Supplementary Information

The Use of Multicomponent Reactions in the Development of Bis-

boronic Acids for the Detection of β -Sialic Acid

Tzu-Ching Chou, Ying-Li Hu, Guan-Cheng Xie, Jyh-Chiang Jiang, Liang-Ying Peng, Hsiao-Chun Tsai, Chiao-Tien Yao, Yi-Jie Tsai, Ting-Yu Huang, Jing-Wen Hu, Yi-Ching Chen, Min-Yeh Tsai, Yi-Wei Chen, and Po-Shen Pan*

Table of Content

1	Synthetic section1				
	1.1	General information	1		
	1.2	Starting Materials	2		
	1.3.	Experimental procedure of products a1-a5, b1-b3, c1, d1-d3 and e1-e2	3		
	1.4.	Experimental procedure of products A1-A5, B1-B3, C1, D1-D2 and E1-E2	11		
2	Analysis section				
	2.1	Materials of various boronic acid analogs investigated	19		
	2.2	Measurements and Calculations of Binding Constant	20		
	2.3	DFT calculations	20		
3	Sup	plementary Tables and Figures	22		
	3.1	Copies of ¹ H NMR, ¹³ C NMR, ¹¹ B NMR and Mass spectra	22		
	3.2	K_{ARS} and K_{eq} (Sialic acid) titration curve at pH 6.0 and pH 6.5	74		
	3.3	K_{ARS} and K_{eq} (Sialic acid, Fructose, and Galactose) titration curve at pH 6.0, pH 6.5, pH 7.0,	,		
	and p	ьн 7.5	81		
4.	Con	nputational details	86		
	4.1	Reaction energy	86		
	4.2	Coordinate files	86		

1 Synthetic section

1.1 General information

Unless stated otherwise, all solvents and materials utilized were obtained from Sigma-Aldrich, TCI, Acros, Alfa Aesar, and AK Scientific and were employed without additional purification. As described in the literature, the isocyanides were synthesized following established procedures from aldehydes. The reactions were conducted in sealed vessels using the CEM Discover Benchmate[™] microwave reactor. An external IR sensor was employed to monitor the temperatures during microwave-assisted reactions. Merck precoated silica gel 60 F254 plates (KGaA, Darmstadt, Germany) were used for thin-layer chromatography, while column chromatography was carried out using SiliaFlash[®] P60 silica gel with a particle size of 40-63µm (230-400 mesh).

Nuclear magnetic resonance (NMR) spectra were obtained on a Bruker Avance 600 MHz spectrometer, with 600 MHz, 150 MHz, and 192.5 MHz frequencies for ¹H, ¹³C, and ¹¹B, respectively. In ¹H NMR, chemical shifts were referenced to the internal solvent peak (CDCl₃ δ 7.26 ppm or CD₃OD δ 3.31 ppm), and coupling constants were reported in hertz (Hz). The spin multiplicities were denoted: s = singlet, d = doublet, t = triplet, m = multiplet, and br = broad. For ¹³C NMR, chemical shifts were referenced to the internal solvent peak (CDCl₃ δ 77.16 ppm or CD₃OD δ 49.00 ppm). Chemical shifts for ¹¹B NMR were referenced to external standards (BF₃·OEt₂ δ 0.00 ppm). High-resolution mass spectra (HRMS) were acquired using a MICROMASS® Q-Tof PREMIERTM (Waters, ESI pos. mode) and Bruker AutoflexTM Speed Maldi-TOF/TOF instrument.

1.2 Starting Materials

Except for isocyanide N1 and N2 and N3, all starting carboxylic acids, amines, and aldehydes used in the study were commercially available. As described in the literature, isocyanide N1, N2 and N3 were synthesized following established procedures from aldehydes.

Experimental procedure of products a1-a5, b1-b3, c1, d1-d3 and e1-e2

General procedure for synthesis of mono-boronate ester and bis-boronate ester analogues of five series.

In a 10 mL glass tube equipped with a magnetic stir bar, amine L (1.0 mmol, 1.0 equiv), aldehyde M (1.0 mmol, 1.0 equiv), and 2,2,2-trifluoroethanol (1.0 mL) were initially stirred. The mixture was subjected to microwave irradiation for 15 minutes at 60 °C and 150 W, while being vigorously stirred. Following this, carboxylic acid K (1.2 mmol, 1.2 equiv) and isocyanide N (1.0 mmol, 1.0 equiv) were added. The reaction mixture was further exposed to microwave irradiation for 120 minutes at 65 °C and 150 W, under high-speed magnetic stirring. Once the reaction was complete, the crude material was concentrated and dissolved in dichloromethane. The resulting organic solution was then extracted with 1 M HCl_(aq). Addition of a saturated aqueous solution of NaHCO_{3(aq)} along with brine followed. The organic layer was subsequently dried using anhydrous MgSO₄ and concentrated under vacuum. The resulting residue was purified through silica gel flash column chromatography, using ethyl acetate/n-hexane (3/7) eluent initially, and acetone/methanol (13/1) eluent thereafter, to yield the desired products of a to e series in yields ranging from 31% to 75%

N-(2-oxo-1-phenyl-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)amino)ethyl)-N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)benzamide

¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 7.8 Hz, 1H), 7.46 (br, 1H), 7.45-7.29 (m, 4H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.22 (t, *J* = 3 Hz, 3H), 7.16 (t, *J* = 7.2 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 3H), 7.02 (t, *J* = 7.8 Hz, 1H), 6.50 (s, 1H), 6.09 (s, 1H), 4.55 (dd, *J* = 15, 6 Hz, 2H), 1.32 (s, 12H), 1.27 (d, *J* = 6.6 Hz, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 171.29, 169.53, 141.27, 141.15, 135.77, 135.56, 135.04, 123.61, 133.33, 132.99, 129.90, 129.42, 128.69, 128.46, 128.39, 127.91, 127.53, 126.77, 83.76, 83.67, 67.83, 43.71, 24.78, 24.60. ¹¹B NMR (192.5 MHz, CDCl₃) δ 31.53. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₄₀H₄₆B₂N₂O₆Na, 695.34342; found 695.34273.

N-(2-oxo-1-phenyl-2-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)amino)ethyl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)benzamide

¹H NMR (600 MHz, CDCl₃) δ 7.68 (t, *J* = 6.9 Hz, 2H), 7.45 (d, *J* = 6.6 Hz, 2H), 7.40 (d, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 7.8 Hz, 3H), 7.29 (t, *J* = 3.6 Hz, 1H), 7.28 (d, *J* = 6 Hz, 1H), 7.22 (t, *J* = 3 Hz, 3H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 2H), 6.99 (d, *J* = 7.8 Hz, 2H), 6.32 (t, *J* = 5.4 Hz, 1H), 6.19 (s,1H), 4.50 (d, *J* = 6 Hz, 2H), 1.32 (s, 12H), 1.29 (s, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 171.18, 69.33, 144.11, 137.25, 135.75, 134.93, 134.44, 133.88, 133.77, 130.62, 129.98, 129.56, 129.15, 128.59, 128.45, 128.12, 127.63, 83.83, 83.78, 67.15, 43.74, 24.80, 24.77. ¹¹B NMR (192.5 MHz, CDCl₃) δ 31.36. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₄₀H₄₆B₂N₂O₆Na, 695.34342; found 695.34323.

N-(2-oxo-1-phenyl-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)amino)ethyl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)benzamide

¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J*= 7.8 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.32 (s, 1H), 7.31 (d, *J* = 1.2 Hz, 1H), 7.28 (q, *J* = 3.6 Hz, 2H), 7.25 (d, *J* = 7.8 Hz, 2H), 7.23 (q, *J* = 3 Hz, 3H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.11 (q, *J* = 7.2 Hz, 2H), 6.99 (d, *J* = 7.8 Hz, 2H), 6.33 (br, 1H), 6.15 (s, 1H), 4.54 (qd, *J* = 15.6, 6 Hz, 2H), 1.33 (s, 12H), 1.28 (s, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 171.16, 169.40, 144.21, 141.19, 135.74, 135.07, 134.96, 134.47, 129.95, 129.60, 129.12, 128.62, 128.53, 127.66, 126.84, 83.85, 67.35, 43.79, 24.80. ¹¹B NMR (192.5 MHz, CDCl₃) δ 31.19. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₄₀H₄₆B₂N₂O₆Na, 695.34342; found 695.34335.

N-(2-oxo-1-phenyl-2-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)amino)ethyl)-N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)benzamide

¹H NMR (600 MHz, CDCl₃) δ 7.68 (d, *J* = 10.2 Hz, 2H), 7.43 (dd, *J* = 21.9, 7.2 Hz, 2H), 7.31 (dd, *J* = 18, 7.8 Hz, 4H), 7.21 (d, *J* = 6.6 Hz, 2H), 7.15 (t, *J* = 7.2 Hz, 2H), 7.10 (t, *J* = 7.5 Hz, 2H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.60 (br, 1H), 6.15 (s, 1H), 4.57-4.50 (m, 2H), 1.32 (s, 12H), 1.27 (d, *J* = 6.6 Hz, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 171.31, 169.58, 141.06, 137.47, 135.92, 135.81, 134.69, 133.89, 133.73, 133.32, 133.23, 130.61, 130.05, 129.42, 128.73, 128.48, 128.36, 128.13, 127.91, 127.57, 83.77, 67.56, 43.67, 43.54, 24.86, 24.65. ¹¹B NMR (192.5 MHz, CDCl₃) δ 31.34. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₄₀H₄₆B₂N₂O₆Na, 695.34342; found 695.34356.

N-(2-((3-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)amino)-2-oxo-1-phenylethyl)-N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)benzamide

¹H NMR (600 MHz, CDCl₃) δ 7.66 (t, *J* = 6.9 Hz, 1H), 7.46 (d, *J* = 7.2 Hz, 1H), 7.39-7.30 (m, 5H), 7.24 (t, *J* = 2.7 Hz, 3H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.10 (q, *J* = 7.2 Hz, 3H), 7.03 (q, *J* = 7.2 Hz, 2H), 6.92 (d, *J* = 10.2 Hz, 1H), 6.54 (br, 1H), 6.05 (s, 1H), 4.53 (qd, *J* = 15.6, 6.6 Hz, 2H), δ 1.34 (s, 12H), δ 1.27 (d, *J* = 5.0 Hz, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 171.35, 169.73, 168.19, 166.52, 144.44, 144.38, 141.24, 137.14, 137.08, 135.68, 135.44, 134.53, 133.41, 132.94, 129.83, 129.54, 128.76, 128.58, 128.51, 128.01, 127.60, 122.50, 114.16, 114.00, 83.81, 68.07, 43.14, 24.85, 24.77, 24.63. ¹¹B NMR (192.5 MHz, CDCl₃) δ 30.67. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₄₀H₄₅B₂N₂O₆FNa, 713.33400; found 713.33398.

