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1. General Information:

The reagents and solvents used in the experiment were purchased from commercial sources
such as Sigma-Aldrich and TCI. These were used without undergoing additional purification
unless explicitly indicated. The monitoring of reactions was conducted through thin-layer
chromatography (TLC) on silica gel 60 F254 (0.25 mm). Silica gel with a mesh size of 120-
200 was utilized for the execution of column chromatography. The Bruker spectrometer was
used to record the *H NMR and ¥C NMR at 600 MHz and 151 MHz, respectively. The
chemical shifts were determined using internal solvents DMSO-ds and CDClz and were
expressed in parts per million (ppm). The values of the coupling constant (J) were expressed
in hertz, and the corresponding abbreviations were provided as follows: s (representing singlet),
d (representing doublet), t (representing triplet), q (representing quartet), m (representing
multiple), and br (representing broadened). High-resolution mass spectra (HRMS) were
acquired using an Agilent Q-TOF mass spectrometer equipped with a Z-spray source. The
obtained mass data were analyzed using the software integrated into the instrument. The
chemical compounds utilized in the study, namely dipalmitoylphosphatidylcholine (DPPC), 1-
palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (POPS) and cholesterol
(CHOL), were procured from Sigma Aldrich. The reagents utilized in this study, including
HEPES buffer, 8-hydroxylysine-1, 3, 6-trisulfonic acid (HPTS), bis-N-methylacridinium
nitrate (lucigenin), calcein, Triton X-100, and various inorganic salts, as well as their
corresponding hydroxide bases, were procured from Sigma Aldrich. The buffers were prepared

using ultrapure water sourced from the Milli-Q system manufactured by Millipore, located in
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Billerica, MA. The stock solutions of the compounds were prepared using spectroscopic grade

DMSO of gas chromatographic grade, which was procured from Sigma.

2. Synthesis and characterization of compounds:

2.1. Synthesis of 2-(2-aminophenyl)quinazolin-4-amine — To the stirring suspension of sodium
hydride (178 mg, 7.4 mmol) in THF (10 mL), 2-aminobenzonitril (500 mg, 4.23 mmol) in 10
mL THF was added dropwise under an N2 atmosphere at 0 °C. After 2 hours, a dropwise
solution of 2-aminobenzonitril (500 mg, 4.23 mmol) in dry THF was added and refluxed for
an additional 16 hours. After cooling down to room temperature, the reaction mixture was
hydrolyzed with an acidic solution (1 equiv HCI in 10 mL of water). After that, the organic
solvent was removed under reduced pressure, and 100 mL of water and 20 mL of
dichloromethane were added to the resulting residue. The mixture was then neutralized with
an aqueous NaOH (1.5 M) solution and three times extracted with 30 mL of dichloromethane.
The combined organic layers were dried over sodium sulfate and evaporated to dryness. Then,
the crude reaction mixture was purified through column chromatography with a solvent
gradient system using ethyl dichloromethane/ MeOH (5%) to furnish the target compound as a
yellowish solid (75% vyield).! The compound was characterized by *H NMR, **C NMR, and
HRMS (ESI) analysis. 'H NMR (400 MHz, DMSO-ds): 6 9.91-9.88 (m, 4H), 8.50 (d, J = 8.2
Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 8.00 (t, J = 7.6 Hz, 1H), 7.67 (t, J
= 7.3 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.69 (t, J = 7.6 Hz, 1H); 13C
NMR (151 MHz, DMSO-ds): & 162.80, 158.59, 151.30, 140.52, 136.55, 134.42, 130.31,
127.55, 125.32, 120.02, 118.22, 115.81, 111.05, 110.67. HRMS (ESI) m/z: calculated for
Ci1sH12N4 (M + H)*: 237.1135, found: 237.1135.
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Scheme S1. Synthesis of 2-(2-aminophenyl)quinazolin-4-amine.

2.2. General procedure for the synthesis of thiourea derivatives — To the stirring solutions
of 2-(2-aminophenyl)quinazolin-4-amine (50 mg, 0.2 mmol, 1 equiv.) and triethylamine (30

uL, 0.2 mmol) in dichloromethane, a solution of respective phenyl isothiocyanate derivatives
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Scheme S2. Synthesis of mono-thiourea derivatives compounds (1a-1f).

(0.2 mmol, 1 equiv.) in dichloromethane were added (dropwise) to the reaction mixture under
an N2 atmosphere at room temperature. Then, the reaction mixture was allowed to stir for 6
hours at room temperature. After the completion of the reaction, precipitation happens. The
crude precipitate was filtered and washed with dichloromethane and dried at 80 °C overnight,
with a resulting yield of 95-98%.2

2.3. 1-(2-(4-aminoquinazolin-2-yl)phenyl)-3-phenylthiourea (1a) — The 1-(2-(4-
aminoquinazolin-2-yl)phenyl)-3-phenylthiourea (1a) was synthesized according to the
procedure as mentioned in the earlier section (2.2), using 2-(2-aminophenyl)quinazolin-4-
amine (50 mg, 0.21 mmol), phenyl isothiocyanate (30 mg, 0.22 mmol) and triethylamine (30
pL, 0.2 mmol). The yellowish compound was isolated in 95% yield. The compound was
characterized by *H NMR, *C NMR, and HRMS (ESI) analysis. *H NMR (600 MHz, DMSO-
de): 6 13.47 (s, 1H), 10.41 (s, 1H), 8.44 (dd, J = 13.8, 8.0 Hz, 2H), 8.19 (d, J = 8.2 Hz, 1H),
8.11-7.87 (m, 2H), 7.61 (t, J= 7.4 Hz, 1H), 7.51 (d, J = 7.9 Hz, 2H), 7.46 — 7.45 (m, 4H), 7.26
(t, J=7.3Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 6.70 (s, 1H); 13C NMR (151 MHz, DMSO-ds): &
178.93, 162.20, 160.64, 148.64, 140.43, 139.39, 133.65, 130.44, 129.69, 127.05, 126.50,
126.30, 125.41, 124.92, 124.06, 123.93, 123.45, 112.95. HRMS (ESI) m/z: calculated for
C21H17NsS (M + H)™: 372.1277, found: 372.1277. Melting point: 205 + 2 °C.

2.4. 1-(2-(4-aminoquinazolin-2-yl)phenyl)-3-(p-tolyl)thiourea (1b) — The 1-(2-(4-
aminoquinazolin-2-yl)phenyl)-3-(p-tolyl)thiourea (1b) was synthesized according to the
procedure as mentioned in the earlier section (2.2), using 2-(2-aminophenyl)quinazolin-4-
amine (40 mg, 0.17 mmol), 4-Methylbenzyl isothiocyanate (26 mg, 0.18 mmol) and
triethylamine (24 pL, 0.2 mmol). The yellowish compound was isolated in 95% yield. The
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compound was characterized by *H NMR and *C NMR, and HRMS (ESI) analysis. 1H NMR
(600 MHz, CDCls + DMSO-ds): § 13.46 (s, 1H), 8.97 (s, 1H), 8.59 (d, J = 8.3 Hz, 1H), 8.44
(d, J=7.9 Hz, 1H), 7.97 — 7.92 (m, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 1.8 Hz, 1H), 7.45
—7.42 (m, 1H), 7.38 (d, J = 3.4 Hz, 2H), 7.36 (d, J = 2.4 Hz, 1H), 7.24 (d, J = 7.6 Hz, 2H),
7.20 (t, J = 7.6 Hz, 1H), 6.79 (s, 1H), 6.48 (s, 2H), 2.40 (s, 3H). 13C NMR (151 MHz, CDCls
+ DMSO-ds) 6 178.57, 161.46, 160.25, 148.91, 139.99, 136.17, 134.77, 132.68, 130.20,
129.69, 128.98, 127.16, 126.64, 125.41, 124.30, 123.87, 123.20, 122.96, 112.66, 20.81. HRMS
(ESI) m/z: calculated for C22H1gNsS (M + H)™: 386.1434, found: 386.1438. Melting point:
218+ 2 °C.

