Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Contents

1. Preparation of Zn-TPP-Ald	
2. Peptide syntheses	4
3. Characterization of TPP conjugates and cages	
3. DOSY NMR	
4. UV and Fluorescence analyses	
5. Singlet oxygen generation	
6. PDT on cells	40
7. ROS production in cells	
8. Cellular uptake kinetics	

1. Preparation of Zn-TPP-Ald

TPP-AId was solubilized in refluxing THF, and $Zn(OAc)_2$ (5 equivalents) was added. After 3 hours, the solvent was removed and the crude material was solubilized in dichloromethane and filtered on silica gel to obtain the desired **Zn-TPP-AId**. ¹H NMR (400 MHz, Acetone) δ 10.43 (s, 4H), 8.87 (s, 8H), 8.45 (d, *J* = 7.9 Hz, 8H), 8.37 (d, *J* = 8.3 Hz, 8H). MS (ESI) m/z calculated C₄₈H₂₈N₄O₄Zn [M]⁺: 788.14; observed: 788.10.

Figure S1: 1H NMR spectrum of Zn-TPP-Ald.

Figure S2: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of Zn-TPP-Ald.

2. Peptide syntheses

2.1. Synthetic route

Scheme S1: Synthetic route used for preparing the protected and deprotected peptide hydrazide building blocks.

2.2. Characterization data

Cys(Trt)-Hyd: Isolated by preparative reverse-phase HPLC (linear gradient from 95/5 A/B eluents to 5/95 A/B eluents in 45 min). ¹H NMR (400 MHz, MeOD) δ 7.44 - 7.40 (m, 6H), 7.34 (dd, *J* = 8.7, 6.7 Hz, 6H), 7.29 - 7.25 (m, 3H), 3.59 (dd, *J* = 6.0, 3.9 Hz, 1H, Ha), 2.69 (dd, *J* = 12.4, 7.3 Hz, 1H, Ha), 2.58 (dd, *J* = 12.4, 6.5 Hz, 1H, Ha). MS (ESI) m/z calculated C₂₂H₂₃N₃OS [M+H]⁺: 378.168; observed: 378.10.

Figure S3: ¹H NMR (top) and COSY NMR (bottom) spectra of Cys(Trt)-Hyd.

Figure S4: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of Cys(Trt)-Hyd.

Cys-Hyd: ¹H NMR (400 MHz, D₂O) δ 4.35 (t, *J* = 5.7 Hz) & 4.17 (t, *J* = 6.0 Hz) (1H), 3.18 - 2.98 (m, 2H). MS (ESI) m/z calculated C₃H₉N₃OS [M+H]⁺: 136.058; observed: 136.06.

Figure S5: ¹H NMR (top) and COSY NMR (bottom) spectra of Cys-Hyd.

Figure S6: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of Cys-Hyd.

Arg(Pbf)Cys(Trt)-Hyd: Isolated by preparative reverse-phase HPLC (linear gradient from 95/5 A/B eluents to 5/95 A/B eluents in 30 min, keeping this composition for 10 more min). ¹H NMR (400 MHz, CD₃OD) δ 7.35 (t, J = 1.8 Hz, 2H), 7.33 (dd, J = 1.5, 0.9 Hz, 4H), 7.28 (t, J = 1.5 Hz, 2H), 7.26 (t, J = 2.0 Hz, 2H), 7.25 – 7.23 (m, 2H), 7.21 (t, J = 1.4 Hz, 1H), 7.19 (t, J = 2.4 Hz, 1H), 7.18 – 7.17 (m, 1H), 4.22 (t, J = 7.5 Hz, 1H), 3.86 (t, J = 6.4 Hz, 1H), 3.20 – 3.09 (m, 2H), 2.95 (s, 2H), 2.65 – 2.55 (m, 2H), 2.53 (s, 3H), 2.46 (s, 3H), 2.04 (s, 3H), 1.87 – 1.75 (m, 2H), 1.65 – 1.50 (m, 2H), 1.41 (s, 6H). MS (ESI) m/z calculated C₄₁H₅₁N₇O₅S₂; [M+H]⁺: 786.348; observed: 786.40.