UI 122 diavahanal

N-(2-oxo-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)amino)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethyl)-N-phenylbenzamide

¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 2H), 7.69 (d, *J* = 7.8 Hz, 2H), 7.32 (q, *J* = 3.6 Hz, 4H), 7.28 (s, 2H), 7.20 (t, *J* = 7.2 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 2H), 7.03 (s, 3H), 7.01 (br, 2H), 6.26 (br, 1H), 6.17 (s, 1H), 4.56 (qd, *J* = 15, 6 Hz, 2H), 1.35 (s, 12H), 1.34 (s, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 171.24, 169.34, 141.12, 137.51, 135.12, 134.96, 129.98, 129.50, 129.28, 128.57, 128.54, 127.58, 127.19, 126.88, 83.92, 93.74, 67.34, 43.86, 24.83. ¹¹B NMR (192.5 MHz, CDCl₃) δ 31.37. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₄₀H₄₆B₂N₂O₆Na, 695.34342; found 695.34380.

N-(2-oxo-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)amino)-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethyl)-N-phenylbenzamide

¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 4.8 Hz, 2H), 7.71 (s, 1H), 7.66 (d, *J*= 7.2 Hz, 2H), 7.29 (t, *J* = 9 Hz, 3H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.17 (q, *J* = 8.4 Hz, 2H), 7.10 (t, *J* = 7.5 Hz, 2H), 6.98 (s, 5H), 6.29 (t, *J* = 5.7 Hz, 1H), 6.26 (s, 1H), 4.53 (qd, *J* = 15, 5.4 Hz, 2H), 1.32 (s, 12H), 1.3 (s, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 171.22, 169.68, 141.28, 141.09, 136.86, 136.05, 135.10, 134.94, 133.81, 132.90, 130.54, 129.38, 128.54, 128.34, 127.88, 127.55, 127.14, 126.81, 83.93, 83.71, 66.65, 43.77, 24.96, 24.85, 24.76. ¹¹B NMR (192.5 MHz, CDCl₃) δ 30.86. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₄₀H₄₆B₂N₂O₆Na, 695.34342; found 695.34538.

b3

N-(2-oxo-2-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)amino)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethyl)-N-phenylbenzamide

¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 7.8 Hz, 4H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.30 (dd, *J* = 7.2, 1.8 Hz, 5H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 2H), 7.00 (s, 5H), 6.313 (t, *J* = 5.7 Hz, 1H), 6.20 (s, 1H), 4.53 (qd, *J* = 15, 6 Hz, 2H), 1.33 (s, 12H), 1.31 (s, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 171.22, 169.27, 141.38, 137.49, 137.21, 135.87, 134.90, 133.87, 133.77, 130.60, 130.01, 129.41, 129.30, 128.51, 128.44, 128.10, 127.52, 127.11, 83.83, 83.77, 67.08, 43.75, 24.80. ¹¹B NMR (192.5 MHz, CDCl₃) δ 31.19. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₄₀H₄₆B₂N₂O₆Na, 695.34342; found 695.34407.

N-(2-(benzylamino)-2-oxo-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethyl)-N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide

¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 7.8 Hz, 2H), 7.56 (d, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 5H), 7.27 (s, 1H), 7.25-7.22 (m, 3H), 6.99 (s, 1H), 6.39 (br, 1H), 6.17 (s, 1H), 4.54-4.47 (m, 2H), 1.30 (d, *J* = 18.6 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 171.20, 169.33, 143.93, 138.28, 138.03, 135.00, 134.43, 134.02, 130.03, 129.17, 128.60, 128.55, 127.66, 127.60, 127.34, 83.88, 67.22, 43.81, 24.87, 24.82. ¹¹B NMR (192.5 MHz, CDCl₃) δ 31.50. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₄₀H₄₆B₂N₂O₆Na, 695.34342; found 695.34451.

N-(2-(benzylamino)-2-oxo-1-phenylethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)benzamide

¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 7.2 Hz, 1H), 7.31 (s, 2H), 7.29 (dd, *J* = 10.5, 3.6 Hz, 6H), 7.24-7.22 (m, 5H), 7.10 (br, 1H), 7.00 (t, *J* = 7.8 Hz, 1H), 6.41 (br, 1H), 6.08 (s, 1H), 4.57-4.51 (m, 2H), 1.28 (d, *J* = 3 Hz, 18H), 1.27 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 171.34, 169.47, 140.90, 138.38, 138.12, 135.68, 134.59, 133.95, 133.47, 133.13, 130.04, 129.97, 129.47, 128.71, 128.59, 128.50, 128.45, 128.01, 127.76, 127.58, 127.29, 83.86, 83.79, 67.71, 43.76, 24.87, 24.81, 24.63. ¹¹B NMR (192.5 MHz, CDCl₃) δ 31.58. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₄₀H₄₆B₂N₂O₆Na, 695.34342; found 695.34522.

N-(2-(benzylamino)-2-oxo-1-phenylethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)benzamide

¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 4.8 Hz, 2H), 7.30-7.28 (m, 6H), 7.27 (s, 2H), 7.26-7.12 (m, 4H), 6.97 (d, J = 7.2 Hz, 2H), 6.28 (br, 1H), 6.15 (s, 1H), 4.53 (d, J = 5.4 Hz, 2H), 1.30 (d, J = 2.4 Hz, 24H). ¹³C NMR (150 MHz, CDCl₃) δ 171.20, 169.33, 143.93, 138.28, 138.03, 135.00, 134.43, 134.02, 130.03, 129.17, 128.60, 128.56, 127.66, 127.60, 127.34, 83.89, 67.21, 43.81, 24.87, 24.82. ¹¹B NMR (192.5 MHz, CDCl₃) δ 31.42. HRMS (ESI, positive ion)(m/z): [M + Na]⁺, calcd for C₄₀H₄₆B₂N₂O₆Na, 695.34342; found 695.34518.

N-(2-oxo-1-phenyl-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)amino)ethyl)-N-phenylbenzamide

¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 7.2 Hz, 2H), 7.25-7.18 (m, 7H), 7.15 (dd, *J* = 6.6, 1.8 Hz, 1H), 7.1 (td, *J* = 7.2, 1.2 Hz, 1H), 7.0 (s, 1H), 6.70 (br, 1H), 6.25 (s, 1H), 4.50 (qd, *J* = 15, 6 Hz, 2H), 1.33 (s, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 171.11, 169.64, 141.26, 140.98, 135.78, 134.89, 134.38, 130.22, 130.04, 129.28, 128.96,128.79, 128.71, 128.38, 128.28, 128.14, 127.95, 127.40, 127.18, 126.95, 126.63, 126.22, 115.49, 83.56, 83.44, 66.54, 43.50, 43.22, 24.69.¹¹B NMR (192.5 MHz, CDCl₃) δ 31.41. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₃₄H₃₅BN₂O₄Na, 569.25821; found 569.25839.

N-(2-(benzylamino)-2-oxo-1-phenylethyl)-N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)benzamide

¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 7.2 Hz, 1H), 7.34 (br, 1H), 7.30 (d, *J* = 7.8 Hz, 2H), 7.29-7.22 (m, 6H), 7.20 (d, *J* = 3 Hz, 4H), 7.14 (dd, *J* = 6.6, 2.4 Hz, 2H), 7.09 (t, *J* = 7.5 Hz, 2H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.66 (br, 1H), 6.14 (d, *J* = 3 Hz, 1H), 4.51 (d, *J* = 3.6 Hz, 2H), 1.27 (d, *J* = 6.6 Hz, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 171.20, 169.52, 140.82, 138.10, 135.75, 134.54, 133.18, 133.03, 129.95, 129.25, 128.51, 128.37, 128.27, 128.23, 127.71, 127.40, 127.37, 127.14, 127.03, 83.62, 67.31, 43.50, 24.72, 24.49. ¹¹B NMR (192.5 MHz, CDCl₃) δ 30.67. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₃₄H₃₅BN₂O₄Na, 569.25821; found 569.25894.

1.4. Experimental procedure of products A1-A5, B1-B3, C1, D1-D2 and E1-

E2

General procedure for synthesis of Ugi boronic acid analogues A1-A5, B1-B3, C1, D1-D2 and E1-E2.

Boronate ester compounds **a1-a5**, **b1-b3**, **c1**, **d1-d2 and e1-e2** (0.5 mmol, 1.0 equiv), a stirring bar, diethanolamine (0.5 mmol, 1.0 equiv), and 5.00 mL of ether were added to the round-bottom flask. The reaction mixture was allowed to react at room temperature for at least 8 hours until solid precipitation occurred. The resulting solid was then filtered under vacuum, and the liquid was removed. The solid was redissolved in the original round-bottom flask, and the solvent was removed under reduced pressure. A stirring bar, 15.00 mL of 1 M HCl, and 5.00 mL of MeOH were added to the residue. The reaction mixture was allowed to react at room temperature for at least 8 hours. After completion of the reaction, the bottle opening was sealed with clean paper and secured with a rubber band. The bottle was then immersed in liquid nitrogen until the entire solution had frozen into a solid. Subsequently, the bottle was placed in a freeze dryer to remove HCl and MeOH. The resulting solid was then subjected to EA/HCl extraction, and the organic layer was treated with anhydrous magnesium sulfate to remove H₂O, followed by filtration under a vacuum. The solvent was removed under reduced pressure by rotary evaporation. Finally, the product was subjected to freeze-drying. The desired products were obtained in yields ranging from 30% to 78%, as confirmed by ¹H NMR, ¹¹B NMR, and ¹³C NMR spectroscopy.

(3-(N-(2-((4-boronobenzyl)amino)-2-oxo-1-phenylethyl)benzamido)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.52 (br, 1H), 7.32 (br, 2H), 7.25 (s, 4H), 7.20-7.16 (m, 4H), 7.12 (q, *J* = 7.2 Hz, 3H), 6.97 (br, 1H), 6.32 (s, 1H), 4.43 (q, *J* = 9.6 Hz, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.49, 172.27, 143.02, 139.71, 138.99, 135.49, 134.54, 134.05, 131.74, 131.32, 129.41, 129.36, 129.22, 128.68, 128.31, 128.20, 128.00, 67.18, 44.18. ¹¹B NMR (192.5 MHz, CD₃OD) δ 28.98. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₂₈H₂₆B₂N₂O₆Na, 531.18692; found 531.18764.

(4-(N-(2-((3-boronobenzyl)amino)-2-oxo-1-phenylethyl)benzamido)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.76-7.44 (m, 2H), 7.30 (t, *J* = 8.1 Hz, 4H), 7.240 (t, *J* = 7.5 Hz, 1H), 7.18 (d, *J* = 6 Hz, 3H), 7.13 (q, *J* = 7.8 Hz, 5H), 6.96 (br, 2H), 6.30 (s, 1H), 4.51-4.40 (m, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.48, 172.43, 138.69, 137.55, 135.57, 134.61, 134.18, 133.93, 133.64, 133.40, 133.18, 131.82, 131.36, 130.54, 130.28, 129.82, 129.42, 129.28, 128.72, 67.38, 67.20, 44.34. ¹¹B NMR (192.5 MHz, CD₃OD) δ 27.40. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₂₈H₂₆B₂N₂O₆Na, 531.18692; found 531.18754.