2.5. 1-(2-(4-aminoquinazolin-2-yl)phenyl)-3-(4-methoxyphenyl)thiourea (1c) — The 1-(2-
(4-aminoquinazolin-2-yl)phenyl)-3-(4-methoxyphenyl)thiourea  (1c) was synthesized
according to the procedure as mentioned in the earlier section (2.2), using 2-(2-
aminophenyl)quinazolin-4-amine (40 mg, 0.17 mmol), 4-Methoxylbenzyl isothiocyanate (30
mg, 0.18 mmol) and triethylamine (24 uL, 0.2 mmol). The yellowish compound was isolated
in 95 % yield. The compound was characterized by *H NMR, *C NMR, and HRMS (ESI)
analysis. 'H NMR (600 MHz, CDCIs + DMSO-ds): 6 13.09 (s, 1H), 8.56 (s, 1H), 8.45 (d, J =
6.5 Hz, 1H), 7.75 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.8 Hz, 1H), 7.51 (t, J = 7.7 Hz,
1H), 7.45 (t, J = 6.3 Hz, 1H), 7.38 (d, J = 8.9 Hz, 2H), 7.27 (m, 4H), 7.00 (d, J = 8.9 Hz, 2H),
3.87 (s, 3H). 13C NMR (151 MHz, CDCls + DMSO-ds): & 178.87, 161.50, 160.34, 157.17,
148.99, 139.96, 132.70, 131.66, 130.19, 128.92, 127.21, 126.74, 125.74, 125.40, 124.34,
123.28, 122.90, 114.30, 112.68, 55.37. HRMS (ESI) m/z: calculated for C22H19NsOS (M +
H)": 402.1382, found: 402.1378. Melting point: 192 + 2 °C.

2.6. 1-(2-(4-aminoquinazolin-2-yl)phenyl)-3-(4-nitrophenyl)thiourea (1d) — The 1-(2-(4-
aminoquinazolin-2-yl)phenyl)-3-(4-nitrophenyl)thiourea (1d) was synthesized according to
the procedure as mentioned in the earlier section (2.2), using 2-(2-aminophenyl)quinazolin-4-
amine (40 mg, 0.17 mmol), 4-Nitrobenzyl isothiocyanate (30 mg, 0.18 mmol) and
triethylamine (24 pL, 0.2 mmol). The orange-coloured solid compound was isolated in 96%
yield. The compound was characterized by *H NMR, C NMR, and HRMS (ESI) analysis. *H
NMR (600 MHz, DMSO-ds) & 13.99 (s, 1H), 11.02 (s, 1H), 8.51 (m, 8.1 Hz, 2H), 8.24 (t, J =
7.6 Hz, 4H), 7.89 (d, J = 9.1 Hz, 2H), 7.66 (t, J = 7.6 Hz, 1H), 7.50 — 7.45 (m, 2H), 7.27 (t, J
= 7.5 Hz, 1H), 7.18 (d, J = 8.3 Hz, 1H). 3C NMR (151 MHz, CDCl; + DMSO-dg): § 183.59,
166.46, 165.14, 154.00, 150.96, 147.56, 144.32, 137.96, 135.33, 134.27, 131.96, 131.45,
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130.54, 129.32, 128.77, 128.51, 128.32, 126.45, 121.52, 117.77. HRMS (ESI) m/z: calculated
for C21H16NsO2S (M + H)*: 417.1128, found: 4417.1126. Melting point: 208 + 2 °C.

2.7. 1-(2-(4-aminoquinazolin-2-yl)phenyl)-3-(4-(trifluoromethyl)phenyl)thiourea (le) —
The 1-(2-(4-aminoquinazolin-2-yl)phenyl)-3-(4-(trifluoromethyl)phenyl)thiourea (1e) was
synthesized according to the procedure as mentioned in the earlier section (2.2), using 2-(2-
aminophenyl)quinazolin-4-amine (40 mg, 0.17 mmol), 4-(Trifluoromethyl)phenyl
isothiocyanate (35 mg, 0.18 mmol) and triethylamine (24 uL, 0.2 mmol). The yellow-coloured
solid compound was isolated in 97% yield. The compound was characterized by *H NMR, 3C
NMR, and HRMS (ESI) analysis. *H NMR (600 MHz, DMSO-ds): § 13.84 (s, 1H), 10.74 (s,
1H), 8.61 — 8.29 (m, 3H), 8.22 (d, J = 8.2 Hz, 1H), 8.18 — 7.97 (m, 8H), 7.81 — 7.73 (m, 4H),
7.58 (t,J = 7.6 Hz, 2H), 7.47 (t, J = 7.6 Hz, 3H), 7.24 (t, J = 7.6 Hz, 1H), 6.78 (d, J = 7.9 Hz,
1H). 13C NMR (151 MHz, CDClz + DMSO-ds): & 183.68, 166.36, 165.15, 153.82, 147.37,
144.48, 137.87, 135.32, 135.28, 134.24, 131.83, 131.48, 131.00, 130.52, 128.93, 128.89,
128.45, 128.41, 127.92, 127.88, 127.59, 127.55, 117.58. HRMS (ESI) m/z: calculated for
C22H16F3NsS (M + H)™: 440.1151, found: 440.1154. Melting point: 176 + 2 °C.

2.8. 1-(2-(4-aminoquinazolin-2-yl)phenyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea
(1f) — The 1-(2-(4-aminoquinazolin-2-yl)phenyl)-3-(4-(trifluoromethyl)phenyl)thiourea (1e)
was synthesized according to the procedure as mentioned in the earlier section (2.2), using 2-
(2-aminophenyl)quinazolin-4-amine (40 mg, 0.17 mmol), 3,5-Bis(trifluoromethyl)phenyl
isothiocyanate (48 mg, 0.18 mmol) and triethylamine (24 uL, 0.2 mmol). The yellow-coloured
solid compound was isolated in 97% yield. The compound was characterized by *H NMR, 3C
NMR, and HRMS (ESI) analysis. *H NMR (600 MHz, DMSO-ds) &: 13.79 (s, 1H), 10.97 (s,
1H), 8.52 (d, J = 7.9 Hz, 1H), 8.44 (d, J = 8.2 Hz, 1H), 8.31 (s, 2H), 8.27 (d, J = 8.2 Hz, 1H),
8.21-8.08 (br, 2H), 7.83 (s, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.50 (t, J =
7.7 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 5.77 (s, 1H); 3C NMR (151
MHz, DMSO-ds): 6 179.51, 162.23, 160.69, 148.88, 142.04, 139.71, 133.85, 130.94, 130.72,
130.14, 127.14, 126.58, 126.44, 124.56, 124.30, 124.13, 123.99, 123.88, 123.86, 123.83,
123.80, 122.76, 120.95, 117.51, 113.13. HRMS (ESI) m/z: calculated for C23H1sFsNsS (M +
H)": 508.1025, found: 508.1025. Melting point: 180 + 2 °C.

