Supplementary Information

Switching the three-component Biginelli-like reaction conditions for the regioselective synthesis of new 2-amino[1,2,4]triazolo[1,5-a]pyrimidines

Martina Pacetti, ${ }^{\text {a,\# }}$ Maria Chiara Pismataro, ${ }^{\text {a,\# }}$ Tommaso Felicetti, ${ }^{\text {a, },{ }^{*}}$ Federica Giammarino, ${ }^{\text {b }}$ Anna Bonomini, ${ }^{\mathrm{c}}$ Matteo Tiecco, ${ }^{\text {d }}$ Chiara Bertagnin, ${ }^{\text {c }}$ Maria Letizia Barreca, ${ }^{a}$ Raimondo Germani, ${ }^{e}$ Violetta Cecchetti, ${ }^{\text {a }}$ Ilaria Vicenti, ${ }^{\text {b }}$ Oriana Tabarrini, ${ }^{a}$ Maurizio Zazzi, ${ }^{\text {b }}$ Arianna Loregian, ${ }^{\text {c }}$ and Serena Massari. ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
${ }^{\mathrm{b}}$ Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
${ }^{\text {c }}$ Department of Molecular Medicine, University of Padua, 35121 Padua, Italy;
${ }^{d}$ Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;
${ }^{\mathrm{e}}$ Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
*Corresponding author: Tommaso Felicetti, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; Tel: +39 075-5852185, E-mail: tommaso.felicett@ ${ }^{\text {ounipg.it; }}$
\# Co-first authors

Table of Contents

Figure S1. Superposition of ${ }^{1} \mathrm{C}$ NMR spectra of compounds 10 and 11.
Figure S2. Superposition of ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 0}$ and $\mathbf{1 1 .}$
Figure S3. NOESY spectrum of compound 10.
Figure S4. NOESY spectrum of compound 11.
Figure S5. Superposition of ${ }^{1} \mathrm{H}$ NMR spectra of compounds 8 and 9 .
Figure S6. Superposition of ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{8}$ and $\mathbf{9}$.
Table S1. ${ }^{13} \mathrm{C}$ NMR chemical shifts (δ, ppm) of compounds 8-11 and 16-19.
Table S2. Optimization of reaction conditions for 9 and 11.
Table S3. Optimization of reaction conditions for 9 .
Table S4. Optimization of reaction conditions for 9 and 11.
Table S5. Optimization of reaction conditions for $\mathbf{8}$ and $\mathbf{1 0}$.
Pag. S3
Pag. S3
Pag. S4
Pag. S4
Pag. S5
Pag. S5
Pag. S6
Pag. S7
Pag. S8
Pag. S9
Pag. S10
Pag. S11
Pag. S12

Pag. S13
Figures S7-S38. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds 8-11, 16-19, and 23-30.

Figures S39-S50. HRMS analyses of compounds 8-11 and 23-30.
Figures S51-S58. HPLC chromatograms of compounds 23-30.
Figures S59-S62. FT-IR spectra for compounds 8-11.

Pag. S14-S29
Pag. S30-S35
Pag. S36-S39
Pag. S40-S41

Figure S1. Superposition of ${ }^{13} \mathrm{C}$ NMR spectra of compounds 10 and 11.

Figure S2. Superposition of ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 0}$ and 11.

Figure S3. NOESY spectrum of compound 10.

Figure S4. NOESY spectrum of compound 11.

Figure S5. Superposition of ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{8}$ and $\mathbf{9}$.

Figure S6. Superposition of ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{8}$ and 9 .

