7.33 (dd, *J*=8.4, 2.3 Hz, 1H), 7.27 (d, *J*=2.3 Hz, 1H), 6.88 (d, *J*=8.5 Hz, 1H), 6.76 (d, *J*=8.4 Hz, 1H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 175.9, 172.2, 153.5, 141.8, 141.7, 131.9, 130.9, 126.8, 126.5, 126.3, 124.7, 120.1, 114.6, 112.4, 112.1, 111.7, 111.1, 74.8, 62.4, 61.6, 46.2; **HRMS:** (ESI) m/z calculated for: C₂₂H₁₀Cl₂N₆O₂+Na, 483.0140 found: 483.0135

(3f) 4'-amino-5,5''-difluoro-2,2''-dioxodispiro[indoline-3,1'-cyclopentane-2',3''-indolin]-3'-ene-3',5',5'-tricarbonitrile, the titled compound was prepared by following the optimized procedure-(B), obtained as a solid, (32 mg, 81% yield & d. r. 20:1), diastereomeric ratio calculated by ¹H NMR of crude product, M. P. 250-252 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.4

¹**H NMR** (400 MHz, DMSO- d_6) δ 11.46 (s, 1 H), 10.99 (s, 1 H), 8.51 (s, 2 H), 7.47 (dd, *J*=9.1, 2.6 Hz, 1 H), 7.27 (td, *J*=8.9, 2.7 Hz, 1 H), 7.07 - 7.16 (m, 2 H), 6.86 (dd, *J*=8.6, 4.5 Hz, 1 H), 6.74 (dd, *J*=8.5, 4.5 Hz, 1 H); ¹³**C NMR** (101 MHz, DMSO- d_6) δ 176.1, 172.4, 159.1, 159.0, 156.8, 156.6, 153.4, 139.1, 124.4, 120.7, 118.8, 118.5, 117.7, 117.4, 114.6, 114.4, 114.2, 113.9, 111.9, 111.8, 111.5, 111.1, 75.1, 62.6, 61.7, 46.2; ¹⁹**F NMR** (376 MHz, DMSO- d_6) d -119.40 (s, 1 F), -120.04 (s, 1 F); **HRMS:** (ESI) m/z calculated for: C₂₂H₁₀F₂N₆O₂+Na,451.0731 found: 451.0726

(3g) 4'-amino-7,7''-difluoro-2,2''-dioxodispiro[indoline-3,1'-cyclopentane-2',3''-indolin]-3'-ene-3',5',5'-tricarbonitrile, the titled compound was prepared by following the optimized procedure-(B), obtained as a solid, (34 mg, 80% yield & d. r. 20:1), diastereomeric ratio calculated by ¹H NMR of crude product. M. P. 226-228 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.4

¹**H NMR** (400 MHz, *DMSO-d*₆) δ 11.93 (s, 1H), 11.44 (s, 1H), 8.53 (br. s., 2H), 7.50 - 7.61 (m, 1H), 7.31 - 7.41 (m, 1H), 7.16 - 7.27 (m, 3H), 7.03 - 7.13 (m, 1H); ¹³**C NMR** (101 MHz, *DMSO-d*₆) δ 176.1, 172.2, 153.5, 147.3, 144.9, 144.9, 130.2, 130.2, 130.1, 130.1, 125.5, 125.5, 123.9, 123.9, 123.6, 123.6, 122.7, 122.6, 122.6, 121.8, 121.8, 119.1, 119.1, 118.1, 117.9, 114.7, 111.9, 111.1, 75.2, 62.7, 62.1, 46.3; ¹⁹**F NMR** (376 MHz, *DMSO-d*₆) δ -130.4, -131.8; **HRMS:** (ESI) m/z calculated for: $C_{22}H_{10}F_2N_6O_2$ +H, 429.0912 found: 429.0906.

