Supplementary Information

Switching the three-component Biginelli-like reaction conditions for the

regioselective synthesis of new 2-amino[1,2,4]triazolo[1,5-a]pyrimidines

Martina Pacetti,^{a,#} Maria Chiara Pismataro,^{a,#} Tommaso Felicetti,^{a,*} Federica Giammarino,^b Anna Bonomini,^c Matteo Tiecco,^d Chiara Bertagnin,^c Maria Letizia Barreca,^a Raimondo Germani,^e Violetta Cecchetti,^a Ilaria Vicenti,^b Oriana Tabarrini,^a Maurizio Zazzi,^b Arianna Loregian,^c and Serena Massari.^a

^a Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;

^b Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;

^c Department of Molecular Medicine, University of Padua, 35121 Padua, Italy;

^d Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;

^e Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.

*Corresponding author: Tommaso Felicetti, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; Tel: +39 075-5852185, *E-mail:* tommaso.felicetti@unipg.it; # Co-first authors

Table of Contents

Figure S1. Superposition of ${}^{1}C$ NMR spectra of compounds 10 and 11.	Pag. S3
Figure S2. Superposition of ¹ H NMR spectra of compounds 10 and 11.	Pag. S3
Figure S3. NOESY spectrum of compound 10.	Pag. S4
Figure S4. NOESY spectrum of compound 11.	Pag. S4
Figure S5. Superposition of ¹ H NMR spectra of compounds 8 and 9.	Pag. S5
Figure S6. Superposition of ¹³ C NMR spectra of compounds 8 and 9.	Pag. S5
Table S1. ¹³ C NMR chemical shifts (δ , ppm) of compounds 8-11 and 16-19.	Pag. S6
Table S2. Optimization of reaction conditions for 9 and 11.	Pag. S7
Table S3. Optimization of reaction conditions for 9.	Pag. S8
Table S4. Optimization of reaction conditions for 9 and 11.	Pag. S9
Table S5. Optimization of reaction conditions for 8 and 10.	Pag. S10
Table S6. Optimization of reaction conditions for 8.	Pag. S11
Scheme S1. Plausible reaction mechanisms toward 10 and 11.	Pag. S12
Table S7. Anti-DENV-2, anti-WNV, and anti-SARS-CoV-2 activity, and	
cytotoxicity of TZP derivatives 23-30 synthesized in this study.	Pag. S13
Figures S7-S38. ¹ H NMR and ¹³ C NMR spectra for compounds 8-11, 16-19,	
and 23-30 .	Pag. S14-S29
Figures S39-S50. HRMS analyses of compounds 8-11 and 23-30.	Pag. S30-S35
Figures S51-S58. HPLC chromatograms of compounds 23-30.	Pag. S36-S39
Figures S59-S62. FT-IR spectra for compounds 8-11.	Pag. S40-S41

Figure S1. Superposition of ¹³C NMR spectra of compounds 10 and 11.

Figure S2. Superposition of ¹H NMR spectra of compounds 10 and 11.

Figure S3. NOESY spectrum of compound 10.

Figure S4. NOESY spectrum of compound 11.

Figure S5. Superposition of 13 C NMR spectra of compounds 8 and 9.

Figure S6. Superposition of ¹H NMR spectra of compounds 8 and 9.

Compd	Structure	C-2	C-3	C-5	C-6	C-7	6-CO ₂ Et 6-CONHR	5/7- CH ₃
8	$H_2N \xrightarrow{N_1 \vee CH_3}_{CO_2Et}$	159.56	144.63	168.56	114.69	155.04	166.09 61.91 13.79	23.93
17	$H_2N N \\ N \\$	158.87	142.24	167.99	119.80	154.69	167.16	23.24
19	$H_2N \xrightarrow{N_1 \vee N_2} H_1$	159.13	142.90	168.24	119.41	154.90	163.53	23.24
9	$H_2N \rightarrow N \rightarrow CO_2Et$ CH_3	158.67	145.51	168.71	113.9	154.45	166.52 62.20 13.84	15.79
16		155.73	142.02	167.29	117.78	153.07	166.52	14.47
18	H_2N	157.24	143.85	168.61	118.61	154.41	164.01	15.68
11	$H_2N \rightarrow N \rightarrow N \rightarrow CO_2Et$ CH_3	164.09	144.88	154.11	101.12	53.15	165.92 60.40 14.64	15.73
10	$H_2N \xrightarrow{H} CH_3 \\ CO_2Et$	162.68	146.28	146.97	97.74	59.73	165.87 59.32 14.46	18.98

Table S1. ¹³C NMR chemical shifts (δ , ppm) of compounds 8-11 and 16-19.^{*a*}

 $\overline{a^{13}\text{C NMR}}$ spectra of compounds in DMSO- d_6 recorded on Bruker Avance DRX-400MHz.