Table S1. ${ }^{13} \mathrm{C}$ NMR chemical shifts (δ, ppm) of compounds 8-11 and 16-19. ${ }^{a}$

Compd	Structure	C-2	C-3	C-5	C-6	C-7	$\begin{aligned} & \text { 6-CO2 } \mathrm{CO}_{2} \mathrm{Et} \\ & \text { 6-CONHR } \end{aligned}$	$\begin{aligned} & 5 / 7- \\ & \mathrm{CH}_{3} \end{aligned}$
8		159.56	144.63	168.56	114.69	155.04	$\begin{aligned} & 166.09 \\ & 61.91 \\ & 13.79 \end{aligned}$	23.93
17		158.87	142.24	167.99	119.80	154.69	167.16	23.24
19		159.13	142.90	168.24	119.41	154.90	163.53	23.24
9	CH_{3}	158.67	145.51	168.71	113.9	154.45	$\begin{aligned} & 166.52 \\ & 62.20 \\ & 13.84 \end{aligned}$	15.79
16		155.73	142.02	167.29	117.78	153.07	166.52	14.47
18		157.24	143.85	168.61	118.61	154.41	164.01	15.68
11	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Cl}^{\mathrm{Et}}$	164.09	144.88	154.11	101.12	53.15	$\begin{aligned} & 165.92 \\ & 60.40 \\ & 14.64 \end{aligned}$	15.73
10		162.68	146.28	146.97	97.74	59.73	$\begin{aligned} & 165.87 \\ & 59.32 \\ & 14.46 \end{aligned}$	18.98

[^0]Table S2. Optimization of reaction conditions for 9 and 11 . ${ }^{a}$

Entry	Solvent	$\begin{gathered} \text { Ratio } \\ \text { 12:13:14 } \end{gathered}$	Catalyst (equiv)	T°	Time (h)	$\begin{gathered} \text { \% Ratio } \\ \text { 11:9:10:8 } \end{gathered}$			
						11	9	10	8
1	EtOH	1:1:1	citric acid (2.5)	reflux	5	$\begin{gathered} \hline 66 \\ \hline 16 \%^{c} \end{gathered}$	22	12	-
2	EtOH	1:1:1	citric acid (5)	reflux	4	58	32	8	2
3	EtOH	1:1.5:1	citric acid (2.5)	reflux	4	64	23	12	1
4	EtOH	1:1:1	citric acid (2.5)	reflux	3.5	$\frac{\text { N.D. }^{d}}{\mathbf{8 3 \%} \mathbf{o}^{c}}$	N.D.	N.D.	N.D.
5	EtOH	1:1:1	-	$\begin{gathered} 100^{\circ} \mathrm{C} \\ \mu \mathrm{~W} \end{gathered}$	20^{\prime}	-	-	-	-
$6{ }^{\text {e }}$	dry THF	1:1:1	PTSA (1)	reflux	24	36	55	7	2
7	-	1:1:1	phosphoric acid	$120{ }^{\circ} \mathrm{C}$	6	-	-	-	-
8	-	1:1:1	PPA	$120^{\circ} \mathrm{C}$	6	-	-	-	-
$9{ }^{\text {e }}$	AcOH	1:1:1	-	reflux	6	11	$\begin{gathered} \hline 61 \\ \hline 21 \%^{c} \end{gathered}$	18	10

${ }^{a}$ The reaction was performed on 1.0 mmol scale of $\mathbf{1 2}$ in 3 mL of solvent. ${ }^{b}$ Percentage ratio among isomers assessed by HPLC on the crude product. ${ }^{c}$ Isolated yield. ${ }^{d}$ N.D. $=$ not determined due to the presence of only compound $\mathbf{1 1}$ by TLC. ${ }^{e}$ Reaction performed under nitrogen.