2.9. Synthesis of N-(2-(4-aminoquinazolin-2-yl)phenyl)benzamide (2a) — To the stirring
solutions of 2-(2-aminophenyl)quinazolin-4-amine (50 mg, 0.2 mmol, 1 equiv.) and
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tricthylamine (30 pL, 0.2 mmol) in dichloromethane, a solution of benzoyl chloride (28.2 mg,
0.2 mmol) in dichloromethane were added (dropwise) to the reaction mixture under an N2
atmosphere at room temperature. The reaction mixture was allowed to be stirred for 6 hours at
room temperature. After the completion of the reaction, precipitation happens. The crude
precipitate was filtered and washed with dichloromethane and dried at 80 °C overnight, with a
resulting yield of 98%. The compound was characterized by *H NMR, *C NMR, and HRMS
(ESI) analysis. *H NMR (600 MHz, CDCls + DMSO-ds): & 8.85 (d, J = 8.3 Hz, 1H), 8.71 (d,
J =8.0 Hz, 1H), 8.26 (d, J = 8.2 Hz, 1H), 8.12 (d, J = 7.4 Hz, 2H), 7.76 (d, J = 7.5 Hz, 1H),
7.72 (d, J =8.3 Hz, 1H), 7.63 (d, J = 7.1 Hz, 2H), 7.59 (t, J = 7.4 Hz, 2H), 7.47 (q, J = 7.6 Hz,
2H), 7.19 (t, J = 7.6 Hz, 1H). °C NMR (151 MHz, CDCl3 + DMSO-ds): & 165.65, 161.86,
161.09, 148.54, 139.97, 136.13, 133.22, 131.61, 130.75, 130.70, 128.53, 127.45, 126.22,
125.68, 124.01, 123.83, 122.43, 120.06, 112.97. HRMS (ESI)m/z: calculated for
C21H16N4O (M + H)*: 341.1397, found: 341.1397. Melting point: 165 + 2 °C.
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Scheme S3. Synthesis of N-(2-(4-aminoquinazolin-2-yl)phenyl)benzamide.

2.10. Synthesis of N-(2-(4-aminoquinazolin-2-yl)phenyl)-4-methylbenzenesulfonamide —
To the stirring solutions of 2-(2-aminophenyl)quinazolin-4-amine (50 mg, 0.2 mmol, 1 equiv.)
and triethylamine (30 pL, 0.2 mmol) in dichloromethane, a solution of benzoyl chloride (40
mg, 0.2 mmol) in dichloromethane were added (dropwise) to the reaction mixture under an N2
atmosphere at room temperature. The reaction mixture was allowed to be stirred for 6 hours at
room temperature. After the completion of the reaction, precipitation happens. The crude
precipitate was filtered and washed with dichloromethane and dried at 80 °C overnight, with a
resulting yield of 99%. The compound was characterized by *H NMR, *C NMR, and HRMS
(ESI) analysis. 'H NMR (600 MHz, CDCls + DMSO-de): § 8.76 (d, J = 8.5 Hz, 1H), 8.01 (s,
1H), 7.85 (d, J = 8.2 Hz, 1H), 7.76 — 7.71 (m, 4H), 7.70 — 7.68 (m, 1H), 7.66 — 7.63 (m, 1H),
7.41-7.35 (m, 3H), 7.23 (t, J = 7.6 Hz, 1H), 7.10 (t, J = 7.3 Hz, 1H), 1.73 (s, 8H). 3C NMR
(151 MHz, CDCls + DMSO-ds): 6 167.44, 162.12, 149.45, 148.42, 143.41, 141.78, 141.59,
141.09, 141.07, 140.85, 140.83, 138.17, 135.23, 134.25, 133.18, 131.38, 130.71, 130.01,
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127.10, 116.22, 26.03. HRMS (ESI) m/z: calculated for C21H18N40.S (M + H)*: 391.1233,
found: 391.1219. Melting point: 275 + 2 °C.
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Scheme S4. Synthesis of N-(2-(4-aminoquinazolin-2-yl)phenyl)-4methylbenzenesulfonamide.

2.11. Synthesis of bis(thiurea) derivative (3a) — To the stirring solutions of 2-(2-
aminophenyl)quinazolin-4-amine (50 mg, 0.2 mmol, 1 equiv.) and triethylamine (30 uL, 0.2
mmol) in DMF, a solution of 1,4 phenylenediisocyanate (22 mg, 0.1 mmol, 0.5 equiv.) in DMF
was added dropwise to the reaction mixture under an N2 atmosphere at room temperature. The
reaction mixture was allowed to be stirred for 12 hours at room temperature. After the
completion of the reaction, the DMF solvent was removed under reduced pressure. The crude
light yellowish solid was washed with dichloromethane and dried at 80 °C overnight, with a
yield of 97%. The compound was characterized by H NMR, ¥C NMR, and HRMS
(ESI) analysis. *H NMR (600 MHz, DMSO-ds): & 13.45 (s, 2H), 10.55 (s, 2H), 8.44 (t,J = 8.6
Hz, 4H), 8.22 (d, J = 8.2 Hz, 2H), 8.06 (m, 4H), 7.73 (t, J = 7.7 Hz, 2H), 7.61 (s, 4H), 7.47 —
7.44 (m, 4H), 7.23 (t,J = 7.6 Hz, 2H), 7.04 (s, 2H). 1*C NMR (151 MHz, DMSO-ds): 5 179.01,
162.24, 160.70, 148.75, 140.43, 136.26, 133.93, 130.46, 129.67, 127.29, 126.63, 126.25,
125.04, 124.55, 123.93, 123.43, 112.99. HRMS (ESI) m/z: calculated for CzsH28N10S2 (M +
H)*: 665.2013, found: 665.2013. Melting point: 188 + 2 °C.
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Scheme S5. Synthesis of 3a.

2.12. Synthesis of bis(thiurea) derivative (3b) — To the stirring solutions of 2-(2-
aminophenyl)quinazolin-4-amine (50 mg, 0.2 mmol, 1 equiv.) and triethylamine (30 puL, 0.2
mmol) in DMF, a solution of 1,3-bis(isothiocyanatomethyl)benzene (25 mg, 0.1 mmol, 0.5
equiv.) in DMF was added dropwise to the reaction mixture under an N2 atmosphere at room
temperature. The reaction mixture was stirred for 12 hours at room temperature. After the
completion of the reaction, the DMF solvent was removed under reduced pressure. The crude
light yellowish solid was washed with dichloromethane and dried at 80 °C overnight, yielding
95 %. The compound was characterized by *H NMR, **C NMR, and HRMS (ESI) analysis. *H
NMR (600 MHz, DMSO-ds): & 12.93 (s, 2H), 9.27 (s, 2H), 8.45 (d, J = 8.0 Hz, 2H), 8.27-8.22
(m, 4H), 8.15 — 8.11 (m, 4H), 7.95 (s, 2H), 7.84 (t, J = 7.6 Hz, 2H), 7.55 — 7.51 (m, 2H), 7.43
— 7.37 (m, 4H), 7.28 — 7.25 (m, 2H), 7.18 (t, J = 7.7 Hz, 2H), 4.83 (d, J = 5.8 Hz, 4H). 3C
NMR (151 MHz, DMSO-ds): & 181.65, 162.32, 159.99, 140.30, 139.48, 134.82, 130.61,
128.65, 126.93, 126.79, 126.20, 125.70, 124.53, 123.59, 112.55, 47.45, 45.94. HRMS
(ESI) m/z: calculated for C3sH32N10S2 (M + H)*: 693.2326, found: 693.2325. Melting point:
180+ 2 °C.
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Scheme S6. Synthesis of 3b.
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2.13. Synthesis of 1-(3,5-bis(trifluoromethyl)phenyl)-3-(2-(quinazolin-2-
yl)phenyl)thiourea (4) — The compounds 2-(aminomethyl)aniline and 2-(2-
nitrophenyl)quinazoline were prepared according to literature procedure *. For the synthesis of
2-(quinazolin-2-yl)aniline, to the stirring solutions of 2-(2-nitrophenyl)quinazoline (100 mg,
0.398 mmol, 1 equiv.) and Pd/C (2.2 mg, 0.01 mmol) in EtOH, a solution of hydrazinehydrate
(80 %) (100 pL, 1.6 mmol, 4 equiv.) was added dropwise to the reaction mixture under an N2
atmosphere at room temperature. The reaction mixture was allowed to be stirred for 4 hours at
70 °C temperature. After the completion of the reaction, the mixture was filtered through celite
and dried under reduced pressure, with a resulting yellowish-green solid yield of 95-98%.
Subsequently, 2-(quinazolin-2-yl)aniline was directly used for the next step. Thereafter, to the
stirring solutions of 2-(quinazolin-2-yl)aniline (20 mg, 0.2 mmol, 1 equiv.) in DCM, a solution
of 3,5-Bis(trifluoromethyl)phenyl isocyanate (23 mg, 0.09 mmol, 1 equiv.) in DCM was added
dropwise to the reaction mixture under an N2 atmosphere at room temperature. The reaction