(4-((2-(N-(4-boronophenyl)benzamido)-2-phenylacetamido)methyl)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.66 (d, J = 7.2 Hz, 1H), 7.53 (d, J = 6.6 Hz, 1H), 2.90 (d, J = 7.8 Hz, 4H), 7.23 (d, J = 7.2 Hz, 2H), 7.20-7.17 (m, 9H), 6.30 (s, 1H), 4.46 (s, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.50, 172.43, 137.64, 135.62, 135.06, 134.72, 134.60, 131.85, 131.62, 131.42, 130.54, 129.47, 129.28, 128.74, 127.62, 127.49, 67.27, 44.23. ¹¹B NMR (192.5 MHz, CD₃OD) δ 29.08. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₂₈H₂₆B₂N₂O₆Na, 531.18692; found 531.18761.

A4

(3-((2-(N-(3-boronophenyl)benzamido)-2-phenylacetamido)methyl)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.87-7.20 (m,1H), 6.10 (d, *J* = 6.6 Hz, 1H), 7.55-7.49 (m, 1H), 7.30 (t, *J* = 9 Hz, 4H), 7.25 (d, *J* = 7.8 Hz, 1H), 7.17 (d, *J* = 7.2 Hz, 3H), 7.13 (q, *J* = 7.8 Hz, 6H), 6.93 (br, 1H), 6.31 (br, 1H), 4.53-4.41 (m, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.61, 172.51, 137.67, 135.66, 133.94, 133.64, 133.39, 133.19, 131.88, 130.45, 130.28, 129.80, 129.39, 129.30, 128.73 67.27, 44.34. ¹¹B NMR (192.5 MHz, CD₃OD) δ 28.77. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₂₈H₂₆B₂N₂O₆Na, 531.18692; found 531.18765.

A5

(3-(N-(2-((4-borono-3-fluorobenzyl)amino)-2-oxo-1phenylethyl)benzamido)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.33-7.30 (m, 2H), 7.29 (s, 1H), 7.28 (d, *J* = 1.8 Hz, 1H), 7.15 (tt, *J* = 7.8, 16.8 Hz, 11H), 6.96 (br, 2H), 6.28 (d, *J* = 23.4 Hz, 1H), 4.46 (s, 2H).¹³C NMR (150 MHz, CD₃OD) δ 172.17, 171.24, 136.22, 134.16, 131.99, 130.45, 129.03, 128.07, 127.30, 122.52, 113.16, 112.99, 65.97, 65.74, 42.18. ¹¹B NMR (192.5 MHz, CD₃OD) δ 29.21. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₂₈H₂₆B₂N₂O₆FNa, 549.17750; found 549.17750.

B1

(4-(2-((4-boronobenzyl)amino)-2-oxo-1-(N-phenylbenzamido)ethyl)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.66 (br, 1H), 7.53 (br, 2H), 7.38 (br, 1H), 7.28 (d, *J* = 7.8 Hz, 2H), 7.24 (br, 2H), 7.19 (t, *J* = 7.8 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 4H), 7.00 (br, 2H), 6.90 (d, 3.6 Hz, 3H), 6.30 (s, 1H), 4.60 (s, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.59, 172.37, 141.45, 137.66, 135.05, 134.75, 134.36, 132.44, 130.99, 130.47, 129.23, 129.04, 128.73, 128.29, 127.51, 67.24, 44.21. ¹¹B NMR (192.5 MHz, CD₃OD) δ 29.31. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₂₈H₂₆B₂N₂O₆Na, 531.18692; found 531.18694.

B2

(4-((2-(3-boronophenyl)-2-(N-phenylbenzamido)acetamido)methyl)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.65 (br, 2H), 7.59 (br, 2H), 7.28 (d, J = 7.8 Hz), 7.24 (t, J = 6.3 Hz, 2H), 7.18 (d, J = 7.2 Hz, 1H), 7.13 (t, J = 7.5 Hz, 3H), 7.09 (br, 1H), 6.98 (br, 2H), 6.91 (s, 3H), 6.32 (t, J = 17.4 Hz, 1H), 4.55-4.39 (m, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.65, 172.53, 141.34, 137.63, 135.03, 134.66, 133.48, 132.43, 130.46, 129.17, 129.03, 128.92, 128.73, 128.46, 128.25, 127.49, 67.35, 44.22. ¹¹B NMR (192.5 MHz, CD₃OD) δ 28.38 HRMS (ESI, positive ion)(m/z): [M + Na]⁺, calcd for C₂₈H₂₆B₂N₂O₆Na, 531.18692; found 531.18746.

B3

(3-((2-(4-boronophenyl)-2-(N-phenylbenzamido)acetamido)methyl)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.76 (s, 1H), 7.61 (d, *J* = 6.6 Hz, 1H), 7.26 (s, 1H), 7.58 (d, *J* = 12.6 Hz, 1H), 7.30 (t, *J* = 9 Hz, 3H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 7.2 Hz, 1H), 7.13 (t, *J* = 1.8 Hz, 4H), 7.00 (br, 1H), 6.91 (s, 3H), 6.30 (s, 1H), 4.53-4.04 (m, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.59, 172.37, 141.47, 138.69, 137.59, 134.78, 134.34, 133.94, 133.64, 133.15, 132.39, 130.95, 130.48, 130.30, 129.26, 129.04, 128.72, 128.28, 67.36, 44.35. ¹¹B NMR (192.5 MHz, CD₃OD) δ 29.68. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₂₈H₂₆B₂N₂O₆Na, 531.18692; found 531.18653.

(4-(2-(benzylamino)-1-(4-borono-N-phenylbenzamido)-2-oxoethyl)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.56 (br, 2H), 7.28 (d, *J* = 4.2 Hz, 6H), 7.22 (d, *J* = 4.2 Hz, 1H), 7.20 (d, *J* = 4.2 Hz, 2H), 7.18 (s, 1H), 7.03 (br, 2H), 6.93 (s, 3H), 6.33 (s, 1H), 4.47 (t, *J* = 16.8 Hz, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.71, 172.33, 141.40, 139.85, 134.80, 134.12, 132.43, 131.01, 129.46, 129.08, 128.43, 128.36, 128.25, 128.10, 67.26, 44.28. ¹¹B NMR (192.5 MHz, CD₃OD) δ 27.22 HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₂₈H₂₆B₂N₂O₆Na, 531.18692; found 531.18637.

D1

(4-((2-(benzylamino)-2-oxo-1-phenylethyl)(3-boronophenyl)carbamoyl)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.59-7.46 (br, 1H), 7.41-7.36 (br, 2H), 7.32 (br, 1H), 7.29 (d, J = 4.2 Hz, 5H), 7.23 (q, J = 4.2 Hz, 1H), 7.19 (t, J = 6.9 Hz, 3H), 7.16 (d, J = 7.2 Hz, 2H), 7.06-7.03 (br, 1H), 6.96-6.88 (br, 1H), 6.36 (s, 1H), 4.49 (s, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.64, 172.48, 139.86, 135.69, 131.90, 129.44, 129.31, 128.42, 128.31, 128.08, 67.20, 44.27. ¹¹B NMR (192.5 MHz, CD₃OD) δ 27.54 HRMS (ESI, negative ion)(*m*/*z*): [M - H]⁻, calcd for C₂₈H₂₅B₂N₂O₆, 507.19042; found 507.19079.

(4-((2-(benzylamino)-2-oxo-1-phenylethyl)(4-boronophenyl)carbamoyl)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.54-7.52 (br, 1H), 7.34 (br, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.28 (s, 2H), 7.27 (d, J = 1.8 Hz, 2H), 7.26-7.20 (m, 4H), 7.15 (q, J = 7.2Hz, 3H), 7.00 (br, 1H), 6.34 (s, 1H), 4.47 (q, J = 6.6 Hz, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.58, 173.50, 172.38, 139.86, 135.64, 134.63, 134.13, 131.87, 131.46, 130.60, 139.51, 129.48, 129.33, 128.80, 128.45, 128.33, 128.11, 67.30, 44.30. ¹¹B NMR (192.5 MHz, CD₃OD) δ 27.46. HRMS (ESI, positive ion)(m/z): [M + Na]⁺, calcd for C₂₈H₂₆B₂N₂O₆Na, 531.18692; found 531.18725.

E1

(4-((2-phenyl-2-(N-phenylbenzamido)acetamido)methyl)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.69 (s, 1H), 7.55 (s, 1H), 7.29 (d, *J* =7.2 Hz, 2H), 7.25 (br, 2H), 7.18 (q, *J* = 7.2 Hz, 4H), 7.15-7.11 (m, 5H), 7.00 (br, 1H), 6.91 (s, 3H), 6.33 (s, 1H), 4.46 (q, *J* = 5.4 Hz, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.58, 172.48, 141.45, 137.69, 135.66, 135.11, 132.49, 131.90, 130.50, 129.48, 129.31, 129.25, 129.07, 128.77 128.30, 127.54, 67.25, 44.23. ¹¹B NMR (192.5 MHz, CD₃OD) δ 29.07. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₂₈H₂₅BN₂O₄Na, 487.17996; found 487.18049.

(3-(N-(2-(benzylamino)-2-oxo-1-phenylethyl)benzamido)phenyl)boronic acid

¹H NMR (600 MHz, CD₃OD) δ 7.29 (d, *J* = 7.2 Hz, 3H), 7.26 (s, 2H), 7.25 (d, *J* = 1.2 Hz, 2H), 7.24-7.18 (m, 2H), 7.17 (d, *J* = 3 Hz, 1H), 7.16 (d, *J* = 1.8 Hz, 2H), 7.15 (s, 1H), 7.13 (s, 2H), 7.12 (d, *J* = 3 Hz, 2H), 7.10 (d, *J* = 1.2 Hz, 1H), 6.93 (br, 1H), 6.29 (br, 1H), 4.45 (s, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 173.56, 172.44, 139.81, 137.68, 135.67, 131.85, 130.41, 129.39, 129.25, 128.71, 128.36, 128.02, 67.16, 44.20. ¹¹B NMR (192.5 MHz, CD₃OD) δ 28.01. HRMS (ESI, positive ion)(*m*/*z*): [M + Na]⁺, calcd for C₂₈H₂₅BN₂O₄Na, 487.17996; found 487.17999.

2 Analysis section

Materials of various boronic acid analogs investigated

A series

All materials utilized were synthesized and purified by the abovementioned procedure.

Measurements and Calculations of Binding Constant

The binding constants of ARS and boronic acid were determined through spectroscopic methods. ARS stock solution (4.5×10^{-5} M) was prepared in deionized water and 0.5M stock sodium phosphate buffer at different pH levels (6.0, 6.5, 7.0, and 7.5). Mono- and bis-boronic acid stock solutions were prepared in both deionized water and DMSO/H₂O (8:2) for each boronic acid, while sialic acid or saccharide stock solutions were prepared in DMSO/H₂O (8:2).