H ₂ N-(H ² N-12	NH ₂ N CH ₃ 14	OEt <u>conditions</u> H₂ 3	N N N CO_2E CH ₃	$ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	N CO ₂ Et	+ H ₂ N - N - N	H CH ₃ CO ₂ Et +		CH ₃ CO ₂ Et
Entry	Solvent	Ratio 12:13:14	Catalyst (equiv)	T°	Time (h)		% Ra 11:9:10	tio):8 [,]	
						11	9	10	8
1	E+OH	1.1.1	citric acid	roflux	5	66	22	12	-
1	LIOII	1.1.1	(2.5)	ICIIUX	5	16% c			
2	EtOH	1:1:1	citric acid (5)	reflux	4	58	32	8	2
3	EtOH	1:1.5:1	citric acid (2.5)	reflux	4	64	23	12	1
1	EtOH	1.1.1	citric acid	rəfluv	35	N.D. ^d	N.D.	N.D.	N.D.
	LIOII	1.1.1	(2.5)	ICHUX	5.5	83% ^c			
5	EtOH	1:1:1	-	100 °C μw	20'	-	-	-	-
6 ^e	dry THF	1:1:1	PTSA (1)	reflux	24	36	55	7	2
7	-	1:1:1	phosphoric acid	120 °C	6	-	-	-	-
8	-	1:1:1	PPA	120 °C	6	-	-	-	-
9 ^e	AcOH	1:1:1	-	reflux	6	11	$\frac{61}{21\%^{c}}$	18	10

 Table S2. Optimization of reaction conditions for 9 and 11 .^a

^{*a*} The reaction was performed on 1.0 mmol scale of **12** in 3 mL of solvent. ^{*b*} Percentage ratio among isomers assessed by HPLC on the crude product. ^{*c*} Isolated yield. ^{*d*} N.D. = not determined due to the presence of only compound **11** by TLC. ^{*e*} Reaction performed under nitrogen.

$H_{2N} \xrightarrow[H]{N} NH_{2} O OEt Conditions OF CH_{3} OF CH$	$H_2N \rightarrow N \rightarrow N \rightarrow CO_2Et$	H ₂ N + H ₂ N + CO ₂ Et +	$\underset{N^{-N} \leftarrow CO_2Et}{\overset{N \leftarrow N}{\underset{N^{-N} \leftarrow CO_2Et}{\overset{H}{\underset{N^{-N} \leftarrow CO_2Et}{\overset{H}{$	$H_2N \xrightarrow{N_1} V \xrightarrow{CH_3} CO_2Et$
	11	9	10	8
13				

Table S3. Optimization of reaction conditions for 9.^a

Entry	Solvent	Ratio 12:13:14	Catalyst (equiv)	T°	Time (h)	% Ratio 11:9:10:8 ^b			
					_	11	9	10	8
1	AcOH	1:1:1	-	120 °C	3	17	78	4	1
2	AcOH	1:1:1	-	120 °C	6	6	89 37% ^c	4	1
3	АсОН	1:1:1	-	120 °C	12	2	92	4	2
4	AcOH	1:1:1	-	120 °C	24	2	90	5	3
5	AcOH	1:1:1	-	60 °C	3	45	47	8	-
6	AcOH	1:1:1	-	60 °C	24	25	69	5	1
7	AcOH	2:1:1	-	120 °C	24	13	53	19	15
8	AcOH	1:2:1	-	120 °C	5	12	68	13	7
9	AcOH	1:3:1	-	120 °C	24	7	56	31	6
10	AcOH	1:1:2	-	120 °C	24	6	85	4	5
11	AcOH	1:1:3	-	120 °C	9	6	76	6	12

^{*a*} The reaction was performed on 1.0 mmol scale of **12** in 3 mL of solvent in an open flask. ^{*b*} Percentage ratio among isomers assessed by HPLC on the crude product. ^{*c*} Isolated yield.