Table S3. Optimization of reaction conditions for $9 .{ }^{a}$

Entry	Solvent	$\begin{gathered} \text { Ratio } \\ \text { 12:13:14 } \end{gathered}$	Catalyst (equiv)	T°	Time (h)	$\begin{gathered} \text { \% Ratio } \\ \text { 11:9:10:8 } \end{gathered}$			
						11	9	10	8
1	AcOH	1:1:1	-	$120{ }^{\circ} \mathrm{C}$	3	17	78	4	1
2	AcOH	1:1:1	-	$120{ }^{\circ} \mathrm{C}$	6	6	$\begin{gathered} \hline 89 \\ \hline 37 \%^{c} \end{gathered}$	4	1
3	AcOH	1:1:1	-	$120{ }^{\circ} \mathrm{C}$	12	2	92	4	2
4	AcOH	1:1:1	-	$120{ }^{\circ} \mathrm{C}$	24	2	90	5	3
5	AcOH	1:1:1	-	$60^{\circ} \mathrm{C}$	3	45	47	8	-
6	AcOH	1:1:1	-	$60^{\circ} \mathrm{C}$	24	25	69	5	1
7	AcOH	2:1:1	-	$120{ }^{\circ} \mathrm{C}$	24	13	53	19	15
8	AcOH	1:2:1	-	$120{ }^{\circ} \mathrm{C}$	5	12	68	13	7
9	AcOH	1:3:1	-	$120{ }^{\circ} \mathrm{C}$	24	7	56	31	6
10	AcOH	1:1:2	-	$120{ }^{\circ} \mathrm{C}$	24	6	85	4	5
11	AcOH	1:1:3	-	$120{ }^{\circ} \mathrm{C}$	9	6	76	6	12

${ }^{a}$ The reaction was performed on 1.0 mmol scale of $\mathbf{1 2} \mathrm{in} 3 \mathrm{~mL}$ of solvent in an open flask. ${ }^{b}$ Percentage ratio among isomers assessed by HPLC on the crude product. ${ }^{c}$ Isolated yield.

Table S4. Optimization of reaction conditions for 9 and 11. ${ }^{a}$

${ }^{a}$ The reaction was performed on 1.0 mmol scale of $\mathbf{1 2}$ in 3 mL of solvent under nitrogen. ${ }^{b}$ Percentage ratio among isomers assessed by HPLC on the crude product. ${ }^{c}$ Isolated yield. ${ }^{d}$ After 2 h at $60^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL})$ was added and the reaction was heated at $110^{\circ} \mathrm{C}$ for 45^{\prime}.

Table S5. Optimization of reaction conditions for 8 and 10. ${ }^{a}$

13

Entry	Solvent	Ratio	Catalyst	\mathbf{T}°	Time (h)	\% Ratio 11:9:10:8

	$\begin{aligned} & \text { BMIM } \\ & \text { MsO } \end{aligned}$	1:1:1	-	$120{ }^{\circ} \mathrm{C}$	48	11	9	10	8
1						-	5	2	93
									$30 \%{ }^{\text {c }}$
2	$\begin{aligned} & \text { TBMA } \\ & \text { MsO } \end{aligned}$	1:1:1	-	$120{ }^{\circ} \mathrm{C}$	24	-	-	100	-
								75\% ${ }^{\text {c }}$	
3	$\begin{gathered} \text { BMIM } \\ \text { TFB } \end{gathered}$	1:1:1	-	$120{ }^{\circ} \mathrm{C}$	24	-	38	22	40
									$25 \%{ }^{\text {c }}$
4	$\begin{aligned} & \text { BMIM } \\ & \text { MsO } \end{aligned}$	1:2:1	-	$120{ }^{\circ} \mathrm{C}$	12	-	-	-	-
5	TBMA	1:2:1	-	$120{ }^{\circ} \mathrm{C}$	12	-	-	-	-
6	$\begin{aligned} & \text { BMIM } \\ & \text { MsO } \end{aligned}$	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {d }}$	$120^{\circ} \mathrm{C}$	24	-	10	3	87
									40\% ${ }^{\text {c }}$
7	$\begin{aligned} & \text { TBMA } \\ & \text { MsO } \end{aligned}$	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {d }}$	$120{ }^{\circ} \mathrm{C}$	24	-	20	8	72
8	$\begin{aligned} & \text { BMIM } \\ & \text { TFB } \end{aligned}$	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {d }}$	$120{ }^{\circ} \mathrm{C}$	24	1	29	2	68