mixture was allowed to be stirred for 1 hour at room temperature. After the

CHO

©i  LIAIH, THF NH ©/ ©\/\
0°C t0 65 °C, Pd/C
NH, NH
0-C 2 H;0, DMSO, )\© NH,-NH,.H,0,
120°C, 12 h EtOH, 70 °C, 4 h

Dry DCM,
rt,1h H,
HN CF, = N/
CF
oslly |
NS
N)\© SCNQ
4

CF;

Scheme S7. Synthesis steps for the synthesis of compound 4.

completion of the reaction, precipitation happens. The crude precipitate was filtered and
washed with dichloromethane and dried at 80°C overnight, with a resulting compound 4, yield
of 95-98%. The compounds were characterized by *H NMR and *C NMR and HRMS (ESI)
analysis. 'H NMR (600 MHz, DMSO-ds) 8: 12.30 (s, 1H), 10.94 (s, 1H), 9.74 (s, 1H), 8.48
(d, J = 6.6 Hz, 1H), 8.25 (s, 2H), 8.22 (d, J = 7.9 Hz, 1H), 8.18 (d, J = 8.1 Hz, 1H), 8.04 (t, J =
8.2 Hz, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.80 (s, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.56 (t, J = 7.7 Hz,
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1H), 7.39 (t, J = 7.6 Hz, 1H). *C NMR (151 MHz, DMSO) §: 179.96, 161.78, 160.68, 149.11,
142.03, 138.91, 135.67, 131.45, 130.88, 130.81, 130.59, 128.82, 128.41, 127.71, 125.88,
125.22, 124.53, 123.80, 123.12, 122.73. HRMS (ESI) m/z: calculated for CosH1aFsN4S (M +
H)": 493.0911, found: 493.0911. Melting point: 174 + 2 °C.

2.14. Synthesis of 1-([1,1'-biphenyl]-2-yI)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (5)
— The compound [1,1'-biphenyl]-2-amine was synthesized according to the literature
procedure 2. Thereafter, to the stirring solutions of [1,1'-biphenyl]-2-amine (20 mg, 0.12 mmol,
1 equiv.) in DCM, a solution of 3,5-Bis(trifluoromethyl)phenyl isocyanate (30 mg, 0.12 mmol,
1 equiv.) in DCM was added dropwise to the reaction mixture under an N atmosphere at room
temperature. The reaction mixture was allowed to be stirred for 2 hours at room temperature.
After the completion of the reaction, precipitation happens. The crude precipitate was filtered
and washed with dichloromethane and dried at 80°C overnight, with a resulting compound 5,
yield of 95-98%. The compounds were characterized by *H NMR, **C NMR, and HRMS (ESI)
analysis. *H NMR (600 MHz, DMSO-ds) &: 10.06 (s, 1H), 9.77 (s, 1H), 7.76 (s, 2H), 7.71
(broad, 1H), 7.46 — 7.36 (m, 8H), 7.32 (t, J = 7.2 Hz, 1H). 3C NMR (151 MHz, DMSO-ds) 5:
180.78, 142.24, 139.39, 138.78, 135.80, 131.20, 129.02, 128.69, 128.02, 127.68, 124.55,
122.75, 117.32. HRMS (ESI) m/z: calculated for Co1H14FsN2S (M + H)*: 441.0855, found:
441.0855. Melting point: 78 + 2 °C.

z HN f
©i| HO\BO PA(PPhs),, K;CO; O N
NH, HO 1,4-Dioxane:H,0 (4:1), Dry DCM,

90°C,12h rt., 2 h

Scheme S8. Synthesis steps for the synthesis of compound 4.

3. Crystallographic Study:

Using SMART software, the crystallographic data were collected from the Bruker APEX-I1I
CCD diffractometer equipped with a graphite monochromator and Apex CCD camera. All
crystallographic data were refined using the SHELXL-2018/3 and or S-20 Olex2 1.2-alpha.

Only 1f was crystalized in an acetonitrile/methanol (1:1) mixture. The tetrabutylammonium
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chloride (TBACI) salt was used as a Cl™ source for co-crystallization with the 1f in DMSO

solvent.

Table S1. Crystal parameters and refinement data of the anion complex.

Parameters 1f 1f complexed with CI-
Emperical formula | C23H15F6 N5S | C23H15F6 N5 S, C16 H31 N, CI
Formula weight 507.46 779.32
Temperature (K) | 293 293
Crystal system Monoclinic Monoclinic
Space group C2/c P-21/c

a (A 26.509(6) 9.2259(11)
b (A°) 8.6693(18) 17.758(2)
c (A% 19.550(4) 25.992(3)
a ( deg) 90 90

B (deg) 102.969(5) 95.635(4)

y (deQ) 90 90

V (A%) 4378.288 4237.7(9)
Z 8 4

A 0.71073 0.71073

1 (mm3) 0.222 0.200
Theta (max) 25 2561

h, K, I max 31, 10, 23 10, 20, 30
FO00 2064 1632
Density (g/cm3) | 1.54 1.221

R1, 1> 20(I 0.1085 0.0879
WR2 0.1654 0.2113
GooF 1.201 1.076
CCDC 2279459 2279460
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Figure S1. ORTEP diagram of 1f.
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Figure S2. ORTEP diagram of complex 1f with CI.

4. Anion binding analysis by *H-NMR titration:

The 'H NMR titration was performed for 1f in DMSO-ds. The stock solutions of the compound
(10 mM) and TBACI, TBAF, TBABr, TBAI and TBANO3 (1.5 M) were prepared in DMSO-
ds. The tetrabutylammonium or tetraethylammonium salts were used as the source of anions.
The 'H NMR titrations of the compound in DMSO-ds were performed by the subsequent
addition of salt (0-15 equiv.). The changes in chemical shift (Ad) values of the N-H protons of
the compounds were analyzed. MestReNova software was used for the stacking of all the
titration spectra. The BindFit v0.5 software fitted the changes in a chemical shift against the
concentration of anions. The association constant (Ka) values were calculated using the BindFit

v0.5 software (1:1 binding model).?
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Figure S3. *H-NMR titration spectra for 1f (10 mM) with the sequential addition of TBACI in
DMSO-ds solvent. The amounts of added TBACI are shown on the spectra (A). The plot of
chemical shift (8) of N-Ha, N-Hp and N-H¢ protons vs. equivalent total ([G]o/[H]o) added, fitted
to 1:1 binding model of BindFit v0.5 program (B). H = host = 1f and G = guest = TBACI.
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Figure S4.'H-NMR titration spectra for 1f (10 mM) with the sequential addition of TBACI in

CD3CN solvent. The amounts of added TBACI are shown on the spectra (A). The plot of
chemical shift (8) of N-Ha, N-Hp and N-H¢ protons vs. equivalent total ([G]o/[H]o) added, fitted
to 1:1 binding model of BindFit v0.5 program (B). H = host = 1f and G = guest = TBACI.
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Figure S5. *H-NMR titration spectra for compound 1f (10 mM) with the sequential addition

of TBAF in DMSO-de solvent. The amounts of added TBAF are shown on the spectra (A). The
plot of chemical shift (5) of N-Ha, N-Hb and N-Hc protons vs. equivalent total ([G]o/[H]o)

added, fitted to 1:1 binding model of BindFit v0.5 program (B). H = host = 1f and G = guest =
TBAF.

