Steric and electronic control regioselectivity in arylation of carbazoles using dual catalysis

M. Shahid, Perumal Muthuraja, Purushothaman Gopinath,*

Table of contents

1.0	General information	S2
2.0	Optimization table and Experimental procedures	S2-S10
2.1	General procedure for the synthesis of 9H-carbazoles (1ah, 1ai, 1aj)	S2-S3
2.2	General Procedure for synthesis of 9(pyrimidin-2-yl)-9H-carbazoles ($\mathbf{1 f} \mathbf{- 1} \mathbf{j}$)	S3
2.3	General procedure for the synthesis of (pyrimidin-2-yl)-9H-carbazole derivatives (1b-1e)	S3-S4
2.4	General procedure for the preparation of aryldiazonium tetrafluoroborates	S4
2.5	General procedure for the ortho arylation of 9(pyrimidin-2-yl)-9Hcarbazoles	S4-S6
2.6	General procedure for diarylation of 9(pyrimidin-2-yl)-9H-carbazoles	S6
2.7	Gram scale procedure for monoarylation of 9(Pyrimidin-2-yl)-9Hcarbazoles, (3a)	S6-S7
2.8	Gram scale procedure for diarylation of 9 (Pyrimidin-2-yl)-9Hcarbazoles, (3q)	S7
2.9	Ortho arylation of carprofen derivative, 5a	S7-S8
2.10	Procedure for the synthesis of hyellazole derivatives	S8-S10
2.11	Deprotection of pyrimidine, 3a to form free carbazole, 14	S10-S11
2.12	Procedure for trapping the aryl radical using TEMPO	S11
3.0	Crystallographic data	S11-S16
3.1	Crystallographic data for compound $\mathbf{4 g}$	S12
3.2	Crystallographic data for compound 4i	S13
3.3	Crystallographic data for compound 4k	S14
3.4	Crystallographic data for compound 4m	S15-S16
5.0	Analytical data of compounds	S17-S31
6.0	1H NMR and 13C NMR spectra of compounds	S32-S90

1. General Information:

All the vials (Borosil) used for carrying out the reactions were dried overnight on hot air oven at $120{ }^{\circ} \mathrm{C}$. All chemicals were obtained from commercial sources and were used as received unless otherwise noted. Carbazoles ${ }^{[31-33]}$ and aryl diazonium salts ${ }^{[34,35]}$ were synthesized according to literature reports. All the anhydrous solvents required were purchased from TCI, Sigma Aldrich and spectrochem and used without further purification. Reactions were monitored using precoated aluminum supported silica gel $60 \mathrm{~F}_{254}$ TLC (thin layer chromatography) plates (Merck) and are visualized by UV light at 254 nm . The final products were purified using column chromatography (100-200 mesh silica gel purchased from Merck). ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{19} \mathrm{~F}$ NMR (376 MHz), and ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra were recorded on the Bruker AVANCE NEO 400 MHz spectrometer. Deuterated chloroform was used as solvent for NMR, and Chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra are given in ppm relative to tetramethylsilane (TMS) [$\delta 7.27$ for ${ }^{1} \mathrm{H}$ (chloroform-d), $\delta 77.0$ for ${ }^{13} \mathrm{C}$ (chloroform-d), ${ }^{19} \mathrm{~F}$-NMR spectra are not externally calibrated and chemical shifts are given relative to $\mathrm{CCl}_{3} \mathrm{~F}$ as received from the automatic data processing. Abbreviations used in the NMR experiments: br, broad; s , singlet; d , doublet; t , triplet; q , quartet; sep, septet; dd, doublet of doublet; m, multiplet. High resolution mass spectra (HRMS) was obtained from Orbitrap Elite HybridIon Trap-Orbitrap (Thermofischer scientific, Newington, NH, USA) Mass spectrometer in electrospray ionization mode (ESI ${ }^{+}$. X-ray data for the compounds were collected on a Bruker D8 VENTURE diffractometer instrument with an I $\mu \mathrm{S} 3.0$ Mo source ($\boldsymbol{\lambda}=0.7107 \AA$) and a PHOTONIII C28 detector.

2. Optimization table and Experimental procedures

The following substrates containing the directing groups were synthesized using literature procedures. ${ }^{[11]}$

1a

1a'

1b'

$1 c^{\prime}$

1d'

Table S1: Optimization of monoarylation

Sl NO	Photocatalyst	TM (10 mol\%)	DG	Solvent	Yield
1	Eosin Y (5 mol \%)	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1a	DMF	-
2	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1a	DMF	27\%
3	$\mathbf{R u}(\text { bpy })_{3} \mathbf{C l}_{\mathbf{2}}(\mathbf{2} .5 \mathbf{~ m o l ~ \%) ~}$	$\mathbf{P d}(\mathbf{O A c})_{2}$	1a	MeOH	82\%
4	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1a'	MeOH	54\%
5	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1b'	MeOH	Trace
6	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1c'	MeOH	-
7	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1d'	MeOH	-
8	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1a	DMF	-
9		$\mathrm{Pd}(\mathrm{OAc})_{2}$	1a	MeOH	-
10	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$		1a	MeOH	
$11^{\text {b }}$	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1a	MeOH	Trace
$12^{\text {c }}$	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1a	MeOH	62\%
13	fac-Ir(ppy $)_{3}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1a	MeOH	44\%
14	$\mathrm{Ru}(\text { phen })_{3}\left(\mathrm{PF}_{6}\right)_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	1a	MeOH	68\%

Reaction conditions: Carbazole 1 (1 equiv), aryldiazonium salt 2a (4 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%$), in methanol under argon at room temperature for 24 hours, 44 W Blue LED (Kessil). ${ }^{\text {b }}$ without light, ${ }^{\text {c }}$ without argon.

Table S2: Optimization of diarylation

SI NO	Photocatalyst	TM	Time (h)	$\begin{gathered} \mathrm{ArN}_{2} \mathrm{BF}_{4} \\ \text { (equiv) } \end{gathered}$	Yield
1	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	36	4	35\%
2	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	48	4	35\%
3	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	24	5	61\%
4	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	24	6	84\%
5	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}$ (2.5 mo 1\%)	$\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	24	8	79\%
6	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$	$\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	24	6	78\%
7	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}(15 \mathrm{~mol} \%)$	24	6	76\%

Reaction conditions: Carbazoles 1 (1 equiv), Aryl diazonium salt 2 (6 equiv), $\mathrm{Ru}(b p y)_{3} \mathrm{Cl}_{2}$ ($2.5 \mathrm{~mol} \%$), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, in methanol under argon at room temperature for $24 \mathrm{~h}, 44 \mathrm{~W}$ Blue LED (Kessil).

2.1. General procedure for the synthesis of $\mathbf{9 H}$-carbazoles (1ah, 1ai, 1aj)

Compounds 1af and 1ag were obtained commercially

Carbazoles 1ah, 1ai, 1aj were synthesised following the literature procedures. ${ }^{[32]}$ Aniline derivative (4.8 mmol), 1,2-dichlorobenzene ($588 \mathrm{mg}, 4.0 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(2.55 \mathrm{~g}, 12.0 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(45.0 \mathrm{mg}, 5 \mathrm{~mol} \%)$, tricyclohexylphospene $\left(\mathrm{PCy}_{3}\right)(112.0 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and dry NMP $(20 \mathrm{~mL}, 0.2 \mathrm{M})$ were added to a Schlenk tube with a magnetic stirring bar under argon atmosphere. The resulting mixture was heated at $135{ }^{\circ} \mathrm{C}$ for 18 h . The progress of the reaction was monitored by TLC. The mixture was cooled to room temperature and EtOAc was added to it. The resulting crude reaction mixture was filtered and washed several times with EtOAc. The filtrate was then washed twice with brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the desired 9 H -carbazole was purified by silica gel column chromatography using hexane/ethyl acetate gradient as eluent.

2.2. General procedure for synthesis of 9(pyrimidin-2-yl)-9H-carbazoles (1a, 1f-1j):

9(pyrimidin-2-yl)-9H-carbazoles ($\mathbf{1} \mathbf{f} \mathbf{- 1 \mathbf { j }}$) was synthesized using reported procedures. ${ }^{[36-38]}$ To a stirred solution of carbazole (11.97 mmol) in DMF ($57 \mathrm{~mL}, 0.21 \mathrm{M}$), $\mathrm{NaH}(60 \%$ dispersion in mineral oil, 575 mg , (14.37 mmol) was added in portions at $0^{\circ} \mathrm{C}$. After stirring for 30 min at that temperature, 2-chloropyrimidine $(2.046 \mathrm{~g}, 17.95 \mathrm{mmol})$ was added and the mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . The, reaction mixture was then cooled to room temperature, poured over $\mathrm{H}_{2} \mathrm{O}$ $(400 \mathrm{~mL})$ and extracted with EtOAc $(4 \times 75 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel (n -hexane/EtOAc $=10 / 0.11$) to afford the corresponding 9 (pyrimidin-2-yl)-9H-carbazoles.