[^1]Table S6. Optimization of reaction conditions for $\mathbf{8}$. ${ }^{a}$

				 9					
Entry	Solvent	$\begin{gathered} \text { Ratio } \\ \text { 12:13:14 } \end{gathered}$	Catalyst	T°	Time (h)			$\begin{aligned} & \text { tio } \\ & 0: 8^{b} \end{aligned}$	
						11	9	10	8
1	$\begin{gathered} \text { TBMA } \\ \text { TsO } \end{gathered}$	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {c }}$	$120{ }^{\circ} \mathrm{C}$	24	-	20	-	80
2	$\begin{gathered} \text { TBMP } \\ \text { MsO } \end{gathered}$	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {d }}$	$120{ }^{\circ} \mathrm{C}$	7	1	28	25	46
3	MMIM TsO	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {d }}$	$120{ }^{\circ} \mathrm{C}$	7	N.D. ${ }^{f}$	N.D.	N.D.	N.D.
4	$\begin{aligned} & \text { TBA } \\ & \text { TsO } \end{aligned}$	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {d }}$	$120{ }^{\circ} \mathrm{C}$	7	1	18	31	50
5	TBA bromide	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{e}$	$120{ }^{\circ} \mathrm{C}$	34	-	13	-	87
6	$\begin{aligned} & \text { TBA } \\ & \text { MsO } \end{aligned}$	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {c }}$	$120{ }^{\circ} \mathrm{C}$	24	-	7	11	82
7	EG/TMG	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {e }}$	$120{ }^{\circ} \mathrm{C}$	34	1	26	1	72
8	Gly/TMG	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {e }}$	$120^{\circ} \mathrm{C}$	29	-	50	14	36
9	$\mathrm{U} / \mathrm{ChCl}$	1:2:1	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {e }}$	$120{ }^{\circ} \mathrm{C}$	34	N.D.	N.D.	N.D.	N.D.

[^2]a) imine route

b) enamine route

c) Knoevenagel route

d) imine route

e) enamine route

Scheme S1. Plausible reaction mechanisms toward 11 (a-c) and 10 (d-f). (a) Imine route entailing an initial direct addition of the amino group at the $\mathrm{C}(3)$ position of $\mathbf{1 2}$ on the carbonyl carbon of benzaldehyde $\mathbf{1 3}$ to give an iminium intermediate, which reacts with ethyl 3-oxobutanoate 14; (b) enamine route entailing an initial direct addition of the $\mathrm{N}(2)$ of $\mathbf{1 2}$ on the carbonyl carbon $\mathrm{C}(3)$ of $\mathbf{1 4}$ to give a protonated enamine intermediate, which subsequently reacts with $\mathbf{1 3}$; (c) Knoevenagel route entailing an initial direct addition of the carbon $\mathrm{C}(2)$ of $\mathbf{1 4}$ on the carbonyl carbon of $\mathbf{1 3}$ to give the carbenium ion intermediate (Knoevenagel's adduct), which reacts with 12 (a direct addition of the amino group at the $\mathrm{C}(3)$ position of $\mathbf{1 2}$ on the β-carbon of the adduct and a direct addition of the nucleophilic $\mathrm{N}(2)$ center of $\mathbf{1 2}$ on the carbonyl carbon $\mathrm{C}(3)$ of the adduct); (d) imine route entailing an initial direct addition of the $N(2)$ of $\mathbf{1 2}$ on the carbonyl carbon of $\mathbf{1 3}$ to give an imine intermediate, which reacts with ethyl 3-oxobutanoate $\mathbf{1 4}$; (e) enamine route entailing an initial direct addition of the amino group at the $C(3)$ position of $\mathbf{1 2}$ on the carbonyl carbon $C(3)$ of $\mathbf{1 4}$ to give an enamine intermediate, which subsequently reacts with 13; (f) Knoevenagel route entailing, once formed Knoevenagel's adduct as described in point (c), a direct addition of the amino group at the $C(3)$ position of $\mathbf{1 2}$ on the carbonyl carbon $\mathrm{C}(3)$ of the adduct and a direct addition of the nucleophilic $\mathrm{N}(2)$ center of $\mathbf{1 2}$ on the β-carbon of the adduct.