(3h) 4'-amino-1,1''-bis(2-methoxyethyl)-2,2''-dioxodispiro[indoline-3,1'-cyclopentane-2',3''-indolin]-3'-ene-3',5',5'-tricarbonitrile, the titled compound was prepared by following the optimized procedure-(B), obtained as a solid, (43.4 mg, 86% yield & d. r. 9:1), diastereomeric ratio calculated by ¹H NMR of crude product, M. P. 210-212 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.5

¹**H** NMR (400 MHz, DMSO- d_6) δ 8.44 (s, 2 H), 7.70 (d, *J*=7.8 Hz, 1 H), 7.41 (t, *J*=7.7 Hz, 1 H), 7.24 - 7.34 (m, 2 H), 7.19 (t, *J*=7.7 Hz, 1 H), 7.07 (d, *J*=5.8 Hz, 2 H), 6.93 (d, *J*=7.8 Hz, 1 H), 3.64 - 3.90 (m, 4 H), 3.36 - 3.56 (m, 4 H), 3.09 (d, *J*=5.6 Hz, 6 H); ¹³C NMR (101 MHz, *DMSO-d₆*) δ 174.6, 170.9, 153.5, 143.9, 143.8, 131.5, 130.6, 126.2, 126.1, 123.2, 122.9, 121.9, 118.2, 114.7, 111.8, 111.3, 110.4, 109.9, 75.9, 68.9, 68.8, 61.6, 61.5, 58.1, 58.1, 58.1, 46.6; **HRMS:** (ESI) m/z calculated for: C₂₈H₂₄N₆O₄+H, 509.1937; found: 509.1932

(3i) 4'-amino-1,1''-diethyl-2,2''-dioxodispiro[indoline-3,1'-cyclopentane-2',3''-indolin]-3'-ene-3',5',5'-tricarbonitrile, the titled compound was prepared by following the optimized procedure-(B), obtained as a solid, (38.7 mg, 87% yield & d. r. 9:1), diastereomeric ratio calculated by ¹H NMR of crude product, M. P. 234-236 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.5

¹**H NMR** (400 MHz, *DMSO-d*₆) δ 8.45 (br. s., 2H), 7.68 - 7.77 (m,1H), 7.39 - 7.48 (m, 1H), 7.26 - 7.35 (m, 2H), 7.14 - 7.22 (m, 1H), 7.01 - 7.09 (m, 2H), 6.87 - 6.93 (m, 1H), 3.71 - 3.84 (m, 1H), 3.66 - 3.71 (m, 1H), 3.61 - 3.66 (m, 1H), 3.48 (dd, *J*=14.1, 7.1 Hz, 1H), 0.94 (q, *J*=7.3 Hz, 6H); ¹³**C NMR** (101 MHz, *DMSO-d*₆) δ 174.1, 170.5, 153.6, 143.2, 142.9, 131.8, 130.8, 126.5, 126.3, 123.1, 122.9, 122.1, 118.5, 114., 111.8, 111.3, 109.8, 109., 75.4, 61.6, 61.4, 46.4, 34.5, 12.2, 11.9; **HRMS:** (ESI) m/z calculated for: $C_{26}H_{20}N_6O_2$ +Na, 471.1545; found: 471.1540

(3j) 4'-amino-1,1''-diisopropyl-2,2''-dioxodispiro[indoline-3,1'-cyclopentane-2',3''-indolin]-3'-ene-3',5',5'-tricarbonitrile, the titled compound was prepared by following the optimized procedure-(B), obtained as a solid, (41.2 mg, 87% yield d. r. 9:1), diastereomeric ratio calculated by ¹H NMR of crude product, M. P. 222-224°C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.5

¹**H NMR** (400 MHz, DMSO- d_6) δ 8.42 (s, 2H), 7.70 - 7.77 (m, 1H), 7.38 - 7.44 (m, 1H), 7.31 - 7.35 (m, 1H), 7.25 - 7.31 (m, 1H), 7.13 - 7.20 (m, 2H), 7.00 - 7.06 (m, 2H), 4.39 - 4.44 (m, 1H), 4.33 - 4.39 (m, 1H), 1.29 (d, *J*=6.9 Hz, 6H), 1.08 - 1.18 (m, 6H); ¹³**C NMR** (101 MHz, *DMSO-d*₆) δ 174.2, 170.8, 153.7, 142.7, 131.7, 130.7, 126.5, 126.5, 126.5, 122.7, 122.4, 122.2, 118.6, 114.8, 111.8, 111., 110., 110.3, 75.4, 61.7, 61.1, 46.4, 44.4, 44.2, 18.9, 18.6, 18.5, 18.2; **HRMS:** (ESI) m/z calculated for: C₂₈H₂₄N₆O₂+H, 477.2039; found: 477.2034.