2.3. General procedure for the synthesis of 9 (pyrimidin-2-yl)-9H-carbazoles derivatives (1b1e):

To a solution of 2-bromo-9-(pyrimidin-2-yl)-9H-carbazole (1f) ($323 \mathrm{mg}, 1$ equiv), arylboronic acid (1.2 equiv) in DME (3 mL) was added CsF (302 mg , 2 equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(46.2 \mathrm{mg}, 4$ $\mathrm{mol} \%$) under argon atmosphere in a sealed tube. Heat the reaction mixture to $100^{\circ} \mathrm{C}$ for 24 h followed by cooling the mixture to room temperature, then add ice cooled water to it. The reaction mixture was then extracted with EtOAc and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was finally purified by column chromatography using hexane/EtOAc as eluent.

2.4. General procedure for the preparation of aryldiazonium tetrafluoroborates

In a 50 mL round-bottom flask, the aniline (10 mmol) was dissolved in a mixture of absolute ethanol (3 mL) and an aqueous solution of HBF4 ($50 \%, 5.4 \mathrm{~mL}, 3$ equiv). The tert-butyl nitrite $\left(1.7 \mathrm{~mL}, 1.5\right.$ equiv) was added drop wise to the solution at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h and diethyl ether (20 mL) was added to precipitate the arenediazonium tetrafluoroborate. The solid was filtered off and washed with diethyl ether ($3 \times 10 \mathrm{~mL}$). The aryldiazonium tetrafluoroborate was dried in vacuo (10-3 mbar) for 10 minutes and was then directly used without further purification. Spectral data are agreement with the data available in the literature. ${ }^{[9,10]}$

2.5. General procedure for ortho arylation of 9(pyrimidin-2-yl)-9H-carbazoles:

To an oven dried 4 mL vial, the corresponding carbazole derivative (0.1 mmol) aryldiazonium salt ($0.4 \mathrm{mmol}, 4$ equiv), $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(1.6 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.24 \mathrm{mg}, 10 \mathrm{~mol} \%)$ was added. Anhydrous $\mathrm{MeOH}(1 \mathrm{~mL}, 0.1 \mathrm{M})$ was then added to this reaction mixture and sealed with a Teflon screw cap. This mixture was then subjected to freeze pump thaw cycle using liquid nitrogen and high vacuum for three times in order to remove oxygen and maintain inert atmosphere (Argon). The mixture was irradiated with blue LED light for 2-24 h and the reaction mixture was monitored using TLC. Upon completion, the solvent was evaporated under reduced pressure. The reaction mixture was then subjected to column chromatography on silica gel (n -hexane/EtOAc) to get the pure product.

2.6. General procedure for diarylation of 9 (pyrimidin-2-yl)-9H-carbazoles:

To an oven dried 4 mL vial containing the carbazole (0.1 mmol), was added aryldiazonium salt ($0.6 \mathrm{mmol}, 6$ equiv), $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(1.6 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.24 \mathrm{mg}, 10 \mathrm{~mol} \%)$. Anhydrous $\mathrm{MeOH}(1 \mathrm{~mL}, 0.1 \mathrm{M})$ was then added to this reaction mixture and then sealed with a Teflon screw cap. This mixture was then subjected to freeze pump thaw cycle using liquid nitrogen and high vacuum three times in order to remove oxygen and maintain inert atmosphere (Argon). The mixture was then irradiated with blue LED light for $2-24 \mathrm{~h}$ and the reaction mixture was monitored using TLC. Upon completion, the solvent was evaporated under reduced pressure. The reaction mixture was then subjected to column chromatography on silica gel (n-hexane/EtOAc) to get the pure product.

2.7. Gram scale procedure for monoarylation of 9(Pyrimidin-2-yl)-9H-carbazoles, (3a):

To an oven dried 50 mL RB, carbazole, $\mathbf{1 a}(1 \mathrm{~g}, 4.1 \mathrm{mmol})$ aryladiazonium salt, $\mathbf{2 a}(2.74 \mathrm{~g}, 4$ equiv, 14.35 mmol$), \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(65.6 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(91.8 \mathrm{mg}, 10 \mathrm{~mol} \%)$ was added. Anhydrous $\mathrm{MeCN}(41 \mathrm{~mL}, 0.2 \mathrm{M})$ was added to this reaction mixture and sealed with a rubber septum. This mixture was then subjected to freeze pump thaw cycle using liquid nitrogen and high vacuum three times in order to remove oxygen and maintain inert atmosphere (Argon). The mixture was irradiated with blue LED light for 12 h and the reaction mixture was monitored using TLC. Upon completion, the solvent was evaporated under reduced pressure. The reaction mixture was then subjected to column chromatography on silica gel (n -hexane/EtOAc) to get the pure product, 3a ($947.52 \mathrm{mg}, 72 \%$).

2.8. Gram scale procedure for diarylation of 9 (Pyrimidin-2-yl)-9H-carbazoles, (3q):

To an oven dried 50 mL RB, carbazole, $\mathbf{1 a}(1 \mathrm{~g}, 4.1 \mathrm{mmol})$ aryladiazonium salt, $\mathbf{2 a}$ ($4.7 \mathrm{~g}, 6$ equiv, $14.35 \mathrm{mmol}), \mathrm{Ru}(\mathrm{bpy}))_{3} \mathrm{Cl}_{2}(65.6 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(91.8 \mathrm{mg}, 10 \mathrm{~mol} \%)$ was added. Anhydrous MeCN ($41 \mathrm{~mL}, 0.2 \mathrm{M}$) was then added to this reaction mixture and sealed with a rubber septum. This mixture was then subjected to freeze pump thaw cycle using liquid nitrogen and high vacuum three times in order to remove oxygen and maintain inert atmosphere (Argon). The mixture was irradiated with blue LED light for 12 h and the reaction mixture was monitored using TLC. Upon completion, the solvent was evaporated under reduced pressure. The reaction mixture was then subjected to column chromatography on silica gel (n-hexane/EtOAc) to get the pure product, $\mathbf{3 q}(1.3 \mathrm{~g}, 80 \%)$.

2.9. Ortho arylation of carprofen derivative, 5:

To an oven dried 4 mL vial, methyl 2-(6-chloro-9-(pyrimidin-2-yl)-9H-carbazol-2-yl) propanoate ($36.5 \mathrm{mg}, 0.1 \mathrm{mmol}$), aryldiazonium salt ($76.4 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(1.6 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.24 \mathrm{mg}, 10 \mathrm{~mol} \%)$ was added. Dry $\mathrm{MeOH}(1.0 \mathrm{~mL}, 0.1 \mathrm{M})$ was added to this reaction mixture and the vial was sealed with a Teflon screw cap. The mixture was then subjected to blue light irradiation for 12 h under O_{2} atmosphere. The solvent was evaporated under reduced pressure. The reaction mixture was then subjected to column chromatography on silica gel (n hexane/EtOAc) to afford product, 5a in 30.4 mg (72%).

2.10. Procedure for the synthesis of hyellazole derivatives

2.10.1 Synthesis of 2-methoxy-1-methyl-4-nitrobenzene, 7:

To an oven dried 60 ml pressure tube, 4-nitro-o-cresol, $\mathbf{6}$ ($765 \mathrm{mg}, 5 \mathrm{mmol}$) was added along with $\mathrm{KOH}(1.4 \mathrm{~g}, 25 \mathrm{mmol})$ and acetone ($17 \mathrm{~mL}, 0.3 \mathrm{M}$). Upon stirring, MeI ($1.76 \mathrm{~g}, 12.5 \mathrm{mmol}$) was slowly added to this mixture and sealed in a pressure tube. The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 3 hours. The solvent was evaporated under reduced pressure and the reaction mixture was then subjected to column chromatography on silica gel (n-hexane/EtOAc) to afford the pure product, 7 in 793 mg (95%).