Table S7. Anti-DENV-2, anti-WNV, and anti-SARS-CoV-2 activity, and cytotoxicity of TZP derivatives 23-30 synthesized in this study.

Compd	$\begin{gathered} \text { Anti-DENV-2 } \\ \text { activity } \\ \text { (Huh7 cells) } \\ E_{50,} \mu \mathbf{M}^{a} \\ \hline \end{gathered}$	$\begin{gathered} \text { Anti-WNV } \\ \text { activity } \\ \text { (Huh7 cells) } \\ \mathbf{E C}_{50,} \boldsymbol{\mu} \mathbf{M}^{a} \\ \hline \end{gathered}$	Cytotoxicity (Huh7 cells) $\mathrm{CC}_{50}, \mu \mathrm{M}^{b}$	Anti-SARS-CoV-2 activity (A549 cells) $\mathbf{E C}_{50}, \boldsymbol{\mu} \mathbf{M}^{c}$	Cytotoxicity (A549 cells) $\mathrm{CC}_{50}, \mu^{\prime} \mathrm{M}^{b}$
23	NA	NA	>243	NA	>243
29	NA	NA	>243	NA	>243
24	NA	NA	>243	NA	112.3
25	4.3 ± 1.5	6.7 ± 3.7	20.9	NA	9.8
26	14.1 ± 4.1	19.3 ± 1.4	141.1	NA	99.9
30	NA	NA	>243	NA	>243
27	NA	NA	>243	NA	>243
28	NA	NA	>243	NA	>243
NRM	-	-	-	0.066 ± 0.007	36
SOF	8.1 ± 1.1	5.3 ± 2.5	>243	>243	>243

${ }^{a}$ Activity of the compounds as determined by immunodetection assay. The EC_{50} value represents the compound concentration that reduces by 50% the expression of flavivirus envelope proteins in Huh7 cells infected with DENV or WNV. All the reported values represent the means \pm SD of data derived from at least two independent experiments in duplicate. ${ }^{b}$ Cytotoxicity of the compounds as determined by Cell Titer assay in A549 and Huh cell lines. The CC_{50} value represents the compound concentration that causes a decrease of cell viability of 50%. ${ }^{c}$ Activity of the compounds as determined by Cell Titer. The EC_{50} value represents the compound concentration that reduces by 50% the cytopathic effect in A549 cells infected with SARS-CoV-2. All the reported values represent the means $\pm \mathrm{SD}$ of data derived from at least two independent experiments in duplicate. ${ }^{d} \mathrm{NA}=$ not active. ${ }^{e} \mathrm{ND}=$ not determined due to solubility issues.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 8 .

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 8 .

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9 .

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 9 .

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0}$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}$.

Current Data Parameters NAME
 EXANO PROCNO

PROCNO	1
F2 - Acquisition Parameters	
Date_	20231207
Time	17.11 h
INSTRUM	Avance
PROBHD	Z163739_0551 (
PULPROG	zg30
TD	65536
SOLVENT	DMSO
NS	16
DS	- 2
SWH	8196.722 Hz
FIDRES	0.250144 Hz
AQ	3.9976959 sec
RG	101
DW	61.000 usec
DE	13.96 usec
TE	298.0 K
D1	1.00000000 sec
TD0	1
SFO1	400.1324708 MHz
NUC1	1H
P0	2.52 usec
P1	7.57 usec
PLW1	24.44000053 W
F2 - Processing parameters	
SI	65536
SF	400.1300000 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