Two 200 μ l solutions were created from these stocks. The first solution contained boronic acid, phosphate buffer, water, and DMSO/H₂O (8:2). The second solution contained the same boronic acid solution, ARS, phosphate buffer, water, and sialic acid or saccharide dissolved in DMSO/H₂O (8:2). A non-fluorescent ARS standard was prepared as a solution of ARS and phosphate buffer in the absence of boronic acid and used as a fluorescent blank.

Fluorescence values were measured using a microplate analyzer, with samples excited at 468 nm and emission measured at 572 nm. In the first solution, fluorescence increased with boronic acid concentration, while in the second solution, fluorescence decreased with sugar concentration. The competition among boronic acid, ARS, and diol was leveraged to determine binding constants using a formula from the literature.

ARS	sodium phosphate buffer		Boronic acid	
4.5x10 ⁻⁵	4.5x10 ⁻⁵ 0.5		$2.25 \times 10^{-3} \sim 1.25 \times 10^{-4}$	
	pH 6.0	$6x10^{-2} \sim 2.8x10^{-2}$		4.5x10 ⁻⁴
Sinlin anid	pH 6.5	6x10 ⁻² ~ 5x10 ⁻²		5x10-4
Static actu	pH 7.0	$1x10^{-1} \sim 7x10^{-2}$		1.25x10 ⁻⁴
	pH 7.5	$1x10^{-1} \sim 3x10^{-2}$		4.5x10 ⁻⁴
Fructose	pH 6.0 and 6.5	$9x10^{-2} \sim 5x10^{-2}$	Boronic acid	5x10-4
	pH 7.0 and 7.5	$1x10^{-2} \sim 3.5x10^{-3}$		2x10 ⁻³
Galactose	pH 7.0 and 7.5	$3x10^{-1} \sim 2.5x10^{-2}$		2.5×10^{-4}
Glucose	pH 7.0 and 7.5	$5x10^{-1} \sim 2.5x10^{-2}$		2.3810

Stock solution concentration (M)

- Plot of (1/ fluorescence intensity) against (1/ [BA])
- K_{ARS} = intercept / slope
- Plot of [Diol] / P against Q.

$$\begin{bmatrix}
Q \text{ value} = \frac{((FBA - ARS - blank) - (FBA - SA - blank))}{FBA - SA - blank} \\
P \text{ value} = \frac{[BA] - \frac{1}{(Q \times KARS)} - \frac{[ARS]}{(1 + Q)}
\end{bmatrix}$$

• $K_{eq} = K_{ARS} / slope$

DFT calculations

□ All density functional calculations in this work were performed using the CAM-B3LYP functional as implemented in Gaussian 09. All atoms were described using the 6-31+G(d,p) basis set. Solvation energies were calculated using a polarized continuum model for the solvate containing dimethyl sulfoxide and water (9:16 ratio) with dielectric constant $\varepsilon = 67.2$ for all calculations. All optimized structures were characterized by vibrational frequency calculations. All optimized structures were characterized by vibrational frequency calculations. All optimized structures were characterized at 298 K.

The reaction energy used to calculate the binding constant for bis-boronic acid binding to one sialic acid is defined as Equation A, where we consider the boronic acid compound as a whole:

$$\Delta G = G_{Ugi+SA} + G_{H2O} - (G_{Ugi} + G_{SA}) \quad \text{(Equation A)}$$

where G_{Ugi+SA} is the free energy of Ugi-SA complex. G_{Ugi} , G_{SA} and G_{H2O} are the energy of isolated Ugi structure, sialic acid and water molecule, respectively.

The reaction energy used to calculate the binding constant for bis-boronic acid binding to two sialic acids is defined as Equation B, where we consider the boronic acid compound as a whole:

$$\Delta G = G_{Ugi+2SA} + 2G_{H2O} - (G_{Ugi} + 2G_{SA}) \quad (Equation B)$$

where $G_{Ugi+2SA}$ is the free energy of bis-boronic acids with two sialic acids complex (Ugi-2SA). G_{Ugi} , G_{SA} and G_{H2O} are the energy of isolated Ugi structure, sialic acid and water molecule, respectively.

$$\Delta \mathbf{G} = \Delta \mathbf{E} + \Delta \mathbf{E}_{\mathbf{ZPE}} - \mathbf{T} \Delta \mathbf{S}$$

This equation considers the factors such as zero-point energy (ΔE_{ZPE}) and entropy change (ΔS) to better represent the real-world scenarios accurately.

3 Supplementary Tables and Figures

1 Copies of ¹H NMR, ¹³C NMR, ¹¹B NMR and Mass spectra

Figure S1. ¹H NMR (600 MHz, CDCl₃) spectrum of compound a1 Figure S2. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound a1

Figure S3. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound a1

Figure S4. HRMS (ESI, positive ion) [M + Na]⁺ spectrum of compound a1

Figure S6. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound a2

Figure S7. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound a2

Figure S8. HRMS (ESI, positive ion) $[M + Na]^+$ spectrum of compound a2

Figure S10. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound a3

Figure S11. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound a3

Figure S12. HRMS (ESI, positive ion) [M + Na]⁺ spectrum of compound a3

Figure S14. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound a4

- 31.34

Figure S15. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound a4

Figure S16. HRMS (ESI, positive ion) [M + Na]⁺ spectrum of compound a4

Figure S18. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound a5

Figure S19. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound a5

Figure S20. HRMS (ESI, positive ion) $[M + Na]^+$ spectrum of compound a5

Figure S22. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound b1

Figure S23. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound b1

Figure S24. HRMS (ESI, positive ion) [M + Na]⁺ spectrum of compound b1

30.86

Figure S31. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound b3

Figure S32. HRMS (ESI, positive ion) $[M + Na]^+$ spectrum of compound b3

Figure S34. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound c1

Figure S35. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound c1

Figure S36. HRMS (ESI, positive ion) $[M + Na]^+$ spectrum of compound c1

Figure S38. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound d1

Figure S39. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound d1

Figure S40. HRMS (ESI, positive ion) [M + Na]⁺ spectrum of compound d1

Figure S42. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound d2

31.42

Figure S44. HRMS (ESI, positive ion) [M + Na]⁺ spectrum of compound d2

Figure S47. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound e1

Figure S48. HRMS (ESI, positive ion) [M + Na]⁺ spectrum of compound e1

Figure S50. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound e2

Figure S51. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound e2

Figure S52. HRMS (ESI, positive ion) $[M + Na]^+$ spectrum of compound e2

Figure S54. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound A1

Figure S55. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound A1

Figure S56. HRMS (ESI, positive ion)[M + Na]⁺ spectrum of compound A1

Figure S58. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound A2

Figure S59. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound A2

Figure S60. HRMS (ESI, positive ion) $[M + Na]^+$ spectrum of compound A2

Figure S62. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound A3

Figure S63. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound A3

Figure S64. HRMS (ESI, positive ion) $[M + Na]^+$ spectrum of compound A3

Figure S66. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound A4

Figure S67. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound A4

Figure S68. HRMS (ESI, positive ion)[M + Na]⁺ spectrum of compound A4

Figure S70. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound A5

Figure S71. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound A5

Figure S72. HRMS (ESI, positive ion) $[M + Na]^+$ spectrum of compound A5

Figure S73. ¹H NMR (600 MHz, CDCl₃) spectrum of compound B1

173.59	141.45 1137.67 1137.67 1138.708 1131.06 1131.04 1132.05 1128.30 1128.30 1128.30 127.50	67.25 67.25 49.87 49.31 49.31 48.88 48.80 48.60 48.60
\mathbb{N}		

Figure S74. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound B1

- 29.31

Figure S75. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound B1

Figure S76. HRMS (ESI, positive ion)[M + Na]⁺ spectrum of compound B1

Figure S78. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound B2

Figure S79. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound B2

Figure S80. HRMS (ESI, positive ion)[M + Na]⁺ spectrum of compound B2

Figure S82. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound B3

- 29.68

Figure S83. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound B3

Figure S84. HRMS (ESI, positive ion)[M + Na]⁺ spectrum of compound B3

Figure S86. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound C1

Figure S87. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound C1

Figure S88. HRMS (ESI, positive ion)[M + Na]⁺ spectrum of compound C1

Figure S90. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound D1

Figure S91. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound D1

Figure S92. HRMS (ESI, negative ion)[M + H⁺]⁻ spectrum of compound D1

Figure S94. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound D2

Figure S95. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound D2

Figure S96. HRMS (ESI, positive ion) $[M + Na]^+$ spectrum of compound D2

Figure S97. ¹H NMR (600 MHz, CDCl₃) spectrum of compound E1

173.58	141.45 137.69 137.69 135.11 135.11 135.11 135.31 129.31 129.05 129.07 128.77 128.77 128.77 128.77 127.54	67.25 67.25 49.91 49.23 49.23 49.23 48.64 48.23 44.23
V		

Figure S98. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound E1

Figure S99. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound E1

Figure S100. HRMS (ESI, positive ion)[M + Na]⁺ spectrum of compound E1

Figure S102. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound E2

Figure S103. ¹¹B NMR (192.5 MHz, CDCl₃) spectrum of compound E2

Figure S104. HRMS (ESI, positive ion)[M + Na]⁺ spectrum of compound E2

K_{ARS} and K_{eq} (Sialic acid) titration curve at pH 6.0 and pH 6.5

Figure S105. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound A1 at pH 6.0 and pH 6.5 (three repetitions)

Figure S106. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound A2 at pH 6.0 and pH 6.5 (three repetitions)

Figure S107. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound A3 at pH 6.0 and pH 6.5 (three repetitions)

Figure S108. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound A4 at pH 6.0 and pH 6.5 (three repetitions)

Figure S109. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound A5 at pH 6.0 and pH 6.5 (three repetitions)

Figure S110. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound B1 at pH 6.0 and pH 6.5 (three repetitions)

Figure S111. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound B2 at pH 6.0 and pH 6.5 (three repetitions)

Figure S112. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound B3 at pH 6.0 and pH 6.5 (three repetitions)

Figure S113. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound C1 at pH 6.0 and pH 6.5 (three repetitions)

Figure S114. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound D1 at pH 6.0 and pH 6.5 (three repetitions)

Figure S115. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound D2 at pH 6.0 and pH 6.5 (three repetitions)

Figure S116. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound E1 at pH 6.0 and pH 6.5 (three repetitions)

Figure S117. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound **E2** at pH 6.0 and pH 6.5 (three repetitions)

Table S1. The binding constant (M⁻¹) of boron-containing Ugi compounds to sialic acid at pH 6.0 and pH 6.5

Series	end	K _{eq} with S	SA (M ⁻¹)	
Series	epu	рН 6.0	рН 6.5	
	A1	2602±100	1570±146	
	A2	2071±165	1527±79	
Α	A3	2485±34	1552±153	
	A4	2152±72	1551±69	
	A5	7015±5	5559±35	
	B1	1686±104	1094±229	
В	B2	1756±25	1286±23	
	B3	2102±151	1565±26	
С	C1	2008±20	1556±190	
D	D1	1112±86	577±16	
D	D2	1249±16	823±13	
F	E1	652±2	123±17	
	E2	1035±11	499±34	