$H_{2N} \xrightarrow{N \to N} H_{2} \xrightarrow{O} OEt conditions$ $H_{2N} \xrightarrow{N-N} CH_{3}$ $H \xrightarrow{O} CH_{3}$ $H \xrightarrow{I2} I4$	- $H_2N \rightarrow N \rightarrow N \rightarrow CO_2Et$ + CH_3	$H_2N \rightarrow N \rightarrow N \rightarrow CO_2Et$	+ H ₂ N-N-CH ₃ CO ₂ Et	H ₂ N N CH ₃ + CO ₂ E
	11	9	10	8
13				

Table S4. Optimization of reaction conditions for 9 and 11.^a

Entry	Solvent	Ratio 12:13:14	Catalyst (equiv)	Τ°	Time (h)	% Ratio 11:9:10:8 ^b			
						11	9	10	8
1	AcOH	2:1:1	-	reflux	24	6	56	19	19
2	AcOH	1:2:1	-	reflux	24	13	77 51%c	9	1
3	AcOH	1:2:1	-	60 °C	24	24	$\frac{63}{230\%}$	9	4
4	AcOH	1:3:1	-	60 °C	9	13	<u>78</u> <u>55%</u>	7	2
5	AcOH	1:3:1		90 °C	9	32	39	23	6
6	AcOH	1:3:1		reflux	9	29	34	25	12
7	АсОН	1:1:2	-	60 °C	24	26	70	3	1
8	AcOH	1:1:2	-	90 °C	24	21	60	11	8
9	AcOH	1:1:2	-	reflux	12	7	$\frac{83}{23\%^{c}}$	6	4
10	AcOH	1:3:2	-	60 °C	12	10	85 36% ^c	3	2
11	AcOH	1:3:1		60 °C μw	2.5	31	48	19	2
12	AcOH	1:3:1	$H_2O_2^d$	60-110 °C μw	2.75	7	$\frac{72}{12\%^c}$	7	15
13	AcOH	1:3:1	I_2 (0.5)	60 °C	24	8	80	5	7

^{*a*} The reaction was performed on 1.0 mmol scale of **12** in 3 mL of solvent under nitrogen. ^{*b*} Percentage ratio among isomers assessed by HPLC on the crude product. ^{*c*} Isolated yield. ^{*d*} After 2 h at 60 °C, H_2O_2 (1 mL) was added and the reaction was heated at 110 °C for 45'.

H ₂ N- H ₂ N- H H 12	$NH_2 \rightarrow CH_3 \rightarrow CH_3 \rightarrow 14$	OEt $\xrightarrow{\text{conditions}}$ H ₂	$N \rightarrow N \rightarrow N \rightarrow CO_{CH_3}^{N \rightarrow N \rightarrow N}$	+ H ₂ N	N CO ₂ E CH ₃	〕 + H₂N┥ t		H ₂ N-N Et + N-N	CO ₂ Et
Entry	Solvent	Ratio 12:12:14	Catalyst	T°	Time (h)		% 11:	Ratio 9:10:8 [,]	
						11	9	10	8
1	BMIM MsO	1:1:1	-	120 °C	48	-	5	2	93 20%/c
	TRMA					-	-	100	-
2	MsO	1:1:1	-	120 °C	24			75% ^c	
3	BMIM	1:1:1	-	120 °C	24	-	38	22	40
	IFB								25%
4	BMIM MsO	1:2:1	-	120 °C	12	-	-	-	-
5	TBMA MsO	1:2:1	-	120 °C	12	-	-	-	-
6	BMIM	1.2.1	ЧОď	120 °C	24	-	10	3	87
0	MsO	1.2.1	11202	120 C	- 24				40% ^c
7	TBMA MsO	1:2:1	$H_2O_2^d$	120 °C	24	-	20	8	72
8	BMIM TFB	1:2:1	$H_2O_2^d$	120 °C	24	1	29	2	68

Table S5. Optimization of reaction conditions for 8 and 10.^{*a*}

^{*a*} The reaction was performed on 1.0 mmol scale of **12** in 0.2 g of IL in an open flask. ^{*b*} Percentage ratio among isomers assessed by HPLC on the crude product. ^{*c*} Isolated yield. ^{*d*} H₂O₂ (1 mL) was added after 12 h.