$$
\begin{array}{lr}
\text { F2 - Acquisition Parameters } \\
\text { Date_- } & 20231207 \\
\text { Time } & 17.11 \mathrm{~h} \\
\text { INSTRUM } & \text { Avance } \\
\text { PROBHD } & \text { Z163739_0551 } \\
\text { PULPROG } & 2.950 \\
\text { TD } & 65536 \\
\text { SOLVENT } & \text { DMSO } \\
\text { NS } & 16 \\
\text { DS } & 2 \\
\text { SWH } & 8196.722 \mathrm{~Hz} \\
\text { FIDRES } & 0.250144 \mathrm{~Hz} \\
\text { AQ } & 3.9976959 \mathrm{sec} \\
\text { RG } & 101 \mathrm{usec} \\
\text { DW } & 61.000 \mathrm{usec} \\
\text { DE } & 13.96 \mathrm{usec} \\
\text { TE } & 298.0 \mathrm{~K} \\
\text { D1 } & 1.00000000 \mathrm{sec} \\
\text { TDO } & 100.1324708 \mathrm{MHz} \\
\text { SFO1 } & 1 \mathrm{H} \\
\text { NUC1 } & 2.52 \mathrm{usec} \\
\text { PO } & 7.57 \mathrm{usec} \\
\text { P1 } & \\
\text { PLW1 } & 24.4400053 \mathrm{~W} \\
\text { F2 - Processing parameters } \\
\text { SI } & 65536 \\
\text { SF } & 400.1300000 \mathrm{MHz} \\
\text { WDW } & \text { EM } \\
\text { SSB } & 0 \\
\text { LB } & 0.30 \mathrm{~Hz} \\
\text { GB } & 0 \\
\text { PC } & 1.00
\end{array}
$$

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 11.
 Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 11 .

\qquad

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 16.

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 16 .

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17.

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 17.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 18.

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 18.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 19.

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 19.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 23.

[^3]Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 23.

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 24.

Figure S26. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 24.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 25.

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 25.

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26.

Figure S30. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26.

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 27.

Figure S32. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 27.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 28.

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 28.

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 29.

Figure S36. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 29.

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 0}$.

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 30 .

Figure S39. HRMS spectrum of compound 8.

Figure S40. HRMS spectrum of compound 9 .

Figure S41. HRMS spectrum of compound 10.

Figure S42. HRMS spectrum of compound 11.

MS Zoomed Spectrum

MS Spectrum Peak List

m / z	z	Abund	Formula	Ion
402.15619	1	367473.81	C22H19N5O3	$(\mathrm{M}+\mathrm{H})+$
403.15968	1	88893.8	C22H19N5O3	$(\mathrm{M}+\mathrm{H})+$
404.16214	1	12199.38	C22H19N5O3	$(\mathrm{M}+\mathrm{H})+$
405.16341	1	1433.93	C22H19N5O3	$(\mathrm{M}+\mathrm{H})+$

Figure S43. HRMS spectrum of compound 23.

MS Spectrum Peak List

m / z	z	Abund	Formula	Ion
373.14145	1	97002.26	C20H16N6O2	$(\mathrm{M}+\mathrm{H})+$
374.14408	1	22289.84	C 20 H 16 N 6 O 2	$(\mathrm{M}+\mathrm{H})+$
375.14602	1	3004.99	C 20 H 16 N 6 O 2	$(\mathrm{M}+\mathrm{H})+$
376.14973	1	159.01	C 20 H 16 N 6 O 2	$(\mathrm{M}+\mathrm{H})+$

Figure S44. HRMS spectrum of compound 24.

MS Zoomed Spectrum

MS Spectrum Peak List

m / z	z	Abund	Formula	Ion
463.18877	1	279042.94	C27H22N6O2	$(\mathrm{M}+\mathrm{H})+$
464.19234	1	83945.49	C27H22N6O2	$(\mathrm{M}+\mathrm{H})+$
465.19464	1	12806.78	C27H22N6O2	$(\mathrm{M}+\mathrm{H})+$
466.19689	1	1684.45	C27H22N6O2	$(\mathrm{M}+\mathrm{H})+$

Figure S45. HRMS spectrum of compound $\mathbf{2 5}$.