3.3 KARS and Keq (Sialic acid, Fructose, Galactose and Glucose) titration

curve at pH 6.0, pH 6.5, pH 7.0, and pH 7.5

Figure S118. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound A1 at pH 6.0, pH 6.5, and pH 7.0 (three repetitions)

Figure S119. K_{ARS} and K_{eq} (Fructose) titration curves of compound A1 at pH 6.0, pH 6.5, pH 7.0, and pH 7.5 (three repetitions)

Figure S120. K_{ARS} and K_{eq} (Galactose) titration curves of compound A1 at pH 7.0 and pH 7.5 (three repetitions)

Figure S121. K_{ARS} and K_{eq} (Sialic acid) titration curves of compound A5 at pH 6.0, pH 6.5, pH 7.0, and pH 7.5 (three repetitions)

Figure S122. K_{ARS} and K_{eq} (Fructose) titration curves of compound A5 at pH 6.0, pH 6.5, pH 7.0, and pH 7.5 (three repetitions)

Figure S123. K_{ARS} and K_{eq} (Galactose) titration curves of compound A5 at pH 7.0 and pH 7.5 (three repetitions)

Figure S124. K_{ARS} and K_{eq} (Glucose) titration curves of compound A5 and A1 at pH 7.0 and pH 7.5 (three repetitions)

Table S2. The binding constant (M⁻¹) of boron-containing Ugi compounds to sialic acid, Fructose, Galactose and Glucose at pH 6.0, pH 6.5, pH 7.0, and pH 7.5

cpd	pH value	K _{eq} with sialic acid (M ⁻¹)	K _{eq} with Fructose (M ⁻¹)	K _{eq} with Galactose (M ⁻¹)	K _{eq} with Glucose (M ⁻¹)
	pH 6.0	2602±100	45±22	n/d	n/d
A 1	pH 6.5	1570±146	49±0	n/d	n/d
AI	pH 7.0	174±5	424±74	162±17	n/d
	pH 7.5	n/d	741±56	241±64	3±0
	pH 6.0	7016±5	87±1	n/d	n/d
۸.5	pH 6.5	5559±35	193±1	n/d	n/d
A5	pH 7.0	479±9	821±0	518±391	7 ± 0
	рН 7.5	80±1	1455±5	755±13	22±0

4. Computational details

Reaction energy

The following are the calculated energies of sialic acid, A1, H_2O and their complexes. The reaction energy in this article is judged by kcal/mole in the last line.

	Solvent Effect										
T (K)	298.15	G_A1 Binding Sites (kcal/mol)									
P (atm)	1	A1(S) - R ²	-2.18246								
G_H ₂ O (Hartree)	-76.41	A1(S) - R ⁴	-1.87372								
G_SA(Hartree)	-1161.31	A1(R) $-R^2$	-1.05734								
G_A1-S(Hartree)	-1692.321	A1(S) - $R^2 + R^4$	-5.96065								
G_A1-R(Hartree)	-1692.322	A1(R) - $R^2 + R^4$	-5.39966								
3	67.2										

Coordinate files

The following are the Cartesian coordinates of the optimized geometries :

•	A1(R) (the	number of imagir	nary frequencies =	С	-3.55787300	2.98906500	0.33067200	Н	-0.68058100	-0.94928500	3.55265400
	0)			С	-2.65016600	2.59591600	-0.66288700	Н	1.71958000	2.95503400	1.68324800
С	-5.04813400	-2.59301600	0.47604400	С	-2.12352900	1.30137800	-0.59655100	Н	0.86206500	1.20629000	0.17714900
Н	-4.77024900	-3.15197800	1.36357800	Н	-3.63801700	0.16471200	2.21746400	О	0.04259400	-0.93923500	-1.48705400
С	-6.37157700	-2.56788500	0.04911200	Н	-4.61742700	2.44603000	2.12365000	Ν	1.49337300	-2.02406600	-0.11535800
С	-6.71867500	-1.86897300	-1.10508900	Н	-3.98230100	3.98710500	0.29547200	Н	1.67668300	-2.31985400	0.83408000
С	-5.73849600	-1.19346900	-1.82795000	Н	-1.42318100	0.92606500	-1.33693000	С	2.48392800	-2.35782400	-1.13019300
С	-4.41750100	-1.19811600	-1.38999800	0	-2.84684600	4.82697700	-1.81866700	С	3.80063200	-1.64133400	-0.92828800
С	-4.06848500	-1.89441100	-0.23191600	0	-1.35244700	3.31946300	-2.79547800	С	4.96784900	-2.35711800	-0.66654400
Н	-7.13037000	-3.09990300	0.61358800	Н	-0.94393700	2.44742900	-2.76044300	С	6.18002700	-1.69417000	-0.48875000
Н	-7.74970700	-1.85545100	-1.44340200	Н	-2.54623600	5.38132100	-2.55065400	С	6.26179600	-0.29951600	-0.56382100
Н	-6.00133500	-0.65915300	-2.73505300	С	0.02551600	0.00878900	1.76113900	С	5.08012500	0.40938900	-0.82797000
Н	-3.66059300	-0.66796800	-1.95681100	С	0.35980000	-1.34327700	-0.36895800	С	3.87033300	-0.24746300	-1.00901700
С	-2.64512200	-2.01864500	0.22591500	С	-0.15881600	-0.08982300	3.14157900	Н	4.92927900	-3.44098100	-0.60094600
0	-2.14675300	-3.13942900	0.36641700	С	0.31895300	0.90109600	3.99382300	Н	2.97039400	0.32395200	-1.21741600
N	-1.92181700	-0.88929300	0.48095200	С	0.99523600	2.00126100	3.47236600	Н	5.11441200	1.49237400	-0.89588300
С	-2.48432600	0.43184100	0.42726000	С	1.19009700	2.10311300	2.09737500	Н	7.07741600	-2.27044700	-0.28551000
С	-0.51798100	-1.09565400	0.87229400	С	0.70684400	1.11267200	1.24712400	Н	2.64370300	-3.43915300	-1.12408900
С	-3.37389000	0.84495300	1.41456800	Н	1.37302300	2.77335100	4.13479000	Н	2.04440300	-2.08919800	-2.09227300
С	-3.91803300	2.12451600	1.35888800	Н	0.16807200	0.81002200	5.06458200	0	8.74294200	-0.30281700	-0.12250000

Η	9.56633400	0.18558800	-0.00196500	С	1.21273500	0.78538400	4.06923900	0	1.58846400	2.99693200	1.72042400
В	-2.25557500	3.59520100	-1.80528800	С	1.16723200	1.84027000	3.16277400	0	3.10990000	2.79024100	0.06531100
В	7.62229100	0.44620100	-0.36229300	С	0.63002500	1.64333300	1.89326700	Н	-0.57633700	2.77282300	0.30792400
0	7.62423700	1.81329100	-0.43558900	Н	1.62755400	0.93506100	5.06081300	Н	0.00713700	2.93346300	-1.35798200
Н	8.47591000	2.24783200	-0.30735200	Н	0.75152500	-1.29121600	4.39916700	0	-2.49874300	1.90092800	-1.29619100
Н	-0.51281300	-2.02298000	1.44881700	Н	-0.18445000	-1.63786000	2.14022800	Н	-2.61730200	2.64323300	-0.68885400
•	A1(S) (the n	number of imagina	ary frequencies = 0)) H	1.54337500	2.81886600	3.44291800	Н	-0.99843600	0.73012000	-1.92743300
С	-3.63058400	-3.42151700	0.53718900	Н	0.59094400	2.47346000	1.19342400	0	1.83645000	1.15054100	-1.29410000
Н	-2.96236400	-3.78283300	1.31162200	0	0.07607300	-0.56197500	-2.09983600	Н	2.64933700	1.71565600	-1.19805400
С	-4.85139000	-4.04840900	0.31276400	Ν	1.74572600	-0.68541900	-0.57020200	Ν	-2.53752000	-0.73094500	-0.10088400
С	-5.69262300	-3.59267900	-0.70011100	Н	1.97512700	-0.62983700	0.41250000	Н	-2.32751300	-1.54476900	-0.66915000
С	-5.31079400	-2.50673400	-1.48445400	С	2.73155100	-1.25167400	-1.47677700	Н	-1.65384300	0.74696100	1.04463400
С	-4.10026300	-1.86370400	-1.24628400	С	4.12859800	-0.77193300	-1.16149800	Н	-0.23259300	-1.12162200	1.28529400
С	-3.25690100	-2.31672700	-0.23007800	С	5.18007500	-1.68284100	-1.06399300	С	1.75555100	-2.14296500	-0.47248900
Н	-5.14293100	-4.89661400	0.92338900	С	6.47581500	-1.24321000	-0.80807100	0	2.83669000	-1.35914100	-0.95596600
Н	-6.64181200	-4.08644800	-0.88155800	С	6.76059900	0.11598100	-0.63381400	Н	2.55341800	-0.42325100	-1.02244300
Н	-5.95638200	-2.15806300	-2.28377900	С	5.69397000	1.02133900	-0.72983600	Н	1.76599200	-3.06890500	-1.06242400
Н	-3.80910400	-1.01927900	-1.86057200	С	4.39968100	0.58852400	-0.99052900	0	3.28844600	-3.19884000	1.05769500
С	-1.89974300	-1.72585500	0.00056900	Н	4.98376300	-2.74428900	-1.18695900	Н	3.92749400	-2.63606000	0.59609400
0	-0.91624800	-2.46320700	0.09670600	Н	3.59050700	1.30965500	-1.06074100	0	-0.60611500	-2.54122400	-0.78324800
N	-1.77058600	-0.36805100	0.06802900	Н	5.88426900	2.08228100	-0.59974600	Н	-0.43484900	-3.09814000	-1.55396300
С	-2.87499700	0.51796700	0.30488800	Н	7.27965800	-1.96929100	-0.73588500	С	0.37480800	-1.50230900	-0.72775000
С	-0.42973700	0.23582200	0.10863700	Н	2.69636800	-2.34590300	-1.44047600	Н	0.42596200	-0.99224000	-1.69602500
С	-3.61457000	0.41593800	1.47952400	Н	2.44094800	-0.95403100	-2.48736600	С	2.03444300	-2.53052700	0.97452100
С	-4.67582600	1.28867200	1.70191300	0	9.21095500	-0.33335900	-0.27045900	Н	1.27708100	-3.22753000	1.34150200
С	-4.97905800	2.26977900	0.76514500	Н	10.09960000	-0.00605700	-0.08646200	Н	2.04167200	-1.63901300	1.61090400
С	-4.23344200	2.40116500	-0.41572400	В	-4.60444900	3.52047400	-1.45206400	С	-3.78223000	-0.69567100	0.42256200
С	-3.18012900	1.50647000	-0.62699800	В	8.21687900	0.60560600	-0.33852000	0	-4.60701600	-1.57074700	0.12422000
Н	-3.36097900	-0.34408500	2.21092500	0	8.42438300	1.94741200	-0.16269100	С	-4.14039300	0.41083400	1.38503300
Н	-5.25793200	1.20527100	2.61373200	Н	9.33124800	2.22177800	0.01955300	Н	-3.49409800	0.39252500	2.26693200
Н	-5.80427800	2.94996800	0.94778400	Н	-0.56056800	1.24582000	-0.28857000	Н	-4.04177400	1.39101000	0.91508200
Н	-2.58057800	1.55058600	-1.53264600	•	Sialic acid (th	ne number of im	aginary	Н	-5.17245100	0.26740400	1.70068700
0	-5.66233700	4.33456100	-1.16313600		frequencies =	= 0)		•	A1(R)-R ² bi	nding site with si	alic acid (the
0	-3.94307900	3.74216000	-2.62846100	С	1.10217300	1.54502000	-0.15105100		number of in	naginary frequen	cies = 0)
Н	-3.19813000	3.16094900	-2.81602600	С	-0.20504200	2.21724000	-0.56065800	С	-2.35569500	4.22060900	-2.12919100
Н	-5.82675900	4.99649300	-1.84749700	С	-1.27980800	1.23278500	-0.99738500	Н	-2.42452000	4.81110800	-1.22278900
С	0.13773600	0.39349700	1.50937400	С	-1.44885600	0.19787800	0.12165700	С	-2.10158300	4.84750300	-3.34517500
С	0.48567000	-0.41801700	-0.94782600	С	-0.10744200	-0.53055900	0.37408800	С	-2.00656900	4.09611500	-4.51423100
С	0.18714300	-0.66127100	2.42711000	0	0.89623400	0.43261000	0.70302300	С	-2.18554600	2.71524500	-4.46791700
С	0.72010500	-0.46377200	3.69749400	С	2.01501000	2.54236600	0.64549400	С	-2.46228400	2.08981600	-3.25691900