$H_2N \xrightarrow{N}_{N^{\sim}N}$		Et <u>conditions</u> $H_2N \rightarrow$	$N \rightarrow H$ $N \rightarrow N$ CO_2Et CH_3	+ H ₂ N-(1)	CO ₂ Et	$H_2N \rightarrow N \rightarrow N \rightarrow N \rightarrow N$	CO ₂ Et	H ₂ N-N-N+N-N	CO ₂ Et
12	14 13		11	9	1		10		8
Entry	Solvent	Ratio 12:13:14	Catalyst	T٥	Time (h)		% F 11:9:	Ratio 10:8 ^b	
						11	9	10	8
1	TBMA TsO	1:2:1	$H_2O_2^c$	120 °C	24	-	20	-	80
2	TBMP MsO	1:2:1	$H_2O_2^d$	120 °C	7	1	28	25	46
3	MMIM TsO	1:2:1	$H_2O_2^d$	120 °C	7	N.D. ^f	N.D.	N.D.	N.D.
4	TBA TsO	1:2:1	$H_2O_2^d$	120 °C	7	1	18	31	50
5	TBA bromide	1:2:1	$H_2O_2^e$	120 °C	34	-	13	-	87
6	TBA MsO	1:2:1	$H_2O_2^c$	120 °C	24	-	7	11	82
7	EG/TMG	1:2:1	$H_2O_2^e$	120 °C	34	1	26	1	72
8	Gly/TMG	1:2:1	$H_2O_2^e$	120 °C	29	-	50	14	36
9	U/ChCl	1:2:1	$H_2O_2^e$	120 °C	34	N.D.	N.D.	N.D.	N.D.

Table S6.	Optimization	of reaction	conditions	for 8 . <i>^{<i>a</i>}</i>
-----------	--------------	-------------	------------	---

^{*a*} The reaction was performed on 1.0 mmol scale of **12** in 0.2 g di IL or DES in an open flask. ^{*b*} Percentage ratio among isomers assessed by HPLC on the crude product. H_2O_2 (1 mL) was added after ^{*c*}20 h, ^{*d*}6 h, or ^{*e*}24 h. ^{*f*} N.D. = not determined.

a) imine route

b) enamine route

c) Knoevenagel route

d) imine route

Scheme S1. Plausible reaction mechanisms toward 11 (a-c) and 10 (d-f). (a) Imine route entailing an initial direct addition of the amino group at the C(3) position of 12 on the carbonyl carbon of benzaldehyde 13 to give an iminium intermediate, which reacts with ethyl 3-oxobutanoate 14; (b) enamine route entailing an initial direct addition of the N(2) of 12 on the carbonyl carbon C(3) of 14 to give a protonated enamine intermediate, which subsequently reacts with 13; (c) Knoevenagel route entailing an initial direct addition of the carbonyl carbon of 13 to give the carbenium ion intermediate (Knoevenagel's adduct), which reacts with 12 (a direct addition of the amino group at the C(3) position of 12 on the β-carbon of the adduct and a direct addition of the nucleophilic N(2) center of 12 on the carbonyl carbon of 13 to give an imine intermediate, which reacts with ethyl 3-oxobutanoate 14; (e) enamine route entailing an initial direct addition of the N(2) of 12 on the carbonyl carbon C(3) of 14 to give an imine intermediate, which reacts with ethyl 3-oxobutanoate 14; (e) enamine route entailing an initial direct addition of the N(2) of 12 on the carbonyl carbon C(3) of 14 to give an enamine intermediate, which reacts with ethyl 3-oxobutanoate 14; (e) enamine route entailing an initial direct addition of the N(2) of 12 on the carbonyl carbon C(3) of 14 to give an enamine intermediate, which subsequently reacts with 13; (f) Knoevenagel route entailing, once formed Knoevenagel's adduct as described in point (c), a direct addition of the amino group at the C(3) position of 12 on the carbonyl carbon of 12 on the carbonyl carbon C(3) of the adduct and a direct addition of the nucleophilic N(2) center of 12 on the β-carbon of the adduct.