MS Spectrum Peak List

m / z	z	Abund	Formula	Ion
402.15669	1	268008.88	C22H19N5O3	$(\mathrm{M}+\mathrm{H})+$
403.1601	1	66583.88	C 22 H 19 N 5 O 3	$(\mathrm{M}+\mathrm{H})+$
404.16256	1	9314.01	C 22 H 19 N 5 O 3	$(\mathrm{M}+\mathrm{H})+$
405.16529	1	974.6	C 22 H 19 N 5 O 3	$(\mathrm{M}+\mathrm{H})+$

Figure S46. HRMS spectrum of compound 26.

MS Spectrum Peak List

m / z	z	Abund	Formula	Ion
373.14107	1	280274.94	C20H16N6O2	$(M+H)+$
374.14451	1	61352.8	C 20 H 16 N 6 O 2	$(\mathrm{M}+\mathrm{H})+$
375.14679	1	7919.77	C 20 H 16 N 6 O 2	$(\mathrm{M}+\mathrm{H})+$
376.14815	1	599.68	C 20 H 16 N 6 O 2	$(\mathrm{M}+\mathrm{H})+$

Figure S47. HRMS spectrum of compound 27.

MS Spectrum Peak List

$\boldsymbol{m} / \boldsymbol{z}$	z	Abund	Formula	Ion
463.18948	1	341033.75	C27H22N6O2	$(\mathrm{M}+\mathrm{H})+$
464.19315	1	101310.88	C27H22N6O2	$(\mathrm{M}+\mathrm{H})+$
465.19528	1	16370.75	C27H22N6O2	$(\mathrm{M}+\mathrm{H})+$
466.19814	1	2097.52	C27H22N6O2	$(\mathrm{M}+\mathrm{H})+$

Figure S48. HRMS spectrum of compound 28.

MS Zoomed Spectrum

MS Spectrum Peak List

m / z	z	Abund	Formula	Ion
374.12503	1	261949.42	C20H15N5O3	$(\mathrm{M}+\mathrm{H})+$
375.12828	1	57341.76	C20H15N5O3	$(\mathrm{M}+\mathrm{H})+$
376.13065	1	8055.77	C 20 H 15 N 5 O 3	$(\mathrm{M}+\mathrm{H})+$
377.13225	1	862.65	C 20 H 15 N 5 O 3	$(\mathrm{M}+\mathrm{H})+$

Figure S49. HRMS spectrum of compound 29.

MS Spectrum Peak List

$\boldsymbol{m} / \boldsymbol{z}$	z	Abund	Formula	Ion
374.12512	1	182598.25	C20H15N5O3	$(\mathrm{M}+\mathrm{H})+$
375.12821	1	41201.47	C20H15N5O3	$(\mathrm{M}+\mathrm{H})+$
376.13063	1	5731.13	C20H15N5O3	$(\mathrm{M}+\mathrm{H})+$
377.13311	1	379.1	C20H15N5O3	$(\mathrm{M}+\mathrm{H})+$

Figure S50. HRMS spectrum of compound $\mathbf{3 0}$.

Peak Information

\#Peak Name	CH	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Height [$\mu \mathrm{V}]$	Area\%	Height\%	Quantity

1	Unknown	5	3.213	14019501	862507	99.930	99.920
2	Unknown	5	4.747	9783	691	0.070	0.080

Figure S51. HPLC chromatogram of compound 23.

Peak Information

| 1 | Unknown | 5 | 6.837 | 20510696 | 734355 | 100.000 | 100.000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathrm{~N} / \mathrm{A}$

Figure S52. HPLC chromatogram of compound 24.

\#	Peak Name	CH	tR [min]	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Height [$\mu \mathrm{V}$]	Area\%	Height\%	Quantity
1	Unknown	5	2.663	90679	9931	0.210	0.642	N/A
2	Unknown	5	5.700	42996932	1537144	99.790	99.358	N/A

Figure S53. HPLC chromatogram of compound 25.