Figure S7: ¹H NMR (top) and COSY NMR (bottom) spectra of Arg(Pbf)Cys(Trt)-Hyd.

Figure S8: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of Arg(Pbf)Cys(Trt)-Hyd.

Arg-Cys-Hyd: ¹H NMR (400 MHz, D₂O) δ 4.63 (t, *J* = 5.1 Hz) & 4.50 (t, *J* = 6.7 Hz) (1H), 4.09 (t, *J* = 5.4 Hz, 1H), 3.22 (t, *J* = 5.9 Hz, 2H), 3.05 - 2.81 (m, 2H), 1.94 (m, 2H), 1.65 (m, 2H). MS (ESI) m/z calculated C₉H₂₁N₇O₂S; [M+H]⁺: 292.155; observed: 291.70.

Figure S9: ¹H NMR (top) and COSY NMR (bottom) spectra of ArgCys-Hyd.

Figure S10: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of ArgCys-Hyd.

BA-Arg(Pbf)Cys(Trt)-Hyd : Isolated by preparative reverse-phase HPLC (linear gradient from 80/20 A/B eluents to 5/95 A/B eluents in 30 min, keeping this composition for 10 more min). ¹H NMR (400 MHz, CD₃OD) δ 7.82 (d, *J* = 8.2 Hz, 2H), 7.75 (br, 2H), 7.36 – 7.33 (m, 6H), 7.27 – 7.17 (m, 9H), 4.51 (dd, *J* = 8.6, 5.9 Hz, 1H), 4.10 (t, *J* = 7.2 Hz, 1H), 3.27 – 3.13 (m, 2H), 2.95 (s, 2H), 2.71 – 2.61 (m, 2H), 2.55 (s, 3H), 2.49 (s, 3H), 1.95 – 1.75 (m, 2H), 1.71 – 1.55 (m, 2H), 1.42 (s, 6H). MS (ESI) m/z calculated C₄₈H₅₆BN₇O₈S₂; [M+H]⁺: 934.378; observed: 934.25.

Figure S11: ¹H NMR (top) and COSY NMR (bottom) spectra of BA-Arg(Pbf)Cys(Trt)-Hyd.

Figure S12: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of BA-Arg(Pbf)Cys(Trt)-Hyd.

BA-ArgCys-Hyd: ¹H NMR (400 MHz, D₂O) δ 7.85 (dt, *J* = 6.4, 2.0, 2H), 7.78 (dt, *J* = 8.4, 2.0, 2H), 4.55 (ddd, *J* = 8.7, 6.0, 3.6 Hz, 2H), 3.24 (t, *J* = 6.9 Hz, 2H), 2.95 (dq, *J* = 14.1, 6.7 Hz, 2H), 2.01 - 1.83 (m, 2H), 1.80 - 1.64 (m, 2H). MS (ESI) m/z calculated C₁₆H₂₆BN₇O₅S [M+H]⁺: 440.18; observed: 441.15.

Figure S13: ¹H NMR (top) and COSY NMR (bottom) spectra of BA-ArgCys-Hyd.

Figure S14: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of BA-ArgCys-Hyd.

PPh₃-Cys(Trt)-Hyd: Isolated by preparative reverse-phase HPLC (linear gradient from 95/5 A/B eluents to 5/95 A/B eluents in 40 min). ¹H NMR (400 MHz, CD₃OD) δ 7.89 – 7.83 (m, 3H), 7.80 – 7.76 (m, 4H), 7.76 – 7.69 (m, 8H), 7.37 – 7.33 (m, 6H), 7.25 (dt, *J* = 13.8, 4.8 Hz, 6H), 7.21 (dt, *J* = 9.5, 4.2 Hz, 3H), 4.16 (dd, *J* = 7.9, 6.7 Hz, 1H), 3.51 – 3.33 (m, 2H), 2.66 – 2.54 (m, 2H), 2.29 (q, *J* = 7.7 Hz, 2H), 1.84 (m, 2H), 1.70 (m, 2H). MS (ESI) m/z calculated C₄₅H₄₅N₃O₂PS [M+H]⁺: 723.308; observed: 722.15.

Figure S15: ¹H NMR (top) and COSY NMR (bottom) spectra of PPh₃-Cys(Trt)-Hyd.