Compd	Anti-DENV-2 activity (Huh7 cells) EC _{50,} μM ^a	Anti-WNV activity (Huh7 cells) EC _{50,} µM ^a	Cytotoxicity (Huh7 cells) CC _{50,} μM ^b	Anti-SARS- CoV-2 activity (A549 cells) EC ₅₀ , μM ^c	Cytotoxicity (A549 cells) CC ₅₀ , μM ^b
23	NA	NA	>243	NA	>243
29	NA	NA	>243	NA	>243
24	NA	NA	>243	NA	112.3
25	4.3 ± 1.5	6.7 ± 3.7	20.9	NA	9.8
26	14.1 ± 4.1	19.3 ± 1.4	141.1	NA	99.9
30	NA	NA	>243	NA	>243
27	NA	NA	>243	NA	>243
28	NA	NA	>243	NA	>243
NRM	-	-	_	0.066 ± 0.007	36
SOF	8.1 ± 1.1	5.3 ± 2.5	>243	>243	>243

Table S7. Anti-DENV-2, anti-WNV, and anti-SARS-CoV-2 activity, and cytotoxicity ofTZP derivatives 23-30 synthesized in this study.

^{*a*} Activity of the compounds as determined by immunodetection assay. The EC₅₀ value represents the compound concentration that reduces by 50% the expression of flavivirus envelope proteins in Huh7 cells infected with DENV or WNV. All the reported values represent the means \pm SD of data derived from at least two independent experiments in duplicate. ^{*b*} Cytotoxicity of the compound concentration that causes a decrease of cell viability of 50%. ^{*c*} Activity of the compounds as determined by Cell Titer. The EC₅₀ value represents the compound concentration that reduces by 50% the cytopathic effect in A549 cells infected with SARS-CoV-2. All the reported values represent the means \pm SD of data derived from at least two independent experiments in duplicate. ^{*d*} NA = not active. ^{*e*} ND = not determined due to solubility issues.

Figure S8. ¹³C NMR spectrum of compound 8.

Figure S10. ¹³C NMR spectrum of compound 9.

Figure S12. ¹³C NMR spectrum of compound 10.

Figure S16. ¹³C NMR spectrum of compound 16.

Figure S18. ¹³C NMR spectrum of compound 17.

Figure S20. ¹³C NMR spectrum of compound 18.

Figure S26. ¹³C NMR spectrum of compound 24.

S23

ppm

200 190 180 170 160 150 140 130 120 110 100

Figure S28. ¹³C NMR spectrum of compound 25.

S24

Figure S32. ¹³C NMR spectrum of compound 27.

Figure S34. ¹³C NMR spectrum of compound 28.

Figure S39. HRMS spectrum of compound 8.

Figure S40. HRMS spectrum of compound 9.

Figure S41. HRMS spectrum of compound 10.

Figure S42. HRMS spectrum of compound 11.

m/z	Z	Abund	Formula	Ion
402.15619	1	367473.81	C22H19N5O3	(M+H)+
403.15968	1	88893.8	C22H19N5O3	(M+H)+
404.16214	1	12199.38	C22H19N5O3	(M+H)+
405.16341	1	1433.93	C22H19N5O3	(M+H)+

Figure S43. HRMS spectrum of compound 23.

MS Spectrum Peak List

m/z	Z	Abund	Formula	Ion
373.14145	1	97002.26	C20H16N6O2	(M+H)+
374.14408	374.14408 1		C20H16N6O2	(M+H)+
375.14602	1	3004.99	C20H16N6O2	(M+H)+
376.14973	1	159.01	C20H16N6O2	(M+H)+

Figure S44. HRMS spectrum of compound 24.

MS Spectrum Peak List

m/z	z Abund		Formula	Ion
463.18877	463.18877 1 279042.94 464.19234 1 83945.49		C27H22N6O2	(M+H)+
464.19234			C27H22N6O2	(M+H)+
465.19464	1	12806.78	C27H22N6O2	(M+H)+
466.19689	1	1684.45	C27H22N6O2	(M+H)+

Figure S45. HRMS spectrum of compound 25.

m/z	z	Abund	Formula	Ion
402.15669	1	268008.88	C22H19N5O3	(M+H)+
403.1601 1		66583.88	C22H19N5O3	(M+H)+
404.16256	1	9314.01	C22H19N5O3	(M+H)+
405.16529	1	974.6	C22H19N5O3	(M+H)+

Figure S46. HRMS spectrum of compound 26.

m/z	z Abund		Formula	Ion
373.14107	1	280274.94	C20H16N6O2	(M+H)+
374.14451 1		61352.8	C20H16N6O2	(M+H)+
375.14679	1	7919.77	C20H16N6O2	(M+H)+
376.14815	1	599.68	C20H16N6O2	(M+H)+

Figure S47. HRMS spectrum of compound 27.