S16



(A)

(B)

I
o

15.0 equiv.

13.0 equiv.

11.0 equiv.

9.0 equiv.

7.0 equiv.

5.0 equiv.

4.0 equiv.

3.5 equiv.

-
F_—F:'%—P >P$

3.0 equiv.

2.5 equiv.

2.0 equiv.

1.25 equiv.

1.0 equiv.

0.75 equiv.

0.50 equiv. )

0.25 equiv. i
0 equiv.

" 145 135 125

K(0—=)

115

95 85 75

aaaaaaaaaaa

Figure S6. *H-NMR titration spectra for compound 1f (10 mM) with the sequential addition
of TBABr in DMSO-ds solvent. The amounts of added TBABTr are shown on the spectra (A).
The plot of chemical shift (3) of N-Ha and N-Hy protons vs. equivalent total ([G]o/[H]o) added,
fitted to 1:1 binding model of BindFit v0.5 program (B). H = host = 1f and G = guest = TBAB!.
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Figure S7. 'H-NMR titration spectra for compound 1f (10 mM) with the sequential addition
of TBAI in DMSO-ds solvent. The amounts of added TBAI are shown on the spectra (A). The
plot of chemical shift (5) of N-Ha and N-Hp, protons vs. equivalent total ([G]o/[H]o) added, fitted
to 1.1 binding model of BindFit v0.5 program (B). H = host = 1f and G = guest = TBALI.
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Figure S8. *H-NMR titration spectra for compound 1f (10 mM) with the sequential addition
of TBANO3 in DMSO-ds solvent. The amounts of added TBANO3 are shown on the spectra
(A). The plot of chemical shift (&) of N-Ha and N-Hp protons vs. equivalent total ([G]o/[H]o)
added, fitted to 1:1 binding model of BindFit v0.5 program (B). H = host = 1f and G = guest =
TBANO:.
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5. Chloride binding study by using UV-Vis and fluorescence sensing:

To the Quartz fluorescence cuvette (1 mL), 1f (10 uM) was taken in DMSO solvent. After that,
the TBACI solution (stock concentration 1.5 M in DMSO) was added from 0 to 42 mM. In
addition, the absorption and emission spectra of 1f were also recorded.

In a quartz cuvette (2 mL), compound 1f (10 mM) was taken in spectroscopic DMSO
solvent, and different concentrations (from 0 to 42 mM) of tetrabutylammonium chloride (stock
concentration 1.5 M in DMSO) were added. All fluorescence measurements were excited at
290 nm and 350 nm. After the saturation point, different amounts of Amberlite IRA-400 resin
(1-6 mg) were added to the solution, and fluorescence spectra were taken at the excitation

wavelength of 290 nm.

-0 —12 ' — 12
3 —3 —20 |3 —20
> -7 =28 |
= —9 _31 1|9
c — 42 | %
206 a
= T
0.2

0F———
380 400

300 350

400 450 440 480 520
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(C) 7 T T T T
—1f
6 ——1f + TBACI (44 mM)

— 1f + TBACI (44 mM) + Amberlite 420 (1 mg)
—~5 — 1f + TBACI (44 mM) + Amberlite 420 (1.5 mg
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T 2 .
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Figure S9. The UV-Vis spectra (A) of 1f (10 uM) in DMSO solvent. Fluorescence spectra of

1f with an excitation wavelength of 350 nm (B). The reversibility of CI~ induced fluorescence

enhancement was tested using Amberlite 420 resin (C).
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6. lon transport activity studies:

6.1. Preparation of DPPC/POPS/CHOL-LUVsolucigenin — In order to perform lucigenin-
based ion transport studies, DPPC (50 mg/mL in deacidified CHCI3), POPS (50 mg/mL in
deacidified CHCI3) and CHOL (25 mg/mL in deacidified CHCIz) was taken in a clean sample
vial in the molar ratio of 6:2:2. A thin lipid layer was formed when the fluid was continuously
rotated for 6 hours under decreasing pressure. The thin lipid film was hydrated by the addition
of 800 pL of 20 mM HEPES buffer containing 1 mM lucigenin and 100 mM NaNOs solution
(pH 7.2 and 5.4). The resulting solution was vortexed 6-7 times for 1 h, subjected to 10-12
freeze-thaw cycles, and then sustained vortexing for 15 minutes to integrate lucigenin into the
lipid bilayer. Using a mini-extruder, the lipid suspension was extruded through a polycarbonate
membrane from Avanti Polar Lipids with a 200 nm pore size 19-21 times (must be an odd
number). To achieve the final lipid content of 25 mM (assume 100% lipid regeneration), the
unencapsulated lucigenin dye was removed using size exclusion column chromatography
(Sephadex G-50), and a 20 mM HEPES buffer containing 100 mM NaNOs solution, pH 7.2 as
the eluting solution.

6.2. Preparation of DPPC/POPS/CHOL-LUVSSHPTS — In order to prepare HPTS
encapsulated LUVs, appropriate amounts of DPPC, POPS, and CHOL were combined in a
clean, dry glass vial in the molar ratio of 6:2:2. A thin lipid layer was formed when the fluid
was continuously rotated for 6 hours under decreasing pressure. The thin lipid film was
hydrated by adding 800 pL of 20 mM HEPES, pH 7.2, 100 mM NaCl, and 1 mM HPTS. The
resulting solution was vortexed 6-7 times for 1 hour and subjected to 10-12 freeze-thaw cycles.
Finally, sustained vortexing for 15 minutes was used to integrate HPTS within the lipid bilayer.
Using a mini-extruder, the lipid suspension was extruded through a polycarbonate membrane
from Avanti Polar Lipids with a 200 nm pore size 19-21 times (must be an odd number). To
achieve the final lipid content of 25 mM (assume 100% lipid regeneration), the free
unencapsulated HPTS dye was removed using size exclusion column chromatography
(Sephadex G-50) and a 20 mM HEPES buffer containing 100 mM NaCl solution, pH 7.2 as

the eluting solution.
6.3. Quantitative measurement of transport activity from lucigenin assay — The

fluorescence emission intensities (Y-axis) of the lucigenin dye were normalized, and the

intensities appearing at t = 50 and t = 500 s were taken as 0 and 100 units, respectively, and the
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normalized fluorescent intensities (FI) at t = 450 s (before the addition of Triton X-100) were

considered to measure the transport activity of the compounds.

NOrrnaIiseld Fl (a.u.)

-

Titran %-100

0 55 100 150 200 250 300 350 400 450 500

Time (s)
Figure S10. Representations of lucigenin fluorescence-based ion transport kinetics using

DPPC/POPS/CHOL-LUVsolucigenin.

The transport activity,  Tiycigenin = o=t +100%..... Eq. S1

Fo—Foo

Where, Fo = fluorescence intensity before the addition of the compound (at t = 45 s), Fx

Fluorescence intensity after addition of Triton X-100 (i.e. at saturation, t = 500 s), Ft

Fluorescence intensity at t = 450 s (prior to the addition of Triton X-100).

6.4. Quantitative measurement of transport activity from HPTS assay — The fluorescence
emission intensities (Y-axis) of the HPTS dye were normalized, and the intensities appearing
at t = 50 and t = 500 s were taken as O and 100 units, respectively, and the normalized
fluorescent intensities (FI) at t = 450 s (prior to the addition of Triton X-100) were considered

to measure the transport activity of the compounds.
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Figure S11. Representation of HPTS-based ion transport kinetics.