С	-2.53281200	2.83686700	-2.07982100	С	-6.48314200	-3.78116600	-0.81910700	С	3.74236100	-1.47686500	1.50392400
Н	-1.97616600	5.92485700	-3.37832300	С	-6.08758100	-4.44928500	0.34817900	Н	4.24065000	-0.51179200	1.65087100
Н	-1.79849900	4.58619400	-5.45992100	С	-5.21982900	-3.85786900	1.25826800	С	1.31675500	-2.35727200	1.38249400
Н	-2.11578100	2.12533700	-5.37600500	Н	-4.71347800	-0.90125200	-0.32547800	Н	1.71692800	-3.35143600	1.60602900
Н	-2.62033100	1.01722100	-3.21770200	Н	-4.93587700	-4.39385100	2.16032800	Н	1.22335700	-2.25436800	0.29668600
С	-2.91285300	2.12523900	-0.81676700	Н	-6.47178100	-5.44487300	0.54836000	С	7.18939200	-3.74186500	0.01302800
0	-3.89411600	1.37285500	-0.81085700	Н	-6.25832200	-1.95242300	-1.92848800	0	7.83318200	-4.36739500	0.86725800
N	-2.19407000	2.33366400	0.32234200	Н	-2.72684700	-2.36914200	1.82183000	С	7.42916900	-3.96128900	-1.46026000
С	-0.89566000	2.95713700	0.31915100	Н	-4.00114900	-2.29101200	3.03193000	Н	6.54687900	-4.40423000	-1.93224700
С	-2.73836100	1.66876100	1.52123300	0	-7.83570200	-3.71935100	-2.94200000	Н	7.64784800	-3.01911000	-1.96533700
С	-0.71658000	4.18643800	0.95049300	Н	-8.44088700	-4.15093600	-3.55669600	Н	8.26806000	-4.64638400	-1.57251300
С	0.54189700	4.77365900	0.94631200	В	2.67803900	2.20609900	-1.12132100	0	-7.90293700	-5.71579500	-1.58478000
С	1.60535900	4.14258000	0.30037900	В	-7.46405400	-4.44354900	-1.84050200	Н	-8.50277200	-6.10286300	-2.23375400
С	1.44727500	2.91563900	-0.35382100	С	3.55889000	0.02055700	-1.32777200	Н	-3.79694100	1.93497100	1.56196600
С	0.17269000	2.33462500	-0.31720000	С	5.03673500	0.04147900	-1.72334100	•	A1(S)-R ² bin	ding site with sia	lic acid (the
Н	-1.55579500	4.67279200	1.43579800	С	5.93419900	-0.62611500	-0.68923800		number of in	aginary frequenc	vies = 0)
Н	0.69182900	5.72928000	1.43953400	С	5.40225100	-2.03978800	-0.45988000	С	-3.70585300	4.16487000	-0.99559300
Н	2.58094200	4.62113500	0.30527500	С	3.94668000	-1.97849600	0.05662500	Н	-4.53384200	3.92919100	-0.33538500
Н	-0.00062800	1.37503400	-0.79380300	0	3.13974000	-1.24880200	-0.87139500	С	-3.71741700	5.33493700	-1.74713900
0	3.76917300	3.09118300	-1.45776700	С	2.67570200	0.34767400	-2.55439100	С	-2.66200500	5.61794700	-2.61164500
Н	3.45883300	3.92524300	-1.82515400	0	2.52287900	-0.38808800	-3.51463200	С	-1.59483000	4.72930700	-2.71855200
С	-2.09542300	2.09737800	2.82748600	0	2.14710400	1.52912700	-2.40858800	С	-1.57028700	3.56953800	-1.95000400
С	-2.65709300	0.13999900	1.37854100	Н	5.15650500	-0.49961200	-2.66744300	С	-2.62509800	3.28506000	-1.08106800
С	-2.80042300	2.94954300	3.67797000	Н	5.32540700	1.08289000	-1.88221300	Н	-4.55324400	6.02183600	-1.66360500
С	-2.25437000	3.34868700	4.89545600	0	7.26672700	-0.73429200	-1.17416900	Н	-2.67386600	6.52647100	-3.20510000
С	-0.99593400	2.89100500	5.27471600	Н	7.64865900	0.14987900	-1.24319300	Н	-0.77769500	4.93852700	-3.40110600
С	-0.29016900	2.03444100	4.43156300	Н	5.93499400	-0.06500200	0.25306700	Н	-0.73614500	2.88315300	-2.03744200
С	-0.83375100	1.63670000	3.21410400	0	3.23953000	1.02105500	-0.40191400	С	-2.69875900	2.00536800	-0.30440600
Н	-0.56712900	3.19825000	6.22330300	Ν	6.23987200	-2.85835900	0.39313300	0	-3.72424300	1.31764500	-0.35188900
Н	-2.81388500	4.01349200	5.54564100	Н	6.05813400	-2.80998800	1.39043000	N	-1.62162500	1.61375500	0.42643800
Н	-3.78331400	3.30791600	3.38553000	Н	5.34384000	-2.52029300	-1.44010300	С	-0.51881100	2.47552300	0.76600000
Н	0.69195800	1.67427300	4.72148500	Н	3.55269400	-2.99738100	0.01783800	С	-1.62607600	0.31325200	1.11661400
Н	-0.26155400	0.98165900	2.56378500	С	2.26822500	-1.29611300	1.93041300	С	-0.69993800	3.52623400	1.66089500
0	-1.71397300	-0.40928500	0.80291700	0	1.78815500	0.00954900	1.67530400	С	0.40467900	4.28065700	2.04351000
N	-3.64855600	-0.53563100	1.98233800	Н	2.20400600	0.37115500	0.86360100	С	1.67140700	3.96511300	1.55449900
Н	-4.41505500	-0.01079500	2.38048200	Н	2.26241400	-1.40481400	3.02304900	С	1.87472100	2.91484500	0.65012700
С	-3.73004700	-1.98395100	2.01842000	0	0.04046000	-2.27992700	1.99808800	С	0.74469200	2.18944500	0.26169400
С	-4.70968100	-2.57823500	1.02578400	Н	-0.46763800	-1.55614600	1.58738600	Н	-1.68743200	3.73859400	2.05727100
С	-5.09361500	-1.89960200	-0.13105200	0	4.35452300	-2.46654600	2.33741300	Н	0.27863700	5.10303500	2.74100700
С	-5.96869400	-2.49680900	-1.03461600	Н	4.36650000	-2.14760300	3.24931600	Н	2.52083500	4.54912600	1.89770400