2.10.2 Synthesis of 3-methoxy-4-methylaniline, 8 :

To an oven dried 100 mL round bottom flask charged with a magnetic stir bar, compound 7 (668 $\mathrm{mg}, 4 \mathrm{mmol})$ was added along with $\mathrm{Fe}(1.1 \mathrm{~g}, 20 \mathrm{mmol})$ and acetic acid $(100 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 8 hours. The reaction mixture was passed through celite and the filtrate was neutralized with saturated sodium bicarbonate solution and extracted with EtOAc $(4 \times 75 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The reaction mixture was then subjected to column chromatography on silica gel (n -hexane/EtOAc) to afford the pure product, $\mathbf{8}$ in 482 mg (88%).

2.10.3 Synthesis of 2-methoxy-3-methyl-9H-carbazole, 10:

Compound 8 ($699 \mathrm{mg}, 5.1 \mathrm{mmol}$), 1,2-dichlorobenzene ($617 \mathrm{mg}, 4.2 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(2.6 \mathrm{~g}, 12.2$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(47.0 \mathrm{mg}, 5 \mathrm{~mol} \%)$, tricyclohexylphospene (PCy_{3}) ($117.6 \mathrm{mg}, 10 \mathrm{~mol} \%$) and dry NMP ($20 \mathrm{~mL}, 0.2 \mathrm{M}$) were added to a Schlenk tube with a magnetic stirring bar under argon atmosphere. The resulting mixture was heated at $135^{\circ} \mathrm{C}$ for 18 h . The mixture was cooled to room temperature and EtOAc was added to it. The resulting crude reaction mixture was filtered and washed several times with the EtOAc. The filtrate was then washed twice with brine and then dried
over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the reaction mixture was subjected to column chromatography on silica gel (n-hexane/EtOAc) to afford the pure product, 10 in $580 \mathrm{mg}(70 \%)$.

2.10.4 Synthesis of 3-methoxy-2-methyl-9-(pyrimidin-2-yl)-9H-carbazole, 11

3-methoxy-2-methyl-9-(pyrimidin-2-yl)-9H-carbazole, 10 was prepared using the general procedure 2.2.

2.10.5 Synthesis of hyellazole regioisomer, 12

Hyellazole regioisomer (12) was prepared using the general procedure 2.4.

$\mathrm{O}_{2}, 24-48 \mathrm{~h}, \mathrm{rt}$
$10,0.1 \mathrm{mmol}$
2a, 0.4 mmol

12, 72%

2.10.6 Synthesis of functionalized hyellazole, 13:

Functionalized Hyellazole (13) was prepared using the general procedure 2.5.

2.11. Deprotection of pyrimidine, 3a to form free carbazole, 14:

To an oven dried 10 mL RB, 1-phenyl-9-(pyrimidin-2-yl)-9H-carbazole ($500 \mathrm{mg}, 1.43 \mathrm{mmol}$) was added along with sodium methoxide ($471 \mathrm{mg}, 8.6 \mathrm{mmol}$) in dry DMF ($10 \mathrm{~mL}, 0.15 \mathrm{M}$). The
reaction mixture was heated to $120^{\circ} \mathrm{C}$ for 12 h and brought to room temperature. Ice-cooled water was then added to the reaction mixture and the aqueous layer was extracted with ethyl acetate (3 $\times 20 \mathrm{~mL}$). Dry the combined organic layers over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by purification using column chromatography on silica gel (n-hexane/EtOAc) to afford product 14 in 302 mg (78%).

2.12. Procedure for trapping aryl radical using TEMPO:

To an oven dried 4 mL vial, carbazole, 1a ($24.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added along with aryldiazonium salt, $\mathbf{2 a}(76.4 \mathrm{mg}, 0.4 \mathrm{mmol}), \mathrm{Ru}(\mathrm{bpy}))_{3} \mathrm{Cl}_{2}(1.64 \mathrm{mg}, 2.5 \mathrm{~mol} \%), \mathrm{Pd}(\mathrm{OAc})_{2}(2.24$ $\mathrm{mg}, 10 \mathrm{~mol} \%$) and TEMPO ($62.4 \mathrm{mg}, 0.4 \mathrm{mmol}$). To this dry MeCN ($0.5 \mathrm{~mL}, 0.2 \mathrm{M}$) was added, and the reaction mixture was sealed with a teflon screw cap. The reaction mixture was then irradiated with blue light for 48 h under oxygen atmosphere (balloon). The reaction was monitored by TLC and upon completion the solvent was evaporated under reduced pressure. The crude mixture was then subjected to HRMS analysis.

$\left[\mathrm{M}+\mathrm{H}^{+}\right]$actual: 234.1858
$\left[\mathrm{M}+\mathrm{H}^{+}\right]$found: $\mathbf{2 3 4 . 1 8 5 4}$

3.0 Crystallographic data

General data collection and structure solution details:

X-ray data for the compound was collected at room temperature on a Bruker D8 VENTURE diffractometer instrument with an $\mathrm{I} \mu \mathrm{S} 3.0$ Mo source $(\lambda=0.7107 \AA$) and a PHOTON-III C28 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 4 software suite programs. 1 The structure was refined with the SHELXL2 program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. CCDC contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

3.1 Crystallographic data 4 g

Figure S1. Crystal structure of $\mathbf{4 g}$
Table S2 Crystal data and structure refinement of $\mathbf{4 g}$

CCDC number	2267782
Crystal data Crystal	
Chemical formula	$2\left(\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3}\right)$
$M_{\text {r }}$	778.74
Crystal system, space group	Monoclinic, $\underline{P 2} / \underline{c}$
Temperature (K)	$\underline{150}$
$a, b, c(\AA)$	$\underline{19.4774 \text { (17), } 12.0444 \text { (11), } 16.5411 \text { (15) }}$
$\beta\left({ }^{\circ}\right)$	$\underline{106.097(3)}$
$V\left(\AA^{3}\right)$	$\underline{3728.3 \text { (6) }}$
Z	4
Radiation type	Mo K ${ }^{\text {a }}$
$\mu\left(\mathrm{mm}^{-1}\right)$	$\underline{\underline{0.10}}$
Crystal size (mm)	$\times \times$
Data collection	
Diffractometer	Bruker D8 venture
Absorption correction	-
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	$\underline{25773}, \underline{7429}, \underline{4971}$
$R_{\text {int }}$	0.101
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.626
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$\underline{0.056}, \underline{\underline{0.159}}, \underline{1.05}$
No. of reflections	7429
No. of parameters	$\underline{579}$
No. of restraints	$\underline{360}$
H -atom treatment	$\underline{\text { H-atom parameters constrained }}$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$\underline{0.24, ~-0.27 ~}$

3.2 Crystallographic Data 4i

Figure S2. Crystal structure of $\mathbf{4 i}$
Table S3 Crystal data and structure refinement of 4 i

CCDC number	2267784
Crystal data	
Chemical formula	$\underline{\mathrm{C}}_{2.71} \mathrm{H}_{2} \mathrm{~N}_{0.35} \underline{\underline{\mathrm{O}}} 0.12$
M_{r}	$\underline{41.34}$
Crystal system, space group	Monoclinic, $\underline{P 2_{1} / C}$
Temperature (K)	$\underline{149}$
a, b, c (\AA)	$\underline{12.1412 ~(11), ~} 12.7990$ (9), 12.1671 (7)
$\beta{ }^{\circ}{ }^{\circ}$)	$\underline{115.924(3)}$
$V\left(\AA^{3}\right)$	1700.5 (2)
Z	34
Radiation type	Mo K ${ }^{\text {a }}$
$\mu(\mathrm{mm}-1)$	$\underline{0.09}$
Crystal size (mm)	$\times \times$
Data collection	
Diffractometer	Bruker D8 venture
Absorption correction	-
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	6831, 3166, 6667
$R_{\text {int }}$	$\underline{0.051}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.607
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$\underline{0.045}, \underline{0.121}, \underline{1.07}$
No. of reflections	$\underline{3166}$
No. of parameters	$\underline{245}$
H -atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.17, $\underline{\underline{0.27}}$

3.3 Crystallographic Data 4k

Figure S3. Crystal structure of $\mathbf{4 k}$
Table S4 Crystal data and structure refinement of 4 k

CCDC number	2267783
Crystal data	
Chemical formula	$\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$
M_{r}	351.39
Crystal system, space group	$\underline{\text { Monoclinic, }} \underline{\underline{P 2} / \underline{C}}$
Temperature (K)	150
$a, b, c(\AA)$	7.3575 (5), 19.3150 (15), 12.3105 (9)
$\beta{ }^{(}{ }^{\circ}$)	$\underline{97.192(2)}$
$V\left(\AA^{3}\right)$	1735.7 (2)
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	$\underline{0.08}$
Crystal size (mm)	$\times \times$
Data collection	
Diffractometer	Bruker D8 venture
Absorption correction	-
No. of measured, independent and observed $[\underline{I}>2 \sigma(I)]$ reflections	$\underline{95588}, \underline{3073}, \underline{2476}$
$R_{\text {int }}$	$\underline{0.079}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.596
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$\underline{0.037}, \underline{0.101}, \underline{1.02}$
No. of reflections	$\underline{3073}$
No. of parameters	$\underline{245}$
H -atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.28, -0.16