The fluorescence intensity was normalized according to Equation S2:

Fy— Fy
=—7X % .... .
Tuers = (= ) 100 % ....Eq.S2

where, Fo = Fluorescence intensity just before the compound addition (at t = 50 s). F =
fluorescence intensity at saturation after complete leakage (at t = 450 s). Ft = fluorescence

intensity at time t.

6.5. lon transport activity (lucigenin assay) — To perform the lucigenin assay, a 3 mL
fluorescence cuvette was filled with 1950 pL of 20 mM HEPES buffer, pH 7.2, containing 100
mM NacCl, and 40 pL of the DPPC/POPS/CHOL-LUVs lucigenin. The cuvette was then placed
in the fluorescence spectrophotometer under slow stirring conditions for 3-5 minutes to ensure
a homogeneous solution. The kinetic experiment was initiated (at t = 0 s), and the excitation
wavelength of lucigenin was 455 nm, with monitoring at 506 nm. After that, the cuvette was
maintained in a stirring environment with the chamber temperature set to 25 °C. Compounds
(final concentration 10 pM) were introduced to start the Cl inflow kinetics after 45 s. The
vesicles were then lysed to end the kinetic experiment. At t = 450 s, the vesicles were finally
lysed to end the Kkinetic experiment by adding 20% Triton X-100 (20 uL) to the cuvette, and

fluorescence measurements were conducted for an additional 50 s (t = 500 s).

6.6. pH-dependent CI~ transport activity across the DPPC/POPS/CHOL-
LUVsolucigenin — The vesicles were prepared following a similar procedure as the

abovementioned method.
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Figure S12. Normalized fluorescence quenching curves (F/Fo) were fitted to a first-order

exponential decay equation.

6.7. Concentration-dependent lucigenin assay — Similar to the procedure mentioned above,
the DPPC/POPS/CHOL-LUVsolucigenin (pH 7.2 and 5.4) was created. The lucigenin dye's
fluorescence signals (Y-axis) were scaled from 0 to 100 units [t =50 to t = 500 s (X-axis)]. The
transport activity of 1f was determined using the normalized fluorescence intensity (FI) values
obtained at t = 450 s (before the addition of Triton X-100). Using the earlier Eqg.-S1, the
transport activity (T) of chemical 1f at a certain concentration was calculated. The transport
activity values (Y-axis) were plotted versus concentration (X-axis) and fitted in the Hill
equation to obtain the effective concentration (ECso).2
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Figure S13. Concentration-dependent transmembrane transport of CI™ in the presence of 1f
across the DPPC/POPS/CHOL-LUVsolucigenin. The ion transport activity was measured by
lucigenin fluorescence assay at pH 7.2. The ECso value was calculated using the Hill equation

(B). The compound concentration was varied from 20 to 0.625 pM.
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Figure S14. Concentration-dependent transmembrane transport of CI™ ion in the presence of
compound 1f across the DPPC/POPS/CHOL-LUVsolucigenin. The ion transport activity was
measured by lucigenin fluorescence assay at pH 5.4. The ECso value was calculated using the

Hill equation (B). The compound concentration was varied from 2.5 to 0.078 pM.

6.8. Chloride transport activity of compound 1f, 4 and 5 across DPPC/POPS/CHOL-

LUVsolucigenin —
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Figure S15. CI” transport activity of compound 1f, 4 and 5 (20 uM) across
DPPC/POPS/CHOL-LUVsolucigenin.

6.9. Concentration-dependent lucigenin assay of the compound 4 — Similar to the
aforementioned procedure, the DPPC/POPS/CHOL-LUVsolucigenin (pH 7.2) was prepared.
The lucigenin dye's fluorescence signals (Y-axis) were scaled from 0 to 100 units[t=50tot =
500 s (X-axis)]. The transport activity of the compounds was determined using the normalized
fluorescence intensity (FI) values obtained at t = 450 s (before the addition of Triton X-100).
Using the earlier Eq.-S1, the transport activity (T) of compound 4 at a certain concentration
was calculated. The transport activity in % ('Y -axis) was plotted against concentration (X-axis)

and fitted in the Hill 1 equation to obtain the effective concentration (ECso) of compound 4.
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Figure S16. Concentration-dependent transmembrane transport of CI™ ion in the presence of
compound 4 across the DPPC/POPS/CHOL-LUVsolucigenin (A). The ion transport activity
was measured by lucigenin fluorescence assay at pH 7.2. The ECso value was calculated using
the Hill 1 equation (B). The compound concentration was varied from 20 to 0.15 pM. The ECso

of compound found 3.39 + 0.89 pM.

6.10. Efflux study using chloride ion-selective-electrode (CI-ISE) — CI-ISE was used to
assess the CI™ efflux efficiency of the compound. Using 20 mM HEPES buffer with 100 mM
NaCl and a different pH (pH 7.2), the DPPC/POPS/CHOL-LUVs were made in a manner
similar to that described in the section above. The LUVs were first dialyzed against 100 mM
NaNOsz in 20 mM HEPES buffer at a pH of 7.2 (iso-osmolar with the NaCl buffer). The CI~

efflux efficiency of 1f was assessed using the equation mentioned above.
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Figure S17. Concentration-dependent transmembrane transport of CI™ in the presence of 1f
across the DPPC/POPS/CHOL-LUVsolucigenin. The ion transport activity was measured by
using CI-ISE at pH 7.2 (A). The ECso value was calculated using the Hill equation (B). The

compound concentration was varied from 20 to 0.625 puM.

6.11. Ion transport activity (HPTS assay) — To prepare the solution for the HPTS assay,
1950 pL of 20 mM HEPES buffer, pH 7.2, with 100 mM NaCl, and 40 pL of the
DPPC/POPS/CHOL-LUVsoHPTS was placed in a 3 mL fluorescence cuvette. The cuvette
was then placed in the fluorescence spectrophotometer under slow stirring conditions for 3 to
5 minutes to ensure a homogeneous solution. HPTS fluorescence emission was measured at
506 nm (excited at 455 nm) when the kinetic experiment got underway (at t = 0 s). Following
this, the cuvette was maintained in a stirring state with the chamber temperature set to 25 °C.
The compound (10 pL of 10 uM DMSO stock solution) was introduced after 45 s to start the
Cl™ inflow Kinetics. The vesicles were lysed by adding 20% Triton X-100 (20 L) to the cuvette
at t = 450 s to end the kinetic experiment, and fluorescence measurements were conducted for
an additional 50 s (t = 500 s).

6.12. Anion selectivity studies — The identical procedure outlined above was used to prepare
the vesicles. This test used 100 mM of NaX salt solution (where A = F~, CI7, Br, I, NO3~
ClOsand SCN") as an external buffer. Att = 0 s, the suspension was maintained in a gently
stirring state in a fluorescence apparatus with a magnetic stirrer. At Aem = 535 nm (Aex = 455
nm), the quenching of lucigenin’s fluorescence intensity was seen with time. the insertion of

transporter 1f at t = 45 s. To fully destroy the imposed CI™ gradient, vesicles were lysed by the
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addition of 20% Triton X-100 (20 pL) att =450 s. Using Eq.-S2, the time-dependent data were

converted to a percent change in fluorescence intensity.
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Figure S18. The anion transport selectivity of 1f (20 puM) across the DPPC/POPS/CHOL-
LUVsoHPTS (6:2:2 molar ratio) was measured at pH 7.2 (A), percentage of CI™ efflux in the

presence of different anions (B).