Η	0.83961100	1.36636200	-0.43972700	С	4.53588500	-1.77003600	-0.62644300	С	8.78763500	0.73290900	4.22002800
0	4.42157600	3.34519300	0.57168000	0	4.01076200	-0.61813400	-1.29333500	С	9.56523100	1.74001100	3.65219700
Н	4.25388400	4.28842100	0.47629000	С	3.95322500	1.63978200	-2.00574800	С	9.20224600	2.28942200	2.42469300
С	-2.21360100	0.36541900	2.51662000	0	4.18964500	1.48832700	-3.19223200	С	8.07609500	1.82151500	1.75509700
С	-2.14396000	-0.80294300	0.19395300	0	3.30301800	2.63960700	-1.48023100	С	7.29701500	0.81022300	2.32044100
С	-3.46375700	0.93078900	2.78967400	Н	6.41358500	0.76210900	-1.65571800	Н	9.06430800	0.30513400	5.17805600
С	-3.95746000	0.95248700	4.09068300	Н	6.12463200	1.74309000	-0.20432200	Н	10.44955700	2.10000500	4.16802600
С	-3.21278500	0.40983100	5.13598200	0	7.89974300	-0.31779700	0.18881300	Н	9.79689200	3.08398900	1.98608300
С	-1.96794600	-0.15426500	4.87345300	Н	8.17087500	0.46000200	0.69284300	Н	7.79902900	2.25270200	0.79983400
С	-1.47317000	-0.17281000	3.57178000	Н	6.08472600	-0.34694500	1.17147300	С	6.01996900	0.34430000	1.69030300
Н	-3.60076600	0.42906000	6.14932300	0	3.68375700	1.09758200	0.23861900	О	4.99604900	0.25491000	2.37183600
Н	-4.92896800	1.39456900	4.28764300	Ν	6.66125800	-2.86035000	0.03864900	Ν	6.00557800	0.06100600	0.35478700
Н	-4.05197100	1.34564100	1.97936000	Н	6.15254000	-3.28990700	0.80439200	С	7.19371000	-0.20563000	-0.40690400
Н	-1.37711300	-0.57480300	5.68077700	Н	6.41787400	-1.59691000	-1.57927400	С	4.72602600	-0.20138500	-0.32184200
Н	-0.49727300	-0.60692400	3.37340700	Н	4.31157200	-2.60137700	-1.29922100	С	8.02973300	-1.26041100	-0.04884800
0	-1.64580700	-0.93474100	-0.93159200	С	2.23649300	-2.03916900	0.54989400	С	9.17397100	-1.51825700	-0.79831800
N	-3.01944800	-1.67094000	0.71600900	0	1.67323400	-0.74882400	0.71441500	С	9.46676700	-0.73958500	-1.91275600
Н	-3.39871500	-1.47015200	1.63119800	Н	2.33373900	-0.06150700	0.48581700	С	8.62496000	0.31212900	-2.29907500
С	-3.50462400	-2.84520400	0.01360400	Н	1.86271500	-2.64270200	1.38783600	С	7.48724300	0.56644100	-1.52715600
С	-4.97281600	-2.77536800	-0.35051800	0	0.33419200	-2.96728800	-0.66492800	Н	7.78551000	-1.87183900	0.81342500
С	-5.59272800	-1.56237900	-0.65635100	Н	-0.17200000	-2.14396400	-0.78460900	Н	9.82889500	-2.33540500	-0.51411000
С	-6.93330900	-1.53727700	-1.02890700	0	4.20128800	-3.33010000	1.13092300	Н	10.35752700	-0.94930600	-2.49606200
С	-7.69484400	-2.71050600	-1.11014200	Н	3.85426400	-3.49269700	2.01787000	Н	6.82853600	1.38652700	-1.79677000
С	-7.05802100	-3.91898800	-0.79812300	С	3.77500000	-2.03826700	0.69050700	С	4.30273100	-1.66060400	-0.30230600
С	-5.72032200	-3.95246300	-0.42023000	Н	4.03593000	-1.28572200	1.44336800	С	3.66729600	0.83644200	0.10602700
Н	-5.02649000	-0.63790400	-0.59656300	С	1.72655000	-2.70086700	-0.72707600	С	4.26023300	-2.41700600	0.87366500
Н	-5.25222000	-4.90207300	-0.17447600	Н	2.22039200	-3.66906300	-0.85437900	С	3.86142800	-3.74991100	0.83889500
Н	-7.62155100	-4.84583700	-0.84541200	Н	1.95972200	-2.07110700	-1.59222900	С	3.49800000	-4.34597500	-0.36692600
Н	-7.40020500	-0.58503500	-1.26256000	С	7.78554200	-3.50085600	-0.35182400	С	3.53800400	-3.60116200	-1.54175700
Н	-2.89861000	-2.94304500	-0.88996700	0	8.17494600	-4.50313900	0.26388900	С	3.94104700	-2.26863000	-1.50695300
Н	-3.31897500	-3.72932500	0.62987500	С	8.53516000	-2.98436200	-1.55505400	Н	3.18739200	-5.38555600	-0.38976600
0	-9.76543700	-1.45817300	-1.81035400	Н	7.92191700	-3.06642100	-2.45750000	Н	3.83318600	-4.32436200	1.75935300
Н	-10.69539600	-1.46589300	-2.06700000	Н	8.80787500	-1.93592200	-1.42371600	Н	4.53102600	-1.95578500	1.81605500
в	3.33281100	2.54041300	0.06818600	Н	9.43234000	-3.58764700	-1.68440200	Н	3.26182400	-4.05609100	-2.48749000
в	-9.20084200	-2.67378300	-1.52828200	0	-9.88307300	-3.85978000	-1.59260500	Н	3.97656300	-1.69549600	-2.42924700
Н	-0.56929600	0.04426900	1.21816300	Н	-10.81018600	-3.80737000	-1.85384400	О	3.95216800	2.03519300	0.10636800
С	4.40844100	0.67412600	-0.88608700	•	A1(S)-R ⁴ bindi	ing site with siali	ic acid (the	Ν	2.43068200	0.37871300	0.34417600
С	5.92036600	0.78104800	-0.67840100		number of image	ginary frequenci	es = 0)	Н	2.28187800	-0.61808600	0.41332600
С	6.47925600	-0.36942200	0.14821000	С	7.64882200	0.27992000	3.56298700	С	1.32995900	1.27103600	0.69613000
С	6.07605300	-1.66982800	-0.54349600	Н	7.02822800	-0.49055800	4.00799100	С	0.00807500	0.54990400	0.61680100

С	-0.68377700	0.19454100	1.77372800	Н	-5.55365400	3.54434500	0.36262100	С	5.18894300	2.20890200	-0.16844100
С	-1.89971600	-0.48274500	1.69242900	0	-4.66622800	3.83890600	-2.07840700	Н	4.41372200	4.91863600	1.72486500
С	-2.47342700	-0.82807700	0.46281000	Н	-3.88636700	3.32991000	-1.81118000	Н	6.74045400	4.52468000	2.49918500
С	-1.76194700	-0.46404400	-0.68941500	0	-7.86410700	2.81497100	0.69354400	Н	8.06231100	2.67151000	1.54838400
С	-0.54734200	0.21082900	-0.61979400	Н	-7.54995200	3.36298300	1.42463700	Н	4.72137500	1.56594700	-0.90725300
Н	-0.26905600	0.44953900	2.74569100	С	-6.84995400	1.86731600	0.34799200	0	8.81862100	0.93287500	-0.25115600
Н	-0.02357300	0.48015200	-1.53381700	Н	-6.50399700	1.34982100	1.24898500	Н	9.11007700	1.82992800	-0.44428700
Н	-2.16997100	-0.71330400	-1.66489000	С	-5.79620300	3.06470000	-1.69131300	С	2.22377900	2.96582700	2.22524900
Н	-2.41361700	-0.74681500	2.61339400	Н	-6.67660400	3.69999200	-1.81592900	С	1.28683000	1.79763100	0.22403900
Н	1.48439900	1.66899600	1.70487300	Н	-5.88989600	2.18855000	-2.34225000	С	1.80554700	3.97888100	3.08857400
Н	1.35555100	2.11913500	0.00664300	С	-11.09109200	0.67173400	0.29636600	С	2.03805300	3.88523500	4.45867800
0	-4.08771400	-2.57696400	1.43420600	0	-11.89209200	1.46649800	0.80812800	С	2.68821100	2.76938200	4.97738900
Н	-3.27216200	-3.04573100	1.63805400	С	-11.57105800	-0.50542200	-0.51620900	С	3.10219800	1.75139900	4.12001500
В	8.94891400	1.19129300	-3.55527000	Н	-11.25864000	-0.40750700	-1.56028800	С	2.87234200	1.84469700	2.75093400
В	-3.89473100	-1.58433400	0.40326700	Н	-11.16499200	-1.44020500	-0.12607000	Н	2.86964100	2.69115100	6.04465700
Н	4.90021500	0.05862300	-1.36926600	Н	-12.65893500	-0.52843900	-0.47596400	Н	1.70812100	4.68192600	5.11763700
0	10.09324500	0.91856500	-4.25224800	Н	10.26997900	1.47480100	-5.02064300	Н	1.29632600	4.85065700	2.68759000
0	8.06835500	2.18368300	-3.88662300	Н	8.28650000	2.70989500	-4.66538300	Н	3.60939500	0.87837900	4.51872600
С	-6.04535400	-1.07781000	-0.46449900	٠	A1(R)-R ² and H	R ⁴ binding sites v	with sialic acids	Н	3.21631000	1.04806300	2.09750200
С	-7.15197700	-1.87706300	0.22728400		(the number of	imaginary frequ	nencies = 0)	0	1.95601100	0.89377400	-0.28835500
С	-8.15969500	-0.99068400	0.94939500	С	4.71939300	5.39204500	-1.89336500	Ν	-0.03300300	1.69804100	0.42406600
С	-8.68878700	0.02719300	-0.05961400	Н	4.65842300	5.81606300	-0.89764200	Н	-0.53107100	2.47404000	0.83758000
С	-7.52136900	0.86988800	-0.62200100	С	5.64142400	5.89757100	-2.80475900	С	-0.80097300	0.50780600	0.05485800
0	-6.55651600	0.00127000	-1.22170900	С	5.73021100	5.35567500	-4.08486900	С	-2.27789400	0.76670900	0.20751500
С	-5.27957400	-1.98458100	-1.45408600	С	4.88013900	4.31721700	-4.45907100	С	-2.99049000	1.43577500	-0.78998700
0	-5.73998600	-2.42021600	-2.49568800	С	3.94255400	3.82608500	-3.55675600	С	-4.34629500	1.70609100	-0.62890300
0	-4.08805100	-2.22895500	-0.98755700	С	3.86818700	4.35003700	-2.26498200	С	-5.04841100	1.31616600	0.52080900
Н	-7.69530400	-2.45178600	-0.52961400	Н	6.29222100	6.71541100	-2.51294400	С	-4.31828400	0.64197100	1.50702200
Н	-6.67884100	-2.57797900	0.91910000	Н	6.45683300	5.74502200	-4.79072500	С	-2.95903800	0.37253600	1.35943100
0	-9.26287800	-1.75841400	1.41415500	Н	4.94284100	3.89334000	-5.45601700	Н	-2.47896500	1.74602300	-1.69784100
Н	-8.96725500	-2.33098400	2.13329300	Н	3.26633100	3.02957400	-3.84893500	Н	-2.42165900	-0.15054400	2.14653500
Н	-7.69425400	-0.47381300	1.79722800	С	2.78622100	3.84201000	-1.35990800	Н	-4.82224000	0.32207200	2.41455400
0	-5.06226600	-0.64200500	0.42981300	0	1.62221500	3.78614800	-1.77176400	Н	-4.87301800	2.23192600	-1.42139300
N	-9.76108500	0.86024000	0.44472400	Ν	3.08950500	3.47386600	-0.08287300	Н	-0.55558200	0.25094900	-0.97971700
Н	-9.48644200	1.70319300	0.93812300	С	4.44182600	3.25493700	0.36228200	Н	-0.49044000	-0.33317300	0.68218900
Н	-9.07209600	-0.53944900	-0.91219900	С	1.92757000	3.09581000	0.74214400	0	-7.01247300	2.93593500	0.18009800
Н	-7.92371700	1.45248800	-1.45466900	С	4.99806200	4.09847600	1.32204400	Н	-6.33668400	3.59978300	0.35022100
С	-5.64369900	2.62957500	-0.23843200	С	6.30060200	3.87513200	1.74845000	В	7.39074900	0.78054100	-0.40921100
0	-4.41139700	1.94238700	-0.09220400	С	7.04324200	2.82682200	1.20459400	В	-6.62151400	1.63270900	0.66516500
Н	-4.57081100	0.97828000	0.01169900	С	6.51238400	1.97540400	0.22904500	С	7.06063600	-1.49079600	-0.98188500