3.4 Crystallographic Data 4m

Figure S4. Crystal structure of $\mathbf{4 m}$
Table S5 Crystal data and structure refinement of 4m

CCDC number	
Crystel data	
Chemical formula	$\mathrm{C}_{24} \underline{\mathrm{H}}_{17} \underline{\mathrm{~N}_{3}} \underline{\mathrm{O}}_{2}$
M_{r}	379.40
Crystel system, space group	$\underline{\text { Monoclinic, }, \underline{P 2} / C}$
Temperature (K)	$\underline{100}$
$a, b, c(\AA)$	$\underline{12.7425 ~(10), ~} 13.5862$ (11), 10.3411 (7)
$\beta\left({ }^{\circ}\right.$)	$\underline{97.302(2)}$
$V\left(\AA^{3}\right)$	$\underline{1775.8}$ (2)
Z	4
Radiation type	Mo K α
$\mathrm{M}\left(\mathrm{mm}^{-1}\right)$	0.09
Crystal size (mm)	$\underline{0.20} \times \underline{0.1} \times \underline{\underline{0.05}}$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan SADABS2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0966 before and 0.0769 after correction. The Ratio of minimum to maximum transmission is 0.9522 . The $\lambda / 2$ correction factor is Not present.
$T_{\text {min }}, T_{\text {max }}$	$\underline{0.702}, \underline{0.737}$
No of measured, independent and observed [I > $\underline{\underline{2 \sigma}(I)}]$ reflections	$\underline{42328}, \underline{3158}, \underline{2421}$
$R_{\text {int }}$	$\underline{0.087}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.596

refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$, $w R\left(F^{2}\right), S$	$\underline{0.036}, \underline{0.091}, \underline{1.06}$
No. of reflections	$\underline{3158}$
No. of parameters	$\underline{263}$
H -atom treatment	$\underline{\underline{\text { H-atom parameters constrained }}}$
$\Delta \rho_{\max }, \Delta \rho_{\min }(\mathrm{e}$ $\left.\AA^{-3}\right)$	$\underline{0.18}, \underline{-0.22}$

References

[1] D.-Y. Goo, S. K. Woo, Org. Biomol. Chem. 2016, 14, 122-130.
[2] L. Ackermann, A. Althammer, P. Mayer, Synthesis (Stuttg). 2009, 2009, 3493-3503.
[3] C. Suzuki, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2015, 17, 1597-1600.
[4] J. Wu, Y. Gu, X. Leng, Q. Shen, Angew. Chemie - Int. Ed. 2015, 54, 7648-7652.
[5] S. W. Youn, H. J. Yoo, E. M. Lee, S. Y. Lee, Adv. Synth. Catal. 2018, 360, 278-283.
[6] L. Zhu, X. Cao, R. Qiu, T. Iwasaki, V. P. Reddy, X. Xu, S.-F. Yin, N. Kambe, RSC Adv. 2015, 5, 39358-39365.
[7] R. Qiu, V. P. Reddy, T. Iwasaki, N. Kambe, J. Org. Chem. 2015, 80, 367-374.
[8] K. Harsha Vardhan Reddy, R. U. Kumar, V. P. Reddy, G. Satish, J. B. Nanubolu, Y. V. D. Nageswar, RSC Adv. 2016, 6, 54431-54434.
[9] L. Huang, D. Hackenberger, L. J. Gooßen, Angew. Chemie Int. Ed. 2015, 54, 1260712611.
[10] J. Wu, Y. Gu, X. Leng, Q. Shen, Angew. Chemie - Int. Ed. 2015, 54, 7648-7652.
[11] D. Guo, B. Li, W. Gao, W. Zhang, Y. Wang, J. Zhao, Synlett 2021, 32, 800-804.

5.0. Analytical data of compounds

2-phenyl-9-(pyrimidin-2-yl)-9H-carbazole (1b)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.14(\mathrm{dd}, J=$ $1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.91-8.82(\mathrm{~m}, 3 \mathrm{H}), 8.16-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.79-$ $7.74(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 3 \mathrm{H})$, $7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 159.17$ (s), 157.93 (s$), 142.28$ (s$), 140.02$ (s$), 139.71$ (s$)$, 139.63 (s), 128.74 (s$), 127.73$ (s$), 127.07$ (s$), 126.64$ (s$), 125.56$ (s$)$, 125.01 (s), 122.43 (s$), 121.89$ (s$), 119.71$ (s) 119.59 (s), 116.29 (s), 116.07 (s$), 115.09$ (s$)$. HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 322.1344$, found 322.1339.

2-(4-methoxyphenyl)-9-(pyrimidin-2-yl)-9H-carbazole (1c)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.02(\mathrm{dd}, J$ $=1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.78-8.68(\mathrm{~m}, 3 \mathrm{H}), 7.97(\mathrm{ddd}, J=4.7,1.9,0.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (ddd, $J=8.5,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (ddd, $J=8.1,5.3,1.4 \mathrm{~Hz}, 3 \mathrm{H}$), $6.96(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.22$ (s), 157.90 (s), 147.83 (s), 140.05 (s), 139.85 (s), 139.76 (s$), 139.63$ (s$), 127.68$ (s$), 126.86$ (s$), 126.56$ (s$), 125.67$ (s$), 124.82$ (s$), 122.42$ (s$),$ 121.83 (s), 119.65 (s), 119.54 (s), 116.34 (s), 116.01 (s), 115.02 (s), 33.88 (s$), 24.12$ (s$)$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 364.1814$, found 364.1832

9-(pyrimidin-2-yl)-2-(p-tolyl)-9H-carbazole (1d)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.15(\mathrm{dd}, J$ $=1.5,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.91-8.87(\mathrm{~m}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, $8.14-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.66$ (ddd, $J=9.6,7.2,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.54$ (ddd, $J=8.5,7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.18$ (s), 157.97 (s), 140.00 (s), 139.72 (s), 139.58 (s), 139.41 (s , 136.81 (s), 129.46 (s$), 127.56$ (s$), 126.54$ (s$), 125.62$ (s$), 124.78$ (s$), 122.40$ (s), 121.75 (s), 119.65 (s), 119.53 (s), 116.26 (s , 116.06 (s), 114.87 (s), 21.16 (s). HR-MS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$336.1501, found 336.1492.

2-(4-methoxyphenyl)-9-(pyrimidin-2-yl)-9H-carbazole (1e)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.02(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.84(\mathrm{dd}, J=15.4,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 8.10(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}$, $2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, 3H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.17$ (s), 158.38 (s), 157.76 (s), 140.41 (s), 119.70 (s), 119.09 (s), 115.87 (s), 109.82 (s), 101.94 (s), 55.79 (s). HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 352.1450$, found 352.1442.

2-bromo-9-(pyrimidin-2-yl)-9H-carbazole (1f)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.10(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.86$ (dd, $J=5.0,2.8 \mathrm{~Hz}, 3 \mathrm{H}$), 8.04 (ddd, $J=7.7,1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (d, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=4.8 \mathrm{~Hz}$, 1H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.88$ (s), 157.96 (s), 139.77 (s), 139.23 (s , 127.03 (s), 125.43 (s$), 125.05$ (s$), 124.73$ (s), 122.64 (s$), 120.53$ (s), 120.16 (s), 119.51 (s), 119.45 (s), 116.50 (s), 116.34 (s). HR-MS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$324.0136, found 324.0127.

2-chloro-9-(pyrimidin-2-yl)-9H-carbazole (1g)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.96-8.92(\mathrm{~m}, 1 \mathrm{H}), 8.88-$ $8.83(\mathrm{~m}, 3 \mathrm{H}), 8.03$ (ddd, $J=7.7,1.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.52$ (ddd, $J=8.5,7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.89$ (s), 157.92 (s), 139.54 (s), 139.39 (s), 132.17 (s$), 126.87$ (s), 125.06 (s), 124.36 (s), 122.69 (s$), 122.62$ (s), 120.16 (s), 119.47 (s), 116.65 (s), 116.53 (s), 116.30 (s).HR-MS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{3}$ ${ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 280.7350$, found 280.7337.