Figure S16: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of PPh₃-Cys(Trt)-Hyd.

PPh₃-Cys-Hyd: ¹H NMR (400 MHz, D₂O) δ 7.70 (dd, *J* = 5.5, 1.7 Hz, 3H), 7.63 – 7.49 (m, 12H), 4.38 (dd, *J* = 8.1, 5.2 Hz, 1H), 3.17 (br, 2H), 2.72 (ddd, *J* = 22.3, 14.2, 6.7 Hz, 2H), 2.25 (m, 2H), 1.71 (br, 2H), 1.58 (br, 2H). MS (ESI) m/z calculated C₂₆H₃₁N₃O₂PS [M+H]⁺: 481.198; observed: 480.15.

Figure S17: ¹H NMR (top) and COSY NMR (bottom) spectra of PPh₃-Cys-Hyd.

Figure S18: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of PPh₃-Cys-Hyd.

Arg(Pbf)Ser('Bu)-Hyd: Isolated by preparative reverse-phase HPLC (linear gradient from 95/5 A/B eluents to 5/95 A/B eluents in 30 min, keeping this composition for 10 more min). ¹H NMR (400 MHz, CD₃OD) : δ 4.56 (t, J = 5.8 Hz, 1H), 4.01 (t, J = 6.4 Hz, 1H), 3.67 (qd, J = 9.2, 5.8 Hz, 2H), 3.21 (t, J = 6.6 Hz, 2H), 3.00 (s, 2H), 2.57 (s, 3H), 2.51 (s, 3H), 2.08 (s, 3H), 1.91 (m, 2H), 1.64 (m, 2H), 1.45 (s, 6H), 1.20 (s, 9H). MS (ESI) m/z calculated C₂₆H₄₅N₇O₆S; [M+H]⁺: 584.328; observed: 584.55.

Figure S19: ¹H NMR (top) and COSY NMR (bottom) spectra of Arg(Pbf)Ser(tBu)-Hyd.

Figure S20: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of Arg(Pbf)Ser(^tBu)-Hyd.

ArgSer-Hyd: ¹H NMR (400 MHz, D₂O): δ 4.65 (t, *J* = 5.5 Hz) & 4.54 (t, *J* = 5.4 Hz) (1H), 4.14 (d, *J* = 2.5 Hz, 1H), 3.98 - 3.86 (m, 2H), 3.26 (t, *J* = 6.6 Hz, 2H), 2.05 - 1.91 (m, 2H), 1.79 - 1.61 (m, 2H). MS (ESI) m/z calculated C₉H₂₁N₇O₃ [M+H]⁺: 276.178; observed: 276.00.

Figure S21: ¹H NMR (top) and COSY NMR (bottom) spectra of ArgSer-Hyd.

Figure S22: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of ArgSer-Hyd.

Arg₂(Pbf)₂Ser(^tBu)-Hyd: Isolated by preparative reverse-phase HPLC (linear gradient from 80/20 A/B eluents to 5/95 A/B eluents in 30 min, keeping this composition for 10 more min). ¹H NMR (400 MHz, CD₃OD) δ 4.24 (t, J = 5.5 Hz, 1H), 4.20 (dd, J = 8.4, 5.1 Hz, 1H), 3.74 (t, J = 6.2 Hz, 1H), 3.37 (ddd, J = 15.3, 9.2, 5.6 Hz, 2H), 2.93 (t, J = 6.5 Hz, 4H), 2.70 (s, 4H), 2.28 (s, 6H), 2.22 (s, 6H), 1.79 (s, 6H), 1.60 (m, 3H), 1.40 (m, 5H), 1.16 (s, 12H), 0.88 (s, 9H). MS (ESI) m/z calculated C₄₅H₇₄N₁₁O₁₀S₂ [M+H]⁺: 992.506; observed: 992.40.

Figure S23: ¹H NMR (top) and COSY NMR (bottom) spectra of Arg₂(Pbf)₂Ser(^tBu)-Hyd.

Figure S24: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of Arg₂(Pbf)₂Ser(^tBu)-Hyd.