С	8.37978500	-2.26435500	-1.01741300	С	-10.84915300	-0.92819600	-0.49767000	С	4.18240200	7.20516100	-2.28822600
С	8.41867600	-3.40200500	-0.00532500	С	-9.54140300	-1.68816800	-0.17890600	С	5.29245600	6.75145500	-2.99764400
С	7.20551200	-4.29368700	-0.26497600	0	-8.86799200	-1.03962400	0.90295500	С	5.59462000	5.39192700	-3.01861800
С	5.90357700	-3.47607300	-0.10284800	С	-8.16606300	0.79776800	2.22749100	С	4.80234400	4.48818900	-2.31727700
0	5.93596500	-2.34557600	-0.97820100	0	-8.78294900	0.57269200	3.25475100	С	3.69125200	4.94053400	-1.60343300
С	6.92521400	-0.60736700	-2.24384400	0	-7.05483000	1.47173800	2.13912300	Н	3.94028800	8.26279600	-2.27223000
0	6.75008200	-1.03287000	-3.37310400	Н	-10.56191900	1.16030900	1.20224900	Н	5.91756100	7.45533900	-3.53762300
0	7.04961600	0.64658900	-1.91355900	Н	-9.52577700	2.16699000	0.17200200	Н	6.44983800	5.03240000	-3.58142600
Н	8.50824100	-2.69797300	-2.01441300	0	-11.76815900	1.19150100	-1.09425700	Н	5.04405400	3.43178700	-2.33639100
Н	9.18987300	-1.55300200	-0.84229100	Н	-11.58356200	2.08507800	-1.41031400	С	2.74857100	4.00042900	-0.91429500
0	9.58757000	-4.19325600	-0.18002100	Н	-9.89870800	0.58406200	-1.72238000	0	1.53454700	4.08322500	-1.12674400
Н	10.36060700	-3.67187400	0.07102500	0	-7.49585900	0.60321400	0.01115500	Ν	3.25572500	3.05322300	-0.08059500
Н	8.39047200	-3.01653800	1.02103300	Ν	-11.63923500	-1.61252600	-1.50056800	С	4.59522100	3.07581500	0.44688400
0	7.00566800	-0.57939000	0.07923900	Н	-11.12821700	-2.05013900	-2.26010100	С	2.36969400	2.04204100	0.52067400
N	7.17983500	-5.50530500	0.52895000	Н	-11.41616100	-0.92583700	0.43685100	С	4.97247900	4.05525900	1.36134100
Н	6.73261300	-5.44371800	1.43787100	Н	-9.83080400	-2.66335500	0.22121700	С	6.24272000	3.99454300	1.92561200
Н	7.24069100	-4.57935800	-1.31965300	С	-7.25278400	-2.63387800	-0.97975500	С	7.10567700	2.95038500	1.59660100
Н	5.08988400	-4.09592000	-0.48802700	0	-6.23548300	-1.72329000	-0.59545900	С	6.74708900	1.95650300	0.67689500
С	4.27842500	-2.13989800	1.43394000	Н	-6.63377100	-0.88398300	-0.27468900	С	5.47641900	2.05690100	0.10300200
0	4.62964700	-0.76992000	1.40779700	Н	-6.89511300	-3.11513000	-1.89987300	Н	4.27693000	4.84282200	1.63227000
Н	5.42187600	-0.63541800	0.84535200	0	-6.09555000	-4.33945000	0.26746900	Н	6.55051900	4.75195800	2.63996800
Н	3.85428200	-2.31826200	2.43105700	Н	-5.46170500	-3.61693500	0.38966100	Н	8.07790100	2.90845700	2.07977900
0	1.98106100	-1.73994000	0.72722900	0	-9.29679500	-2.80783200	-2.25493300	Н	5.14511100	1.31772300	-0.61975000
Н	2.06427000	-0.82351800	0.40170800	Н	-8.80728000	-2.88019200	-3.08472900	0	9.00607000	0.73580100	0.96713100
0	5.22869400	-4.29555400	2.01476600	С	-8.58194400	-1.95012700	-1.36099500	Н	9.46335400	1.57990800	0.89426100
Н	5.09147600	-4.11152000	2.95324000	Н	-8.33328500	-1.01139600	-1.86736800	С	1.74969000	2.47420100	1.83821500
С	5.51038300	-3.06787600	1.33485600	С	-7.36540800	-3.72466900	0.07910000	С	1.40934000	1.45778600	-0.52753000
Н	6.34247400	-2.55468600	1.83020200	Н	-8.05531000	-4.50858400	-0.24297400	С	1.08226900	3.69344100	1.99498500
С	3.17166300	-2.45082900	0.42906500	Н	-7.71943100	-3.30019200	1.02492300	С	0.52717400	4.03932000	3.22363000
Н	2.92659100	-3.51665700	0.48098400	С	-12.97975200	-1.78377200	-1.51757800	С	0.62918900	3.17443500	4.31132000
Н	3.51058400	-2.21974800	-0.58594100	0	-13.51764700	-2.38338300	-2.45901700	С	1.29272800	1.95982100	4.16450300
С	7.61700600	-6.73359200	0.17331300	С	-13.79381000	-1.25112300	-0.36425500	С	1.85020700	1.61578300	2.93565800
0	7.53614400	-7.67702000	0.97270300	Н	-13.53693100	-1.77257200	0.56284300	Н	0.19544100	3.44767000	5.26788600
С	8.17942400	-6.93074000	-1.21275400	Н	-13.61116800	-0.18547900	-0.21666700	Н	0.01194900	4.98864800	3.33053200
Н	7.40557600	-6.76752600	-1.96906500	Н	-14.84734800	-1.42003500	-0.58136000	Н	0.99190100	4.36670700	1.15036900
Н	8.99569700	-6.23287800	-1.40592500	Н	1.19097300	3.89162000	0.61214800	Н	1.38287200	1.28095000	5.00639900
Н	8.53940500	-7.95517800	-1.29461600	•	A1(S)-R ² and	R ⁴ binding sites	with sialic acids	Н	2.37417500	0.67024400	2.82807500
С	-8.61014900	0.34764100	0.81750800		(the number of	of imaginary freq	uencies = 0)	0	1.86855500	0.99509200	-1.58200200
С	-9.84203900	1.14169200	0.37773200	С	3.37619500	6.30066000	-1.60563000	Ν	0.12077900	1.34705000	-0.19907800
С	-10.53715700	0.52957000	-0.83238800	Н	2.49984000	6.64572900	-1.06719900	Н	-0.21029500	1.79410100	0.64452700

С	-0.86012800	0.74352800	-1.10071000	Н	3.23112400	-2.38402800	1.14162200	Н	-5.62414200	-2.86145300	-2.60096000
С	-2.21465500	0.67905700	-0.44300200	0	2.13021000	-1.80836800	-1.12140500	0	-9.86123800	-0.78961200	-2.96038100
С	-3.08607500	1.76841100	-0.49950100	Н	2.25646300	-0.85563900	-1.27939000	Н	-9.57791800	-0.20868500	-3.67864300
С	-4.32438500	1.71663700	0.13498700	0	4.66744200	-4.37022300	1.18594100	C	-8.88895800	-0.74912500	-1.91188700
С	-4.74975700	0.58009600	0.83703500	Н	4.16773300	-4.24050300	2.00258100	Н	-8.67363900	0.29140400	-1.64645500
С	-3.86319900	-0.50330800	0.88031700	С	5.18695000	-3.11163900	0.74988200	С	-7.55079700	-2.89709900	-2.45928700
С	-2.61802100	-0.45847300	0.25743800	Н	5.74487700	-2.63850300	1.56601100	Н	-8.36616800	-3.28887400	-3.07237700
Н	-2.79325100	2.66151800	-1.04616800	С	3.38538400	-2.45302500	-0.97217700	Н	-7.64093500	-3.29621400	-1.44314400
Н	-1.95336800	-1.31709300	0.31140400	Н	3.19516300	-3.52597400	-1.07262200	C	-13.17395900	-0.94078900	-0.92920700
Н	-4.15274800	-1.40427300	1.41361500	Н	4.07398900	-2.14286000	-1.76527000	0	-13.95823500	-0.74610600	-1.86847100
Н	-4.97967000	2.58213800	0.07509100	С	7.55130300	-6.77457800	0.20683800	C	-13.66175800	-1.46474400	0.39895000
Η	-0.90608600	1.33323500	-2.02228600	0	7.15166500	-7.77486500	0.81918400	Н	-13.25745500	-2.46315700	0.59162000
Η	-0.51146700	-0.25672300	-1.37028300	С	8.61607700	-6.88349800	-0.85675700	Н	-13.35319700	-0.80947900	1.21510500
0	-6.57279300	1.76534700	2.20596200	Н	8.20954600	-6.62104200	-1.83820500	Н	-14.74830600	-1.52742400	0.36440900
Н	-5.81424700	2.18494800	2.62414900	Н	9.44997900	-6.21256400	-0.64406700				
В	7.73336900	0.74119000	0.28375100	Н	8.96750900	-7.91366300	-0.88682100				
В	-6.20538700	0.54507000	1.52592700	С	-8.21514000	-0.66829600	1.17909200				
Н	3.01962600	1.18673700	0.73263700	С	-9.43693000	0.07496900	1.72287700				
С	7.56210900	-1.43840500	-0.59355800	С	-10.44091500	0.43168800	0.63339100				
С	8.77490000	-2.26941800	-0.17050100	С	-10.80158100	-0.85648000	-0.10473500				
С	8.38951900	-3.47828300	0.67172700	С	-9.53092800	-1.48914900	-0.71738700				
С	7.37526500	-4.29149300	-0.12938000	0	-8.57414100	-1.73018800	0.31763400				
С	6.12726300	-3.43160200	-0.43272300	С	-7.41559800	-1.29705800	2.34277500				
0	6.51746000	-2.23453400	-1.11248000	0	-7.79453500	-2.23958600	3.01700300				
С	7.95586500	-0.45392600	-1.72028700	0	-6.29804800	-0.64678800	2.50363800				
0	8.21907100	-0.77869600	-2.86566000	Н	-9.94522800	-0.56658700	2.44978200				
0	7.98203600	0.76047200	-1.24784300	Н	-9.08421100	0.97064900	2.23957200				
Η	9.28390400	-2.63467300	-1.06843600	0	-11.63348700	0.95908900	1.20097900				
Η	9.45634800	-1.61101500	0.37208100	Н	-11.44418000	1.82679500	1.58028400				
0	9.52030700	-4.30592600	0.91397100	Н	-10.01820000	1.16180900	-0.06720500				
Η	10.14023000	-3.83103100	1.48202400	0	-7.30035100	0.19147900	0.56255700				
Η	7.95380300	-3.16755600	1.62920300	Ν	-11.85338300	-0.70179100	-1.08875600				
0	7.10102300	-0.60457600	0.43658800	Н	-11.56498100	-0.42187300	-2.02045500				
Ν	7.02044900	-5.56045200	0.47275800	Н	-11.14460100	-1.56989400	0.64911800				
Η	6.25636800	-5.55023700	1.14035100	Н	-9.81170300	-2.48464000	-1.07090800				
Η	7.83005800	-4.49492600	-1.10238800	С	-7.57771000	-1.37320900	-2.43244500				
Η	5.53739600	-3.98402100	-1.16825400	0	-6.41992500	-0.90438000	-1.76058900				
С	4.00843600	-2.17841100	0.39354200	Н	-6.65750300	-0.57270000	-0.86655100				
0	4.33786300	-0.80715900	0.53720600	Н	-7.48238900	-1.03239900	-3.47208500				
Н	5.30471800	-0.68084200	0.43674000	О	-6.33493000	-3.34265100	-3.05026900				