6.13. Cation selectivity assay across DPPC/POPS/CHOL-LUVsolucigenin — The vesicles
were prepared by following the same protocol as stated above. In clean and dry fluorescence
cuvette, 20 mM HEPES buffer and 100 mM MCI (M = Li*, Na*, K*, Rb*, and Cs") (1950 uL)
and DPPC/POPS/CHOL-LUVsolucigenin (40 uL) were taken.
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Figure S19. Cation selectivity of 1f (5 uM) measured by varying external cations (M* = Li*,
Na*, K+, Rb*, Cs") across DPPC/POPS/CHOL-LUVsolucigenin.

7. Evidence for the mechanistic pathway for CI- transport:

7.1. Ton transport activity in the presence of FCCP (FCCP assay) — The ion transport
activity was evaluated in the presence and absence of FCCP (H" selective transporter). In a 3
mL fluorescent cuvette, 1950 pL of 20 mM HEPES buffer, pH 7.2, including 100 mM NacCl,
and 40 pL of the DPPC/POPS/CHOL-LUV>oHPTS were placed. The cuvette was then placed
into the fluorescence equipment and stirred for 3 minutes. The compound 1f (8 pL of the stock
solution in DMSQO) and 2 pL of FCCP solution in DMSO (5 uM) were then added to the
solution at t = 45 s. After 45 seconds, compound 1f (final concentration ) pulse was introduced
to the cuvette to start the CI™ transfer kinetics. After 450 s, the kinetic experiment was stopped
by adding 20 pL of 20% Triton-X100 solution to the cuvette (to rupture the vesicular
arrangements), and the fluorescence measurements were continued for another 45 s (t = 500 s).

The control experiment was likewise conducted in the absence of FCCP.

7.2. lon transport activity in the presence of Valinomycin (Valinomycin assay) — The
vesicles were made using the same method described in the preceding section. The activity of
ion transport was evaluated in the absence and presence of valinomycin. In a 3 mL fluorescent
cuvette, 1950 pL of 20 mM HEPES buffer, pH 7.2, including 100 mM KCl, and 40 pL of the
DPPC/POPS/CHOL-LUVoHPTS were placed. The cuvette was then placed into the
fluorescence equipment and stirred for 3 minutes. The intensity of the HPTS fluorescence was
then measured (t = 0 s) at 510 nm (Aex = 450 nm). The compound (8 pL of the stock solution
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in DMSO) and 2 L of valinomycin solution in DMSO (10 nM) were then added to the solution
at t = 45 s to commence the CI transport kinetics. After 450 seconds, the kinetic experiment
was stopped by pouring 20 pL of 20% Triton-X100 solution into the cuvette (to break the
vesicular arrangements), and the fluorescence measurements were continued for another 50 s

(t =500 s). The control experiment was likewise carried out in the absence of valinomycin.

7.3. U-tube experiment:

The U-tube experiment was carried out to verify this H*/CI™ co-transport (either inflow or
efflux) mechanism of the compound in an acidic medium. The left arm of the U-tube was filled
with 0.1 M aqueous HCI solution (pH 1.2), while the right arm was filled with isotonic NaNO3
and separated by chloroform (organic layer). The chloroform layer is thought to be a lipid
bilayer mimic. The transit of CI” and H* ions was monitored with a CI-ISE and a pH meter,
respectively. The 1f (20 uM) was put in the chloroform layer, and measurements were taken

for 70 hours.

~250

—200

PH with Compound 1f

- [cn without-(ompound 1f

20 30 40 50 60 70
Time (hours)

Figure S20. Measurement of the H*/ CI™ transport efficacy by 1f (20 uM) using CI-ISE and

o
o

pH-meter across a U-tube.

7.4. Evidence for mobile carrier mechanism:

7.4.1. Transport activity across DPPC-lucigenin assay— The transport activity of the drugs
was evaluated using a fluorescence spectrophotometer in this DPPC-lucigenin experiment.
1950 pL of 20 mM HEPES buffer, pH 7.2, including 100 mM NaCl, and 40 uL of DPPC-
LUVolucigenin were placed in a 3 mL fluorescence cuvette for this test. The kinetic

experiment began (at t = 0 s), and the emission of lucigenin fluorescence was measured at 506
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nm (excited at 455 nm). The cuvette was then stirred, and the chamber temperature was
adjusted to 25 °C. After 45 s, the compound (10 pL of DMSO stock solution) was introduced
to begin the CI™ inflow kinetics. Finally, at t = 450 s, the vesicles were lysed by adding 20%
Triton X-100 (20 pL) to the cuvette, and fluorescence measurements were continued for
another 50 s (t = 500 s). A comparable measurement was carried out to assess the transport
efficiency at 45 °C. To calculate the half-life and starting rate at different temperatures, the

time-dependent lucigenin fluorescence plot was fitted with a first-order exponential decay
equation.

80+
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N
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Figure S21. Temperature-dependent CI~ transport by 1f (20 pM) using DPPC-
LUVolucigenin.,
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Figure S22. Normalized fluorescence quenching curves (F/Fo) were fitted to an exponential
decay 2 equation.
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7.5. Preparation of DPPC/POPS/CHOL-LUVoCF:

A thin lipid film was prepared by evaporating a solution of DPPC/POPS/CHOL in 0.5 ml
CHCIs in vacuo for 4 h. After that lipid film was hydrated with 0.5 mL buffer (20 mM HEPES,
100 mM NaCl, 50 mM Carboxyfluorescein (CF), pH 7.2) for 1 hour with occasional vortexing
of 3-5 times and then subjected to freeze-thaw cycle (> 15 times). The vesicle solution was
extruded through a polycarbonate membrane with 200 nm pores 19-21 times (it must be an odd
number) to give vesicles with a mean diameter of ~ 200 nm. Size exclusion chromatography
(Sephadex G-50) with 20 mM HEPES buffer (100 mM NaCl, pH 7.2 final) was used to remove
the extracellular dye. Final concentration: ~25 mM lipid; intravesicular solution: 20 mM
HEPES, 100 mM NaCl, 50 mM CF, pH 7.2; extravesicular solution: 20 mM HEPES, 100 mM
NaCl, pH 7.2.

7.6. Carboxyfluorescein (CF) leakage assay — In a clean and dry fluorescence cuvette, 40
pL of the aforementioned lipid solution and 1950 pL of 20 mM HEPES buffer (100 mM NacCl,
pH 7.2) were mixed slowly by a magnetic stirrer fitted with the fluorescence equipment (att =
0 s). The temporal path of CF fluorescence emission intensity, Ft, was recorded at Aem = 517
nm (Rex = 492). The compound was added at t = 50 s, and finally, at t =450 s, 20 uL of 20%
Triton X-100 was injected to lyse those vesicles for 100% CI™ inflow. Fluorescence intensities
(Ft) were normalized to fractional emission intensity (IF) using Eq. S2. This investigation
demonstrated that neither the bilayer membranes damaged nor large transmembrane pores were
generated by 1f.

e 1 (40 pM)
e 1£ (20 uM)
s 1 £ (10 UM)
e AMSO

a.u.)
g

(
¢

Normalised Fl
S

o gt LA st A st I

100 200 300 400 500
Time (s)

Figure S23. The carboxyfluorescein leakage assay of 1f across DPPC/POPS/CHOL-
LUVOCF.
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8. pKa determination of by UV-Visible titration:
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Figure S24. Absorbance spectra of 1f (20 uM) at different pH in 9:1 DMSO/H.0 (v/v) solution
containing 0.1 M NaCl (A). Comparison plots of absorbance at 375 nm at different pH (B).