(4a) 1'-acetyl-2-methyl-6H-spiro[furo[2,3-d]pyrimidine-5,3'-indoline]-2',4(3H)-dione, the titled compound was prepared by following the optimized procedure-(C), obtained as a solid, (51 mg, 82% yield), M. P. 202-204 °C, Rf (Ethyl acetate/Pet. ether; 40:60) = 0.5

¹**H** NMR (400 MHz, *DMSO-d*₆) δ 11.29 (s, 1H), 8.12 (d, *J*=8.1 Hz, 1H), 7.54 (d, *J*=7.4 Hz, 1H), 7.44 (t, *J*=7.8 Hz, 1H), 7.33 (t, *J*=7.4 Hz, 1H), 4.85 (d, *J*=9.5 Hz, 1H), 4.63 (d, J=9.5 Hz, 1H), 2.60 (s, 3H), 2.10 (s, 3H); ¹³**C** NMR (101 MHz, *DMSO-d*₆) δ 177.6, 170.4, 168.1, 159.0, 139.7, 129.6, 128.7, 125.8, 124.2, 115.7, 113.8, 77.3, 71.7, 58.9, 26.2, 23.3; **HRMS:** (ESI) m/z calculated for: C₁₆H₁₃N₃O₄+Na, 334.0806; found: 334.0798

(4b) ethyl5-acetamido-1'-acetyl-2'-oxo-2H-spiro[furan-3,3'-indoline]-4-carboxylate, the titled compound was prepared by following the optimized procedure-(C), obtained as a sticky solid, (48 mg, 67% yield), Rf (Ethyl acetate/Pet. ether; 40:60) = 0.7

¹**H** NMR (400 MHz, *CHLOROFORM-d*) δ 9.79 (br. s., 1H), 8.14 (d, *J*=8.1 Hz, 1H), 7.24 - 7.31 (m, 1H), 7.11 - 7.24 (m, 2H), 4.91 (d, *J*=9.5 Hz, 1H), 4.68 (d, *J*=9.5 Hz, 1H), 3.74 - 3.89 (m, 2H), 2.62 (s, 3H), 2.22 (s, 3H), 0.80 (t, *J*=7.1 Hz, 3H); ¹³**C** NMR (101 MHz, *CHLOROFORM-d*) δ 178.7, 170.5, 167.1, 165.1, 162.4, 139.6, 130.6, 129.3, 125.8, 122.9, 116.3, 88.1, 81.4, 59.9, 55.8, 26.4, 24.9, 13.5; **HRMS:** (ESI) m/z calculated for: C₁₈H₁₈N₂O₆+Na, 381.1063; found: 381.1057

8) References.

- 1. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3.
- 2. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3.
- P. Zhao, Y. Li, G. Gao, S. Wang, Y. Yan, X. Zhan, Z. Liu, Z. Mao, S. Chen and L. Wang, *Eur. J. Med. Chem.*, 2014, 86, 165.
- 4. Y.O. Teng, H.Y. Zhao, J. Wang, H. Liu, M.L. Gao, Y. Zhou, K.L. Han, Z.C. Fan, Y.M. Zhang, H. Sun, and P. Yu, *Eur. J. Med. Chem.*, 2016, **112**, 145.
- 5. G.M. Coppola, J. Heterocycl. Chem. 1987, 24, 1249.
- 6. C. B. Nichinde, B. R. Patil S. S. Chaudhari, B. P. Mali, R. G. Gonnade and A. K. Kinage, *RSC Adv.*, 2023, **13**, 13206.
- 7. J.M.G.D.O. Ferreira, G.A. da Silva, M.C. Coelho, C.G.L. Junior and J.A. Vale, *Results Chem.* 2021, **3**, 100135.

9) NMR Spectra of Compounds.

¹H NMR spectrum of compound 2f (400 MHz, DMSO-*d*₆)

¹H NMR spectrum of compound 2l (400 MHz, *DMSO-d*₆)

¹H NMR spectrum of compound 2n (400 MHz, *DMSO-d*₆)

¹H NMR spectrum of compound 2p (400 MHz, DMSO-*d*₆)

¹H NMR spectrum of compound 2x (400 MHz, DMSO-*d*₆)

¹ H NMR spectrum of compound 2ab (400 MHz, DMSO- <i>d</i> ₆)					
1H 2ab.001.1r.esp	77.29 77.03 77.03 77.01 77.01 6.97 6.97 6.97 6.75 6.75 6.75	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
		זר	_		

¹ H NMR spectrum of comp	ound 2ad (400 MHz, <i>DMSO-d</i> ₆)	
Exercited Contractions		
	44	

¹H NMR spectrum of compound 3c (400 MHz, *DMSO-d*₆)

¹H NMR spectrum of compound 3i (400 MHz, *DMSO-d*₆)