2-trifluromethyl-9-(pyrimidin-2-yl)-9H-carbazole (1h)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 9.11$ ($\mathrm{s}, 1 \mathrm{H}$), 8.78 (dd, J = $13.4,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 8.02$ (dd, J = 13.1, $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.31(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl3) $\delta 158.89$ (s), 157.99 (s), 140.04 (s), 138.41 (s$), 128.42$ (s$), 128.10$ (s), 127.84 (s), 126.28 (s), 124.62 (s), 123.57 (s), 122.71 (s), 120.10 (s), 119.69 (s), $119.01(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}), 116.56(\mathrm{~d}, \mathrm{~J}=19.0 \mathrm{~Hz}), 113.98(\mathrm{~d}, \mathrm{~J}=$ 4.3 Hz). HR-MS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 314.0905$, found 314.0893.

2-methoxy-9-(pyrimidin-2-yl)-9H-carbazole (1i)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.86-8.81(\mathrm{~m}, 3 \mathrm{H}), 8.50(\mathrm{~d}$, $\mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{ddd}, \mathrm{J}=8.5,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{td}, \mathrm{J}=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, \mathrm{J}=8.5,2.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.97 (s, 3H). ${ }^{\mathbf{1 3}}{ }^{\mathbf{C}}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 159.28$ (s), 159.19 (s), 157.85 (s), 140.39 (s), 139.24 (s$), 125.91$ (s$), 125.35$ (s), 122.38 (s), 120.00 (s), 119.54 (s), 118.73 (s), 116.17 (s), 115.95 (s), 110.08 (s), 101.45 (s), 55.77 (s).HR-MS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$276.1137, found 276.1142.

5-(pyrimidin-2-yl)-5H-[1,3]dioxolo[4,5-b]carbazole (1j)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.83(\mathrm{t}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 8.41$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}$, 2H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 159.16$ (s), 157.82 (s), 142.84 (s), 140.56 (s), 139.66 (s), 135.60 (s), 126.68 (s), 122.98 (s), 122.43 (s), 121.99 (s), 116.17 (s), 115.83 (s), 110.66 (s), 108.19 (s), 106.78 (s), 101.87 (s$).$ HR-MS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$290.0930, found 290.0932.

1-phenyl-9-(pyridin-2-yl)-9H-carbazole (3a')

Yield (0.1 mmol scale, $26 \mathrm{mg}, 82 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{dd}, J=4.7,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.20-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H})$, 7.33 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (dd, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (dd, $J=6.3$, $2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{dd}, J=7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5,148.3,141.6$, 139.7, 137.1, 136.7, 128.6, 128.5, 127.7, 126.9, 126.5, 126.2, 125.8, 123.9, 121.6, 121.2, 121.0, 120.9, 120.1, 119.4, 111.0. HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$321.1393, found 321.1394.

1-phenyl-9-(pyrimidin-2-yl)-9H-carbazole (3a)

Yield (0.1 mmol scale, $26 \mathrm{mg}, 82 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, $8.48(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 157.6,157.3,141.45,141.0,137.1,128.7,128.5,128.1,127.7,126.9$, 126.8, 126.2, 125.2, 122.4, 122.1, 120.2, 119.3, 117.1, 112.3. HR-MS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$322.1344, found 322.1339.

1-(3-fluorphenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3b)

Yield (0.1 mmol scale, $27 \mathrm{mg}, 80 \%$); white solid (petroleum ether/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.38$ (d, J $=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.21-8.06(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 161.4$ (d, $\mathrm{J}_{\mathrm{C}-\mathrm{F}}=246.6 \mathrm{~Hz}$), 157.5, $157.3,143.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 140.7,136.8,129.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}\right)$, $128.4,127.1,126.9,126.8,124.9,123.3,122.3,122.1,120.1,119.6,117.1,114.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.8\right.$ $\mathrm{Hz}), 112.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.2 \mathrm{~Hz}\right), 112.1$. HR-MS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 340.1250$, found 340.1234.

1-(2-bromophenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3c)

Yield (0.1 mmol scale, $28 \mathrm{mg}, 69 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V) ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.35(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}$, $2 \mathrm{H}), 8.20-8.09(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{dd}, \mathrm{J}=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{t}, \mathrm{J}=4.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 157.34,157.18,142.22$, $140.56,136.92,132.61,131.05,129.58,128.04,127.05,126.94,126.88$, 126.71, 125.02, 123.17, 122.07, 121.69, 120.06, 119.91, 116.87, 112.35. HR-MS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrN}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 400.0449$, found 400.0430 .

1-(3-Bromophenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3d)

Yield (0.1 mmol scale, $31 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.40(\mathrm{~d}, \mathrm{~J}=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.18-8.06(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.58$, 143.42, 140.86, 136.91, 130.89, 129.62, 129.24, 128.48, 126.99, 126.82, 126.39, 124.97, 122.34, 122.19, 122.16, 120.23, 119.89, 117.44, 112.24. HR-MS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrN}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 400.0449, found 400.0435.

4-(9-(pyrimidin-2-yl)-9H-carbazol-1-yl)benzonitrile (3e)

Yield (0.1 mmol scale, $24.5 \mathrm{mg}, 70 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.35(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.23(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~m}, 8 \mathrm{H}), 6.91(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(101$ MHz , Chloroform- d) $\delta 157.60,146.55,140.89,136.75,131.83,128.40$, $128.24,127.30,127.23,126.65,125.04,122.61,122.51,120.47,120.25$, 119.03, 117.40, 112.60, 109.71. HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{4}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$347.1297, found 347.1294.

1-(4-Nitrophenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3f)

Yield (0.1 mmol scale, $28 \mathrm{mg}, 75 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.36$ (d, J = 4.8 Hz , $2 \mathrm{H}), 8.22-8.12(\mathrm{~m}, 3 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 5 \mathrm{H})$, $7.40(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroformd) $\delta 157.67,148.66,146.10,140.92,136.81,128.48,128.26,127.38$, $127.31,126.28,125.05,123.35,122.64,122.60,120.72,120.29,117.49$, 112.68. HR-MS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 367.1195$, found 367.1178 .

9-(pyrimidin-2-yl)-1-(3-(trifluoromethyl)phenyl)-9H-carbazole (3g)

Yield (0.1 mmol scale, $31 \mathrm{mg}, 81 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 8.32(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 4 \mathrm{H})$, 8.15 (t, J = $8.2 \mathrm{~Hz}, 6 \mathrm{H}$), $7.56-7.42(\mathrm{~m}, 10 \mathrm{H}), 7.38$ (dd, J = 14.8, 7.7 Hz, $4 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl3) $\delta 157.5,157.4,142.4,140.9,136.9,131.0,128.6,128.6,127.1$, $127.1,126.9,125.0,124.5(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}), 122.9(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}), 122.5$, 122.3, 120.2, 120.0, 117.2, 112.4. HR-MS (ESI) m/z calcd for C23H15F3N3+[M+H+] 390.1218, found 390.1199 .

1-(2-chloro-3-methylphenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3h)

Yield (0.1 mmol scale, $30 \mathrm{mg}, 80 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, $8.17-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (ddd, $J=7.6,3.7,1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35$ (ddd, $J=8.5,7.7,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.14-7.04$ (m, 2H), 6.93 $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.23,157.1,143.0,140.7,137.3,134.8,134.0,128.9$, 128.1, 127.6, 127.0, 126.9, 126.4, 126.2, 124.8, 122.0, 121.8, 120.2, 119.6, 117.3, 112.0, 17.8. HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClN}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$370.1111, found 370.1101.

1-(4-methoxy-3-methylphenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3i)

Yield (0.1 mmol scale, $28 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.26$ (d, J = $4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 8.05 (ddd, J = 8.9, 4.4, 1.0 Hz, 2H), $7.93-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}$, 2H), $7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (t, J = 4.8 Hz , $1 \mathrm{H}), 6.50-6.41(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl3) $\delta 158.5,157.4,157.1,140.8,137.7,137.0,133.6,130.6,129.4$, 127.5, 126.7, 126.3, 125.0, 121.8, 121.8, 120.1, 119.0, 117.0, 115.1, 111.9, 110.9, 55.4, 20.4. HR-MS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 366.1606$, found 366.1671 .

1-(benzo[d][1,3]dioxol-4-yl)-9-(pyrimidin-2-yl)-9H-carbazole (3j)

Yield (0.1 mmol scale, $27 \mathrm{mg}, 27 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.43(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.13-8.04(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.82,157.40,147.49,146.11,140.97$, 137.15, $135.48,128.50,128.09,126.95,126.84,125.15,122.36,122.09,121.32$, $120.19,119.15,117.11,112.20,108.35,108.02,100.95$. HR-MS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}+\left[\mathrm{M}+\mathrm{H}^{+}\right] 366.1243$, found 366.1237.