Peak Information

$\#$	Peak Name	CH	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Height $[\mu \mathrm{V}]$	Area\%	Height\%	Quantity
1	Unknown	5	1.733	4583	1366	0.094	0.339	$\mathrm{~N} / \mathrm{A}$
2	Unknown	5	1.903	15724	2802	0.321	0.695	$\mathrm{~N} / \mathrm{A}$
3	Unknown	5	2.203	20818	1839	0.425	0.456	$\mathrm{~N} / \mathrm{A}$
4	Unknown	5	3.010	4819365	395764	98.382	98.196	$\mathrm{~N} / \mathrm{A}$
5	Unknown	5	3.730	38126	1262	0.778	0.313	$\mathrm{~N} / \mathrm{A}$

Figure S54. HPLC chromatogram of compound 26.

Peak Information

$\#$	Peak Name	CH	tR [min]	Area [$\mu \mathrm{V} \cdot \mathrm{sec}]$	Height [$\mu \mathrm{V}]$	Area\%	Height\%	Quantity
1	Unknown	5	2.123	287134	13863	1.898	1.917	$\mathrm{~N} / \mathrm{A}$
2	Unknown	5	5.550	14741310	701137	97.437	96.939	$\mathrm{~N} / \mathrm{A}$
3	Unknown	5	7.447	16253	1691	0.107	0.234	$\mathrm{~N} / \mathrm{A}$
4	Unknown	5	7.787	47819	3593	0.316	0.497	$\mathrm{~N} / \mathrm{A}$
5	Unknown	5	8.237	20727	1585	0.137	0.219	$\mathrm{~N} / \mathrm{A}$
6	Unknown	5	8.683	15757	1405	0.104	0.194	$\mathrm{~N} / \mathrm{A}$

igure S55. HPLC chromatogram of compound 27.

Peak Information

$\#$	Peak Name	CH	tR [min]	Area [$\mu \mathrm{V} \cdot \mathrm{sec}]$	Height [$\mu \mathrm{V}]$	Area	Height\%
Quantity							
1	Unknown	5	4.397	26106716	1069122	99.985	99.976
2	Unknown	5	7.030	3810	255	0.015	0.024

Figure S56. HPLC chromatogram of compound 28.

Peak Information

$\#$	Peak Name	CH	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V}$-sec]	Height $[\mu \mathrm{V}]$	Area\%	Height\%	Quantity
1	Peak-001	5	1.860	95154	6976	1.583	1.901	$\mathrm{~N} / \mathrm{A}$
2	Peak-002	5	2.350	5915073	360046	98.417	98.099	$\mathrm{~N} / \mathrm{A}$

Figure S57. HPLC chromatogram of compound 29.

Figure S58. HPLC chromatogram of compound $\mathbf{3 0}$.

Figure S59. FT-IR spectrum of compound 8.

Figure S60. FT-IR spectrum of compound 9 .

Figure S61. FT-IR spectrum of compound 10.

Figure S62. FT-IR spectrum of compound 11.

[^0]: ${ }^{a}{ }^{13} \mathrm{C}$ NMR spectra of compounds in DMSO- d_{6} recorded on Bruker Avance DRX-400MHz.

[^1]: ${ }^{a}$ The reaction was performed on 1.0 mmol scale of $\mathbf{1 2}$ in 0.2 g of IL in an open flask. ${ }^{b}$ Percentage ratio among isomers assessed by HPLC on the crude product. ${ }^{c}$ Isolated yield. ${ }^{d} \mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL})$ was added after 12 h .

[^2]: ${ }^{a}$ The reaction was performed on 1.0 mmol scale of $\mathbf{1 2} \mathrm{in} 0.2 \mathrm{~g}$ di IL or DES in an open flask. ${ }^{b}$ Percentage ratio among isomers assessed by HPLC on the crude product. $\mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL})$ was added after ${ }^{c} 20 \mathrm{~h},{ }^{d} 6 \mathrm{~h}$, or ${ }^{e} 24$ h. ${ }^{f}$ N.D. $=$ not determined.

[^3]: $\begin{array}{llllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