9. Antibacterial activity studies:
Using the micro broth dilution method, the antibacterial efficacy of the compound was assessed
against gram-positive (S. aureus (MTCC 96) and MRSA) and gram-negative strains (E. coli
(MTCC 1687)). The MIC values were calculated as the lowest concentration at which visible
growth of the microorganism is inhibited. The assay was performed according to the CLSI
guidelines. At 37 °C and 180 rpm, the bacteria were grown in an LB medium (Luria Bertani
Broth). As soon as the desired optical density had been attained, the bacteria were centrifuged
and washed with distilled water before being diluted to 10° CFU/mL in an LB medium. Serial
dilution of the compound was performed in a 96-well plate using a micropipette. The cells were
added to the serially diluted solution of the compound and incubated at 37 °C for 14-16 hours.
Following incubation, the ODgoo Was measured with a BioTek Epoch microplate reader to
determine the MIC. In order to obtain the most accurate MIC values, this assay was repeated
at different concentration ranges. The error value was calculated as the standard deviation
obtained through the mean of the repeated assay results.

To assess the bactericidal activity, 10 puL of the culture from MIC wells exhibiting
visibly inhibited growth were subsequently transferred into 100 puL of a fresh medium within
neighbouring wells. The 96 well-plate was then incubated at 37 °C for a duration of 24 hrs,

following which the optical density was determined at a wavelength of 600 nm.
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Simultaneously, 10 puL of culture was taken from the well with the MIC concentration and

plated on an agar plate for the duration of 24 hours to determine the bactericidal activity.

Table S2. Antibacterial activity of the compounds.

MIC (pM)

Compounds S. aureus MRSA E. coli
(MTCC 96) (ATCC 33592) | (MTCC1687)

la >50 - -

1b >50 - -

1c >50 - -

1d >50 - -

le 20.0 £5.00 10.0 £ 2.50 >100

1f 2.34+0.39 2.50 + 0.50 >100

2a >50 - -

2b >50 - -

4 12.75+1.25 - -

5 15.625 +£3.125 | - -

2-(2-aminophenyl)quinazolin-4-amine | >75 - -

2-(quinazolin-2-yl)aniline >75 - -

Control 1f treated

Figure S25. Minimum bactericidal concentration of 1f at MIC concentration.

9.1. Time-kill assay:
This study aimed to evaluate the antibacterial activity of the tested compound over the specified
duration. The S. aureus (MTCC 96) cells were cultured until they had reached the mid-

logarithmic phase of their growth. The inoculum was prepared by diluting the culture in LB
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medium to obtain an optical density of 0.1. The compound was prepared in PBS buffer together
with LB medium in a final concentration of 10 x MIC (20 uM). After the addition of the
inoculum, samples were incubated at 37 °C and 180 rpm. Samples were collected at different
time points (0, 1, 2, 4, 8, and 12 hours) and stored at -20 °C. Once all samples were collected,
they were centrifuged at 5000 rpm for 5 minutes, and the supernatant was removed. The
samples were then diluted three-fold and inoculated onto agar plates using a spreader. The
plates were then incubated overnight at 37 °C, and the resulting colonies were counted
manually to determine the colony-forming units per millilitre (CFU/mL).
Control 1f treated Control 1f treated

Figure S26. Bacterial growth on agar plates after a differential period of time.

Note: The viability of S. aureus cells was measured at different time intervals in order to
determine the bactericidal effect of the compound. Figure S25 revealed that the compound
exhibited bactericidal activity after 8 hours of incubation. The CFU/mL (colony forming units
per millilitre) were calculated while taking the dilution factor into consideration. The dilution
factor is the proportion of the original sample volume to the volume plated on the agar plate.

CFU/mlL = No.of colonies x dilution factor Eq. 53
me = Volume of culture plated (in mL) 9.
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Figure S27. Time-kill curve showing changes in CFU of control and compound treated

bacteria culture over time.

9.2. Morphological study:

Morphological analysis of bacterial cells treated with the compound was performed using a
field emission scanning electron microscope (FESEM). To prepare the samples for FESEM
imaging, S. aureus cells were cultured until they reached the mid-logarithmic growth phase
and then harvested by centrifugation at 5000 rpm for 5 minutes. The cells were then washed
and treated with 1f (at MIC concentration). A bacterial culture without treatment with the
compound was retained as a control. After 3 hours of incubation, the cell pellets were collected
by centrifugation, washed with PBS buffer, and dropped onto a glass grid covered with
aluminium foil. A laminar airflow was used to air dry the sample. The drop cast sample was
then mounted on a metal FESEM grid held in place with carbon tape. The sample was gold-
plated twice before FESEM analysis. This preparation process facilitated the study of the
morphology of the bacterial cells using FESEM. It allowed for a detailed characterization of

any structural changes induced by the compound treatment.
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Figure S28. Morphological analysis of S. aureus cells. Control (A) and 1f (B) treated S. aureus

cells.

9.3. MQAE Assay:

This assay has been performed to analyze CI transport in bacterial cells. The MQAE dye (N-
(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) is a specific Cl™-sensing dye used to
analyze CI~ transport in cells due to its cell permeability.® S. aureus cells were grown in LB
medium in the presence of MQAE (1 mM) in an incubator shaker at 37 °C and 180 rpm for 14-
16 hours. The cells were then washed, collected, and resuspended in 10 mM HEPES and 50
mM NaCl buffer (pH: 7.2) to estimate intracellular CI™ transport. For this assay, 150 pL of
resuspended bacterial culture was mixed in 1850 pL of buffer (10 mM HEPES and 50 mM
NaCl, pH 7.2) in a clean and dry fluorescence cuvette and kept under slow stirring conditions,
and the fluorescence intensity of MQAE within the cells was monitored at 450 nm (Aex: 350
nm). At t = 100s, 1f was added at a concentration of 20 uM, and the MQAE fluorescence
intensity was monitored for a further 900s. The same was performed for the control; 0.5%
DMSO was added.
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Figure S29. MQAE-based fluorescence assay. At t = 100s, the compound was the bacterial

cells, and a decrease in fluorescence intensity was observed.

Note: This study aimed at assessing transmembrane CI~ transport properties of the bacterial
cells in the presence of 1f using the MQAE (cell permeable) dye.2 Bacterial cells were exposed
to the dye, which was internalized by the cells. As CI~ was transported into the cytoplasm of
the bacterial cells, the fluorescence intensity of the dye was quenched. The addition of 1f
enhanced the rate of CI™ transport within the cells, resulting in a time-dependent drop in
fluorescence intensity. This result suggests that 1f could rapidly transport CI™ across bacterial

cell membranes, as evidenced by a decrease in fluorescence intensity.
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10. NMR spectra of synthesized compounds:
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Figure 30. *H NMR (A) and *C NMR (B) spectra of 2-(2-aminophenyl)quinazolin-4-amine
in the DMSO-ds solvent.
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Figure S31. 'H NMR (A) and **C NMR (B) spectra of 1a in the DMSO-ds solvent.
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Figure S33. 'H NMR (A) and **C NMR (B) spectra of 1c in the CDCl; + DMSO-ds solvent.
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Figure S34. 'H NMR (A) and **C NMR (B) spectra of 1d in the CDCls + DMSO-ds solvent.
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Figure S36. 'H NMR (A) and **C NMR (B) spectra of 1f in the DMSO-ds solvent.
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Figure S40. *H NMR (A) and **C NMR (B) spectra of 3b in the DMSO-ds solvent.
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11. HRMS analysis of synthesized compounds:
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Figure S43. HRMS of 2-(2-aminophenyl)quinazolin-4-amine.
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Figure S44. HRMS of la.
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Figure S45. HRMS of 1b.
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Figure S46. HRMS of 1c.
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Figure S47. HRMS of 1d.
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Figure S49. HRMS of 1f.
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Figure S51. HRMS of 2b.
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Figure S54. HRMS of compound 4.
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Figure S55. HRMS of compound 5.
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