1-(4-methoxy-3-methylphenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3k)

Yield (0.1 mmol scale, $23 \mathrm{mg}, 69 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.16$ $-8.10(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.21,156.83,140.47,137.97,136.75,135.33$, $128.26,128.15,128.06,127.00,126.41,126.28,124.73,121.88,121.54$, $119.69,118.57,116.38,111.72$, 20.67. HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3}+\left[\mathrm{M}+\mathrm{H}^{+}\right] 336.1501$, found 336.1492.

1-(4-methoxy-3-methylphenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3I)

Yield (0.1 mmol scale, $23 \mathrm{mg}, 69 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.25(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}$, 2 H), 8.04 (ddd, J = 14.4, 4.8, 3.8 Hz, 3H), $7.42-7.36$ (m, 3H), 7.31-7.27 $(\mathrm{m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=12.2,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-$ $6.80(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl3) $\delta 157.52$ (s), 157.15 (s), 141.05 (s , 140.72 (s$), 137.45$ (s$), 136.97$ (s), 128.49 (s), 128.35 (s), 128.28 (s), 128.02 (s), 126.85 (s), 126.66 (s$),$ 125.43 (s), 124.99 (s), 124.74 (s$), 122.20$ (s$), 121.89$ (s$), 120.08$ (s$), 119.10$ (s$), 116.99$ (s), 111.91 (s), 21.08 (s).HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3}+\left[\mathrm{M}+\mathrm{H}^{+}\right]$336.1501, found 336.1492.

1-(4-Methoxyphenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3m)

Yield (0.1 mmol scale, $30 \mathrm{mg}, 85 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.14(\mathrm{~m}, 2 \mathrm{H}), 8.09$ (dd, $J=6.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~m}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 158.26,157.68$, 157.32, 141.02, 137.23, 133.99, 128.68, 128.63, 128.24, 126.96, 126.78, $125.24,122.40,122.06,120.18,118.92,117.01,113.62,112.25,55.51$ HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 352.1450$, found 352.1442 .

1-(4-(Methylthio)phenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3n)

Yield (0.1 mmol scale, $30 \mathrm{mg}, 82 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.36(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.18-8.01(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}$, 2H), $6.87(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.61(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 158.26,157.68,157.32,141.02,137.23$, $133.99,128.68,128.63,128.24,126.96,126.78,125.24,122.40,122.06$, $120.18,118.92,117.02,113.62,112.24,55.51$. HR-MS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 368.1221, found 368.1223.

1-(naphthalen-1-yl)-9-(pyrimidin-2-yl)-9H-carbazole (3o)

Yield (0.1 mmol scale, $26 \mathrm{mg}, 70 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.22$ (dd, J = 7.6, 1.4 $\mathrm{Hz}, 1 \mathrm{H}), 8.20-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.88$ (m, 1H), 7.84 (d, J = $4.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.70(\mathrm{dd}, \mathrm{J}=13.7,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=7.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 7 \mathrm{H}), 6.50(\mathrm{t}, \mathrm{J}=4.8$ $\mathrm{Hz}, 1 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) $\delta 157.09,156.39,140.62$, $139.26,137.97,133.45,130.97,129.94,127.67,127.12,126.80,126.65,126.51,126.37,126.21$, 126.13, 125.77, 125.43, 124.83, 121.86, 120.13, 119.63, 116.74, 111.98. HR-MS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 372.1501$, found 372.1497.

1-(dibenzo[b,d]furan-3-yl)-9-(pyrimidin-2-yl)-9H-carbazole (3q)

Yield (0.1 mmol scale, $26 \mathrm{mg}, 70 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16$ (dd, $J=9.4,3.9 \mathrm{~Hz}, 4 \mathrm{H}$), 8.08 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (dd, $J=11.0,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (dd, $J=12.4$, $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.38$ (m, 2H), 7.32 (dd, $J=7.8,4.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.54(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5$, 157.1, 156.4, 154.7, 140.8, 137.2, 136.0, 128.8, 128.0, 127.2, 127.0, 126.8, 126.7, 124.9, 123.9, 13.8, 122.8, 122.2, 121.9, 120.7, 120.1, 119.6, 119.1, 116.93, 111.9, 111.6, 111.0. HR-MS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 412.1450$, found 412.1453.

7-methyl-1-phenyl-9-(pyrimidin-2-yl)-9H-carbazole (4a)

Yield (0.1 mmol scale, $30 \mathrm{mg}, 75 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.36-8.35(\mathrm{~m}, 1 \mathrm{H}), 8.33$ (d, J = $4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 8.18 (dd, J = 8.1, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (dd, J = 6.9, 2.1 $\mathrm{Hz}, 1 \mathrm{H}), 7.72-7.69$ (m, 2H), 7.61 (dd, J = 8.1, 1.6 Hz, 1H), $7.49-7.44$ $(\mathrm{m}, 4 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.29$ (ddd, J $=5.6,4.9,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-$ $7.08(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}){ }^{\mathbf{1 3}}{ }^{\mathbf{C}}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta$ $157.5,157.3,142.0,141.4,141.2,140.2,137.5,128.7,128.6,128.4,128.0,127.6,127.5,127.1$,
126.6, 126.1, 124.3, 122.4, 121.6, 120.3, 119.2, 117.0, 110.8. HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 398.1657$, found 398.1665.

7-(4-isopropylphenyl)-1-phenyl-9-(pyrimidin-2-yl)-9H-carbazole (4b)

Yield (0.1 mmol scale, $35 \mathrm{mg}, 79 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.37-8.30(\mathrm{~m}, 3 \mathrm{H})$, 8.15 (ddd, $\mathrm{J}=15.6,7.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{td}, \mathrm{J}=$ $7.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{t}, \mathrm{J}=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dq}, \mathrm{J}=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 157.5,157.3,147.9,141.4,141.3,140.2,139.6,137.5,128.9,128.5$, $128.4,128.0,127.5,126.8,126.7,126.1,124.1,122.4,121.6,120.2,119.2,116.9,110.7,33.8$, 24.1. HR-MS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 440.5700$, found 440.5704 .

1-phenyl-9-(pyrimidin-2-yl)-7-(p-tolyl)-9H-carbazole (4c)

Yield (0.1 mmol scale, $33 \mathrm{mg}, 80 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.35-8.31(\mathrm{~m}, 3 \mathrm{H})$, $8.17-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.26(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5,157.3,141.4,141.3,140.2$, 139.2, 137.5, 136.9, 129.4, 128.5, 128.4, 128.0, 127.5, 127.4, 126.7, 126.1, 124.1, 122.4, 121.5, 120.2, 119.1, 117.0, 110.6, 21.1. HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{3}+[\mathrm{M}+\mathrm{H}+] 411.1735$, found 412.1724 .

7-(4-methoxyphenyl)-1-phenyl-9-(pyrimidin-2-yl)-9H-carbazole (4d)

Yield (0.1 mmol scale, $30 \mathrm{mg}, 71 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 8.31-8.23(\mathrm{~m}, 3 \mathrm{H})$, $8.16-8.08$ (m, 2H), 7.56 (dd, J = 8.0, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42$ (m, 3H), $7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.12-6.97(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 157.5,157.2,156.7,141.4$, $141.0,137.4,131.6,131.4,128.5,128.5,128.0,127.5,126.8,126.0,124.0,123.9,122.3,120.8$, 119.3, 119.1, 116.8, 113.1, 111.4, 55.7. HR-MS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 428.1763, found 428.1751.

6-phenyl-5-(pyrimidin-2-yl)-5H-[1,3]dioxolo[4,5-b]carbazole (4e)

Yield (0.1 mmol scale, $30 \mathrm{mg}, 75 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.24(\mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}, 3 \mathrm{H}), 8.00$ (dd, J = 7.4, 1.5 Hz, 1H), $7.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (ddd, J = 7.4, 6.3, 4.8 $\mathrm{Hz}, 3 \mathrm{H}), 7.17-7.13$ (m, 2H), $7.04-6.99$ (m, 3H), 6.77 (t, J = 4.8 Hz , 1H).. ${ }^{13}$ C NMR (101 MHz, CDCl3) δ 157.3, 157.1, 141.4, 141.0, 137.0, 129.0, 128.6, 128.0, 127.5, 126.2, 126.1, 125.1, 124.0, 122.6, 121.2, 120.2, 119.1, 117.3, 115.4. HR-MS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrN}_{3}+[\mathrm{M}+\mathrm{H}+] 399.0460$, found 400.0471

7-chloro-1-phenyl-9-(pyrimidin-2-yl)-9H-carbazole (4f)

Yield (0.1 mmol scale, $25 \mathrm{mg}, 71 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.32$ (d, $J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.15$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ (d, $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}$, $J=7.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 157.46, 157.22, 141.38, 141.15, 137.32, 132.50, 129.01, 128.72, 128.16, 127.63, 126.33, 126.21, 122.76, 122.56, 120.98, 119.25, 117.37, 112.67. HR-MS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClN}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 356.0955$, found 356.0949 .