MS Spectrum Peak List

m/z	z Abund		Formula	Ion	
463.18948	1	341033.75	C27H22N6O2	(M+H)+	
464.19315	1	101310.88	C27H22N6O2	(M+H)+	
465.19528	1	16370.75	C27H22N6O2	(M+H)+	
466.19814	1	2097.52	C27H22N6O2	(M+H)+	

Figure S48. HRMS spectrum of compound 28.

m/z	z	Abund	Formula	Ion
374.12503	1	261949.42	C20H15N5O3	(M+H)+
375.12828	375.12828 1		C20H15N5O3	(M+H)+
376.13065	376.13065 1		C20H15N5O3	(M+H)+
377.13225	1	862.65	C20H15N5O3	(M+H)+

Figure S49. HRMS spectrum of compound 29.

MS Spectrum Peak List

m/z	z	Abund	Formula	Ion
374.12512	1	182598.25	C20H15N5O3	(M+H)+
375.12821 1		41201.47	C20H15N5O3	(M+H)+
376.13063	1	5731.13	C20H15N5O3	(M+H)+
377.13311	1	379.1	C20H15N5O3	(M+H)+

Figure S50. HRMS spectrum of compound 30.

P	Peak Information										
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity			
1	Unknown	5	3.213	14019501	862507	99.930	99.920	N/A			
2	Unknown	5	4.747	9783	691	0.070	0.080	N/A			

Figure S51. HPLC chromatogram of compound 23.

Figure S52. HPLC chromatogram of compound 24.

P	eak Inform	ati	on					
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity
1	Unknown	5	2.663	90679	9931	0.210	0.642	N/A
2	Unknown	5	5.700	42996932	1537144	99.790	99.358	N/A

Figure S53. HPLC chromatogram of compound 25.

_		_				-	-	-
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity
1	Unknown	5	1.733	4583	1366	0.094	0.339	N/A
2	Unknown	5	1.903	15724	2802	0.321	0.695	N/A
3	Unknown	5	2.203	20818	1839	0.425	0.456	N/A
4	Unknown	5	3.010	4819365	395764	98.382	98.196	N/A
5	Unknown	5	3.730	38126	1262	0.778	0.313	N/A

Figure S54. HPLC chromatogram of compound 26.

P	eak Inform	ati	on					
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity
1	Unknown	5	2.123	287134	13863	1.898	1.917	N/A
2	Unknown	5	5.550	14741310	701137	97.437	96.939	N/A
3	Unknown	5	7.447	16253	1691	0.107	0.234	N/A
4	Unknown	5	7.787	47819	3593	0.316	0.497	N/A
5	Unknown	5	8.237	20727	1585	0.137	0.219	N/A
6	Unknown	5	8.683	15757	1405	0.104	0.194	N/A

igure S55. HPLC chromatogram of compound 27.

Ρ	Peak Information										
#	Peak Name	CH	tR [min]	Area [µV-sec]	Height [µV]	Area%	Height%	Quantity			
1	Unknown	5	4.397	26106716	1069122	99.985	99.976	N/A			
2	Unknown	5	7.030	3810	255	0.015	0.024	N/A			

F

Peak Information										
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity		
1	Peak-001	5	1.860	95154	6976	1.583	1.901	N/A		
2	Peak-002	5	2.350	5915073	360046	98.417	98.099	N/A		

Figure S57. HPLC chromatogram of compound 29.

Peak Information

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity
1	Unknown	5	6.947	16586408	687921	100.000	100.000	N/A

Figure S59. FT-IR spectrum of compound 8.

Figure S60. FT-IR spectrum of compound 9.

Figure S61. FT-IR spectrum of compound 10.

Figure S62. FT-IR spectrum of compound 11.