Arg₂Ser-Hyd^{: 1}H NMR (400 MHz, D₂O) δ 4.49 (br, 1H), 4.39 (br, 1H), 4.04 (br, 1H), 3.86 (br, 2H), 3.19 (br, 4H), 1.87 (br, 4H), 1.64 (br, 4H). MS (ESI) m/z calculated $C_{15}H_{33}N_{11}O_4$ [M+H]⁺: 432.278; observed: 432.20.

Figure S25: ¹H NMR (top) and COSY NMR (bottom) spectra of Arg₂Ser-Hyd.

Figure S26: HPLC chromatogram (top) and mass spectrometry analysis (bottom) of $Arg_2Ser-Hyd$.

3. Characterization of TPP conjugates and cages

Figure S27: Representative ¹H NMR spectra of TPP Conjugates and TPP Cages in DMSO-d₆.

Figure S28: Representative HPLC chromatograms of TPP Conjugates and TPP Cages.

Zn-CAGE-PPh3

Figure S29: Representative HPLC chromatograms of Zn-TPP Conjugates and Zn-TPP Cages.

Figure S30: HPLC chromatogram (top) and MALDI-TOF mass spectrometry analysis (bottom) of CAGE-H.

Figure S31: HPLC chromatogram (top) and MALDI-TOF mass spectrometry analysis (bottom) of CAGE-BA.

Figure S32: HPLC chromatogram of CAGE-PPh3.

Figure S33: HPLC chromatogram of Zn-CAGE-H.

Figure S34: HPLC chromatogram analysis of Zn-CAGE-Arg.

Figure S35: HPLC chromatogram of Zn-CAGE-BA.

Figure S36: HPLC chromatogram of Zn-CAGE-PPh3.

Figure S37: HPLC chromatogram (top) and MALDI-TOF mass spectrometry analysis (bottom) of Zn-TPP-Arg4.

3. DOSY NMR

Entry	Compounds	log(D/m²s¹)	D (m²s¹)	R _{hyd} [Å]	V _{sph} [ų]
-		0.04	0.000.40-10	10	400 F
1.	IPP-Ald	-9.64	2.239×10 ¹⁰	4.9	492.5
2.	CAGE-H	-10.23	9.484×10 ⁻¹¹	11.5	6367.39
3.	TPP-Arg₄	-10.167	6.807×10 ⁻¹¹	16.1	17472.1
4.	TPP-Arg ₈	-10.336	4.613×10 ⁻¹¹	23.7	52279.61
5.	Zn-CAGE-H	-9.82	1.513×10 ⁻¹⁰	7.2	1560.17
6.	Zn-TPP-Arg₄	-9.897	1.267×10 ⁻¹⁰	8.6	2681.57
7.	Zn-TPP-Arg ₈	-10.07	8.511×10 ⁻¹¹	12.8	8766.09

Table S1: Hydrodynamic radii and spherical volumes calculated using the Stokes-Einstein equation.

Figure S39: DOSY NMR spectra.

4. UV and Fluorescence analyses

Figure S40: UV-Vis absorption (solid lines) and fluorescence (dashed lines) spectra in DMSO of representative free base (M=2H) (top) and metallated (M=Zn) (bottom) porphyrin derivatives.

Figure S41: UV-Vis absorption (solid lines) and fluorescence (dashed lines) spectra in H₂O of representative free base (M=2H) (top) and metallated (M=Zn) (bottom) porphyrin derivatives.

5. Singlet oxygen generation

Figure S42: Singlet oxygen generation probed by UV absorption spectroscopy using ABDA as a probe at varying light irradiation times (green light, λ = 525 nm).

6. PDT on cells

Figure S43: PDT study in human breast cancer (MCF-7) cells incubated with 1.31μ M of compounds for 24 h then exposed to green light for different irradiation times. Data are presented as mean ± SEM.

7. ROS production in cells

Figure S44: Fluorescence microscopyimaging of ROS using DCFDA assayin MCF-7 cells treated (or not) with 1.31 µM of compounds for 24 h, then, exposed (or not) to green light irradiation for 10 min.

8. Cellular uptake kinetics

Figure S45: Uptake kinetics study of compounds incubated with human breast cancer (MCF-7) cells at 1.31 μ M concentration for different time intervals. Data are presented as mean \pm SEM.