7-methoxy-1-phenyl-9-(pyrimidin-2-yl)-9H-carbazole (4g)

Yield (0.1 mmol scale, $31 \mathrm{mg}, 80 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.13-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dd}, \mathrm{J}=8.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.36$ (m, 2H), $7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}$, 1H). ${ }^{13}$ C NMR (101 MHz, CD2Cl2) $\delta 155.50$ (s), 155.1, 138.9, 138.1, $136.0,127.9,126.8,126.7,126.4,126.2,125.8,125.6,124.4,123.7,120.8,118.46,117.8,116.8$ $(\mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}), 115.5(\mathrm{~s}), 107.8(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz})$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 390.1218, found 390.1204.

7-methyl-1-phenyl-9-(pyrimidin-2-yl)-9H-carbazole (4h)

Yield (0.1 mmol scale, $20 \mathrm{mg}, 61 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 8.32(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, 8.06 (dd, J = 6.2, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.00 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.95-7.90(\mathrm{~m}$, $1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{dd}, \mathrm{J}=2.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.19$ (ddd, J = 7.9, 1.3, $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{t}, \mathrm{J}=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 157.5,157.2$, $141.4,141.2,136.98,137.0,128.9,128.3,128.1,127.5,126.9,126.0,123.3,122.7,122.2,119.7$, 118.9, 116.9, 112.2, 22.2. HR-MS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$336.1501, found 336.1504.

7-methoxy-1-phenyl-9-(pyrimidin-2-yl)-9H-carbazole (4i)

Yield (0.1 mmol scale, $25 \mathrm{mg}, 72 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.29(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.08$ $-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.96(\mathrm{dd}, \mathrm{J}=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}$, $\mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{q}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.79(\mathrm{t}, \mathrm{J}=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 157.4,157.3$, $156.2,141.2,139.0,136.3,130.0,127.6,126.2,125.6,125.0,122.0,120.9$,
119.9, 119.3, 117.0, 116.2, 111.8, 107.0, 56.8. HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 352.1450 , found 352.1465 .

6-phenyl-5-(pyrimidin-2-yl)-5H-[1,3]dioxolo[4,5-b]carbazole (4j)

Yield (0.1 mmol scale, $27 \mathrm{mg}, 75 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.29(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.10$ (t, J = 7.7 Hz, 2H), $7.46-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{td}, \mathrm{J}=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ $-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}$) ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 157.6,157.2,143.3,141.5$, 141.2, 140.4, 133.5, 128.0, 127.6, 126.8, 125.82, 122.4, 122.3, 122.1, 120.8, 116.8, 111.9, 111.3, 109.2, 102.0. HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}+[\mathrm{M}+\mathrm{H}+] 366.1243$, found 366.1237.

7-methoxy-1-phenyl-9-(pyrimidin-2-yl)-9H-carbazole (4k)

Yield (0.1 mmol scale, $25 \mathrm{mg}, 72 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0$, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{dd}, J=7.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{dd}, J=8.0,1.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.16 (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.49,157.27,155.55,141.22$, $140.04,138.10,129.23,127.93,127.54,125.74,125.55,124.30,123.19,122.03$, 121.27, 117.06, 115.62, 111.30, 103.45, 55.68. HR-MS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 352.1450, found 352.1449.
(2-methoxy-9-(pyrimidin-2-yl)-9H-carbazol-1-yl)(phenyl)methanone (4I)

Yield (0.1 mmol scale, $25 \mathrm{mg}, 72 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ $-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.52$ (ddd, $J=6.6,3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dt}, J=8.2,4.5 \mathrm{~Hz}$, $3 \mathrm{H}), 7.35(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.3,157.2,157.1$, $157.0,139.9,139.3,137.0,131.8,129.0,127.9,126.0,125.2,122.4,121.6,121.0,118.8,117.1$, 115.8, 114.6, 107.1, 56.7. HR-MS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 380.1399$, found 380.1389 .

(4-methoxy-9-(pyrimidin-2-yl)-9H-carbazol-1-yl)(phenyl)methanone (4m)

Yield (0.1 mmol scale, $25 \mathrm{mg}, 72 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.45(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.40$ (dd, J = 14.5, $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.80-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ $-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}$, $3 \mathrm{H}){ }^{13}{ }^{\mathbf{C}}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 195.0,158.5,158.2,157.7,139.4$, 138.3, 138.0, 132.1, 129.8, 129.7, 128.1, 126.2, 124.2, 123.0, 122.5, 119.7,
117.5, 115.5, 113.1, 102.5, 55.8. HR-MS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 380.1399$, found 380.1401.

3-methyl-1,8-diphenyl-9-(pyrimidin-2-yl)-9H-carbazole (4n)

Yield (0.1 mmol scale, $34 \mathrm{mg}, 84 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.17$ (dd, $J=7.7$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 10 \mathrm{H}), 6.51(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.66,156.45,140.54,137.62,135.78,130.81$, $130.09,129.33,128.44,128.42,127.67,127.66,126.92,126.64,125.71,125.20,124.95,120.56$, 119.42, 119.35, 118.01, 21.36. HR-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 412.1814$, found 412.1819 .

3,6-dimethoxy-1,8-diphenyl-9-(pyrimidin-2-yl)-9H-carbazole (4o)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.02(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.87$ $(\mathrm{m}, 10 \mathrm{H}), 6.43(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.71,156.75,155.94,139.77,135.09,130.47,127.44$, 125.81, 119.21, 118.92, 118.19, 115.34, 105.94, 56.97. HR-MS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 458.1869$, found 458.1851.

3-methoxy-1,8-diphenyl-9-(pyrimidin-2-yl)-9H-carbazole (4p)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{1} \mathbf{H}$ NMR $\delta 8.20-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 10 \mathrm{H}), 6.48(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,156.1,156.1,139.8,138.6$, 137.5, 134.7, 129.8, 128.0, 128.0, 127.1, 127.0, 126.3, 125.4, 125.2, 124.5, 120.3, 119.4, 118.7, 118.1, 117.6, 114.6, 105.5, 56.4. HR-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 428.1763$, found 428.1751 .

2-chloro-1,8-diphenyl-9-(pyrimidin-2-yl)-9H-carbazole (4q)

Yield (0.1 mmol scale, $31 \mathrm{mg}, 72 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.16$ (dd, $J=7.8,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ $-6.88(\mathrm{~m}, 10 \mathrm{H}), 6.49(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) $\delta 157.36,156.81,139.79,138.84,138.23,136.36,132.46,130.20,129.70,128.67$,
$127.68,127.62,127.19,126.68,125.90,125.04,124.25,123.65,122.31,121.14,120.13,119.32$, 118.47. HR-MS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{ClN}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$432.1268, found 432.1256.

2-bromo-1,8-diphenyl-9-(pyrimidin-2-yl)-9H-carbazole (4r)

Yield (0.1 mmol scale, $40 \mathrm{mg}, 86 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.89$ $(\mathrm{m}, 10 \mathrm{H}), 6.49(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3$, $156.7,139.6,138.8,138.1,138.0,130.1,129.7,128.6,127.5,127.5,127.1,126.7,126.6,125.8$, 125.2 , 124.1, 124.1, 123.1, 121.0, 120.4, 119.2, 118.4. HR-MS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$494.1191, found 494.1183.

1,8-diphenyl-9-(pyrimidin-2-yl)-9H-carbazole (3s)

Yield (0.1 mmol scale, $32 \mathrm{mg}, 80 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.21$ (dd, $J=7.7,1.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=$ $7.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-6.92(\mathrm{~m}, 10 \mathrm{H}), 6.52(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 156.33,140.31,137.23,129.36,128.31$, 127.53, 126.83, 125.59, 124.84, 120.57, 119.28, 118.00. HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$398.1657, found 398.1652.

1,8-bis(4-fluorophenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3t)

Yield (0.1 mmol scale, $34 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.23-8.15(\mathrm{~m}$, $2 \mathrm{H}), 7.90(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 4 \mathrm{H}), 6.72-6.58(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 162.47,160.03,157.86,156.78,137.60,136.34$, 136.31, 130.11, 130.03, 129.59, 125.86, 124.99, 120.86, 119.69,
118.31, 114.60, 114.39. HR-MS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$434.1469, found 434.1462.

1,8-bis(3-bromophenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3u)

Yield (0.1 mmol scale, $42 \mathrm{mg}, 76 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.22$ (dd, $J=$ $7.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (dd, $J=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.81(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{t}, J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.52$, 156.87, 142.25, 137.10, 131.80, 129.43, 129.38, 129.20, 127.34, 125.35, 124.93, 121.79, 120.90, 120.08, 119.07. HR-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 553.9867, found 553.9840.

1,8-bis(4-(methylthio)phenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3v)

Yield (0.1 mmol scale, $43 \mathrm{mg}, 88 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.18(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.61(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) δ $157.95,157.78,156.48,137.72,132.96,129.58,129.52,126.63,124.99$,
$120.70,119.21,117.95,113.25,55.46$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~S}_{2} \mathrm{~N}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 490.1412, found 490.1417.

1,8-bis(4-methoxyphenyl)-9-(pyrimidin-2-yl)-9H-carbazole (3w)

Yield (0.1 mmol scale, $38 \mathrm{mg}, 83 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.18(\mathrm{dd}, J=$ $7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (dd, $J=7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.61(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54-6.47(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.77,157.60,156.29$, 137.54, 132.78, 129.40, 129.34, 126.45, 124.81, 120.52, 119.03, 117.77, 113.07, 55.28. HR-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 458.1869$, found 458.1862 .

Methyl 2-(6-chloro-9-(pyrimidin-2-yl)-9H-carbazol-2-yl)propanoate (5)

The title compound was prepared according to procedure 2.3, White solid, Yield (2.0 mmol scale, $446 \mathrm{mg}, 61 \%$); (hexane/ethyl acetate $=$ 8.2:1.8, V/V).m.p: $148-152{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 8.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (dd, $J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.0,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $1.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR 13C NMR (101 MHz, CDCl3) $\delta 175.2,158.9,157.9,140.1$, $139.8,137.7,127.8,126.9,126.4,123.9,122.0,119.8,119.2,117.6,116.3,115.8,52.1,46.2,19.1$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 366.1009$, found 366.1017.

Caprofen derivatives (5a)

Yield (0.1 mmol scale, $33 \mathrm{mg}, 72 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0, \mathrm{~V} / \mathrm{V}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, 8.03 (dd, $J=12.6,10.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=$ $8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 3 \mathrm{H})$, $6.84(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 175.0,157.3,157.1$, $141.5,140.2,140.0,135.7,129.7,128.2,128.1,127.8,127.7,127.4,126.6,123.2,121.8,120.4$, 118.7, 117.2, 111.5, 52.1, 46.1, 19.0. HR-MS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 442.1322$, found 442.1334 .

1-methoxy-2-methyl-4-nitrobenzene (7)

Yield (0.1 mmol scale, $27 \mathrm{mg}, 76 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0$, V/V). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=$ $2.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 162.8,140.9,127.8,125.9,123.6,109.2,55.9,16.2$ HR-MS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$168.0661, found 168.0662.

4-methoxy-3-methylaniline (8)

Yield (0.1 mmol scale, $27 \mathrm{mg}, 76 \%$); white solid (hexane/ethyl acetate $=9.1: 1.0$, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 6.64(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{ddd}, \mathrm{J}=8.4$, $5.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl3) $\delta 150.7,139.0,127.2,118.2,112.7,111.1,55.5,15.79$. HR-MS (ESI) m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$138.0919, found 138.0910.

Hyellazole isomer (10)

Yield (0.1 mmol scale, $27 \mathrm{mg}, 76 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.37(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.38 (dd, J = 8.7, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $\mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.75,140.04,134.36,126.72,125.33$, $123.88,121.59,120.06,119.18,112.62,110.96,101.25,56.25,17.61$ HR-MS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$212.1075, found 212.1075.

Hyellazole isomer (11)

Yield (0.1 mmol scale, $27 \mathrm{mg}, 76 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.79-8.70(\mathrm{~m}, 3 \mathrm{H}), 8.58(\mathrm{~s}$, $1 \mathrm{H}), 7.91(\mathrm{dd}, \mathrm{J}=7.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H})$, 6.97 (t, J = $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.16,157.83,154.15,139.18,133.39,126.41,126.10,125.98$, 124.26, 122.01, 118.99, 118.17, 116.42, 115.55, 100.07, 55.77, 17.54. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$290.1293, found 290.1295 .

Hyellazole isomer (12)

Yield (0.1 mmol scale, $27 \mathrm{mg}, 76 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.96$ (dd, $J=6.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=$ $4.5,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.72$ (t, $J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.92 (s, 3H), 2.31 (s, 3H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 157.53$, 157.1, 154.1, 141.5, 137.0, 136.9, 135.1, 128.5, 127.9, 127.4, 127.2, 126.8, 126.0, 123.3, 122.0, 118.6, 116.6, 114.0, 100.6, 55.9, 17.4. HR-MS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 366.1606$, found 366.1603.

Hyellazole derivative (13)

Yield (0.1 mmol scale, $36 \mathrm{mg}, 82 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.05(\mathrm{dd}, \mathrm{J}=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.69(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, \mathrm{J}=$ $7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 8 \mathrm{H}), 6.79(\mathrm{dt}, \mathrm{J}=4.6,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{t}, \mathrm{J}$ $\left.=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z}, \mathrm{CDCl} 3\right) \delta$ $157.9,156.5,153.0,140.1,138.3,138.2,133.4,129.9,128.7,128.6,127.6$, $127.4,127.0,126.9,125.9,125.6,125.6,125.5,122.4,120.1,118.7,117.8,100.1,56.1,13.9$. HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 442.1919$, found 442.1927.

1-phenyl-9H-carbazole (14)

Yield (0.1 mmol scale, $18.72 \mathrm{mg}, 78 \%$); white solid (hexane/ethyl acetate $=$ 9.1:1.0, V/V). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.11$ (ddd, J = 13.3, $7.7,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dt}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47-$ $7.41(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 139.5,139.1,137.3,129.3,128.4,127.6,126.0,125.7,125.0$, 123.7, 123.5, 120.5, 119.9, 119.6, 119.5, 110.7.HR-MS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$244.1121, found 244.1117.

6.0 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

GP-SS-6.10.1.1r

200180160140	120	100	80	60	40	20	0

GP-SS-2-1

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1k ${ }^{1} \mathrm{H}$ NMR
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

GP－SS－10．33．1．1r

	广 ¢ ¢ ¢ ${ }^{\text {m }}$
	く介フ＊

GP-SS-9.11.1.1r

GP-SM-10-105

$\mathbf{3 a}^{\mathbf{1}^{13}} \mathrm{C}$ NMR
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3b ${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

GP-SM-7-156-B

은
0
0
0
$\stackrel{0}{-}$
i

3h ${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

GP-SM-VII-117M

$\underset{N}{\infty}$
$\underset{\sim}{\sim}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

GP-SM-7-139

$3{ }^{1} \mathrm{H} \mathrm{NMR}$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$200180 \quad 160 \quad 140 \quad 120$	100 f1 (ppm) S54	80	60	40	20	0

GP-SM-7-160

GP-SM-7-140


```
GP-SM-VII-153
```


GP－SM－10－106

枵包示	
¢iñor	M／નNન

$4 c^{13} \mathrm{C}$ NMR
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$200180 \quad 160 \quad 140 \quad 120$| 100 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f 1(\mathrm{ppm})$ | 80 | 60 | 40 | 20 | 0 |

GP-PM-14

GP-PM-465A

GP-PM-465A

GP-SM-09-14

GP-SM-08-102

$200180160 \quad 140 \quad 120$	100	80	60	40	20	0

gp-sm-7-15d
$\underbrace{\text { д~N }}$

GP－SM－7－56

	す
らい」	\V

GP-PM-480

GP-SM-08-11

-175.044
<157.329
157.063
[141.481
140.228
\$ 139.999
${ }^{\sim} 135.721$
129.724
-128.176
128.094
127.835
127.712
127.404
126.600
123.225
121.774
120.425
118.667
117.224
111.495

GP-SS-2-147-1.53.1.1r

$\begin{aligned} & \infty \\ & \stackrel{\infty}{\dot{\omega}} \\ & \end{aligned}$	$\stackrel{1}{1}$	

GP-SM-08-88

